This is the accepted version of a paper published in Die Naturwissenschaften. This paper has been peer-reviewed but does not include the final publisher proof-corrections or journal pagination.

Citation for the original published paper (version of record):

Developmental abnormalities in Glomeris marginata (Villers 1789) (Myriapoda: Diplopoda): implications for body axis determination in a myriapod.
Die Naturwissenschaften, 100(1): 33-43
http://dx.doi.org/10.1007/s00114-012-0989-y

Access to the published version may require subscription.

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-184836
Developmental abnormalities in *Glomeris marginata* (Villers 1789) (Myriapoda: Diplopoda):

Implications for body axis determination in a myriapod

Ralf Janssen

Address

Ralf Janssen
Uppsala University
Department of Earth Sciences
Villavägen 16, 75236 Uppsala, Sweden

Phone: (+46) 18 471 2763
e-mail: ralf.janssen@geo.uu.se

Word count: 5846
Figures: 5
Tables: 1
Supplementary data: 3 supplementary figures

Keywords: Myriapod development, Arthropoda, Diplopoda, axis formation
Abstract

Abnormally developing embryos (ADEs) of the common pill millipede *Glomeris marginata* have been investigated by means of nuclear staining and mRNA in situ hybridization. It showed that all ADEs represent cases of *Duplicitas posterior*, which means that the posterior body pole is duplicated. The severity of the duplication ranges from duplicated posterior trunk segments in one specimen to an almost completely duplicated specimen that only shares the very anterior head region. Remarkably, none of the encountered ADEs represents a case of *Duplicitas anterior* (duplicated anterior pole), or a case of *Duplicitas cruciata* (cruciate duplication with two anterior and two posterior poles). This observation is discussed in the light of earlier reports on *G. marginata* ADEs that claim to have found these abnormalities. The lack of any other axial abnormality aside from *D. posterior* implies that early axis determination in *G. marginata*, and possibly myriapods in general, underlies the developmental mechanisms that prevent the formation of any other type of axial duplication. It is proposed that the formation of *D. posterior* type embryos could be caused by the formation of two instead of only one posterior *cumulus* early during development.
Introduction

There has been a long tradition of study regarding abnormally developed specimens in order to investigate early axis formation in arthropods. These studies date back to long before the advent of modern genetic methods (reviewed in e.g. Sander 1988, 1997). Most of the specimens that have been investigated in these studies have been the result of invasive maneuvers such as ablation, cutting and annealing, chemical treatment, radiation, centrifugation, and strangulation of developing embryos (e.g. Krause 1934, Schnetter 1934, Sekiguchi 1957, Yajima 1960, Kalthoff and Sander 1968, Itow and Sekiguchi 1979). Work on insects has initially been interpreted as supporting the mosaic development model. Later, general thought shifted in favor of regulatory centers, and finally the gradient theory is now generally accepted (reviewed in Sander 1997). Although the majority of these ontogenetic studies have been conducted on insects, chelicerates have also been studied extensively during this time (e.g. Holm 1952, Ehn 1962, 1963, Juberthie 1968, Seitz 1970). Crustaceans are less thoroughly investigated in this respect and relatively few studies exist reporting on similar abnormally developed specimens (Chatton 1909, Harzsch et al. 2000, Harlioglu 2002, Alwes and Scholtz 2005). Within the Myriapoda, the majority of data are known from centipedes (e.g. Selbie 1913, Juberthie-Jupeau 1962, Hubert 1968, 1974, Minelli and Pasqual 1986, Kettle et al. 1999, Lesniewska et al. 2009). Relatively few studies deal with progoneate myriapods such as diplopods (Balazuc and Schubart 1962 (and references therein), Juberthie-Jupeau 1968, 1969, 1974, Hubert 1968, 1974, Ceuca 1989). The abnormally developed myriapod specimens have in all cases been the results of temperature shock treatment or have occurred naturally. A number of reports on diplopod abnormalities come from the pill millipede Glomeris marginata.
The early development of this species is sensitive to temperature changes, and temperature shocks often lead to germ band duplications. Occurrence of nymphs with duplicated posterior germ bands (*Duplicitas posterior*), duplicated anterior germ bands (*Duplicitas anterior*), and cross-wise duplications of the germ band (*Duplicitas cruciata*) have been reported previously (Juberthie-Jupeau 1962, 1968, 1974, Hubert 1968). Reports of abnormally developed embryonic specimens, however, are scarce. One exception is the recently published communication on a *G. marginata* embryo that reports missing dorsal segmental derivatives (Janssen 2011a).

