
  
 

 
 

DiVA – Digitala Vetenskapliga Arkivet http://umu.diva-portal.org 

________________________________________________________________________________________ 

 

This is a pre-print available in arXiv: 

 

Konrad Abramowicz, Oleg Seleznjev 
 
Multivariate piecewise linear interpolation of a random field 
 
http://arxiv.org/abs/1102.1871   

http://umu.diva-portal.org/
http://arxiv.org/abs/1102.1871


ar
X

iv
:1

10
2.

18
71

v1
  [

m
at

h.
PR

] 
 9

 F
eb

 2
01

1

Multivariate piecewise linear interpolation of a random field

Konrad Abramowicz, Oleg Seleznjev,

Department of Mathematics and Mathematical Statistics

Ume̊a University, SE-901 87 Ume̊a, Sweden

February 10, 2011

Abstract

We consider a multivariate piecewise linear interpolation of a continuous random field on a d-dimensional
cube. The approximation performance is measured by the integrated mean square error. Multivariate
piecewise linear interpolator is defined by N field observations on a locations grid (or design). We investigate
the class of locally stationary random fields whose local behavior is like a fractional Brownian field in
mean square sense and find the asymptotic approximation accuracy for a sequence of designs for large N .
Moreover, for certain classes of continuous and continuously differentiable fields we provide the upper bound
for the approximation accuracy in the uniform mean square norm.
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1 Introduction

Let a random fieldX(t), t ∈ [0, 1]d, with finite second moment be observed at finite number of points. Suppose

further that the points are vertices of hyperrectangles generated by a grid in a unit hypercube. At any

unsampled point we approximate the value of the field by a piecewise linear multivariate interpolator, which

is a natural extension of a conventional one-dimensional piecewise linear interpolator. The approximation

accuracy is measured by the integrated mean squared error. This paper aims modelling random fields with

given accuracy based on a finite number of observations. Following Berman (1974), we extend the concept of

local stationarity for random fields and focus on fields satisfying this condition. For quadratic mean (q.m.)

continuous locally stationary random fields, we derive the exact asymptotic behavior of the approximation

error. A method is proposed for determining the asymptotically optimal knot (sample points) distribution

between the mesh dimensions. We also study optimality of knot allocation along coordinates of the sampling

grid. Additionally, for q.m. continuous and continuously differentiable fields satisfying Hölder type conditions,

we determine asymptotical upper bounds for the approximation accuracy.

The problem of random field approximation arises in many research and applied areas, like Gaussian ran-

dom fields modelling (Adler and Taylor, 2007; Brouste et al., 2007), environmental and geosciences (Christakos,

1992; Stein, 1999), sensor networks (Zhang and Wicker, 2005), and image processing (Pratt, 2007). The upper

bound for the approximation error for isotropic random fields satisfying Hölder type conditions is given in

Ritter et al. (1995). Müller-Gronbach (1998) consider affine linear approximation methods and hyperbolic

cross designs for fields with covariance function of tensor type. An optimal allocation of the observations

for Gaussian random fields with product type kernel is investigated in Müller-Gronbach and Schwabe (1996).

Su (1997) studies limit behavior of the piecewise constant estimator for random fields with a particular form

of covariance function. Benhenni (2001) investigates exact asymptotics of stationary spatial process approx-

imation based on an equidistant sampling. The approximation complexity and the curse of dimensionality
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for additive random fields are broadly discussed in Lifshits and Zani (2008). In one-dimensional case, the

piecewise linear interpolation of continuous stochastic processes is considered in, e.g., Seleznjev (1996). Re-

sults for approximation of locally stationary processes can be found in, e.g., Seleznjev (2000); Hüsler et al.

(2003); Abramowicz and Seleznjev (2011). Ritter (2000) contains a very detailed survey of various random

process and field approximation problems. For an extensive studies of approximation problems in deterministic

setting, we refer to, e.g., Nikolskii (1975); de Boor et al. (2008); Kuo et al. (2009).

The paper is organized as follows. First we introduce a basic notation. In Section 2, we consider a piecewise

multivariate linear approximation of continuous fields which local behavior is like a fractional Brownian field

in mean square sense. We derive exact asymptotics and a formula for the optimal interdimensional knot

distribution. In the second part of this section, we provide an asymptotical upper bound for the approximation

accuracy for q.m. continuous and differentiable fields satisfying Hölder type conditions. In Section 3, we present

the results of numerical experiments, while Section 4 contains the proofs of the statements from Section 2.

1.1 Basic notation

Let X = X(t), t ∈ D := [0, 1]d, be a random field defined on a probability space (Ω,F , P ). Assume that for

every t, the random variable X(t) lies in the normed linear space L2(Ω) = L2(Ω,F , P ) of random variables

with finite second moment and identified equivalent elements with respect to P . We set ||ξ|| :=
(

Eξ2
)1/2

for all ξ ∈ L2(Ω) and consider the approximation based on the normed linear spaces of q.m. continuous and

continuously differentiable random fields denoted by C(D) and C1(D), respectively. We define the norm for

any X ∈ C(D) by setting

||X ||p :=
(
∫

D

||X(t)||pdt
)1/p

, 1 ≤ p < ∞,

and ||X ||
∞

:= maxt∈D ||X(t) ||. For p = 2, we call the norm integrated mean squared norm and the corre-

sponding measure of approximation accuracy the integrated mean squared error (IMSE).

