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Abstract

The aim of this thesis is to apply recently developed technologies
for genomic variation analyses, and to ensure quality of the
generated information for use in preclinical cancer research.

Faster access to a patients’ full genomic sequence for a lower cost
makes it possible for end users such as clinicians and physicians to
gain a more complete understanding of the disease status of a
patient and adjust treatment accordingly. Correct biological
interpretation is important in this context, and can only be
provided through fast and simple access to relevant high quality
data.

Therefore, we here propose and validate new bioinformatic
strategies for biomarker selection for prediction of response to
cancer therapy. We initially explored the use of bioinformatic tools
to select interesting targets for toxicity in carboplatin and
paclitaxel on a smaller scale. From our findings we then further
extended the analysis to the entire exome to look for biomarkers as
targets for adverse effects from carboplatin and gemcitabine. To
investigate any bias introduced by the methods used for targeting
the exome, we analyzed the mutation profiles in cancer patients by
comparing whole genome amplified DNA to unamplified DNA. In
addition, we applied RNA-seq to the same patients to further
validate the variations obtained by sequencing of DNA. The
understanding of the human cancer genome is growing rapidly,
thanks to methodological development of analysis tools. The next
step is to implement these tools as a part of a chain from diagnosis
of patients to genomic research to personalized treatment.

Keywords: Cancer, Mutations, Variations, Single Nucleotide
Polymorphism, DNA, RNA, Genome, PINK1, Massively Parallel
Sequencing, Exome Sequencing, Toxicity






Great spirits have always found violent opposition from mediocrities. The
latter cannot understand it when a man does not thoughtlessly submit to
hereditary prejudices but honestly and courageously uses his intelligence.

Albert Einstein, 1940
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Introduction

The secret to solving the riddle of cancer lies in understanding the
disease and using this understanding to find appropriate
treatments. To achieve this, it will be necessary to interpret,
analyze and understand the patient’s genomic background due to
its profound influence of the outcome of the treatment. However,
the information required to do this is hidden inside the 1.8 m bases
of DNA contained inside each cell of the human body.

This thesis focuses on some fundamental technologies used in
genomic variation research, and presents studies that validate their
use for drawing biological conclusions. I have utilized some of the
latest technologies and bioinformatics tools to analyze sequence
data, with the aim of identifying new biomarkers for predicting
individual patients’ toxicity responses to specific cancer
treatments.
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Genomes, genes, genomics, genetics

The interplay between hereditary traits and genes seems to be
relatively straightforward at first glance, resembling material
covered in introductory molecular biology courses. However,
closer inspection quickly reveals a more complex picture. To
properly understand what is known about this subject, it is
necessary to define some key terms. The genome is the entirety of
an organism’s hereditary information (DNA), which is present in
almost every cell of the body. The parts of the genome that encode
proteins - the main workhorses of the body - are known as genes,
and it is estimated that we have 21224 of them (Ensembl release
68). Several approaches and techniques for studying genes and
genomes have been developed, and are collectively termed
genomics - another phenomenon of the “omics” era. [1] Genomics
itself can be regarded as a sub-discipline of genetics; the science of
genes, heredity and variation in living organisms. The studies
reported in this thesis used several approaches to study the
properties of cancer patients’ genomes in order to better
understand the genetic components of cancer.
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1.1 The Central Dogma

Before the advent of classical genetics, it was generally believed
that proteins carried the hereditary information. Classical genetics
was founded on Mendel’s law of inheritance, which was first
outlined 1865 [2], and the chromosome theory of inheritance put
forward by Boveri-Sutton a few years later. [3] In 1958, Francis
Crick proposed the central dogma of molecular biology [4], which
describes a one-way of hereditary information from DNA to RNA to
protein within the cell. The theorem was presented in more detail
in Nature in 1970 [5], further illustrating the complexity of the
system. In brief, the central dogma holds that deoxyribonucleic
acid (DNA) is transcribed into ribonucleic acid (RNA), which
carries information that is translated into amino acid chains with
specific sequences (Proteins). This process relies on the reliable
copying of DNA (replication), cutting (splicing) of RNA and finally
the assembly of amino acid chains that subsequently fold into
functional three-dimensional proteins. This relatively simple model
is largely sufficient for prokaryotes, but in eukaryotes much of the
regulatory information is hidden in other parts of the genome, such
as non-coding DNA and feedback loops, as well as epigenetic
factors and processes such as non-coding RNAs (ncRNAs) and post-
translational modification of proteins.