The abnormally developing *G. marginata* embryos (ADEs) that are described in this paper were collected under controlled laboratory conditions (20-21°C). This is because abnormally developing embryos under natural conditions are rare (Hubert 1968). All ADEs described in this paper are of the type *D. posterior*. This may contradict earlier work that states the occurrence of *D. anterior*, *D. cruciata* and *D. completa* type germ band duplications in the same species (Juberthie-Jupeau 1968, 1969). This hypothesis is therefore carefully re-evaluated and discussed. Uncertainties in identifying morphological structures such as limbs and segments in ADEs have been addressed in three ways: firstly by the choice of embryonic versus nymphal specimens, the analysis of subsequent (abnormal) developmental stages, and finally the use of differentially expressed genetic markers.

Material and Methods

Animal husbandry and abnormally developing embryos
Mature specimens of *G. marginata* were collected annually (February/March 2003 to 2010) in the Reichswald forest near the city of Kleve (Nordrhein-Westfalen, Germany). They were cultivated in plastic containers (22 cm x 13 cm x 5 cm) filled with decomposing beech leaves (food) and moist clay (building material for egg-chambers) at a constant temperature of 21-22°C. Females laid eggs for 3-4 weeks after they were collected. Six to eleven days after oviposition eggs were removed from the egg-chambers by hand. After six days of development at 21-22 °C the blastoderm has formed (stage 0) and after eleven days the embryo is rolled up and the cuticle starts to form (stage 6.1) (staging after Janssen et al. (2004)). Embryos were fixed for 4 hours in 1 ml 4% formaldehyde in phosphate buffered saline (PBS) pH 7.4 with 0.1% Tween-20 (PBST) and 1ml heptane. After that treatment embryos were stored in methanol at -20°C pending further examination. ADEs of individuals older than approximately stage 2 were identified under a dissecting microscope; younger stages were not considered because they do not possess well-developed morphological landmarks. The ADEs were stored separately and simultaneously stained for the investigations reported in this work.

Gene cloning and probe synthesis

RNA isolation and cDNA synthesis were performed as per Janssen et al. (2004). A fragment of the *Glomeris* ortholog of spineless (*ss*) was amplified via RT-PCR with the degenerate primers *ss_fw1* (ACN TGY GAN GGN GAT GTN TTY T) and *ss_bw1* (TTR AAR TCC ATN GTN CKY TTN CC) in a first reaction, and *ss_fw2* (TGY ACN CCN TTY GGN CCN CC) and *ss_bw1* in a semi-nested PCR reaction. The fragment was cloned into a plasmid vector (pCRII-TOPO, Invitrogen).
A fragment of *six-3/optix* was amplified from *Glomeris* with the degenerate primers *six3_fw* (CCN GTN GCN CAY CCN AAY TG) and *six3_T7* (=bw) (TAATACTGACTCATA TAG AAC CAR TTN CCN ACY TGN GTN GG). The isolated fragments will herein be referred to as *ss* and *six3* respectively.

Sequences of the two gene fragments were determined by sequencing (Big Dye Terminator Cycle Sequencing Kit; Perkin-Elmer Applied Biosystems, Foster City, CA, USA) chemistry on an automatic analyzer (ABI3730XL; Perkin-Elmer Applied Biosystems) by a commercial sequencing service (Macrogen, Seoul, Korea). Sequences are available in GenBank under the accession numbers HE974354 (*Gm-ss*), and HE974353 (*Gm-six3*).

The PCR fragment of *six3* was purified using a QIAquick PCR purification kit (QIAGEN). This fragment was then used, without cloning into a vector, as template for subsequent RNA-probe synthesis (David and Wedlich 2001). In both cases, *ss* and *six3*, DIG-labeled RNA probes were synthesized with T7 RNA polymerase (ROCHE). Probes were purified with the RNaseasy Mini kit (QIAGEN) prior to whole mount in situ hybridization.

Whole mount in situ hybridization and nuclear staining

Cell nuclei were visualized via incubation of the embryos in 1 μg/ml of the fluorescent dye 4-6-Diamidin-2-phenylindol (DAPI) in PBST for 30 minutes followed by subsequent washes in PBST.

Whole mount in situ hybridization (WISH) was performed as per Janssen et al. (2011). In order to choose appropriate genetic markers for the later investigation of ADEs, the embryos were re-hydrated with PBST, DAPI-stained, and photographed, prior to WISH. To avoid possible decomposition of DAPI-treated embryos stored in
phosphate buffer, they were subsequently dehydrated in a methanol series and stored at -20°C in 100% methanol for up to several weeks before the WISH procedure was performed. Possibly because of this additional hydration/dehydration-step the WISH did not work as expected under standard conditions. Information on gene expression patterns used to identify morphological structures in ADEs is provided as an electronic supplement.

Documentation

Imaging of stained embryos was performed with a digital camera (Axiocam; Zeiss, Jena, Germany) attached to a dissection microscope (Leica, Heerbrugg, Switzerland). Pictures of the DAPI treated embryos were taken under ultraviolet light. Brightness, contrast and color values were, when needed, corrected using image-processing software (Adobe Photoshop CS2, V.0.1 for Apple Macintosh; Adobe Systems Inc. San Jose, CA, USA).