Now we introduce the classes of random fields used throughout this paper. For k ≤ d, let l = (l1, . . . , lk)

be a vector of positive integers such that
∑k

j=1 lj = d, and let Li :=
∑i

j=1 lj , i = 0, . . . k, L0 = 0, be the

sequence of its cumulative sums. Then the vector l defines the l-decomposition of D into D1 × D2 × . . .Dk,

with the lj-cube Dj = [0, 1]lj , j = 1, . . . , k. For any s ∈ D, we denote the coordinates vector corresponding to

the j-th component of the decomposition by sj, i.e.,

sj = sj(l) := (sLj−1+1, . . . , sLj
) ∈ Dj , j = 1, . . . , k.

For a vector α = (α1, . . . , αk), 0 < αj < 2, j = 1, . . . , k, and the decomposition vector l = (l1, . . . , lk), we

define

|| s ||α :=

k
∑

j=1

∣

∣

∣

∣ sj
∣

∣

∣

∣

αj for all s ∈ D

with the Euclidean norms ||sj ||, j = 1, . . . , k.

For a random field X ∈ C([0, 1]d), we say that

(i) X ∈ Cα
l
([0, 1]d, C) if for some α, l, and a positive constant C, the random field X satisfies the Hölder

condition, i.e.,

||X(t + s)−X(t) ||2 ≤ C || s ||α for all t, t+ s ∈ [0, 1]d, (1)
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(ii) X ∈ Bα
l
([0, 1]d, c(·)) if for some α, l, and a vector function c(t) = (c1(t), . . . , ck(t)), t ∈ [0, 1]d, the random

field X is locally stationary, i.e.,

||X(t + s)−X(t) ||2
∑k

j=1 ck(t) || sj ||
αj

→ 1 as s → 0 uniformly in t ∈ [0, 1]d, (2)

with positive and continuous functions c1(·), . . . , ck(·). We assume additionally that for j = 1, . . . , k, the

function cj(·) is invariant with respect to coordinates permutation within the j-th component.

For the classes Cα
l

and Bα
l
, the withincomponent smoothness is defined by the vector α = (α1, . . . , αk).

We denote the vector describing the smoothness for each coordinate by α∗ = (α∗
1, . . . , α

∗
d), where α∗

i = αj ,

i = Lj−1 + 1, . . . , Lj , j = 1, . . . , k.

Example 1. Let m = (m1, . . . ,mk) be a decomposition vector of [0, 1]m, and m =
∑k

j=1mj. Denote by

Bβ,m(t), t ∈ [0, 1]m, β = (β1, . . . , βk), 0 < βj < 2, j = 1, . . . , k, an m-dimensional fractional Brownian field

with covariance function r(t, s) = 1
2 (||t||β + ||s||β − ||t− s||β). Then Bβ,m has stationary increments,

||Bβ,m(t+ s)−Bβ,m(t)||2 = ||s||β , t, t+ s ∈ [0, 1]m,

and therefore, Bβ,m ∈ Bβ
m(D, c(·)) with local stationarity functions c1(t) = . . . = ck(t) = 1, t ∈ [0, 1]m. In

particular, if k = 1, then Bβ,m(t), t ∈ [0, 1]m, 0 < β < 2, m ∈ N, is an m-dimensional fractal Brownian field

with covariance function

r(t, s) =
1

2

(

||t||β + ||s||β − ||t − s||β
)

, t, t+ s ∈ [0, 1]m. (3)

For X ∈ C1([0, 1]d), we write X ′
j(t), t ∈ [0, 1]d, to denote a q.m. partial derivative of X with respect to the

j-th coordinate, and say that X ∈ C1,α∗

([0, 1]d, C) if there exist a vector α∗ = (α∗
1, . . . , α

∗
d) and a positive

constant C such that each partial derivative X ′
j is Hölder continuous with respect to the j-th coordinate, i.e.,

if for all t, t+ s ∈ [0, 1]d,

||X ′
j(t1, . . . , tj+sj, . . . , td)−X ′

j(t1, . . . , tj, . . . , td)||2 ≤ C|sj|α
∗

j j = 1, . . . , d. (4)

Moreover, we say that X ∈ C1,α
l

([0, 1]d, C) with α = (α1, . . . , αk) if X ∈ C1,α∗

([0, 1]d, C) and for a given

partition vector l, αi := α∗
Li−1+1 = . . . = α∗

Li
, i = 1, . . . , k.

Let X be sampled at N distinct design points TN . We consider cross regular sequences of sampling designs

TN := {ti = (t1,i1 , . . . , td,id) : i = (i1, . . . , id), 0 ≤ ik ≤ n∗
k, k = 1, . . . , d} defined by the one-dimensional grids

∫ tj,i

0
h∗j (v)dv =

i

n∗
j

, i = 0, 1, . . . , n∗
j , j = 1, . . . , d,

where h∗j (s), s ∈ [0, 1], j = 1, . . . , d, are positive and continuous density functions, say, withindimensional

densities, and let

h∗(t) := (h∗1(t1), . . . , h
∗
d(td)).