DNA

Deoxyribonucleic acid (DNA) is arguably the most important
molecule of life. Its double helical structure was discovered in 1953
by Watson and Crick. [6] DNA consists of a backbone made up of
two sugar strands (deoxyribose phosphates) that are wrapped
around one-another in a double helix and held together by
phosphodiester bonds between the phosphate groups. The sugars
are all oriented in the same way, with the 3’ hydroxyl group of one
being bound to the 5 hydroxyl of the next, making DNA a
directional molecule. Each individual sugar moiety is attached to a
single nitrogenous base known as a nucleotide, and the two
intertwined strands of DNA are bound together by hydrogen bonds
between the nucleotides. There are four nucleotides in DNA, each
of which forms hydrogen bonds to a specific partner: adenine (A)
binds to thymine (T), and cytosine (C) binds to guanine (G). It is
these bases that encode the genetic information. The genes
comprise the protein-coding sections of the genome, and account
for approximately 1.2% of its total length in humans. [7] The DNA
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is efficiently folded and packed into chromosomes. Humans have
22 pairs of autosomal chromosomes and two sex-determining
chromosomes. One set of 23 chromosomes is maternally inherited
and the other is paternally inherited to form a diploid genome with
46 chromosomes in total.

The complete sequence (actually, the first draft) of the human
genome was first published in 2001. [8, 9] This set the stage for the
resequencing of its ~3 billion bases, enabling very large scale
genomic analyses.

RNA

Discussions concerning the role of ribonucleic acid (RNA) in
protein synthesis began in the late 1930’s. Around twenty years
later, Severo Ochoa was awarded the Nobel prize in medicine for
his discovery of RNA synthesis.

RNA is similar to its precursor, DNA, although it is single stranded.
In contrast to DNA4, its sugar backbone is made from ribose and the
nucleotide thymine is replaced with unmethylated uracil (U).
Ribose has a hydroxyl group at the 2’ position that is not present in
the 2-deoxyribose that makes up the backbone of DNA. This makes
RNA more prone to hydrolysis and thus less stable than DNA. In the
cell, RNA is produced with a nucleotide sequence that is encoded
by the section of DNA from which it is transcribed. There are
several different kinds of RNA molecules, including coding mRNA
(that holds the information about which proteins to synthesize),
and non-coding RNAs such as tRNA (that transfers amino acids to
be added to a polypeptide chain), regulatory RNA (RNAi, siRNA,
microRNA), rRNA (that deciphers the mRNA in the ribosome) and
several others. Transcription of the genetic blueprints encoded in
the DNA generates messenger RNA (mRNA).

The entire set of transcripts produced by an organism is called its
transcriptome. [10] In September 2012, the ENCODE consortium
simultaneously released 30 papers in Nature, stating that
approximately 60% of the human genome is transcribed into
transcripts more than 200 nucleotides long. [11]

Protein

In 1838, the Swedish chemist Jons Jacob Berzelius gave the name
“proteins” to the macromolecules whose chemical composition was
first described by his associate, Gerardus Johannes Mulder. [12]
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Proteins consist of amino acid chains with variable lengths known
as polypeptides. They are held together by peptide bonds and
typically fold into complex tertiary structures. Most proteins are
made up of 20 different amino acids, with the precise sequence of
amino acids in each protein being determined by a series of three-
base sequences known as codons in the DNA.

Proteins can undergo several post-translational modifications,
including the addition of sugars to the amino acid backbone
(glycosylation) as well as the addition of lipids, carbohydrates,
acetyl groups (acetylation), phosphate groups (phosphorylation),
and various other moieties. These changes generally alter the
protein’s chemical properties and can thereby affect its function.
[13] Proteins have a wide variety of functions: some (known as
enzymes) are catalysts, others are involved in cell signaling, and
others still have structural roles, among other things. Together
with alternative splicing of mRNAs, post-translational modification
means that more than 100,000 different proteins can be produced
from the human genome. This scope for the production of variant
proteins plays a large role in determining the differences between
individuals.