Results

Normal development

It may be useful to shortly recapitulate normal development of *G. marginata* in order to better understand the abnormalities described in this paper. From stage 0 (blastoderm stage) to stage 2 the anterior segments including the first trunk segment (T1) form from the *regio germinalis*, and T2 and T3 split off from the posterior segment addition zone (SAZ) (Janssen et al. 2004). At stage 3, the limb buds of the walking legs appear on T1 to T3, and dorsal tissue corresponding to the anterior trunk segments develops (Fig. 1A). At stage 4, the limb buds on T4 appear (Fig. 1B).
Throughout embryogenesis the limb buds on T1-T3 will remain notably better developed than those on T4-T8. The premandibular segment and the postmaxillary segment are without appendages (Fig. 1B). At stage 5 the first embryonic diplosegment (T5+T6) forms by dorsal fusion (Janssen 2011b). The head forms a morphological unit, and the germ band begins to bend in. At this point the labrum is clearly visible and covers the mouth (Fig. 1C). At stage 6 the germ band is fully bent, anterior and posterior ends come into close contact (Fig. 1D). Dorsal segmental tissue further extends dorsally and at subsequent stages will meet during the process of dorsal closure (not shown). More detailed staging of *G. marginata* embryos is described in Dohle (1964) and Janssen et al. (2004).

Abnormally developing embryos

All abnormally developing embryos (ADEs) represent cases of *Duplicitas posterior*. That is, the embryo possesses two posterior poles that share a single anterior pole. These ADEs can be subdivided into four classes, described below. A detailed description of each individual ADE is provided as an electronic supplement. The data are briefly summarized in Table 1.

Class-I: Cases of *Duplicitas posterior* with symmetrically duplicated posterior germ bands

Embryos E01 to E10 are characterized by successively less shared anterior tissue (i.e. the largest amount of shared anterior tissue is observed in E01 (Fig. 2A), the smallest amount of shared anterior tissue can be seen in E10 (Fig. 2J). The two posterior germ bands are equally well developed. The single non-duplicated anterior pole of each embryo is well developed. Fusion of morphological structures, such as limbs and
dorsal segmental tissue, occurs in the contact zone between the two posterior germ bands and the single anterior portion of the embryo (Figs 2 and supplementary figure Fig. S2).

Class-II: Cases of *Duplicitas posterior* with asymmetrically duplicated posterior germ bands

In ADEs with asymmetrically duplicated posterior germ bands (E11-E14, E24 and E25), one embryo (major) is almost normally developed, whilst the other (minor) germ band is fused with its “anterior” portion to the anterior trunk region of the major germ band. In all cases the minor germ band is fused with the major germ band, and never represents a headless solitary embryo (Fig. 3 and supplementary figure Fig. S2).

The minor germ band is in all cases dorso-ventrally compressed and part of the ventral tissue appears to be missing. As a result, the limb buds of the minor germ band stand very close together (or are even fused). In normally developing embryos this is the area where the ventral nervous system is located (cf. Figs 1).

Class-III: Cases of *Duplicitas posterior* - separate germ bands without anterior head segments

In two ADEs (E15 and E16) two separate (not fused) posterior germ bands that lack anterior tissue form (Fig. 4). The germ bands face each other with their “anterior” poles, but are located parallel to each other. The anterior most extension of the two germ bands is at approximately the same level as the equator of the developing egg.

In both germ bands of E15 (marked (a) and (b)) the mandibular segment represents the most anterior tissue (Fig. 4A-C), and only one mandibular bud has developed (see expression of *cnc*). In both germ bands of E16, the pmx-segment represents the anterior-most segment that is clearly identifiable (see expression of *Antp* as a marker for T1) (Fig. 4D-F).
Class-IV: Cases of *Duplicitas posterior* - fused germ bands without anterior head segments

Four developing eggs (E17-E20) were identified in which the two germ bands are fused with their anterior portion. In these embryos the most anterior head segments appear to be missing (Fig. 5). In all cases the mandibular segment is the most anterior and identifiable segment. Tissue of unclear affiliation is located anterior to this segment.

Discussion

All germ band duplications in *G. marginata* represent bona fide cases of *Duplicitas posterior* - the result of a developmental constraint?

A number of studies report on germ band duplications in *G. marginata* (Dohle 1964, Hubert 1968, Juberthie-Jupeau 1968, 1969, 1974) and other myriapods (a symphylan and a centipede) (Selbie 1913, Juberthie-Jupeau 1961). Thus these duplication events appear to be a frequently occurring phenomenon, even under natural conditions.

