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ABSTRACT
The inactivation of programmed cell death has profound
effects not only on the development but also on the
overall integrity of multicellular organisms. Beside devel-
opmental abnormalities, it may lead to tumorigenesis,
autoimmunity, and other serious health problems.
Deregulated apoptosis may also be the leading cause of
cancer therapy chemoresistance. Caspase family of
cysteinyl-proteases plays the key role in the initiation and
execution of programmed cell death. This review gives an
overview of the role of caspases, their natural modulators
like IAPs, FLIPs, and Smac/Diablo in apoptosis and upon
inactivation, and also in cancer development. Besides
describing the basic mechanisms governing programmed
cell death, a large part of this review is dedicated to
previous studies that were focused on screening tumours
for mutations within caspase genes as well as their
regulators. The last part of this review discusses several
emerging treatments that involve modulation of caspases
and their regulators. Thus, we also highlight caspase
cascade modulating experimental anticancer drugs like
cFLIP-antagonist CDDO-Me; cIAP1 antagonists OSU-
03012 and ME-BS; and XIAP small molecule antagonists
1396–11, 1396–12, 1396–28, triptolide, AEG35156,
survivin/Hsp90 antagonist shephedrin, and some of the
direct activators of procaspase-3.

On average, one out of every four people will have
cancer in their lifetime. Although inherited cancers
account for only a small fraction of all tumours,
most cancers are caused by a mix of hereditary and
environmental factors.1 Identification of cancer
stem cells in the majority of cancers suggests that
the mutations are occurring within tissue stem
cells, and cancer is both a consequence of
uncontrolled proliferation, as well as disturbed
differentiation.2 3 Genetic alterations often allow
for verification of diagnosis and may even dictate
the treatment approaches. Thus, cancer specific
therapies based on specific genetic alterations
(pharmacogenomics) have opened a new era of
cancer treatment.4

Multicellular organisms employ two main
mechanisms for the elimination of cells: necrosis
and apoptosis.5 Necrosis may be triggered by the
rupture of the plasmatic membrane and may be
accompanied by formation of an inflammatory
process.6 On the contrary, apoptosis involves a
‘‘cleaner’’ type of death, in which the chromatin is
condensed; the DNA becomes fragmented forming
vesicles known as ‘‘apoptotic bodies’’. These are
rapidly phagocytosed by the macrophages with the
result that the cell disappears without any
inflammatory phenomena.7 Apoptosis induction

might be achieved in several ways—for example,
by promoting the expression of pro-apoptotic
factors while reducing the expression of anti-
apoptotic factors only in the tumour cells, or by
means of the infection of viral particles that act
specifically within the transformed cells.8

In mammals, apoptosis can be initiated by three
different pathways: (1) the extrinsic pathway,
which can be triggered by ligation of death receptors
and subsequent caspase-8 activation; (2) the intrinsic
pathway, which is initiated by cellular stress
followed by activation of caspase-9; or (3) the
granzyme B pathway, where the cytotoxic cell
protease granzyme B is delivered to sensitive target
cells. Each of these pathways converges to a
common execution phase of apoptosis that requires
proteolytic activation of caspases-3 and/or -7 from
their inactive zymogens.9 10 Biochemically, the main
features of apoptosis include caspase cascade activa-
tion and DNA fragmentation.11 Mitochondria also
play a key role in mediating apoptosis induced by
diverse stimuli. They release pro-apoptotic proteins
(cytochrome c, Smac, Omi, AIF, and EndoG) whose
release into the cytosol is regulated by proteins
belonging to the Bcl2 family.

EXTRINSIC AND INTRINSIC APOPTOSIS PATHWAY
The receptor triggered or extrinsic apoptotic path-
way was the first one to be described (fig 1). The
receptors triggering this pathway are located in the
cell membrane and they are activated by extra-
cellular ligands. Typical death receptors are Fas
(fibroblast associated antigen, also called Apo-1 or
CD95) and tumour necrosis factor receptor (TNF-
R) 1; they belong to TNF-R family and contain a
cytosolic death domain (DD). Ligation of death
receptor causes formation of death inducing
signalling complex (DISC)12 13 in which the adaptor
proteins FADD and/or TRADD bind with their
death domain (DD) to a DD in the cytoplasmic
region of the receptors.14 The receptor induced
pathway leads to the recruitment of caspase-8 or -
10 (initiator caspases) to the DISC.15 The activated
caspase then proteolytically activates downstream
effector caspases (also called executioner caspases)
that degrade cellular targets. In accordance with a
pivotal role of FADD and caspase-8 in CD95- or
TRAIL induced cell death, mice or cell lines deficient
in these molecules are completely protected from the
apoptotic action of TRAIL or CD95L.16–18 Activated
caspase-8 then directly cleaves pro-caspase-3 or other
executioner caspases, eventually leading to the
apoptosis. Caspase-8 can also cleave the BH3-only
protein Bid. The resulting truncated Bid (tBid) then
moves to the mitochondria and induces cytochrome
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c release, leading to activation of caspase-9 and caspase-3. DISC
signalling can be inhibited by expression of c-FLIP, a physiologic
dominant negative caspase-8 that leads to the formation of a
signalling inactive DISC.19

The intrinsic or mitochondrial pathway is activated by a
variety of extra- and intracellular stresses, including oxidative
stress, irradiation, and treatment with cytotoxic drugs (fig 1).20–22

Unlike the death receptor dependent pathway, the mitochon-
dria dependent pathway is mediated by Bax/Bak insertion into
mitochondrial membrane, and subsequent release of cyto-
chrome c from the mitochondrial inter-membrane space into
the cytosol.23 Anti-apoptotic Bcl-2 family members, such as Bcl-
2 and Bcl-XL, prevent cytochrome c release, presumably by
binding and inhibition of Bax and Bak. BH3-only proteins, such
as Bid and Bim, contribute to the pro-apoptotic function of Bax
or Bak by inducing homo-oligomerisation of these proteins.
Cytochrome c then binds to the Apaf1 and together with

(d)ATP causes recruitment of pro-caspase-9 to the complex.24–26

The formed multi-protein complex is called apoptosome, which
contains several units of Apaf1 and other above molecules and,
depending on the isolation method, it has between 700 kBa –
1.4 mBa.27–31 Activated caspase-9 in turn activates caspase-3 and
initiates the proteolytic cascade.32 In addition to cytochrome c,
mitochondria release a large number of other polypeptides,
including AIF,33 Endo G, second mitochondrial activator of
caspases (Smac/DIABLO)34 and HtrA2/Omi35 from the inter-
membrane space. Smac/Diablo and Omi/HtrA2 promote
caspase activation through neutralising the inhibitory effects
of inhibitor of apoptosis proteins (IAPs),36 while AIF and
endonuclease G cause DNA damage and condensation.37

CASPASE FAMILY
The first identified caspase, caspase-1, a homologue of CED-3,
was actually interleukin-1b processing enzyme (ICE), originally