1.2 Variations

Before Mendel’s theories became accepted, population genetics
were generally discussed in terms of blended inheritance.
However, Mendelian genetics and the theory of evolution made it
clear that genomic variation existed and had to be accounted for,
although for quite a while it was believed that the proteins were
the factors of inheritance. [14]

The sequences of any two human genomes will only differ by ~0.1-
1%. This raises a question: what is responsible for the phenotypic
variation observed in human populations? Some traits, such as the
natural color of one’s hair or eyes, are clearly determined by
genetic factors, but others (such as weight) are also influenced by
environmental factors such as nutritional intake and physical
activity levels. An individual's genetic makeup can be studied to
determine how susceptible they are to certain diseases or how
likely it is that they will respond well to specific treatments for
conditions such as cancer. This could for example be done by
considering simple measures such as deviations from the Hardy-
Weinberg principle, which states that allele and genotype

6
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frequencies in a population will remain in equilibrium from
generation to generation in the absence of disturbing influences.
[15] Notably, alleles that satisfy Hardy-Weinberg could still
mediate a risk to disease.

It is important to keep in mind that the modern definition of a
genetic variation is a difference of one nucleotide or more relative
to the sequence of a reference genome, which has become fixated
in a population. Mutations, on the other hand, are rare and might
be specific to a given phenotype (for example, they may be tumor
specific), being acquired due to disease progression or other some
other factor (e.g. UV radiation). Initiatives such as the Hapmap
project, with the aim to catalogue the genetic variations present in
different ethnic groups, map correlations between nearby variants
and allele frequencies [16], have greatly increased the scope for
eliminating noise due to population differences. Other examples
such as the 1000 genome project [17], the sequencing of 200
exomes in Denmark [18], provide useful data. While the preferred
database will depend on the aim of the study to be conducted, a
recent comparison of the Hapmap and 1000 Genomes stated that
the two resources have a 99 % overlap when a minor allele
frequency filtering of 5% is applied. [19]

Singe nucleotide variation

A single nucleotide variation (SNV) is defined as a single nucleotide
exchange in the genome; these mutations can be categorized into
private, familial, rare and common of a population. The human
mutation rate has been estimated to about one per one hundred
million, however results published in 2011 indicate that on
average, humans inherit 60 new mutations per generation from
their maternal and paternal genomes. [20] (See Figure 1A)

Single nucleotide polymorphism

A single nucleotide polymorphism (SNP) is a change in a single
base of the genome that is present in more than 1 % of a given
population. There are currently 187,852,828 human SNPs listed
(NCBI dbSNP Build 137 for Human). If the altered allele is present
on both chromosomes of a pair, the SNP is said to be homozygous,
whereas if one of the alleles is altered within a predefined range
(usually 20-80% in observed sequence data), it is said to be
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heterozygous. A non-synonymous SNP gives rise to an amino acid
change whereas a synonymous SNP is silent. Just as important, are
SNPs that are situated in regulatory regions and splice sites. They
influence gene expression by transcript instability and length. [21]
Additionally, SNPs could affect chromatin modifications,
methylation or transcription factor binding.

Structural variation

When the variations expand in size to cover larger regions, they are
referred to as structural variations. Approximately 12% of all
short variants (SNPs, indels, somatic mutations) are reported to be
structural variants (Ensemble release 68).

Structural variations can be divided into a few categories. One is
copy number variation (CNV), which encompasses deletions,
insertions and duplications. Approximately 13% of the human
genome originates from copy number variation. [22] Another class
is inversions, where a chromosomal section is inverted so that its
start and end points switch places. Finally, in translocations, a part
of a chromosome is integrated into another chromosome.

A study of the impact of tandem duplications was presented in
Nature in 2012, where mutations in these regions are associated
with poor prognosis and thus a potential therapeutic target for
future medicine. [23]

Rearrangements are often seen in cancers, and modern sequencing
technology allows us to study them in more detail. [24] (See Figure
1B-1F)

Repeats

Sequential repeats of two or more nucleotides represent another
form of genetic variation and are known as tandem repeats. If the
length of the repeated element is between 10 and 60 basepairs, it is
referred to as a minisatellite. If the repeated element is shorter
than this, it is called a microsatellite or short tandem repeat. [25]
Microsatellite instability is common in cancers [26], and is often
detected in tumor cells with mismatch repair deficiency (MMR).
[27, 28] (See Figure 1G)
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Epigenetics