While the occurrence of duplicated posterior regions (*D. posterior*) is frequently reported, only two papers describe the rare occurrence of *G. marginata* specimens with duplicated anterior poles (*D. anterior*) (Juberthie-Jupeau 1968, 1969), and only one paper reports a crosswise duplicated embryo (*D. cruciata*) (Juberthie-Jupeau 1968). However, no photographs are provided in these reports to unambiguously prove the findings of *G. marginata* ADEs of the type *D. anterior* and *D. cruciata*.

Only a sketch is shown for the *D. cruciata* specimen (Juberthie-Jupeau 1968). This sketch pictures the ‘cruciate’ specimen from a dorsal view and with fused anterior heads, two pairs of antennae and two pairs of eyes (eye fields). This specimen
represents the first nymphal stage (Juberthie-Jupeau 1968). Among the embryos
presented in this paper, E21 is most similar to the sketch provided in Juberthie-Jupeau
(1968). It is possible that this embryo would appear at later stages to be a morph
similar to that described as *D. cruciata*. Such a specimen would not represent a case
of *D. cruciata*, because it shares at least the anterior-most head region and does not
possess two free anterior poles and two free posterior poles as described for cases of
D. cruciata in other arthropods (cf. e.g. Brauer 1917, Holm 1952, Krause and Krause
1954). It is thus possible that the alleged *D. cruciata* embryo represents a
misinterpreted *D. posterior* embryo with minimal amount of shared anterior tissue.

Juberthie-Jupeau (1969) also described three specimens with either two free heads
(two specimens) or two dorsally fused heads (one specimen). She interpreted these
cyphs as cases of *D. completa* (Juberthie-Jupeau 1969). It is, however, likely that
these specimens indeed share the anterior-most tissue and that the head only appears
to be free after the rearrangement of the anterior portion of the head. Late during
ontogenesis the labrum and mouth move into a more posterior and lateral position,
while the eyes move dorso-laterally. As a result, initially shared anterior tissue will in
a later developmental stage, such as the nymphal stage, end up in a more posterior
position. Consequently, the forming head would appear to be free and without any
shared tissue.

Juberthie-Jupeau’s claim that she discovered cases of *D. anterior* (Juberthie-Jupeau
1968, 1969) may rest on similar misinterpretations, although this is less likely given
that in a possibly misinterpreted *D. posterior* specimen the two posterior poles would
be easily identifiable. However, she described one of these specimens with a single
posterior pole but a significantly broadened anus (Juberthie-Jupeau 1969). It is
possible that this represents a *D. posterior* type specimen with minimal amount of
shared anterior tissue (in the opposing position) in which the posterior poles are
secondarily fused, resulting in the unnaturally broadened anus. This may happen as a
result of the posterior germ bands growing towards each other late during
ontogenesis. The embryos E21 and E22 (Fig. S2A-D) may exemplify this scenario. At
even later stages (nymphs) these embryos may appear to match the description of D.
anterior.

Although the present study reports on only 25 specimens, more specimens with axial
duplications have been observed, but not described here as they represent the same
stages and abnormalities as the shown specimens. Altogether 63 specimens were
found that all represent cases of D. posterior. This work is based on these 63
specimens. More D. posterior ADEs have been observed in the last years, but were
not further investigated. These ADEs also represent exclusively cases of D. posterior.
This corresponds with Dohle’s (1964) statement that he found several specimens with
duplicated posterior ends, but never a single specimen with duplicated anterior poles.
It thus appears that all confirmed axial duplications reported so far for any myriapod
species represent bona fide cases of D. posterior. This finding raises the question
whether there may be an underlying developmental constraint that prevents the
(natural) occurrence of any other axial duplication.

The phenomenon of head and trunk(s) at a right angle - a result of “lateral closure”
It appears in some cases that anterior and posterior portions of the ADE stand at a
right angle to each other. In symmetrically duplicated and opposing germ bands with
only a small amount of common anterior tissue, this seems to regularly be the case
(Fig. 2E,G-I). The simple explanation for this interesting phenomenon is that the
dorsal sides of two different germ bands fuse irregularly when the dorsal tissue extends over the yolk. In normal cases the two dorsal edges of the same (single) germ band fuse in this way during the process of dorsal closure. In embryos with duplicated posterior germ bands, however, this possibility is excluded, because of spatial limitations. The supernumerary germ band prevents two dorsal rims of the same germ band to fuse, because it is physically in the way. Instead, the right side of one germ band fuses with the left side of the other germ band (and vice versa) in a lateral position (“lateral closure”). As a result of this miss-fusion, the suture of “lateral closure” lies at right angle to the symmetry axis of the germ bands, and does not (as in normally developing embryos) share the same axis (Fig. S3). This scenario has also been observed and described by Juberthie-Jupeau (1969).

Missing anterior tissue in D. posterior-type ADEs

Two classes of ADEs have been described here that deal with twinned embryos lacking the most anterior portion(s) of their germ bands (Figs. 4 and 5). The first class (Class-III) describes specimens with parallel shifted germ bands (Fig. 4). The second class (Class-IV) comprise of fused specimens (Fig. 5).