Figure 1 The molecular mechanisms of apoptosis. Apoptosis pathways can be initiated via different stimuli—that is, at the plasma membrane by
death receptor ligation (extrinsic pathway) or at the mitochondria (intrinsic pathway). Stimulation of death receptors results in receptor aggregation and
recruitment of the adaptor molecule Fas-associated protein with death domain (FADD) and caspase-8. Upon recruitment, caspase-8 becomes activated and
initiates apoptosis by direct cleavage of downstream effector caspases. Mitochondria are engaged via the intrinsic pathway, which can be initiated by a
variety of stress stimuli, including ultraviolet (UV) radiation, c-irradiation, heat, DNA damage, the actions of some oncoproteins and tumour suppressor genes
(that is, p53), viral virulence factors, and most chemotherapeutic agents. Mitochondrial membrane permeabilisation is regulated by balance of opposing
actions of proapoptotic and antiapoptotic Bcl2 family members (Bax, Bak, Bcl2 and Bcl-XL, Mcl-1). Following mitochondrial permeabilisation, mitochondrial
pro-apoptotic proteins like cytochrome c, Smac/Diablo, Omi/HtrA2 (caspase dependent), AIF, and Endo G (non-caspase-dependent) release via
transmembrane channels across the mitochondrial outer membrane (see main text for more details). CAD, caspase activated DNase; FAS, fibroblast
associated antigen; ICAD, inhibitor of CAD; ROS, reactive oxygen species; TNF, tumour necrosis factor; TRAIL, TNF related apoptosis inducing ligand.
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discovered in totally different biologic context38 39 (see below).
Overexpression of ICE may induce or sensitize to apoptosis,38

therefore it was suggested that mammalian caspases may have
an essential apoptotic functions as CED-3 in Caenorhabditis
elegans (C elegans) cells. The official nomenclature names 14
caspases in mammals.19 Caspase-1, -10, and -14 were found in
human.40 41 Caspase-13 was later proved to be a bovine
homologue of human caspase-4.42 Caspase-11 and -12 are
murine homologue enzymes of human caspase-4 and -5.43 Not
all the caspases are involved in programmed cell death, and not
all forms of cell death require caspases. Indeed, some caspases
are crucial for apoptosis, some are not necessary, and most
caspases have functions other than just take part in executing
apoptosis, like cell survival, proliferation, differentiation or
inflammation.44–46

The function of caspase is very closely related to its structure.
Different caspases show different substrate preferences,
although aspartate at P1 position is universally required for all
caspase substrates. Some caspases have long prodomains
containing special motif such as DED (caspase-8 and -10), and
caspase recruitment domains (CARD) (caspase-1, -2, -4, -5, -9, -
11 and -12), which allow for interactions with other proteins,
and link with signalling pathways.

Mechanisms of caspase activation
Caspases are synthesised as a single chain of inactive zymogens,
consisting of four domains: an N-terminal prodomain of
variable length, a large subunit with a molecular weight of
about 20 kDa, a small subunit (,10 kDa), and a linker region
connecting these catalytic subunits.47 The linker region is
missing in some family members. Proteolytic cleavage of the
caspase precursors results in the separation of large and small
subunits with the production of a hetero-tetrameric complex
(the active enzyme) consisting of two large and two small
subunits.48 Caspases differ in the length and in the amino acid
sequence of their N-terminal prodomain. The long prodomain
(more than 90 amino acid residues) contains one of two
modular regions essential for the interaction with adaptor
proteins. These modules contain DED or CARD. Hydrophobic
protein interactions are mainly achieved via DED-DED con-
tacts, whereas electrostatic interactions occur through CARD-
CARD contacts.47 Based on their proapoptotic functions, the
caspases have been divided into two groups: initiators and
effectors. First group of initiator (or apical) caspases (caspases-2,
-8, -9, -10, and, probably, -11) activate the second-group of
caspases (caspases-3, -6, and -7). The effector (or downstream)
caspases are able to directly degrade multiple substrates
including the structural and regulatory proteins in the cell
nucleus, cytoplasm, and cytoskeleton.49 In some cases, initiator
caspases can also function as effector caspases; this activity
helps to amplify a suicide signal in the cell whose death
pathways have been only weakly initiated. Furthermore, the
activation of effector caspases can not only be caused by
initiator caspases, but also by other, non-caspase proteases,
including cathepsins, calpains, and granzymes. Caspase-1 and
caspase-4, -5 have similar structures and are predominantly
involved in the maturation of proinflammatory cytokines.
However, significant bodies of experimental evidence exist that
indicate a redundant/accessory role of these caspases in
apoptosis.38 50 The caspase proteolytic signalling cascades are
interconnected and due to overlapping substrate specificity
they are also partially redundant. As a result, the apoptotic
signal can be significantly amplified. A number of cellular and
viral caspase inhibitors exist that may prevent both initiation

and amplification of the apoptotic signal within the proteolytic
cascade.47 Below, we briefly introduce selected caspases.

Caspase-2
Caspase-2 is the second identified caspase. It contains a CARD-
domain and recruit multi-protein complex ‘‘PIDDosome2
through CARD binding with RAIDD (RIP associated ICH-1/
ECD3 homologous protein with a death domain).51 The adaptor
proteins RAIDD and PIDD (p53 induced protein with death
domain) in this complex are essential components for the
activation for caspase-2.52 The function of capase-2 is still poorly
understood. While containing the long prodomain and being
able to respond to a variety of apoptotic stimuli,53 and RAIDD
mediated interaction with Fas,43 54 it also bears some characters
unlike an initiator. The substrate preference of it is more close
to caspase-3 and -7, and it can even be activated by caspase-3, a
downstream executioner. One more unique feature of caspase-2
is the localisation to the nucleus and the Golgi apparatus in
addition to cytosol.55–57 However, caspase-2 appears to act
upstream of mitochondrial permeabilisation by cleaving and
activating Bid, and plays an important role for DNA damage
induced apoptosis.58–60 In response to genotoxic stress, the
activation of either caspase-2 or NF-kB is controlled by different
isoforms of PIDD, and will respectively lead cell to apoptosis or
survival.61 However, in caspase-2 KO animal models, caspsase-2
is not really essential for most physiological cell deaths. A recent
study demonstrated that disruption of caspase-2 has a
significant impact on mouse aging, suggesting that caspase-2
deficiency compromised the animal’s ability to clear oxidative
damaged cells.62 Caspase-2 may have more distinctive proper-
ties, and understanding the function of caspase-2 is challenging.
In a T-2 toxin induced apoptosis model, caspase-2 activation is
observed earlier than all the other caspases, and caspase-2 might
even affect caspase-8 activation.63

Caspase-8
The function of caspase-8 is well established. It is essential for
the extrinsic cell death pathways initiated by the TNF family
members.64 Death receptors will recruit the DISC upon binding
specific TNF family ligands and trimerisation. Procaspase-8 can
be recruited into this complex via the adaptor protein FADD.
The dimerised, or trimerised, procaspase-8 molecules in the
DISC are activated through reciprocal cleavage. Activated
caspase-8 then initiates downstream apoptotic cascade by
cleaving caspase-3, caspase-7 or Bid.65–67 The activated caspase-
8 can also activate NF-kB and regulate lymphocyte prolifera-
tion. In proliferating cells, caspase-8 remains largely unpro-
cessed, and becomes only weakly activated, while in FasL
induced apoptosis, caspase-8 processing and strong activation is
observed. The key protein for regulating caspase-8 activation
level is c-FLIPL, a caspase-8-like molecule that lacks caspase
activity.68 69 In the absence of c-FLIPL, the dimerisation or
trimerisation of procaspase-8 leads to full processing and
activation of procaspase-8 molecules. At low concentrations of
c-FLIPL, procaspase-8 preferably forms heterodimers with c-
FLIPL. Then limited procaspase-8 activation occurs and active
heterodimers remain associated with the DISC complex.
Depending on the specific subset of substrates that is cleaved,
either apoptosis or NF-kB activation can ensue. At high
concentrations of c-FLIPL, procaspase-8 recruitment is blocked,
and c-FLIPL cleavage is ensured by basal caspase-8 activity, and
subsequently NF-kB is activated.70 71 In fact, besides function in
TNF family induced apoptosis pathway, caspase-8 also have
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other non-apoptotic functions such as in the macrophage
differentiation, T cell, B cell and NK (natural killer) cell
proliferation, and heart muscle development.40 44 45

Caspase-9
Caspase-9, the apical/initiator caspase within the apoptosome
dependent cascade, has been extensively studied within the last
12 years. When the mitochondrial pathway is activated,
cytochrome c is released from the mitochondria, and is recruited
to the cytoplasmic receptor, Apaf1.72 73 In the presence of dATP
or ATP, cytochrome c and Apaf1 assemble into a complex called
‘‘apoptosome’’. Procaspase-9 then binds to Apaf1 through their
CARD domain and becomes activated by reciprocal interaction
with another procaspase-9.74 75 Then activated apoptosome
bound caspase-9 cleaves and activates downstream enzyme,
caspase-3.