Epigenetic factors contribute substantially to the observed
differences between individuals. By definition, (epi- (Greek: emi-
over, above, outer) -genetics), epigenetic changes do not affect the
sequence of the genome, but they can nevertheless be passed down
over several generations of cell divisions. [29] The concept of the
“epigenetic landscape” was first discussed in 1942 by Waddington,
who used a marble as a metaphor for a cell taking a particular path
through valleys of possible differentiation. [30] Epigenetic changes
include cytosine methylation and histone modifications.
Methylation of promoters is associated with repression, but
methylation of genes is a sign of activation [31], whereas histone
modification plays a role in transcriptional control. [32, 33] Allelic
silencing (e.g expression of genes from either maternal or the
paternal allele) was discovered in cancer cells [34], and in 2011,
Hansen et al. reported that the variability of differentially
methylated regions in the genomes of cancerous cells exceeded
that in matched normal samples. [35]
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Figure 1.

A) Single nucleotide variation. A single nucleotide A (Adenine) has
been replaced by a G, (Guanine), base pairing with T (Thymine) and
C (Cytosine), respectively.

B) Deletion. A schematic overview of a larger deletion, the size range
can vary between one base to several kb.

C) Insertion. A portion of a chromosome is integrated into another
chromosome, reducing the size of the donor chromosome, and
increasing the size of the receiving chromosome with corresponding
size.

D) Duplication. A region of DNA is duplicated within the same
chromosome, which could arise from erroneous homologous
recombination for example.

E) Translocation. The unequal exchange of chromosomal parts
between nonhomologuous chromosomes could for example result in
gene fusions.

F) Inversion. When a part of a chromosome rearranges itself so that
it is reversed end to end.

G) Repeats. An example of a tandem repeat consisting of two
nucleotides A (Adenine) and C (Cytosine), that are directly adjacent.

11
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Sequencing methods for detecting
variations

Sequencing is the process of determining the order of nucleotides
or bases in a length of DNA or RNA, as well as its methylation
status in some cases. The first genome to be sequenced was that of
bacteriophage @X174 in 1977, and subsequent developments in
this field have revolutionized our understanding of genomes.
Different ‘generations’ of sequencing technologies have been
developed: the early first generation methods, the more
sophisticated and powerful second generation, and the current
next generation methods. [36] For the remainder of the text in this
thesis, 1 will use the term massively parallel sequencing (MPS)
when referring to the latter.

MPS has enabled us to obtain deeper insights into the structure of
the genome and a more detailed view of its properties, which can
be studied in greater detail by resequencing.

2.1 Sanger sequencing

The first technique for “decoding” DNA was the chain terminating
method described by Frederick Sanger in 1977, for which he was
awarded the Nobel prize in 1980. An alternative method was

13
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proposed by Allan Maxam and Walter Gilbert, whose method of
sequencing by chemical modification was also published in 1977.
This method was appealing because it eliminated the need to clone
fragments prior to the sequencing reaction, but due to its use of
radiolabeled nucleotides and the difficulties of scaling up the
process, it was less favored than Sanger’s method. [37]

Chain termination sequencing is based on the extension of a DNA
template using DNA polymerase, primers, and labeled chain
terminating nucleotides known as dideoxynucleotidetriphosphates
(ddNTPs). The ddNTPs, which terminate the elongation process,
are present in the sequencing reaction mixture in small quantities,
causing DNA fragments of varying lengths to be produced from a
single template. This collection of fragments is then separated
based on their size using polyacrylamide gel electrophoresis. Each
column on the gel represents one of the four nucleotides, making it
possible to read the DNA sequence by inspecting the size
distribution of the fragments. The efficiency of the technique has
been greatly increased since it was first developed. Notably, a
capillary made of glass filled with a polymer to facilitate automated
sequencing in a machine has replaced the gel. This is used in
conjunction with visualization software to produce chromatograms
showing the DNA sequence in a completely automated and hands-
off process.

The Sanger method is currently regarded as the “gold standard” of
sequencing methods, with reported error rates varying between
0.001-1% [38] It is therefore used to validate other sequencing
methods in laboratories around the world. Its main drawbacks are
the time taken for the analysis and its relatively high cost per
sample, as well as the poor quality of the sequence information
obtained for the first 40 or so bases of the targeted fragment.