Two similar specimens are described in the literature. Hubert (1968) described one first-stage nymph and one second-stage nymph of *G. marginata* that resemble the specimens presented in this paper. Unfortunately, again, the description is incomplete and solely relies on hand drawings. Hubert (1968) interprets a broad (fused?) flap-like structure at the anterior contact zone of the two germ bands as the antennal rudiment.

This interpretation is supported by the presence of antennae-specific structures on the tip of this appendicular structure (Hubert 1968). However, the presence of mandibles
and maxillae in this specimen is not described or mentioned. It thus appears possible that Hubert miss-interpreted fused mandibles as an antennal rudiment. Following this interpretation, she describes another antennal rudiment in a stage-two nymph (Hubert 1968). For this specimen she actually presents a close-up drawing of the ventral side of the nymph that shows a set of mandibles and a gnathochilarium (the maxillae). The single ‘antennal rudiment’, however, strikingly resembles a walking limb. A possible explanation as to why she may have refused to interpret this structure as a walking limb may be that the (normal) full complement of eight limb-bearing segments (=16 walking limbs) is present in each of the two germ bands. This would make the single structure (interpreted as a rudimentary antenna) unlikely to be a walking limb. Juberthie-Jupeau (1974), however, showed that the number of trunk segments (and thus walking limbs) in heat-induced ADEs of G. marginata may vary up to ten instead of eight segments. The latter is the normal number of trunk segments in first and second-stage nymphs (e.g. Enghoff et al. 1993).

The data provided in this paper, and the data reported by Hubert (1968) suggest that in all cases the tissue anterior to the mandibles is lost or rudimentary in the ‘headless twin’-type ADEs. This indicates that the interface between the mandibular and the premandibular segment could possibly represent a special center of organization or embryonic border. Tissue posterior to this border may be less prone to disturbances during ontogeny.

Interestingly, missing anterior heads were never observed in embryos that do not concurrently represent cases of Duplicitas posterior. This suggests a functional connection between the presence of twinned posterior germ bands and the lack of the anterior-most tissue.
A theoretical explanation for the formation of D. posterior type ADEs

The first morphological sign of the forming germ band is the *cumulus* that develops at approximately 7-8 days (at approximately 18°C (Dohle 1964)), or 6-7 days after fertilization (at approximately 20°C (Janssen et al. 2004, 2011)). Prior to that the developing embryo represents a classical blastoderm (Dohle 1964). The *cumulus* itself is recognizable as an area of greater cell density. It marks the vegetative (or posterior) pole of the developing embryo. Occurrence of a *cumulus* has also been reported for other myriapods (Heymons 1897, 1901). This ‘structure’ will later transform into the SAZ from which new segments are specified and added to the extending germ band.

The *cumulus* represents the posterior pole of the embryo, and that appears to be of special interest for the formation of *D. posterior* ADEs. The simplest way to explain the formation of germ bands with duplicated posterior poles is to assume a duplication of the *cumulus*. The experiments by Juberthie-Jupeau (1968, 1969, 1974) showed that temperature shocks often lead to abnormal development of the type *D. posterior*. This happens with the highest frequency in eggs that are around 3-4 days old, when the three-day long temperature shock (Juberthie-Jupeau 1974) is applied. This represents a time period from shortly before the formation of the blastoderm until the blastoderm and the *cumulus* have formed (Dohle 1964). It is possible that the relatively high temperature disrupts cell movements in the developing embryo. In this way *cumulus*-forming cells (or *cumulus* founder cells) may be separated and/or moved to two separate locations - the assumed two later forming *cumuli*.

Future perspectives
Some aspects concerning the presented data are still unclear, thus it would be beneficial to further investigate ADEs to unambiguously clarify these points. For example, the statement that ADEs of the type *D. anterior*, *D. completa* and *D. cruciata* may not occur in *G. marginata* is solely based on negative results (i.e. the absence of such ADEs from the samples underlying this and previous reports) and seemingly contradicted earlier reports (discussed above) (Juberthie-Jupeau 1968, 1969). It is therefore planned to produce a much larger sample of ADEs by means of temperature shocks as described by Juberthie-Jupeau (1968). This should either produce a statistically relevant number of ADEs with exclusively posterior duplications, to exclude any other kind of duplication, or indeed produce rare cases of *D. anterior*, *D. cruciata* and *D. completa*. The examination of older stages (nymphs) is planned in order to further understand how the morphology of the *D. posterior* embryos changes over time. Such data may reveal whether the described *D. cruciata* and *D. completa* embryos (Juberthie-Jupeau 1968, 1969) may in fact represent misinterpreted *D. posterior* embryos. It is also planned to further investigate ADEs by means of molecular marker genes in order to gain further insight into how the critical anterior tissue fuses/behaves in ADEs. Earlier embryonic stages may be of great interest, in particular because they allow a two-dimensional view of the anterior head segments prior to the formation of three-dimensional structures and before the morphological rearrangement of the head begins (e.g. relocation of the position of the mouth, regulatory events, and disturbances caused by the clashing of the two posterior germ bands in the attempt to properly roll in and grow dorsally over the yolk). Finally, detection of cell death via terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL assay) is planned for embryos with rudimentary or no anterior head. This will reveal to what extent cell death is involved in these peculiar ADEs.
Conclusions