Caspase-10
Like caspase-8, caspase-10 possesses two DEDs domain, which
can be recruited to the same DISC as caspase-8 and activated by
death receptors. It can also cleave Bid and activate the
mitochondrial pathway, suggesting that it may have an
overlapping function with caspase-8. Despite the fact that it is
highly homologous to caspase-8 both in structure and function,
there is no mouse homologue of caspase-10.43 76 77 The associa-
tion between caspase-10 gene dysfunction and an autoimmune
disease ALPS-2, suggests that caspase-10 might have some
different roles from caspase-8 in some cell types. However, the
contributions of mutation to the disease are not conclusive.76 78

Caspase-12
Caspase-12 is a murine caspase containing a CARD prodomain.
Its human counterpart, also caspase-12, appears to be non-
functional due to gene mutation.79 Unlike other caspases,
caspase-12 is localised specifically to the endoplasmic reticulum
(ER), and is a specific sensor responding to ER stress induced cell
death.80 81 In some cell types, under ER stress (usually caused by
the accumulation of proteins), translocation of caspase-7 from
the cytosol to the ER surface had been observed. Procaspase-12
is then activated as an initiator caspase, which can lead to
procaspase-9 activation. In this kind of caspase-9 mediated
pathway, cytochrome c is not involved in the activation of
procaspase-9.82–84 Murine caspase-12 shows homology to human
caspase-4, which also had been proved to be involved in ER
stress induced apoptosis,85 but it also plays a role in the immune
system (see below).

Caspase-1, -4, -5, -11
Caspase-1, -4, -5, -11 formed the so-called ‘‘inflammatory
caspases’’ group. Caspase-11 is a murine enzyme sharing lots
of similarity with both caspase-4 and -5. It might be an ancestor
gene to the other two caspase genes.46 These caspases are termed
‘‘inflammatory’’ as the main caspase-1 substrates identified to
date are proIL-1b and proIL-18, two related cytokines that play
critical roles in inflammation.46 86 Targeted deletion of caspase-1
had no effect on animal development, and the embryonic
fibroblasts and thymocytes from these mice are still very
sensitive to various apoptotic stimuli.87 Caspase-12/2 mice had,
however, major defects in the production of mature IL-1b and
impaired IL-1a synthesis. Secretion of TNF and IL-6 in response
to LPS (lipopolysaccharide) stimulation was also reduced. In
addition, macrophages from caspase-12/2 mice were defective in
LPS induced IFN-c production.88 Caspase-12/2 mice were also

resistant to the lethal effects of LPS.89 Thus, based on these
murine models, the apoptotic function of caspase-1 seems not
to be as necessary as it is in inflammatory reaction. Since
caspase-4 and -5 are non-existent in mice, no direct data on their
targeted disruption could be obtained. However, other caspases
could also be involved in immunoregulation. It has been
demonstrated that caspase-11 can process caspase-3 directly
during ischaemia and septic shock in addition to regulating
caspase-1 activation.90

Caspase-3, -6, -7
These three effector caspases are highly homologous to each
other.43 Their final functions are also similar in executing
apoptosis. While caspase-3 has been extensively studied, we
have much less knowledge about caspase-6 and -7. None of
them can fully control the execution of all the aspects of
apoptosis. The contribution of each caspase to the cell death or
dysfunction could be varied as well. In apoptotic cells, caspase-3
is the main executioner as it can be activated through both
extrinsic and intrinsic signalling pathway, but it cannot be
cleaved by caspase-2.91 Moreover, depletion of caspase-3 in cell-
free apoptotic system cause inhibition of various downstream
events while depletion of either caspase-6 or caspase-7 do not
show any effect.92 Caspase-3 might be more important in most
of downstream affairs, yet caspase-6 and –7 may have distinct
roles in specific pathways, such as the special function of
caspase-7 in ER stress induced apoptosis.84

MUTATIONS WITHIN THE CASPASE FAMILY AND CANCER
Malfunction of apoptosis plays an important role in the
pathogenesis of tumours. Tumour cell survival could be induced
by inactivation of proapoptotic signalling or activation of
antiapoptotic pathways. There are two major ways that could
downregulate cancer cell apoptosis: (1) somatic and non-
somatic mutation and loss of expression of proapoptotic
molecules; and (2) overexpression of apoptosis inhibitory
molecules.93 94 Somatic mutations of apoptosis related genes
affect several proteins. Mutations within caspase family
proteases are not uncommon in malignancies.95 Here we focus
on some frequent mutations within caspase family and their
proposed role in different cancers.

Mutations of caspase-8 gene and cancer
Several reports show that caspase-8 is mutated in different
types of cancers. Soung and colleagues94 screened gastric
carcinomas (162 cases), breast carcinomas (93 caspase), non–
small cell lung cancers (NSCLC) (185 cases), and 88 acute
leukaemias (88 cases) for mutations within the caspase-8 gene
using single strand conformation polymorphism (SSCP).94

Interestingly, the caspase-8 mutations were mostly detected in
gastric cancers but not in other cancer types. They found that
the incidence of caspase-8 mutation in gastric cancer is
statistically higher than those of NSCLC, breast cancer, and
acute leukaemias. Furthermore, all of the 13 mutations detected
were in advanced gastric cancers but not in early gastric cancers.
They reported that in 122 analysed advanced gastric cancers, 13
(10.1%) cancer samples harboured caspase-8 mutations. The
mutations consisted of three missense, one in-frame deletion,
and five frameshift mutations in the coding sequences; two
mutations in the initiation codon; three mutations in the
introns; and one mutation in the 3V untranslated region
(table 1). The missense mutations detected in this study would
result in the substitution of amino acids in the DED and the p10
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subunit. The frameshift mutations would result in premature
terminations of caspase-8 protein synthesis (table 1). They also
proved that the caspase-8 mutants were expressed well and the
sizes of the detected mutants were matched with the predicted
amino acid changes using in vitro translation and subsequent
immunoblotting. They transfected 293T, 293, and HT1080 cells
with observed caspase-8 mutants. All mutants showed sig-
nificant decrease of caspase-8 activity in apoptosis induction
compared with the wild type caspase-8 (except mutation 1427T
.C).94

In another study, the sensitivity of NSCLC and small cell lung
carcinoma (SCLC) cells to the death receptor dependent cell
death was investigated using cell lines derived from patients
(they used the same concentrations of FasL and TRAIL in all
experiments).96 While most NSCLC cells expressed detectable
amounts of surface Fas, TRAIL-R1 and R2, they could not
detect any surface death receptors in tested SCLC cell lines.
They also reported that caspase-8 protein precursor was
undetectable in SCLC cells, but they do not elaborate on the
nature of the defects in its expression.96

In another study, in breast cancer, D302H substitution was
reported as a widespread variant in the caspase-8 gene.97

However, a large multi-ethnic cohort study (MEC) that
included over 215 000 men and women in Hawaii and
California, comprising predominantly self declared African
Americans, Japanese Americans, native Hawaiians, Latinos
and European Americans who were between the ages of 45–
75 years at enrolment,98 99 found no significant inverse associa-
tion between D302H variant in the caspase-8 gene and risk of
three common cancers (breast, colorectal, prostate) in pooled
analyses.98 They included groups of various ancestral back-
grounds with very different disease risks and allele frequencies
and consisted of large size and multiple cancer end points. Thus,
the likelihood that the lack of significant association was
attributable to bias or population stratification was unlikely.98