2.2 Pyrosequencing

The development of pyrosequencing represented the advent of the
second generation sequencing technologies. Pyrosequencing is
based on detecting luminescence emitted by luciferase when a
nucleotide is incorporated into the growing complementary strand
during sequencing by synthesis. This phenomenon was discovered
by Nyrén et al [39, 40] in 1986 and is driven by the pyrophosphate
(PPi) released when the nucleotide is incorporated. The signal
strength depends on the number of identical nucleotides

14
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incorporated into the growing strand sequentially. Individual
nucleotides are added to the reaction mixture one by one, enabling
the detection of distinct light signals arising from the release of PPi.
The light-producing reaction involves the conversion of PPi into
adenosine triphosphate (ATP) by ATP sulfyrase. The resulting ATP
acts as a source of energy to drive the conversion of luciferin to
oxyluciferin, which in turn produces visible light that can be
detected with a camera. This reaction and the intensity of the
emitted light are directly proportional to the amount of PPi
released and thus to the number of nucleotides incorporated. The
light signal is visualized on a pyrogram, which can be automatically
produced by the instrument used to perform the sequencing.
However, the relationship between the intensity of the light signal
and the number of nucleotides incorporated becomes
progressively less linear as the length of the homopolymeric
sequence increases.

The read lengths attainable with pyrosequencing are shorter than
those for Sanger sequencing. However, its cost, accuracy and time
for small-scale genotyping and validation make it very competitive
for such purposes. [41] Unlike its successors described below, it is
not suitable for sequencing highly repetitive regions and is
therefore not optimal for whole genome sequencing.

2.3 Massively parallel sequencing

One of the biggest recent breakthroughs in genomics came from
the development of methods for using established sequencing
technologies to analyze millions of reads in parallel. [42] This has
provided important new insights and greatly increased the scope
for exploring and understanding genomes. One of the first major
achievements resulting from sequencing was the completion of the
entire human genome in 2001 (more accurately, the first draft of
the genome [8, 9]), after 13 years of effort in a collaborative project
based on the efforts of numerous research groups around the
world [43]. Since then, the cost per base of genome sequencing has
decreased by a factor of more than 100 000.

The current bottleneck in massively parallel sequencing relates to
the lack of suitable methods for handling the large amounts of data
it generates, as discussed in chapter 3.

15



Analysis on genetic variation in cancer

454

The 454 technology is an extension of pyrosequencing and was one
of the first “Next Generation” massively parallel sequencing
methods to be established, entering the market in 2005. [44, 45] At
the time, it was distinguished by its vastly greater capacity
compared to pyrosequencing. It is capable of about one million
reads per run, with read lengths approaching those achieved with
Sanger sequencing.

The process is conceptually similar to pyrosequencing. The DNA to
be sequenced is broken up into blunt-ended fragments (DNA
libraries) that are then bound to beads. Each bead contains only
one DNA molecule, which is amplified through emulsion PCR. [46]
After amplification, each DNA library (bead) is transferred to an
individual well in a fiber optic microtiter plate. The well also
contains DNA polymerase coupled to primed-template on beads,
ensuring that the light reaction can proceed. The remaining
reagents are provided via the instrument itself, and a CCD camera
detects each light signal as a nucleotide is incorporated into the
growing DNA fragment. While the intensity of the signal is
proportional to the number of bases incorporated, the linearity of
the relationship declines when the number of sequential identical
bases is greater than 8. As a result, it can be difficult to interpret
sequence data for homopolymers using this method.

As the first of the MPS technologies to reach the market, 454
sequencing was rather revolutionary when it was first introduced.
However, its pre-eminence is coming to an end, largely because its
capacity is on the lower end of current MPS technologies. [47] Its
greatest strength is the very long reads it generates, which make it
suitable for projects such as long amplicon sequencing. This can be
very useful for detecting rare mutations in highly heterogenic
cancer samples. It is also useful in another research area,
metagenomics, where its accuracy is important for identifying
sequences from individual species in highly diverse samples.