Four classes of ADEs can be distinguished in *G. marginata*: 1) symmetrically duplicated germ bands that share a single anterior pole (the grade of duplication varies from embryo to embryo), 2) asymmetrically duplicated germ bands that share a single anterior pole; the anterior pole is clearly associated with one of the two posterior poles (major); the minor posterior germ band is laterally fused with the major germ band, 3) duplicated posterior germ bands without anterior pole; the two germ bands are not fused; 4) duplicated posterior germ bands with a rudimentary anterior pole; the two germ bands are fused. All classes represent variations of *Duplicitas posterior*. That means that these embryos possess two posterior poles, but only one (shared) anterior pole.

Other germ band duplications such as *Duplicitas anterior* and *Duplicitas cruciata* that were reported previously were not found.

A probable reason for the occurrence of *D. posterior* type ADEs is the formation of two posterior organization centers (*cumuli*) instead of only one, as the result of early development at excessive temperatures.

Acknowledgements

I would like to thank the members of the “Evolutionär organismbiologi” course Uppsala (2009), and here especially Patrik Båtelsson, who isolated and cloned the *Glomeris spineless* fragment under my supervision. Pictures in Fig.S1E-F and the *Glomeris Distal-less* clone were generously provides by Nikola-Michael Prpic-
I would like to also thank Alessandro Minelli (University of Padova, Italy) and Muzaffer M. Harlioglu (University of Firat, Turkey) for providing rare literature. Finally, thanks to native speakers Aodhán D. Butler and Allison Perrigo for proofreading of the final version of the manuscript. Five anonymous reviewers are thanked for their helpful comments and constructive criticism.

References

Brauer A (1917) Ueber Doppelbildungen des Skorpion Euscorpius carpathicus L. Sitz Akad wiss Berlin, pp. 208-221, 12 figs

456 Uppsala 35:339-368

457

458 Ehn A (1963) Effects of sulphhydryl-blocking substances on development of spider
459 embryos. Zool Bidrag Uppsala 36:49-76

460

461 Enghoff H, Dohle W, Blower JG. (1993) Anamorphosis in millipedes (Diplopoda) -
462 the present state of knowledge with some developmental and phylogenetic

464

466 crayfish, *Pacifastacus leniusculus* (Decapoda, Atacoidea). Folia biologica (Krakow)
467 50:215-216

468

470 with double brain and double ventral nerve cord. Arthropod Structure and
471 Development 29:95-99

472

473 Heymons R (1897) Mittheilungen über die Segmentirung und den Körperbau der
474 Myriopoden. Sitzungberichte der königlich preussischen Akademie der
475 Wissenschaften zu Berlin 40:915-923

476

477 Heymons R (1901) Die Entwicklungsgeschichte der Scolopender. Zool Stuttg 13:1-
478 244

479

480 Holm Å (1952) Experimentelle Untersuchungen ueber die Entwicklung und

Hubert M (1968) Sur des cas de monstruosités doubles observés chez des larves de *Glomeris marginata* (Villers) (Myriapode, Diplopode, Oniscomorphe, Glomeridia).

Bull Soc Zool Fr 93:443-450

Itow T, Sekiguchi K (1979) Induction of multiple embryos with NaHCO₃ or calcium free see water in the horseshoe crab. Wilhelm Roux’s Archives 187:245-254

Janssen R (2011b) Diplosegmentation in the pill millipede *Glomeris marginata* is the result of dorsal fusion. Evol Dev 13:477-487

Juberthie-Jupeau L (1968) Production experimentale de monsters doubles chez *Glomeris marginata* (Villers), Myriapode, Diplopode. C R Acad Sci Paris 266:1610-1612

Lavori Soc Ven Sc Nat 11:135-141

Figure Legends

Fig.1 Normally developing embryos of *G. marginata*.

In all panels anterior is to the left. Outgrowing limb buds of T1 to T3 are marked with arrows in (A). The arrow in (B) points to outgrowing limb buds in T4. The bracket in (C) marks the first diplosegment. Abbreviations: A, anterior pole; an, antennal segment; av, anal valves; e, eye grooves; md, mandibular segment; mx, maxillary segment; oc, ocular region; P, posterior pole; pmd, premandibular segment; pmx, postmaxillary segment; S, stomodaeum; SAZ, segment addition zone; T1 to T4, first to fourth walking limb bearing segment.