In another study, caspase-8 was investigated in menin-
gioma.100 Their study was based on five case–control series that
contributed to the international Interphone study.101 Briefly, the
Interphone Study was a multicentre epidemiological case–
control study to investigate whether mobile phone usage
increases the risk of primary brain tumour (PBT) and malignant
parotid gland tumours. The five case–control series of PBTs

were assembled in the Thames regions of Southeast England;
the Northern UK including central Scotland, the West
Midlands, West Yorkshire, and the Trent area; the Stockholm,
Lund, Göteborg, and Umeå regions of Sweden; throughout
Denmark; and in all regions of Finland except Northern Lapland
and Åland.101 They could not find any significant increase in risk
of meningioma and caspase-8 D302H. Their results were not
consistent with other previously published data on meningioma
that showed increased risk of caspase-8 D302H variant on
meningioma development.102 Again, this controversy might be
due to population and ethnicity of the corresponding studies.

A case–control study in a Chinese population was done to
evaluate the associations of caspase-8 mutation and pancreatic
cancer.103 This study consisted of 397 patients with pancreatic
cancer and 907 controls. All subjects were Han Chinese.
Genotypes of caspase-8 -652 6N in/del polymorphisms were
determined in this study. Caspase-8 -652 6N del/del genotypes
showed a multiplicative joint effect with FasL and Fas in
attenuating susceptibility to pancreatic cancer. The caspase-8 -
652 6N in/del polymorphisms are summarised in table 2.
Glioma accounts for about 80% of malignant primary brain
tumours.104 Hypermethylation of caspase-8 has been linked with
glioblastoma multiforme relapse,105 suggesting that caspase-8
may have a role in the development of glioma. It was found that
D302H was also a risk determinant of glioma.106

On the other hand, Sun et al107 identified a 6 bp deletion
polymorphism (2652 6N del) in the promoter of the CASP8
gene that abolishes the binding of Sp1 transcription factor and
was associated with the decreased RNA expression in lympho-
cytes, and lower caspase-8 protein level. This deletion variant was
found to be associated with an approximately 25% increased risk
(per copy) of lung, oesophageal, stomach, colorectal, breast and

Table 1 Summary of caspase-8 somatic mutation in gastric cancer

Tumour type
Total case
numbers

Total cases
with caspase-8
mutation

Cases with
specific caspase-8
mutation Mutation site Mutation type

Nucleotide change (predicted amino acid
change)

Gastric
carcinoma94

162 15 1 Exon 1 (DED) In-frame (deletion) 249_251 delGGA (E84del)

1 Intron 2 Substitution IVS2 + 1G .A (Unknown)

1 Exon 1 Insertion 1_2insT (Unknown)

1 Exon 1 Substitution 1A .G (Unknown)

1 Exon 2 (DED) Substitution (missense) 409A .C M137L

2 Exon 3 (DED) Deletion (frameshift) 492_493delTG (Frameshift after codon164 and
stop at codon 178)

1 Exon 3 (in between DED/p20) Substitution (missense) 491G .A (C164Y)

1 Exon 7 (p10) Insertion (frameshift) 1223_1224 insT (Frameshift after codon 408
and stop at codon 438)

1 Exon 6 (p20) Deletion (frameshift) 698delG (Frameshift after codon 233 and stop
at codon 237)

2 Intron 6 Insertion IVS6 + 47 insT (Unknown)

1 Exon 7 (p20) Deletion (frameshift) 969_972 delCTAT (Frameshift after codon 323
and stop at codon 335)

1 Exon 8 Substitution (missense) 1427T .C (F476S)

1 39-Untranslated region Insertion *43 insT (Unknown)

Table 2 Caspase-8 allelic and genotype frequencies in control and
pancreatic cancer

Caspase-8 genotype
Number of cases
(n = 397) (%)

Number of controls
(n = 907) (%)

CASP8 -652 6N insRdel142

ins/ins 268 (67.5) 521 (57.4)

ins/del 111 (28.0) 323 (35.6)

del/del 18 (4.5) 63 (7.0)
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cervical cancer in a Chinese population (4938 cases and 4919
controls).107 This is, however, contradicted by analysis of
four breast cancer case–control studies where data on various
mutations including caspase-8 mutation were analysed.108

These studies included: German Familial Breast Cancer
Study (GFBCS), index patients of 1110 German BC families
and 1108 control individuals, Sheffield Breast Cancer Study
which included white Anglo-Saxon Sheffield residents, includ-
ing 1212 pathologically confirmed patients with prevalent and
invasive breast cancer recruited and 1184 unselected cancer-
free women attending the Mammography Screening
Service,109 110 Gene Environment Interaction and Breast
Cancer in Germany (GENICA) in which 1143 incident breast
cancer cases and 1155 population controls were recruited from
the Greater Bonn Region, Germany,111 112 and finally studies of
Epidemiology and Risk Factors in Cancer Heredity (SEARCH)
which included breast cancer and control subjects.113 They
could not find any association between caspase-8 -652 6N del
promoter polymorphism and breast cancer. Given this lack of
association in Europeans, it was suggested that the functional
caspase-8 6N del promoter variant may have an ethnicity
specific effect due to different genetic backgrounds (Asians vs
Europeans) and it could interpret the findings that Sun et al
reported of the association of this polymorphism with breast
cancer.107

Pancreatic cancer is one of the leading causes of cancer related
death in the world.114 115 Smoking, diabetes mellitus history,
and, perhaps, alcohol drinking are risk factors for pancreatic
carcinogenesis.116–119 However, only a part of exposed individuals
develops pancreatic cancer in their lifespan, suggesting that
genetic susceptibility factors also play a role in pancreatic
carcinogenesis. It has been shown that pancreatic cancer cells
often present non-functional CD95/Fas and aberrant expression
of FasL, and this mechanism may contribute to the malignant
and often rapid course of the disease.120–122 It is unclear if CD95/
Fas itself or downstream signalling molecules like caspase-8 are
inactivated in these cases.

Caspase-9 gene mutation and cancer
Caspase-9 is a virtually ubiquitous protease, constitutively
expressed in a variety of fetal and adult human tissues.123 124

Mutational analysis of caspase-9 was performed in neuroblas-
toma tissues; however, no somatic mutation of caspase-9 in the
tumours were found.125 In another study 180 gastric, 104
colorectal and 69 lung adenocarcinomas were randomly selected
for the study.126 They isolated genomic DNAs from normal and
tumour tissues of the same patients and studied the entire
coding region with all splice sites of the caspase-9. Silent
mutations were detected in two colorectal carcinomas and one
gastric carcinoma. The mutations consisted of a G-to-A
transition at nucleotide 261 (261G.A; S87S) in exon 2, a G-
to-A transition at nucleotide 588 (588G.A; S196S) in exon 4,
and a G-to-A transition at nucleotide 1101 (1101G.A; L367L) in
exon 8.