[llumina

In 2006, Illumina [48] released their first sequencing instrument
[49] based on technology that had been developed since 2001 by
the company Solexa. [50] It is based on adaptor ligation onto
fragmented DNA, allowing the fragments to bind to primers that
are attached to a solid surface. [51] Bridge amplification [52] is
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then performed for each template so that clusters of clones
originating from a unique DNA molecule can be formed. The
addition of four discrete reversible terminator bases by passing a
solution containing polymerase over the solid surface is followed
by the removal of non-incorporated nucleotides. The power of this
method stems from the fact that it can only perform single
nucleotide extensions making it suitable for detecting mutations. It
also has a very high throughput capacity, reducing its per base cost.
Before each new cycle, a camera identifies the newly incorporated
fluorescently labeled nucleotide and the 3’ end terminator is
removed, allowing the next nucleotide to be incorporated.
Sequencing based on reversible dye-termination has an enormous
capacity for high throughput data generation, which is very
beneficial for the rapid retrieval of genetic information. Its major
drawbacks are its short read lengths and comparatively high error
rates in homopolymeric regions. However, these must be weighed
against the large number of users that can be accommodated,
allowing the technology to provide fast solutions to common
analytical challenges. The recent development of the bench top
MiSeq instrument facilitates fast and efficient screening of selected
targets, and ultra deep sequencing of amplicons, allowing for lower
prevalence mutation detection. [53]

Solid

The SOLiD system was commercialized in in 2007 and is based on
the Sequencing by Oligonucleotide Ligation and Detection (SOLiD)
method.[42] [54] The process involves attaching individual DNA
fragments to microbeads and then performing emulsion PCR to
ensure that each microbead is coated with a single cloned
fragment. The beads are then covalently bound to a glass surface. A
collection of all possible combinations of labeled octamers are then
annealed and ligated, enabling detection by fluorescent imaging.
The sequence is determined by the known identities of the first
two bases of the octamer. Following detection, chemical removal of
the three bases at the 5’ end initiates the next cycle. After ten
cycles, the generated fragment is removed from the bead, leaving
room for the next fragment beginning at the next base.

In practice, this means that each base is called twice, with different
color codings, reducing the difficulties of sequencing
homopolymers. encountered with [llumina sequencing. However,
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base substitutions still constitute a problem for this technology.
[55] Its high accuracy [56] has made it suitable for applications
utilizing short read lengths such as Chip-Seq [57], and the 5500
SOLiD™ System has been used successfully in numerous studies on
transcriptomics and epigenomics. [35, 58, 59] With their latest
upgrade (Wildfire) the emulsion PCR step is eliminated and
replaced with isothermal amplification, making it suitable for
exome and RNA sequencing.

2.4 Contemporary technologies

The goal of single molecule sequencing of a full genome was first
achieved in 2008, when the first M13 virus was sequenced,
although previous attempts had been made already in 2003 by
using fluorescence [60] [61]. The number of competing MPS
technologies has grown dramatically since the concept was
introduced; the main players in the field today are described
below.

Semiconductor sequencing

Ion Torrent (currently Life technologies) [62] based their
approach on detecting a molecule released during the enzymatic
reaction that incorporates the new nucleotide into the growing
complementary DNA sequence, as is done in pyrosequencing.
However, rather than pyrophosphate, the ion torrent approach
detects protons using a semiconductor. The signal is
proportional to the number of protons released, which reflects
the number of nucleotides incorporated. [63] As in
pyrosequencing, homopolymers present a challenge for this
method because indels interfere with the signal. [64]

Nanopore sequencing

Nanopore sequencing refers to the process of passing a DNA
molecule through a small pore with a diameter in the size range of
nanometers in order to determine its nucleotide sequence. The
nanopore can be made from a number of different materials,
including the protein a-hemolysin. When the DNA molecule passes
through the pore, its physical characteristics change. This
generates an electrical current if a potential is applied across the
system.
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The total cost of nanopore sequencing is expected to fall below
$900/genome with their miniaturized bench top device
MinION[65], making it commercially competitive with the other
technologies. One of the major issues with this approach at present
is its limited ability to achieve single nucleotide resolution for
large-scale workflows. [66]

Single molecule fluorescent sequencing

In 2008, Helicos released their sequencing technology, which is
based on single molecule fluorescence and is the first sequencing
method that does not require amplification. [61]

In this method, DNA sequences longer than 1000 nucleotides are
preferably fragmented, and purified using Solid-phase reversible
immobilization (SPRI) beads. [67] They are then hybridized to
primers attached on a flow cell and their 3’ ends are then blocked
by a terminal transferase to prevent extension prior to the
initiation of the desired reaction. A labeled nucleotide is
incorporated, and its fluorescent dye is detected by laser excitation
and then cleaved off, permitting the incorporation of the next
complementary nucleotide. The fluorescent tag on the new
nucleotide is then excited with a laser and its fluorescence is
detected using a camera built into the instrument.