Fig.2 Symmetrical ADEs of the type *Duplicitas posterior*.

DAPI stained embryos (A-I) and corresponding bright field photographs (A´-I´). In all panels anterior is to the left. Note that embryos in bright field and corresponding DAPI panels are not orientated exactly in the same position, but in similar position.
Arrow in (A/A’) points to the single shared T3 limb-bud; arrowheads point to corresponding T3 limb-buds. Asterisks in (B), and arrowheads and arrow in (B’) mark maxillae. Arrowheads and arrow in (C) mark maxillae; filled circle indicates the position of a mandible. (c) shows a magnification of the anterior fusion-area of the embryo shown in (C). Asterisks in (D) and arrowheads and arrow in (D’) mark mandibles. Asterisks in (E) and arrowheads and arrow in (E’) mark mandibles. Asterisks in (F) and arrowheads and arrow in (F’) indicate the position of antennae. Arrowheads in (F) point to putative tentorial openings in the pmd segment. Asterisks in (G) and arrowheads and arrow in (G’) mark antennae. Asterisk in (H) and arrowheads and arrow in (H’) mark antennae. Black asterisks in (H’) mark two domains of ss-expression in the single (fused) antenna. Asterisks in (I) and arrows in (I’) mark labral buds. Arrowheads in (I) point to artificial indentations that are most likely a result of the fusion process. Asterisk in (J) and arrowheads and arrow in (J’) point to eye grooves. Abbreviations are as in Fig.1, and lr, labrum.

Fig.3 Asymmetrical ADEs of the type *Duplicitas posterior*.

All embryos are oriented with anterior to the left. Bright field photographs (A’-C’) show same embryos as DAPI-stained embryos in (A-C). Ventral view on all embryos, except in panel (E) (lateral view). Arrowheads in (A/A’ and C/C’) mark antennae and maxillae. Asterisks in (A/A’ - C/C’) mark most anterior single limb bud of minor germ bands. Arrowheads in (A/B) indicate uncertain affiliation of the structure. Abbreviations as in Fig. 1, and P1, posterior pole of major germ band; P2, posterior pole of minor germ band.
Fig. 4 Cases of *Duplicitas posterior* with separate germ bands and without anterior head segments

Images of DAPI-stained embryos (A-F) show same embryos in similar position as presented in bright field photographs (A’-F’). Arrows in (A) and (D) point to possible connective tissue. Question marks in (A/A’) indicate tissue of unclear affiliation. Arrowhead in (B/B’) marks single maxilla. Abbreviations as in Fig. 1, and (a) and (b) mark the two similarly developed germ bands.

Fig. 5 Cases of *Duplicitas posterior* with fused germ bands and without anterior head segments

Left arrow in (A) marks a maxilla of germ band (a). Right arrow in (A) marks a limb bud of unclear affiliation. Arrowhead in (A/B) points to (possibly fused) mandibles. Question mark in (B) indicates tissue of unclear affiliation. Arrowheads in (C) mark fused maxillae and mandibles (cf. (E)). (D) Backside of the embryo shown in panel (C). Arrow in (F) points to anterior tissue of unclear affiliation. Asterisk in (F) marks the fused mandibles (cf. (H/h)). (G) Backside of the embryo shown in panel (F). Arrow in (I) points to tissue of unclear affiliation anterior to the fused mandibles. Asterisks in (I/J) mark abnormally developed posterior poles. Abbreviations as in Fig. 1, and (a) and (b) mark the two equally developed germ bands shown in panel (A).

Table Legend

Table 1 Summary of reported results on abnormally developed *G. marginata* embryos.

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 |
mandibular segment; mx, maxillary segment; pmx, postmaxillary segment; pre-an, pre-antennal region; ss, spineless gene; T3, third walking limb bearing segment.
Class-I: Cases of *Duplicitas posterior* with symmetrically duplicated posterior germ bands