In a case–control study, lung cancer patients and age and
gender matched healthy controls were investigated for caspase-9
promoter polymorphism in lung cancer.127 All cases and controls
were ethnic Koreans in this study and the cases included 210
(48.6%) squamous cell carcinomas, 141 (32.6%) adenocarcino-
mas, 73 (16.9%) small cell carcinomas, and eight (1.9%) large cell
carcinomas.127 They observed a significant difference in the
distribution of the -2712C.T genotypes between the cases and
controls, but there was no significant difference in the
distribution of genotypes between cases and controls for -

21263A.G, -2905T.G, and -2293del.127 They reported that the
-21263 GG genotype was associated with a significantly
decreased risk of lung cancer compared with the -21263 AA or
the combined 21263 AA + AG genotype. They also found that
for the 2712C.T polymorphism, individuals with at least one -
712T allele were at a significantly increased risk of lung cancer
compared with those harbouring -712 CC genotype, and the
risk of lung cancer increased with increasing numbers of -712T
alleles. Their other finding showed that the -905T.G and -
293del polymorphisms were not significantly associated with
the risk of lung cancer.127 Another interesting finding of this
study was that caspase-9 polymorphisms and their haplotypes
interacted with tobacco smoking. They found that caspase-9
polymorphisms were significantly associated with the risk of
lung cancer in the smokers but not in the non-smokers, which
reflects a gene–environment interaction. Such an interaction is
biologically plausible because smoking is a major risk factor for
lung cancer. It was also found that the association between
caspase-9 polymorphisms and the risk of lung cancer was
statistically significant in the light smokers but not in the heavy
smokers. Thus, the data indicate that an environmental
carcinogen (components of cigarette smoke), if applied in larger
quantities, may override genetic predisposition.128 129 In another
study, caspase-9 polymorphism was investigated in multiple
myeloma in a case–control study (183 patients and 691
controls).130 Genotyping of the caspase-9 single nucleotide
polymorphism (SNP) [Ex5þ32 G.A (rs1052576)] was done in
this study. They found a protective association for the
mentioned caspase-9 polymorphism in multiple myeloma.

Mutations within caspase-3 and cancer risk
Caspase-3 is an effector caspase, and is activated by extrinsic
and intrinsic cell death pathways. It plays a central role in the
execution phase of cell apoptosis.28 76 131 A caspase-3 mutation
has been reported in the MCF-7 breast cancer cell line,132

suggesting the presence of caspase-3 mutation in human cancer
tissues. There are several recent reports that have focused on the
caspase-3 mutation in different cancers. Soung et al have
investigated caspase-3 somatic mutation in several cancers.133

They investigated 165 stomach carcinomas, 95 colon carcino-
mas, 76 breast carcinomas, 80 hepatocellular carcinomas, 181
non-small cell lung cancers, 28 multiple myelomas, 12 medullo-
blastomas, 15 Wilms’ tumours, 12 renal cell carcinomas, 40
oesophagus carcinomas, 33 urinary bladder carcinomas, 33
laryngeal carcinomas, 129 non-Hodgkin lymphomas, and 45
acute leukaemias and compared healthy and malignant tissue
from the same patients for caspase-3 somatic mutations. They
did not observe any evidence of mutations in normal samples
from the same patients and concluded that the mutations had
risen somatically.133 The mutation data are summarised in
table 3, and show that caspase-3 was mutated in one case in
stomach adenocarcinoma, one case in lung cancer, four cases in
colon cancer, one case in hepatocellular carcinoma, and one case
in multiple myeloma. The mutations consisted of six missense
mutations, four silent mutations, two mutations in the introns,
one mutation in the 59-untranslated region, and one mutation
in the 39-untranslated region. Of the six missense mutations,
two were predicted to involve the p17 large protease subunit
and the other four to involve the p12 small protease subunit. Of
note, two missense mutations in exon 6 showed an identical A
to T transversion at base pair 674 in unrelated individuals.

In other study, caspase-3 mutation was investigated in
squamous cell carcinoma of the head and neck (SCCHN).
This case–control analysis included 930 patients with histolo-
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gically confirmed SCCHN. All cases were non-Hispanic whites
and had not received any radiotherapy or chemotherapy at the
time of recruitment and blood donation. The 993 cancer-free
subjects were recruited in the same time period, who were
frequency matched to the cases by age, sex, and ethnicity.134

SCCHN is one of the most common cancers in the world.135 It is
estimated that there were approximately 40 566 new cases of
SCCHN in the USA in 2007.114 They identified caspase-3 transcrip-
tional regulatory region (rs4647601:G.T, rs4647602:C.A, and
rs4647603:G.A) polymorphisms in case and control subjects.134

The distribution of these polymorphisms in case and control group
is shown in table 4. There was no statistically significant difference
in the distributions of either allele or genotype frequencies of these
three SNPs. However, when comparing with the GG genotypes of
the caspase-3 rs4647601:G.T, they found an association of the
caspase-3 rs4647601:TT genotype with an increased risk of
SCCHN, and there was no association with any genotype of the
caspase-3 rs4647602:C.A and rs4647603:G.A SNPs (p.0.180,
p.0.547). They also found evidence that caspase-3 rs4647601:TT
genotype increased the risk of SCCHN in the subgroups of younger
males, non-drinkers and never-smokers.134

Caspase-7 mutations and oncogenesis
Caspase-7 is another effector caspase that is comparatively
important to caspase-3 in apoptosis execution, especially in the

cells with deficient or under-expressed caspase-3.136 137 As other
protease family members, caspase-7 is expressed as an inactive
proenzyme, that upon processing generates a large p23 and a
small p12 subunit.40 138 Caspase-7 somatic polymorphisms were
studied in some common cancers. Briefly, 33 SCCHN, 35
transitional cell carcinomas of urinary bladder, 50 oesophageal
squamous cell carcinomas, 80 non-small cell lung cancers, 98
colon adenocarcinomas and five gastric adenocarcinomas were
compared with corresponding normal cells from the same
patients.139 The somatic polymorphism of caspase-7 in these
patients is illustrated in table 5. Among the mutations of
caspase-7 found in this study, one nonsense mutation (colon
cancer, exon 2, 127 C to T) was identified in the coding regions
of the large p23 subunit. The nonsense mutation was predicted
to cause premature termination of protein synthesis, and hence
resemble typical loss-of-function mutations. The C to T
transition at bp 127 leads to a termination at codon 43,
resulting in a protein that has a prodomain and a part of p23
large subunit. In addition, the Arg at amino acid 43 is conserved
in caspase-7 among the species of human, mouse and rat.139 This
amino acid is also conserved in other caspases such as caspase-3,
-6, -8 and -9.139 The Arg-43 of caspase-7 is one of the constituting
residues for substrate’s P1 binding pocket,140 and it seems that
alteration of the Arg-43 decreases the protease function of
caspase-7. It was found that this mutant has a defect in
induction of apoptosis.139

Mutations of inflammatory caspases -1, 4, and -5 and cancer
Pro-interleukin–1b and pro–interleukin-18b are the most impor-
tant caspase-1 substrates which play critical roles in inflamma-
tion. There are several reports that inflammation plays
important roles in cancer.141 142 Cancer cells produce many
inflammatory mediators and interconnect with surrounding
cells.142 Soung et al has recently investigated the probable role of

Table 3 Summary of caspase-3 somatic mutation in different cancer

Tumour type
Total case
numbers

Cases with
caspase-3
mutation Mutation site Mutation type

Nucleotide change (predicted
amino acid change)

Adenocarcinoma-stomach133 165 2 Exon 6 (p12 protease subunit) Silent 667CRT (no change)

Intron 4 IVS4 264del A (no change)

Squamous cell carcinoma-lung and lung
adenocarcinoma133

181 4 Exon 6 (p12 protease subunit) Silent 667CRT (no change)

Exon 6 (p12 protease subunit) Missense 674ART (Q225L)

Exon 3 (p17 protease subunit) Missense 278GRT (R93L)

Exon 5 (p12 protease subunit) Missense 553CRA (H185 N)

Adenocarcinoma- ascending colon 95 4 39-untranslated region *26del A (no change)

Adenocarcinoma- rectum Exon 4 (p17 protease subunit) Missense 469CRA (L157I)