The lack of an amplification step and size selection in this method
constitutes a major advantage since it eliminates the scope for the
introduction of amplification mutations and bias against difficult
regions as well as reducing the hands-on time required for
sequencing.

Because the method requires the presence of a 3’ hydroxyl group, it
is somewhat biased in favor of shorter fragments, and so it is
advisable to fragment the DNA prior to sequencing.

Single-molecule real-time sequencing

Single-molecule real-time developed by Pacific Biosciences was
first described in a Science paper in 2009 that presented a proof-of-
concept for real time sequencing of a single molecule using zero-
mode waveguide nanostructure arrays. [68]

The underlying technology is known as single molecule real-time
(SMRT) sequencing and relies on the detection of a signal
generated when a fluorescently labeled nucleotide is incorporated
into a single DNA molecule using a laser situated at the bottom of a
zero-mode waveguide well, in conjunction with the phi29
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polymerase. During the process of nucleotide incorporation, the
molecules are held in a narrow detection period for a
comparatively long period of time, making it possible to record the
sequence.

The development of techniques such as strobe sequencing and
circularization of the DNA template has made this technique
suitable for the analysis of structural variation. [69]

In 2010, a paper was published describing the use of this apparatus
to analyze DNA methylation without prior modification. [70]

2.5 Service technologies

The rapid development of sophisticated sequencing technologies
has created a market for service providers in this field. The use of
such providers can increase the time and resources available to the
end user. The outsourcing of routine experimental lab work and
data analysis will probably become increasingly common in future,
leaving the experts to focus exclusively on biological interpretation,
saving both time and money.

Complete genomics

Complete Genomics offers several services related to the field of
genetics, and launched a DNA nanoball sequencing service in 2010.
The first step in this process involves fragmenting the DNA to
select for sizes in the range of 400-500bp, and ligating adapters to
circulate the DNA. The next step is to amplify the DNA template by
rolling circle replication with phi29 DNA polymerase. The resulting
circles of DNA are folded into small nanoballs (diameter ~300 nm),
which then are repositioned onto a flow cell by adsorption. An
oligonucleotide binding site next to the adapter sequence acts as an
anchor for pools of fluorescent probes that are then added together
with T4 DNA ligase. The probes consist of degenerate nucleotides
except at certain positions, where the nucleotide is labeled. This
makes it possible to determine which probe bound after the
unbound material has been washed out. This cycle is repeated 10
times since the anchor is 10 nucleotides long and is thus
completely replaced once the tenth cycle has been completed.
Increasing the density of sequencing arrays allows for an increased
number of reads per flow cell, but PCR bias and short read lengths
are still a problem when using this approach. [71]
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In December 2011, the performance of the Complete Genomics
service was compared to that of the Illumina platforms. It was
concluded that the former seems to be more accurate based on
transition-transversion rate (described in chapter 3.5) but also less
sensitive in variant calling. Complete Genomics covers fewer bases,
probably due to its shorter read lengths. [72]

Another comparison between Ion Torrent, Pacific Biosciences and
[llumina MiSeq was carried out in 2012, where the ability to call
variants from each platform was studied and they found that lon
Torrent was slightly better, but with higher false positive rate. [73]
A summary of the sequencing technologies is depicted in Table 1.