The interdimensional knot distribution is determined by a vector function π : N→ Nd:

π∗(N) := (n∗
1(N), . . . , n∗

d(N)),
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where limN→∞ n∗
j(N) = ∞, j = 1, . . . , d, and the condition

d
∏

j=1

(n∗
j(N) + 1) = N

is satisfied. We suppress the argument N for the sampling grid sizes n∗
j = n∗

j(N), j = 1, . . . , d, when doing

so causes no confusion. Cross regular sequences are one of the possible extensions of the well known regular

sequences introduced by Sacks and Ylvisaker (1966). The introduced classes of random fields have the same

smoothness and local behavior for each coordinate of components generated by a decomposition vector l.

Therefore in the following, we use only approximation designs with the same within- and interdimensional

knot distributions within the components. Formally, for the partition generated by a vector l = (l1, . . . , lk), we

consider cross regular designs TN , defined by the functions h := (h1, . . . , hk) and π(N) := (n1(N), . . . , nk(N)),

as follows:

h∗i (·) ≡ hj(·), n∗
i = nj, i = Lj−1 + 1, . . . , Lj, j = 1, . . . , k.

We call the functions h1(·), . . . , hk(·) and π(N) withincomponent densities and intercomponent knot distribu-

tion, respectively. The corresponding property of a design TN is denoted by: TN is cRS(h, π, l).

For a given cross regular sampling design, the hypercube D is partitioned into M =
∏d

j=1 n
∗
j disjoint

hyperrectangles Di, i = (i1, . . . , id), 0 ≤ ik ≤ n∗
k − 1, k = 1, . . . , d. Let 1d = (1, . . . , 1) denote a d-dimensional

vector of ones. The hyperrectangle Di is determined by the vertex ti = (t1,i1 , . . . , tj,id) and the main diagonal

ri = ti+1d
− ti, i.e.,

Di :=
{

t : t = ti + ri ∗ s, s ∈ [0, 1]d
}

,

where ′∗′ denotes the coordinatewise multiplication, i.e., for x = (x1, . . . , xd) and y = (y1, . . . , yd), x ∗ y :=

(x1y1, . . . , xdyd).

For a random field X ∈ C(D), define a multivariate piecewise linear interpolator (MPLI) with knots TN

XN (t) := XN (X,TN )(t) = EηX(ti + ri ∗ η), t ∈ Di, t = ti + ri ∗ s,

where η = (η1, . . . , ηd) and η1, . . . , ηd are auxiliary independent Bernoulli random variables with means

s1, . . . , sd, respectively, i.e., ηj ∈ Be(sj), j = 1, . . . , d. Such defined interpolator is continuous and piece-

wise linear along all coordinates.

Example 2. Let d = 2, N = 4, D = [0, 1]2. Then t = s, r = (1, 1),

XN (t) = EηX(η) = X(0, 0)(1 − t1)(1− t2) +X(1, 0)t1(1− t2) +X(0, 1)(1 − t1)t2 +X(1, 1)t1t2,

and XN is a conventional bilinear interpolator (see, e.g., Lancaster and Šalkauskas, 1986).

We introduce some additional notation used throughout the paper. For sequences of real numbers un

and vn, we write un . vn if limn→∞ un/vn ≤ 1 and un ≍ vn if there exist positive constants c1, c2 such that

c1un ≤ vn ≤ c2un for n large enough.

2 Results

Let Bβ,m(t), t ∈ R
m
+ , 0 < β < 2, m ∈ N, denote an m-dimensional fractional Brownian field with covariance

function (3). For any u ∈ R
m
+ , we denote

bβ,m(u) :=

∫

[0,1]m
||Bβ,m(u ∗ s)− EηBβ,m(u ∗ η) ||2 ds,
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where η = (η1, . . . , ηm), and η1, . . . , ηm are independent Bernoulli random variables ηj ∈ Be(sj), j = 1, . . . ,m.

Then bβ,m(u) is the squared IMSE of approximation for Bβ,m(u ∗ t), t ∈ [0, 1]m, by the MPLI with 2m

observations in the vertices of unit hypercube.

In the following theorem, we provide an exact asymptotics for the IMSE of a local stationary field approx-

imation by MPLI when a cross regular sequence of sampling designs is used.

Theorem 1 Let X ∈ Bα
l
(D, c(·)) be a random field approximated by the MPLI XN (X,TN ), where TN is

cRS(h, π, l). Then

||X −XN ||22 ∼
k
∑

j=1

vj

n
αj

j

> 0 as N → ∞,

where

vj =

∫

D

cj(t)bαj ,lj (Hj(t
j))dt > 0,

and Hj(t
j) := (1/hj(tLj−1+1), . . . , 1/hj(tLj

)), j = 1, . . . , k.

Remark 1 If for the j-th component, the uniform withincomponent knot distribution is used, i.e., hj(s) = 1,

s ∈ [0, 1], then the asymptotic constant is reduced to

vj = b̃αj ,lj

∫

D

cj(t)dt,

where b̃αj ,lj := bαj ,lj (1lj ).