Adenocarcinoma- descending colon Exon 4 (p17 protease subunit) Silent 579CRA (F193L)

Adenocarcinoma- descending colon133 Exon 6 (p12 protease subunit) Silent 654GRA (no change)

Hepatocellular carcinoma133 80 1 59-untranslated region -7CRT (no change)

Multiple myeloma133 28 1 Intron 5 IVS5 +8CRT (no change)

Table 4 Caspase-3 polymorphism in the squamous cell carcinoma of
the head and neck

Caspase-3 genotype
Cases
(n = 930) (%)

Controls
(n = 993) (%)

CASP3 (rs4647601:G.T)134

GG 314 (33.8) 365 (36.8)

GT 435 (46.8) 463 (46.6)

TT 181 (19.4) 165 (16.6)

GT+TT 616 (66.2) 628 (63.2)

CASP3 (rs4647602:C.A)134

CC 802 (86.2) 833 (83.9)

AC 122 (13.1) 147 (14.8)

AA 6 (0.7) 13 (1.3)

AC+AA 128 (13.8) 160 (16.1)

CASP3 (rs4647603:G.A)134

GG 687 (73.9) 753 (75.8)

GA 223 (24.0) 223 (22.5)

AA 20 (2.1) 17 (1.7)

GA+AA 243 (26.1) 240 (24.2)

Table 5 Caspase-7 somatic mutations in different cancers

Tumour type

Total
case
numbers

Cases with
caspase-7
mutations

Mutation
site

Nucleotide change
(predicted amino acid
change)

Colon
adenocarcinoma139

90 2 Exon 2 127 C to T (Arg 43 stop)

Exon 3 384 A to G (no change)

Oesophageal
squamous cell
carcinoma139

50 1 Intron 1 IVS 1 C -3 to T (splice
defect)

Laryngeal squamous
cell carcinoma139

33 1 Exon 2 209 G to A (Cys 70 Tyr)
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inflammatory caspases in cancer.142 They identified somatic
mutation for caspase-1, 4, and -5 in 337 patients with different
cancers (103 colon carcinomas, 60 breast ductal carcinomas, 60
hepatocellular carcinomas, 54 gastric carcinomas, and 60 non-
small cell lung cancers). They detected caspase-1 mutations in
two (0.6%) of the 343 cancers, both in gastric carcinomas (54
samples) (3.7%) (table 6). The mutations consisted of one
missense mutation in exon 7 (1034T.A) and one substitution
mutation in intron 2 (IVS223C.A). They could not find any
significant correlation of the caspase-1 mutations with histolo-
gic subtype of the gastric carcinomas.142 Caspase-4 mutations
were detected in two (0.6%) of the 337 cancers, both in colon
carcinomas (103 samples screened) (1.9%) (table 6). They could
not identify any significant association between tumour size,
metastasis, location of the tumours, patients’ sex/age, and
recurrence and caspase-4 mutations.142 Caspase-5 mutations
were detected in 15 (4.4%) of the 337 cancers. According to the
tumour types, mutations were detected in nine gastric
carcinomas (16.7%), four colon carcinomas (3.9%), one invasive
ductal breast carcinoma (1.7%), and one lung adenocarcinoma
(1.7%). The caspase-5 mutations consisted of nine mutations in
exons, five mutations in introns, and one mutation in 59-
untranslated region (UTR). The nine mutations in the exons
consisted of seven frameshift mutations in the (A)10 repeat
sequences in exon 2, one missense mutation, and one silent
mutation. According to tumour subtypes in the gastric
carcinomas, eight caspase-5 mutations were detected in
advanced gastric carcinomas (18.2%), while one mutation was
observed in early gastric carcinoma (10.0%). There was no
significant association of the caspase-5 mutation incidence with
age/sex, stage, and histologic type of tumour.142

CASPASES AND CASPASE INHIBITORS: POTENTIAL CLINICAL
APPLICATIONS
Since caspases play a central role in apoptosis and inflamma-
tion, they are attractive targets for diseases associated with
uncontrolled cell proliferation as in cancer or autoimmune
diseases. Thus, the controlled activation or inhibition of
caspases offers an attractive means of therapeutic intervention.
Below, we provide examples of such interventions, at various
stages of implementation.

As indicated above, mutations within caspase family pro-
teases are not uncommon in malignancies.95 Modulation of
caspase activity for therapeutic purposes has been approached
experimentally. Restoration of procaspase-3 expression both in
respective cell lines as well as in primary tumour cells increases

their sensitivity towards anticancer therapies. On the other
hand, inhibition of the expression of some caspases—that is, by
antisense RNA strategies—makes such cells more resistant
towards classical chemotherapy.143 Efforts are being made to
gain better understanding of the mechanisms responsible for
activation of the caspase cascade so that anticancer drugs could
be designed that directly target caspase activation mechanism
rather than causing cellular stress, which would then lead to cell
death.144 Still, caspases may not be the critical determinants of
tumour’s sensitivity to cancer therapy (see below). Several
studies show that tumour cells with a normal caspase activity
are more responsive to anticancer-treatment,145 while some data
indicate no correlation.146

Caspase inhibitors have been tested in other conditions
besides cancer. For example, the development of intraepidermal
blisters is a symptom of the autoimmune skin disease Pemphigus
foliaceus caused by acantholysis and pathogenic autoantibodies
against desmoglein 1, and could be prevented by application of
Ac-DEVD-cmk, a peptide based caspase-3/7 inhibitor, and Bok-
D-fmk, a broad spectrum caspase inhibitor.147 A Chinese
traditional medicine (Shenfu injection), which consists mostly
of ginsenocides and aconitine, suppresses apoptosis during
hypoxia/reoxygenation in cardiomyocytes by increasing Bcl-2
expression and decreasing caspase-3 activity.148 Similarly, the
treatment of tubular cell deletion in renal scarring with the pan-
caspase inhibitor Bok-D-fmk markedly prevented renal proximal
tubular cell apoptosis induced by cisplatin (rat model).149

c-FLIP and caspase-8
In some malignancies as previously mentioned, the gene
encoding for caspase-8 is mutated or deleted or the expression
of caspase-8 is altered so that it cannot bind to FADD conferring
resistance to TRAIL (TNF-related apoptosis-inducing ligand)
mediated cell death.150 TRAIL is a member of TNF-superfamily
and belongs to the type II trans-membrane family of proteins;
however, physiologically, like TNF, it is mostly active in its
soluble trimeric form.151 It induces apoptosis by binding to death
receptors present on the target cells, namely TRAIL-R1/DR-4
and TRAIL-R2/DR-5.152 An interesting feature of TRAIL is that
it induces apoptosis predominantly in cancer cells while sparing
normal cells.153 For example, primitive neuro-ectodermal brain
tumour cells are resistant to TRAIL mediated apoptosis due to
the loss of expression of caspase-8.154 Another example is human
neuroblastoma malignancies that lack caspases-3 and -8,
thereby resulting in resistance to standard chemotherapies.155

Table 6 Caspase-1, -4, and -5 somatic mutations in different cancers

Caspase Tumour type
Total case
numbers

Cases with
mutation Mutation site Nucleotide change (predicted amino acid change)

Caspase-1142 Gastric carcinoma 54 2 Exon 7 (p10) 1034 T.A (M345K)

Intron 2 VS2-3C.A (unknown)

Caspase-4142 Colon carcinoma 103 2 Intron 6 IVS6+9C.A (unknown)

Exon 3 (p20) 346 G.T (R116I)

Caspase-5142 NSCLC (adenocarcinoma) 60 1 Exon 4 (p20) 629TNA (L210Q)