<table>
<thead>
<tr>
<th>No.</th>
<th>Stage</th>
<th>Shared Anterior Tissue (including)</th>
<th>Detected mRNA</th>
<th>Specific Remarks (in-detail description in supplement)</th>
<th>Figure(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E01</td>
<td>3</td>
<td>T3</td>
<td>Dll</td>
<td>largest amount of shared anterior tissue; three T3 limb buds</td>
<td>2A/A'</td>
</tr>
<tr>
<td>E02</td>
<td>5</td>
<td>(pmx?), mx</td>
<td>Dll</td>
<td>inner limbs of T1 in close proximity</td>
<td>2B/B'</td>
</tr>
<tr>
<td>E03</td>
<td>4.1</td>
<td>md</td>
<td>---</td>
<td>inner maxillae in close proximity; three md buds</td>
<td>2C/c</td>
</tr>
<tr>
<td>E04</td>
<td>5</td>
<td>md</td>
<td>six3+ss</td>
<td>three md buds</td>
<td>2D/D'</td>
</tr>
<tr>
<td>E05</td>
<td>4</td>
<td>md/an</td>
<td>ss</td>
<td>three md buds; tissue anterior of an (possibly remnants of lr, oc and S)</td>
<td>2E/E'</td>
</tr>
<tr>
<td>E06</td>
<td>3</td>
<td>md/an</td>
<td>ss</td>
<td>three md buds; three an buds; remnants of two pmd segments</td>
<td>2F/F'</td>
</tr>
<tr>
<td>E07</td>
<td>4</td>
<td>an</td>
<td>cnc+ss</td>
<td>md segments abutting each other; three an buds, S and two an buds on one side, third an bud on other side of embryo; tissue “anterior” to an buds on either side (putative remnants of lr and oc)</td>
<td>2G/G'</td>
</tr>
<tr>
<td>E08</td>
<td>4.1</td>
<td>an</td>
<td>ss</td>
<td>three an buds</td>
<td>2H/H'</td>
</tr>
<tr>
<td>E09</td>
<td>4</td>
<td>lr</td>
<td>cnc+ss</td>
<td>two sets of an buds and two lr; one S</td>
<td>2I/I'</td>
</tr>
<tr>
<td>E10</td>
<td>4</td>
<td>e</td>
<td>six3</td>
<td>smallest amount of shared anterior tissue</td>
<td>2J/J'</td>
</tr>
<tr>
<td>E21</td>
<td>6</td>
<td>pre-an</td>
<td>ss</td>
<td>(putative) later stage ADE as shown in E09</td>
<td>S2A/A'/B</td>
</tr>
<tr>
<td>E22</td>
<td>6.1</td>
<td>(unclear)</td>
<td>---</td>
<td>(putative) later stage ADE as shown in E09</td>
<td>S2C/D</td>
</tr>
<tr>
<td>E23</td>
<td>1.2</td>
<td>e</td>
<td>Pax6+en</td>
<td>younger stage ADE as shown in E10; smallest amount of shared anterior tissue</td>
<td>S2E/E'/F</td>
</tr>
</tbody>
</table>

Class-II: Cases of *Duplicitas posterior* with asymmetrically duplicated posterior germ bands

<table>
<thead>
<tr>
<th>No.</th>
<th>Stage</th>
<th>Shared Anterior Tissue (including)</th>
<th>Detected mRNA</th>
<th>Specific Remarks (in-detail description in supplement)</th>
<th>Figure(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E11</td>
<td>4</td>
<td>(unclear)</td>
<td>ss</td>
<td>minor germ band dorso-ventrally compressed; affiliation of segments unclear in minor germ band</td>
<td>3A/A'</td>
</tr>
<tr>
<td>E12</td>
<td>4</td>
<td>dito</td>
<td>ss+Antp</td>
<td>dito</td>
<td>3B/B'</td>
</tr>
<tr>
<td>E13</td>
<td>4</td>
<td>dito</td>
<td>ss+Antp</td>
<td>dito</td>
<td>3C/C'</td>
</tr>
<tr>
<td>E14</td>
<td>6</td>
<td>dito</td>
<td>---</td>
<td>minor germ band “sits” on dorsal side of major germ band</td>
<td>3D/D'</td>
</tr>
<tr>
<td>E24</td>
<td>6</td>
<td>dito</td>
<td>---</td>
<td>minor germ band dorso-ventrally compressed; affiliation of segments unclear in minor germ band</td>
<td>S2G</td>
</tr>
<tr>
<td>E25</td>
<td>6</td>
<td>dito</td>
<td>---</td>
<td>dito</td>
<td>S2H/I</td>
</tr>
</tbody>
</table>

Class-III: Cases of *Duplicitas posterior* - separate germ bands without anterior head segments

| E15 | 4 | --- | *cnc+ss* | most anterior identified segment in both germ bands: md; most anterior tissue of unclear affiliation | 4A/A’-C/C’ |
| E16 | 4.1 | --- | *Antp* | most anterior identified segment in both germ bands: pmx; most anterior tissue of unclear affiliation | 4D/D’-F/F’ |

Class-IV: Cases of *Duplicitas posterior* - fused germ bands without anterior head segments

E17	5	(unclear)	---	most anterior identified segment: md; most anterior tissue of unclear affiliation	5A/B
E18	6	dito	*cnc+ss*	dito	5C-E
E19	6	dito	*cnc+ss*	dito	5F-H
E20	6	dito	---	dito	5I-J
Supplementary Material

Click here to download Supplementary Material: Fig.S1_Gm-ss and Gm-six3.tif
Click here to download Supplementary Material: Fig.S3_lateral closure.tif
Click here to download Supplementary Material: Janssen 2012_NAWI_Supplement_revised.doc