In Theorem 1, the approximation accuracy is determined by the sampling grid sizes nj. The next theorem

provides the asymptotically optimal intercomponent knot distribution for a given total number of observation

points N . Denote by

ρ :=

(

k
∑

i=1

li
αi

)−1

=

(

d
∑

i=1

1

α∗
i

)−1

, κ :=

k
∏

j=1

v
lj/αj

j ,

where d·ρ is the harmonic mean of the smoothness parameters α∗
j , j = 1, . . . , d.

Theorem 2 Let X ∈ Bα
l
(D, c(·)) be a local stationary random field approximated by the MPLI XN (X,TN ),

where TN is cRS(h, π, l). Then

||X −XN ||22 & k
κρ

Nρ
as N → ∞. (5)

Moreover, for the asymptotically optimal intercomponent knot allocation,

nj,opt ∼
Nρ/αj v

1/αj

j

κρ/αj
as N → ∞, j = 1, . . . , k, (6)

the equality in (5) is attained asymptotically.

The above result agrees with the intuition that more points should be distributed in directions with lower

smoothness parameters. Note that the optimal intercomponent knot distribution leads to an increased ap-

proximation rate.
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Remark 2 Let X ∈ Bα
l
(D, c(·)) with k = d and αi 6= αj for some i, j = 1, . . . , d, and α := mini=1,...,d αi, i.e.,

ρ > α. Consider the approximation with uniform intercomponent knot distribution, n1 = · · · = nd ∼ N1/d.

Then by Theorem 1, we have

||X −XN ||2 ≍
1

Nα/(2d)
.

On the other hand, the sampling distribution (6) gives

||X −XN ||2 ≍
1

Nρ/2
<

1

Nα/(2d)
.

Example 3. Let d = k = 2, α1 = 2/3, α2 = 5/3. Then for n1 = n2, the approximation rate is

N−α/2d = N−1/6 while using the asymptotically optimal intercomponent distribution we obtain the rate

N−ρ/2 = N−1/4.2 < N−1/6.

In general setting, numerical procedures can be used for finding optimal densities. However, in practice

such methods are very computationally demanding. We present a simplification of the asymptotic constant

expression for one-dimensional components. Further, in this case, we provide the exact formula for the

density minimizing the asymptotic constant. For a random field X ∈ Bα
l
(D, c(·)), define the integrated local

stationarity functions

Cj(tLj
) :=

∫

[0,1]d−1

cj(t)dt1 . . . dtLj−1dtLj+1 . . . dtd, tLj
∈ [0, 1], j = 1, . . . , k.

Moreover, for 0 < β < 2, let

aβ :=
2

(β + 1)(β + 2)
− 1

6
.

Proposition 1 Let X ∈ Bα
l
(D, c(·)) be a random field approximated by the MPLI XN (X,TN ), where TN is

cRS(h, π, l). If for some j, 1 ≤ j ≤ k, lj = 1, then for any regular density hj(·), we have

vj = aαj

∫ 1

0
Cj(tLj

)hj(tLj
)−αjdtLj

.

The density minimizing vj is given by

hj,opt(tLj
) =

Cj(tLj
)γj

∫ 1
0 Cj(τLj

)γjdτLj

, tLj
∈ [0, 1],

where γj := 1/(1 + αj). Furthermore, for such chosen density, we get

vj,opt = aαj
||Cj ||γj .

In the subsequent proposition, we give an upper bound for the approximation error together with expres-

sions for generating densities minimizing this upper bound, called suboptimal densities.

Proposition 2 Let X ∈ Bα
l
(D, c(·)) be a random field approximated by the MPLI XN (X,TN ), where TN is

cRS(h, π, l). Then

||X −XN ||22 .
k
∑

j=1

wj

n
αj

j

as N → ∞,
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where

wj = l
1+αj/2
j

(

aαj
+

1

6

)∫ 1

0
Cj(tLj

)hj(tLj
)−αjdt, j = 1, . . . , k.

The density minimizing wj is given by

hj,subopt(tLj
) =

Cj(tLj
)γj

∫ 1
0 Cj(τLj

)γjdτLj

, tLj
∈ [0, 1],

where γj := 1/(1 + αj), j = 1, . . . , k. Furthermore, for such chosen densities, we get

wj,subopt = l
1+αj/2
j

(

aαj
+

1

6

)

||Cj ||γj , j = 1, . . . , k.

Now we focus on random fields satisfying the introduced Hölder type conditions. In this case, we provide

results for the uniform mean square norm of approximation error ||X −XN ||
∞
. The following proposi-

tion provides an upper bound for the accuracy of MPLI for Hölder classes of continuous and continuously

differentiable fields.

Proposition 3 Let X ∈ C(D) be a random field approximated by the MPLI XN (X,TN ), where TN is

cRS(h, π, l).

(i) If X ∈ Cα
l
(D, C), then

||X −XN ||
∞

≤
√
C

k
∑

j=1

cj

n
αj/2
j

(7)

for positive constants c1, . . . , ck.