Caspase-5142 Colon carcinoma 103 4 Exon 2 (CARD domain) 153_154delAA (frameshift after codon 51 and stop at codon 68)

Exon 2 (CARD domain) 154dupA (frameshift after codon 51 and stop at codon 68)

59-UTR -21_-22AA (unknown)

Intron 6 IVS6+6T.A (unknown)

Caspase-5142 Gastric carcinoma 54 9 59-UTR (4 cases) -21_-22AA (unknown)

Exon 2 (CARD domain) (3 cases) 154delA (frameshift after codon 51 and stop at codon 77)

Exon 2 (CARD domain) 153_154delAA (frameshift after codon 51 and stop at codon 68)

Caspase-5142 Breast carcinoma 60 1 Exon 1 105T.C (N35N)
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In some cases resistance to apoptotic cell death is associated
with inactivation of caspase-8 gene by methylation.156

Apart from the regulation of caspase-8 expression, physiologic
caspase-8 inhibitors also exist. Cellular ‘‘FLICE-like inhibitory
protein’’ (cFLIP) is a cytosolic FLICE/casapase-8 inhibitor that,
depending on splice variant may exist in its long form (cFLIPL),
and short (cFLIPs) form. Because of cFLIP’s very high sequence
homology to caspase-8, it competes with caspase-8 for binding
to FADD within DISC and thereby prevents the binding of
caspase-8 to FADD. This interaction of cFLIP with FADD
prevents the receptor mediated apoptosis. Elevated expression
of cFLIP has been observed in several kinds of tumours. For
example, cFLIP is overexpressed in prostrate cancer, cervical
cancer, ovarian cancer, colorectal cancer, gastric cancer, pan-
creatic cancer, and B cell chronic lymphocytic leukaemia.157

There are many reports indicating that downregulation of cFLIP
sensitises tumour cells to apoptosis. For example, a recent
finding has shown that cFLIP is a key regulator in colorectal
cancer. siRNA mediated inhibition of cFLIP, induced apoptosis
in p53 wild type, mutant and null colorectal cancer cells.158

Apart from that, intra-tumour delivery of siRNA duplexes
induced apoptosis in xenografts of SCID mice. These experi-
mental findings provide evidence that targeting of cFLIP in
colorectal cancers can provide a potential therapeutic target.

Beside antisense oligonucleotides that target cFLIP, several
small molecule inhibitors have the potential to downregulate
the expression of cFLIPs, like DNA targeting anticancer drugs
cisplatin and doxorubicin.157 Additionally, there are RNA
synthesis and histone deacetylase inhibitors which can poten-
tially downregulate cFLIP expression.157 Recently, it has been
shown that administration of methyl-2-cyano-3, 12-dioxoo-
leana-1, 9-dien-28-oate (CDDO-Me), a novel synthetic tri-
terpenoid to human lung cancer cells, triggers induction of
apoptosis by targeting cFLIPs to ubiquitination dependent,
proteosomal degradation.159 siRNA mediated knock down of
cFLIP potentiated the anti-cancer effect of CDDO-Me. CDDO-
Me entered phase 1 clinical trial with a very promising results.159

Inhibitor of apoptosis proteins in cancer therapy
The inhibitor of apoptosis proteins (IAPs) were originally
discovered in baculovirus as suppressors of host cell apoptosis160;
however, they can be found in both invertebrates and
vertebrates. Thus far, eight human IAPs family members have
been identified including neuronal apoptosis inhibitory protein
or (NAIP) (also known as BIRC1 or baculoviral IAP repeat-
containing 1), cellular IAP 1 or cIAP1 (also known as HIAP2,
MIHB, and BIRC2), cIAP2 (also known as HIAP1, MIHC, and
BIRC3), X-chromosome linked IAP or XIAP (also known as
hILP, MIHA, and BIRC4), survivin (also known as TIAP and
BIRC5), Apollon (also known as Bruce and BIRC6), melanoma
IAP or ML-IAP (also known as KIAP, livin, and BIRC7), and IAP-
like protein 2 (also known as BIRC8), which are reviewed
elsewhere.161

All IAP proteins share two to three common structures of
baculovirus IAP repeat (BIR) domains to bind and inactivate
caspases, except survivin, the smallest human IAP protein
which contains only a single BIR repeat.161 Most of the IAP
proteins, excluding survivin, possess a carboxyl-terminal RING
domain containing ubiquitin ligases required for ubiquitination
and proteasomal degradation of caspases.161 XIAP is the most
efficient caspase inhibitor among the IAP family members.162

Inhibition of apoptosis by XIAP is mainly coordinated through
binding to initiator caspase-9 and effector caspases-3 and -7.163

Elevated expression of IAPs in several human malignancies
has been reported. Tamm et al164 investigated expression of IAPs
in 60 human tumour cell lines at mRNA and protein levels and
found higher expression of XIAP and cIAP1 in most cancer cell
lines analysed. Elevated expression of IAP family members in
malignant cells can be influenced by different intra- and/or
extracellular factors such as TNF. Survivin, an atypical IAP, is
highly expressed in rapidly dividing cells and many cancers.165 166

Espinosa and colleagues167 investigated the expression of several
IAPs including c-IAP1, cIAP2, XIAP and survivin in cervical
cancer. Although their finding indicates no differences in the
expression of cIAP2 and XIAP between normal vs cancer
samples, higher expression of survivin isoforms, 2B and
DeltaEx3, along with downregulation of cIAP1 were detected
in the cervical cancer samples. Nuclear expression of survivin in
cancer cells has also been reported by Giodini and colleagues,168

demonstrating its role in cell division via controlling of
microtubule stability and assembly of a normal mitotic spindle.
Authors also hypothesised that nuclear localisation of survivin
in cancer cells may facilitate checkpoint evasion and promote
resistance to drugs targeting mitotic spindles.168

Attempts have been made to therapeutically target IAP
proteins by small molecules or by antisense approaches.169 For
example, OSU-03012 is a potent experimental anticancer drug, a
derivative of celecoxib, known for its activity on multiple
myeloma cells.170 One of its proposed mechanisms of action is
downregulation of the expression of inhibitor for caspases such
as survivin and XIAP, followed by cell cycle arrest and induction
of apoptosis.

Triptolide, a diterpenoid isolated from a Chinese herb,
induces a broad range of anticancer activities on solid
tumours.171 For example, triptolide induced caspase dependent
apoptosis by downregulating XIAP, and enhancing mitochon-
drial death pathway by activating caspase-9. A recent report
published by Carter and colleagues demonstrates that triptolide
can also enhance TRAIL induced apoptosis in acute myeloid
leukaemia (AML) cells by downregulating the expression of
XIAP and elevating the levels of DR5, a receptor for TRAIL.172

cIAP1 protein level could be downregulated by a small
molecule inhibitor, (-)-N- [(2S, 3R)-3-amino-2-hydroxy-4-phe-
nyl-butyryl]-l-leucine methyl ester (ME-BS), that induces its
auto-ubiqitilation.173 ME-BS directly interacts with BIR3
domain of cIAP1 and promotes its proteosomal degradation.

Another approach enhancing apoptosis is based on over-
expression of Smac/DIABLO, an IAP-inhibitor, and subsequent
treatment with anticancer drugs such as doxorubicin, etoposide,
paclitaxel and tamoxifen. Such combined treatment increased
the total number of apoptotic breast cancer cells as compared
with using the respective anticancer drugs alone.174 Smac/
DIABLO overexpression also sensitised breast cancer cells to
TRAIL. Several attempts have been made to develop cell
permeable N-terminal peptides derived from the Smac that
would serve itself as IAP inhibitors.175 176 Co-administration of
these Smac peptides with etoposide, doxorubicin, and TRAIL
resulted in alleviation of IAP effects as well as an increased
apoptotic response. This was observed in several tumour cell
lines, including breast, neuroblastoma, melanoma, and NSCLC
as well as in a malignant glioma xenograft model in vivo.176 177

Like other peptides, Smac peptides might be difficult to use in
clinical settings due to stability issues, immunogenicity and
poor tissue distribution. Thus, the next generation of such drugs
will likely be based on peptidomimetics.