(ii) If X ∈ C1,α
l

(D, C), then

||X −XN ||
∞

≤
√
C

k
∑

j=1

dj

n
1+αj/2
j

(8)

for positive constants d1, . . . , dk.

Remark 3 It follows from the proof of Proposition 3 that (7) holds if

c2j = 2−αj l
1+αj/2
j D

αj

j , j = 1, . . . , k,

where Dj := 1/mins∈[0,1] hj(s), j = 1, . . . , k. Therefore the constants depend only on the parameters of the

Hölder class and the corresponding sampling design. Similar formulas can be obtained for d1, . . . , dk in (8).

In addition, we provide the intercomponent knot distribution leading to an increased rate of the upper bounds

obtained in Proposition 3.

Remark 4 Let X ∈ C(D) be a random field approximated by the MPLI XN (X,TN ), where TN is cRS(h, π, l).

(i) If X ∈ Cα
l
(D, C) and nj ∼ Nρ0/αj , j = 1, . . . , k, where ρ0 = (

∑k
i=1 li/αi)

−1, then

||X −XN ||
∞

= O(N−ρ0/2) as N → ∞.

(ii) If X ∈ C1,α
l

(D, C) and nj ∼ Nρ1/(2+αj ), j = 1, . . . , k, where ρ1 = (
∑k

i=1 li/(2 + αi))
−1, then

||X −XN ||
∞

= O(N−ρ1/2) as N → ∞.
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The approximation rates obtained in the above remark are optimal in a certain sense, i.e., the rate of con-

vergence can not be improved in general for random fields satisfying Hölder type condition (see, e.g., Ritter,

2000). Moreover, these rates correspond to the optimal approximation rates for anisotropic Nikolskii-Hölder

classes (see, e.g., Yanjie and Yongping, 2000), which are deterministic analogues of the introduced Hölder

classes.

3 Numerical Experiments

In this section, we present some examples illustrating the obtained results. For given knot densities and co-

variance functions, first the pointwise approximation errors are found analytically. Then numerical integration

is used to evaluate the approximation errors on the entire unit hypercube. Let

δN (h, π)(t) = δN (X,XN , TN (h, π, l))(t) := X(t)−XN (X,TN (h, π, l))(t), t ∈ [0, 1]d,

be the deviation field for the approximation of X by the MPLI with N knots, where TN is cRS(h, π, l), and

write

eN (h, π) := || δN (h, π) ||2
for the corresponding IMSE. We write huni(·), to denote the vector of withincomponent uniform densities.

Analogously, by πuni(·) we denote the uniform interdimensional knot distribution, i.e., n1 = . . . = nk.

Example 4. Let D = [0, 1]3 and

X(t) = Bα,l(t),

where α = (1/2, 3/2) and l = (1, 2). Then X ∈ Bα
l
([0, 1]3, c(·)), with c(t) = (1, 1), t ∈ [0, 1]3, k = 2, α∗ =

(1/2, 3/2, 3/2). We compare behavior of eN (huni, πuni) and eN (huni, πopt), where πopt given by Theorem 2.

Observe that by using the asymptotically optimal intercomponent distribution, we obtain a gain in the rate

of approximation. Figure 1 shows the (fitted) values of the squared IMSEs e2N (huni, πuni) and e2N (huni, πopt)

in a log-log scale. In such scale, the slopes of fitted lines correspond to the rates of approximation. These

4 5 6 7 8 9 10 11 12 13 14
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

log(N)

 

 π
uni

π
opt

Figure 1: The (fitted) plots of e2N (huni, πuni) (solid line), e2N (huni, πopt) (dash line) versus N in a log-log scale.

plots represent the following asymptotic behavior:

e2N (huni, πuni) ∼ 0.3667N−1/6 + 0.0935N−1/2 ∼ 0.3667N−1/6 ,

e2N (huni, πopt) ∼ 0.4245N−3/10 as N → ∞.
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Example 5. Let D = [0, 1]2 and define X(t) = X(t1, t2) to be a zero mean Gaussian field with covariance

function

Cov(X(t),X(s)) =
1

(||t||2 + 0.1)

1

(||s||2 + 0.1)
exp(−||t − s||).

Then X ∈ Bα
l
([0, 1]2, c(·)) with c(t) = c1(t) = 2/(||t||2 + 0.1)2, t ∈ [0, 1]2, α = 1, α∗ = (1, 1), l = 2, and

k = 1. The field has one component, hence the uniform interdimensional knot distribution is used. Theorem

2 provides the formula for the suboptimal withincomponent density. Figure 2(a) shows the (fitted) values

of the squared IMSEs e2N (huni, πuni) and e2N (hsubopt, πuni). Figure 2(b) demonstrates the convergence of the

scaled squared approximation error N0.5e2N (hsubopt, πuni) to the asymptotic constant obtained in Theorem 1.

Note that utilizing the suboptimal withincomponent density leads to a significant reduction of the asymptotic

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
−2.5

−2

−1.5

−1

−0.5

0

0.5

log(N)
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Figure 2: (a) The (fitted) plots of e2N (huni, πuni) (dashed line) and e2N (hsubopt, πuni) (solid line) versus N in
a log-log scale. (b) The convergence of N0.5e2N (hsubopt, πuni) (solid line) to the asymptotic constant (dashed
line).

constant, as compared to the uniform withincomponent knot distribution.