AEG35156 is a 19-mer oligonucleotide that is being developed
by Aegera therapeutics (Montreal, Canada). AEG35156 effi-
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ciently reduced the mRNA level of XIAP and sensitised cancer
cells to apoptotic cell death. It also exhibited potent anti-
tumour activity in the human cancer xenograft models.178

Presently, the drug is in phase 1 clinical trial in cancer patients
as a single agent as well as in combination with docetaxel.178

N-[(5R)-6-[(anilinocarbonyl) amino]-5-((anilinocarbonyl),
amino) hexyl]-N-methyl-N’-phenylurea (1396–12), one of the
antagonists of XIAP, a small molecule inhibitor and a member
of polyphenyl urea, efficiently induced apoptosis in AML cells
and in the primary patient samples by downregulating
expression of XIAP.179 However it did not have any cytotoxic
effects on the normal haematopoietic cells, indicating its
specificity in killing cancer cells.179 Other XIAP small molecule
antagonists, such as 1396–11 and 1396–28, have been devel-
oped.180 In vitro studies using these compounds in pancreatic
cancer cell lines and also in xenograft models showed that they
can impede neoplastic growth by inhibiting XIAP. These
compounds also showed synergy when applied in combination
with TRAIL, gemcitabine, and radiation.180

Survivin has been recently singled out among the factors
responsible for the resistance of colorectal cancer to standard
therapies.181 Using siRNA technology, it has been demonstrated
that inhibition of survivin potentiated the cancer cell death
upon irradiation.181 Interaction of survivin with hsp90 (heat
shock protein 90) is well documented and this interaction is
vital for the stability of surviving.182 A cell permeable
peptidomimetic, shephedrin, is based on the binding interface
of survivin and Hsp90.183 Shephedrin destabilises the above
interaction, thus depleting survivin, and selectively induces
apoptosis only in tumour cells but not in normal cells, by both
caspase dependent and independent mechanisms.183 shRNA
mediated inhibition of survivin expression combined with the
introduction of apoptin, a viral protein that selectively kills
cancer cells, has recently been tested, and the data reveal
synergistic effects of both treatments.184 185 Apart from the
above approaches, anti-survivin hammerhead ribozymes have
been developed that can effectively downregulate survivin’s
expression, and hence potentiate cancer cell apoptosis.186–188

Direct activation of caspases by pharmacologic agents
Numerous approaches to trigger direct caspase activation
specifically in tumour cells have been tested. This tactic appears
to be very promising since some caspases, most prominently
procaspase-3, are maintained in an inactive conformation by an
Asp-Asp-Asp ‘‘safety-catch’’, a regulatory tripeptide located
within a flexible loop near the large subunit/small subunit
junction. When these interactions are disturbed by mutation or
by simple pH lowering, a substantial proportion of procaspase-3
molecules undergo spontaneous auto-activation.

Following this approach, Jiang and colleagues identified a
small molecule drug, a-(trichloromethyl)-4-pyridineethanol
(PETCM), that could activate procaspase-3 in cell extracts.189

However, this compound is an unlikely therapeutic agent, as
high concentrations (200 mM) are required to activate caspase-3
in vitro. A series of small molecule caspase-activating drugs
(MX-2060), derivatives of gambogic acid, were also evaluated
for direct caspase-3 activation.190 Gambogic acid’s relatively low
half maximal effective concentration (EC50) of 0.78 mM in a
caspase activation assay in T47D breast cancer cells makes it a
more attractive candidate for a caspase activating drug. Its
derivative, MX-2167, has been shown to induce apoptosis in
prostate, breast, colorectal and lung cancer cell lines, and to
suppress tumour growth up to 90% in a syngeneic prostate
animal cancer model.

Most recently, a small molecule, PAC-1, has been identified
that directly activates procaspase-3 in vitro (EC50 for activation
of 0.22 mM on procaspase-3) and induces apoptosis in tumour
cells isolated from primary colon cancer in a manner directly
proportional to the concentration of procaspase-3 inside these
cells.191 This compound prevented tumour growth in three
different murine models of cancer, including two models in
which PAC-1 was administered orally.191 In fact, a systematic
evaluation of procaspase-3 concentrations in the panel of 60 cell
lines used by the National Cancer Institute revealed that
particular lung, melanoma, renal and breast cancers show
greatly enhanced concentrations of procaspase-3.192 Therefore,
targeting caspase-3 activation could be a valuable strategy for
cancer therapy.

PAC-1 induces apoptosis in a variety of cancer cell lines. In
HL-60 cells, the addition of PAC-1 induced the appearance of
many apoptotic hallmarks.191 PAC-1 treatment cause consider-
able phosphatidylserine externalisation as assessed by annexin
V staining, a hallmark of apoptosis. This effect was observed at
PAC-1 concentrations between 5–100 mM. PAC-1 also induced
chromatin condensation in HL-60 cells, as visualised by
Hoechst-33258 staining.191 Furthermore, PAC-1 mediated cas-
pase-3 activation was confirmed by detection of cleaved caspase
substrate poly-ADP-ribose polymerase 1 (PARP-1), and observed
mitochondrial membrane depolarisation.191 Perhaps most inter-
estingly, PAC-1 shows some selective toxicity towards cancer
cells. When tested on matched normal epithelial and colon
adenocarcinoma cells obtained from the same donors, the IC50

values for cancer cells were between 0.003–1.41 mM, whereas
for normal cells the IC50 values were 5.02–9.98 mM. The
increased susceptibility of colon cancer cells to PAC-1 correlated
well with 1.7–19.7-fold (average of 8.4-fold) increased expres-
sion of procaspase-3 in cancer cells as compared to their normal
counterparts.191

EPILOGUE
The apoptotic potential of cancer cells in correlation to their
proliferative dynamics profoundly affects malignant pheno-
types, and it appears that pathways governing cell proliferation
and cell death are interconnected.193 194 Failure to enter apoptosis
allows transformed cells to enter further cell divisions and
acquire further mutations. In the present review, we focus on
genetic alterations of caspases and their regulators, underlining
the role of these molecules in cancer development. Deregulation
of caspase expression and/or activity could be a result of various
factors, including genetic alterations, promoter methylation,
alternative splicing and posttranslational modifications.139 195–197

We show examples that different mutation could have
profound effects on caspases activity.

The majority of currently available anticancer drugs act at
least in part through induction of apoptosis198–200; therefore, a
defect in the apoptotic propensity of tumours affects their
response to treatment. Some experimental treatments—for
example, apoptin—seem to ‘‘hijack’’ cell’s proliferation promot-
ing pathways, and redirect them to induce apoptosis.201 202

Beside traditional radio- and chemotherapies, new treatment
methods are being developed that utilise natural products such
as Brevinin-2R, and immunomodulators such as S100A8/A9,
and even utilisation of stem cells.20 24 203 204 As described above, a
number of anticancer therapies are being tested that influence
the expression and/or activity of factors that regulate apoptosis.
Targeting caspases and apoptotic machinery will play an
increasingly important role in future modern cancer therapy,
and approaches are being developed that allow ‘‘on demand’’
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activation of expression.205 This will be achieved using siRNA
technology, the small molecule inhibitors, as well as peptides
and peptidomimetics. These approaches may eventually replace
the traditional chemo- and radiation therapies, and result in
more efficient cancer treatments that are devoid of side effects.
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