4 Proofs

Proof of Theorem 1. First we investigate the asymptotic behavior of the approximation error eN (t) :=

||X(t)−XN (t) || for any t ∈ Di, i ∈ I, where I := {i = (i1, . . . , id), 0 ≤ ik ≤ n∗
k − 1, k = 1, . . . , d}, when the

number of knots N tends to infinity. Further, we find the asymptotic form of the IMSE

eN :=

(∫

D

eN (t)2dt

)1/2

for any positive continuous densities h1(·), . . . , hk(·). We start by observing that

eN (t)2 = E(X(t)−XN (t))2 = E(Eη(X(ti + ri∗η)−X(t)))2

= Eη,ξE ((X(ti + ri∗η)−X(t)) (X(ti + ri∗ξ)−X(t)))

=
1

2
Eη,ξE

(

(X(ti + ri∗η)−X(t))2+(X(ti + ri∗ξ)−X(t))2−(X(ti + ri∗η)−X(ti + ri∗ξ))2
)

, (9)

where ξ is an independent copy of η. Further, the property (2) together with the uniform continuity and

positiveness of local stationarity functions c1(·), . . . , ck(·) imply that

eN (t)2 =
1

2





k
∑

j=1

cj(ti)Eη,ξ

(∣

∣

∣

∣

∣

∣ r
j
i
∗(ηj − sj)

∣

∣

∣

∣

∣

∣

αj

+
∣

∣

∣

∣

∣

∣ r
j
i
∗(ξj − sj)

∣

∣

∣

∣

∣

∣

αj−
∣

∣

∣

∣

∣

∣ r
j
i
∗(ηj − ξj)

∣

∣

∣

∣

∣

∣

αj
)



 (1 + qN,i(t)), (10)
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where εN := max{|qN,i(t)|, t ∈ Di, i ∈ I} = o(1) as N → ∞ (cf. Seleznjev, 2000). It follows from the definition

and the mean (integral) value theorem that

ri =

(

1

h∗1(w1,i1)n
∗
1

,
1

h∗2(w2,i2)n
∗
2

, . . . ,
1

h∗d(wd,id)n
∗
d

)

, wj,ij ∈ [tj,ij , tj,ij+1], j = 1, . . . , d.

Denote by wi := (w1,i1 , . . . , wd,id). Now the definition of cRS(h, π, l) implies

r
j
i
=

(

1

njhj(wLj−1+1,iLj−1+1
)
, . . . ,

1

njhj(wLj ,iLj
)

)

=
1

nj
Hj(w

j
i
), j = 1, . . . , k,

where Hj(t
j) := (1/hj(tLj−1+1), . . . , 1/hj(tLj

)), j = 1, . . . , k. Consequently,

eN (t)2 =
1

2

(

k
∑

j=1

n
−αj

j cj(ti)Eη,ξ

(

||Hj(w
j
i
) ∗ (ηj − sj)||αj + ||Hj(w

j
i
) ∗ (ξj − sj)||αj

−||Hj(w
j
i
) ∗ (ηj − ξj)||αj

)

)

(1 + o(1)) as N → ∞.

Applying the uniform continuity of h(·) yields

eN (t)2 =
1

2

(

k
∑

j=1

n
−αj

j cj(ti)Eη,ξ

(

||Hj(t
j
i
) ∗ (ηj − sj)||αj + ||Hj(t

j
i
) ∗ (ξj − sj)||αj

− ||Hj(t
j
i
) ∗ (ηj − ξj)||αj

)

)

(1 + o(1))

=

(

k
∑

j=1

n
−αj

j cj(ti)Cαj ,lj(s
j ;Hj(t

j
i
))

)

(1 + o(1)) as N → ∞,

where

Cαj ,lj (s
j ;Hj(t

j
i
)) :=

1

2
Eη,ξ

(

||Hj(t
j
i
) ∗ (ηj − sj)||αj + ||Hj(t

j
i
) ∗ (ξj − sj)||αj − ||Hj(t

j
i
) ∗ (ηj − ξj)||αj

)

=
∣

∣

∣

∣

∣

∣Bαj ,lj (Hj(t
j
i
) ∗ sj)− EηBαj ,lj (Hj(t

j
i
)∗ηj)

∣

∣

∣

∣

∣

∣

2

2
.

Let Di = D1
i
× · · · × Dk

i
and denote by |Di| the volume of hyperrectangle Di. Then

e2N =
∑

i∈I

∫

Di

eN (t)2dt =

(

∑

i∈I

∫

Di

k
∑

j=1

n
−αj

j cj(ti)Cαj ,lj(s
j ;Hj(t

j
i
))dt

)

(1 + o(1))

=

(

∑

i∈I

k
∑

j=1

n
−αj

j cj(ti)

∫

Dj

Cαj ,lj (s
j ;Hj(t

j
i
))dsj |Di|

)

(1 + o(1))

=

(

k
∑

j=1

n
−αj

j

∑

i∈I

cj(ti)bαj ,lj(Hj(t
j
i
))|Di|

)

(1 + o(1)) as N → ∞.

Now the Riemann integrability of the functions cj(t)bαj ,lj(Hj(t
j)), j = 1, . . . , k, gives

e2N =

(

k
∑

j=1

n
−αj

j

∫

D

cj(t)bαj ,lj(Hj(t
j))dt

)

(1 + o(1)) =

(

k
∑

j=1

vj

n
αj

j

)

(1 + o(1)) as N → ∞.
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Note that for any u ∈ R
m
+ , bβ,m(u) > 0, otherwise the fractional Brownian field is degenerated (cf. Seleznjev,

2000). Consequently, vj > 0, j = 1, . . . , k. This completes the proof.

Proof of Theorem 2. Note that by the inequality for the arithmetic and geometric means,

1

k

k
∑

j=1

vj

n
αj

j

≥





k
∏

j=1

vj

n
αj

j





1/k

with equality if only if

ν−1 =
vj

n
αj

j

, j = 1, . . . , k.

Hence, the equality is attained for ñj = (νvj)
1/αj , j = 1, . . . , k. Let

nj = ⌈ñj⌉ ∼ (νvj)
1/αj as N → ∞. (11)

The total number of observations satisfies

N = (n∗
1 + 1) · · · (n∗

d + 1) ∼
d
∏

i=1

n∗
i =

k
∏

j=1

n
lj
j = M as N → ∞.

This implies that for the asymptotically optimal intercomponent knot distribution

N ∼ M ∼ ν1/ρ
k
∏

j=1

v
lj/αj

j ,

and therefore,

ν ∼ Nρκ−ρ as N → ∞.

By equation (11), the asymptotically optimal intercomponent knot distribution is

nj ∼
Nρ/αjv

1/αj

j

κρ/αj
as N → ∞, j = 1, . . . , k.

Moreover, with such chosen knot distribution, the equality in (5) is attained asymptotically. This completes

the proof.

Proof of Proposition 1. The proof is a straightforward implication of the assumptions and equation (10). The

exact constant and the expression for the optimal density are due to Seleznjev (2000).

Proof of Proposition 2. The first steps of the proof repeat those of Theorem 1. By (10), we have

eN (t)2 =
1

2

(

k
∑

j=1

cj(ti)Eη,ξ

(∣

∣

∣

∣

∣

∣ r
j
i
∗(ηj − sj)

∣

∣

∣

∣

∣

∣

αj

+
∣

∣

∣

∣

∣

∣ r
j
i
∗(ξj − sj)

∣

∣

∣

∣

∣

∣

αj

−
∣

∣

∣

∣

∣

∣ r
j
i
∗(ηj − ξj)

∣

∣

∣

∣

∣

∣

αj
)

)

(1 + o(1))

≤ 1

2

(

k
∑

j=1

cj(ti)Eη,ξ

(∣

∣

∣

∣

∣

∣ r
j
i
∗(ηj − sj)

∣

∣

∣

∣

∣

∣

αj

+
∣

∣

∣

∣

∣

∣ r
j
i
∗(ξj − sj)

∣

∣

∣

∣

∣

∣

αj
)

)

(1 + o(1))

=

(

k
∑

j=1

cj(ti)Eη

(∣

∣

∣

∣

∣

∣ r
j
i
∗(ηj − sj)

∣

∣

∣

∣

∣

∣

αj
)

)

(1 + o(1)) as N → ∞.
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For any nonnegative numbers a1, . . . , ak and any α ∈ R+, the inequality

(

k
∑

i=1

ai

)α

≤ kα
k
∑

i=1

aαi (12)

holds, and consequently,

eN (t)2 ≤
(

k
∑

j=1

cj(ti)l
αj/2
j

Lj
∑

m=Lj−1+1

Eη(ri,m|ηm − sm|)αj

)

(1 + o(1))

=

(

k
∑

j=1

cj(ti)l
αj/2
j

Lj
∑

m=Lj−1+1

r
αj

i,m

(

(1− sm)αjsm + (1− sm)s
αj
m

)

)

(1 + o(1)).

By the mean value theorem and the uniform continuity of withincomponent densities, we obtain

eN (t)2 ≤
(

k
∑

j=1

cj(ti)l
αj/2
j n

−αj

j

Lj
∑

m=Lj−1+1

(hj(ti,m))−αj
(

(1− sm)αjsm + (1− sm)s
αj
m

)

)

(1 + o(1)) as N → ∞.

Proceeding now to the calculation of the IMSE, we get

e2N =
∑

i∈I

∫

Di

eN (t)2dt ≤
(

∑

i∈I

k
∑

j=1

cj(ti)l
αj/2
j n

−αj

j

Lj
∑

m=Lj−1+1

(hj(ti,m))−αj
2

(αj + 1)(αj + 2)
|Di|

)

(1 + o(1)),

where
2

(αj + 1)(αj + 2)
=

∫ 1

0
((1− s)αjs+ (1− s)sαj) ds.

Now the Riemann integrability of cj(t)hj(tm)−αj , j = 1, . . . , k, together with the definition of integrated local

stationarity functions imply that

e2N ≤
(

k
∑

j=1

1

n
αj

j

l
αj/2
j

(

aαj
+

1

6

) Lj
∑

m=Lj−1+1

∑

i∈I

cj(ti)(hj(ti,m))−αj |Di|
)

(1 + o(1))

=

(

k
∑

j=1

1

n
αj

j

l
αj/2
j

(

aαj
+

1

6

) Lj
∑

m=Lj−1+1

∫

D

cj(t)hj(tm)−αjdt

)

(1 + o(1))

=

(

k
∑

j=1

1

n
αj

j

l
1+αj/2
j

(

aαj
+

1

6

)
∫ 1

0
Cj(tLj

)hj(tLj
)−αjdtLj

)

(1 + o(1)) as N → ∞.

The expression for the suboptimal density is due to Seleznjev (2000). This completes the proof.

Proof of Proposition 3. We start by proving (i). Let X ∈ Cα
l
([0, 1]d, C) and consider t ∈ Di, i ∈ I. Applying

the Hölder condition (1) to equation (9) yields

eN (t)2 =
1

2
Eη,ξE

(

(X(ti + ri∗η)−X(t))2+(X(ti + ri∗ξ)−X(t))2−(X(ti + ri∗η)−X(ti + ri∗ξ))2
)

≤ CEη || ri ∗ η ||α = CEη

k
∑

j=1

∣

∣

∣

∣ ri
j ∗ ηj

∣

∣

∣

∣

αj ≤ C

k
∑

j=1

l
αj/2
j

Lj
∑

m=Lj−1+1

Eη (ri,m|ηm − sm|)αj ,

12



where the last inequality follows from (12). Furthermore, since maxs∈[0,1] ((1− s)αjs+ (1− s)sαj) = 2−αj ,

we obtain

eN (t)2 ≤ C
k
∑

j=1

l
αj/2
j

Lj
∑

m=Lj−1+1

r
αj

i,m

(

(1− sm)αjsm + (1− sm)s
αj
m

)

≤
k
∑

j=1

2−αj l
αj/2
j

Lj
∑

m=Lj−1+1

r
αj

i,m.

By the regularity of the generating densities, we have that ri,m ≤ 1/(n∗
m mins∈[0,1] h

∗
m(s)), i ∈ I,m = 1, . . . , d.

Moreover, the definition of cRS(h, π, l) implies the following uniform bound for the squared approximation

accuracy

||X −XN ||2
∞

= max
t∈D

e2N (t) ≤ C

k
∑

j=1

2−αj l
1+αj/2
j

(

Dj

nj

)αj

,

with Dj = 1/mins∈[0,1] hj(s), j = 1, . . . , k. Finally, we obtain the required assertion

||X −XN ||
∞

≤
√
C

k
∑

j=1

cj

n
αj/2
j

,

where c2j := 2−αj l
1+αj/2
j D

αj

j > 0, j = 1, . . . , k.

For the smooth case, we use the multivariate Taylor formula to obtain the following representation of the

deviation field

δn(t) := X(t)−XN (t) = Eη





∫ 1

0

d
∑

j=1

X ′
j(ti + u ri ∗ (η − s))ri,j(ηj − sj)du



 , t ∈ Di, t = ti + s ∗ ri,

where η = (η1, . . . , ηd) and η1, . . . , ηd are independent Bernoulli random variables, ηj ∈ Be(sj), j = 1, . . . , d.

Introducing an auxiliary uniform random variable U ∈ U (0, 1) we get

δn(t) =
d
∑

j=1

Eη,U

(

X ′
j(ti + U(η − s)∗ri)ri,j(ηj − sj)

)

=
d
∑

j=1

Eη,U

(

X ′
j(ti,1 + U(η1 − s1)ri,1, . . . , ti,j + U(ηj − sj)ri,j, . . . , ti,d + U(ηd − sd)ri,d)

−X ′
j(ti,1 + U(η1 − s1)ri,1, . . . , ti,j, . . . , ti,d + U(ηd − sd)ri,d)

)

(ηj − sj),

since for any j = 1, . . . , d,

Eη(X
′
j(ti,1 + U(η1 − s1)ri,1, . . . , ti,j, . . . , ti,d + U(ηd − sd)ri,d)(ηj − sj))

= Eη1,...,ηj−1,ηj+1,...,ηd(X
′
j(ti,1 + U(η1 − s1)ri,1, . . . , ti,j, . . . , ti,d + U(ηd − sd)ri,d)Eηj (ηj − sj)) = 0.

The triangle inequality and the condition (4) imply that

eN (t) ≤
d
∑

j=1

√
C Vj r

1+αj/2
i,j ,

for some positive constants Vj , j = 1, . . . , d. Analogously to (i), the required assertion follows from the

regularity of the generating densities and the definition of cRS(h, π, l). This completes the proof.
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Kuo, F., Wasilkowski, G., Woźniakowski, H., 2009. On the power of standard information for multivariate

approximation in the worst case setting. J. Approx. Theory 158, 97–125.
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