21



Analysis on genetic variation in cancer

Table 1. Overview of sequencing technologies

Platform

Method

Optical detection

Read
length

Capacity

Main

bias Advantages

Application

Disadvantages
examples

De novo WGS,
of fluorescence transcriptome
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incorporation. sequencing)
Optical detection Relatively low WES, .WES’
of fluorescen ce- Base Large user mnultinlex transcriptome
Humina 2x100bp 600 Gb substitut  community, high P sequencing, SNP
labeled . capacity, short .
) ions throughput, low cost detection,
nucleotides. reads . . .
epigenetic studies
Optical detection Bas.e Short sequences WGS, WES, Chip-
of fluorescence- substitut Improved accuracy slows down data Seq in
SOLiD labeled 75bp 300Gb ions, A-T with two base q .
. . . process, complex transcriptomics
nucleotide bias encoding . . .
analysis and epigenomics
octamers
Semiconductor
detection of Fast, future technical
hydrogen ions development will Error rates, long Targeted
lon Torrent > < 08 . 200bp 1Gb Indels . pmel sample gete
released during improve, simple : sequencing
. ; preparation
nucleotide machine
incorporation.
Measurement of
cg;idléztx}llteyn Single Detection not at
Nanopore . 8 >1000bp - base Fast, low cost single nucleotide WGS
passing molecule :
detection level
through
nanopore
Hich error rate Ancient DNA, FFPE
Single molecule Shorter  No amplification or slgw hich cost, samples, DNA with
Helicos 8 . 2x50bp  35Gb fragment size selection, short > 18 high GCcontent,
sequencing ; for increased :
S hands on time transcriptome
accuracy .
sequencing
B Zero mode wave cG Real time 51ngl§ H}gh error rate, Mthylatlon
. . >2000bp 1-2Gb . molecule sequencing, high cost,need detection, de novo
Biosciences guide deletions
long reads developments WGS
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Comple.te of rolling circle ~ 2x25bp - PCR bias High density of DNA lengths., .mul.tlple Resequencing
Genomics R molecules on array amplification
amplification
cycles
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Using genomics for analysis of cancer

Cancer is the second most severe cause of death worldwide, with
7.6 million cases per year. This is expected to rise to 13.1 million
deaths per year in 2030 if current population trends persist. The
progression of cancer is strongly influenced by the genetics of the
patient, with structural variations and mutations being its major
causes. Hanahan and Weinberg have suggested six contributing
hallmarks of cancer that can be studied; sustained proliferative
signaling, evasion of growth suppressors, resistance to cell death,
the enablement of replicative immortality, induction of
angiogenesis, and the activation of invasion and metastasis.
Further research prompted them to add two further hallmarks: the
reprogramming of energy metabolism and the evasion of immune
destruction. [74]

Personalized medicine

The challenges of targeted treatment are tumor heterogeneity [75]
and the difficulty of distinguishing between driver and passenger
mutations [76, 77], resistance to drugs [78, 79], and the high costs
and regulatory concerns from the Food and Drug Administration
(FDA). The latter makes the process delicate and time-consuming,
especially when ethical considerations are taken into account.
Initiatives in large cancer projects create synergistic effects that
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allow the integration of expertise. Some such collaborations are
listed in Table 2. One issue associated with such large projects is
that they generally produce lists of mutated genes. A challenge for
the future will be to convert this large body of data into something
more useful for clinicians and thus ultimately for patients.

Targeted therapy has fewer side effects for the patient, and has
evolved from identifying a few targets with one aberration per
gene in large patient cohorts towards massive genomic analyses
with many markers in a few samples. We are relying more on in
silico strategies to limit the experimental “space” in any given case
by moving from discovery based on biomarker extraction to
biological interpretation to computational analysis. This ultimately
facilitates clinical investigations and trials that can rapidly validate
a potential treatment. [80]

Table 2. Examples of cancer projects
Number of
samples
available

Collaborators Cancer types

Website(s)

National Cancer

The Cancer Institute (NCI) and .

Genome Atlas National Human 6,866 > Zgatgfeers 2 htfm.]e ;?}?Czl‘; e
.nih.gov/
(TCGA) Genome Research
Institute (NHGRI)
Cancer Genome Wellcome Trust 542,000 tumor . http: www.sa¥1
Project[81] Sanger Institute samples [82] Unlimited ger.ac.uk/genetic
s/CGP/
Total Cancer Moffitt cancer center, c}llgngffitv?zzvr;ntscl)
. - ! /
19 sites across the 76,434 Unlimited
Care[83] . tal-cancer-
United States
care.htm
International http://icgc.org/i
Cancer Genome 46 projects in 14 3,561 cancer 50 different cancer cgcm
Consortium countries genomes types http://dcc.icgc.or
(IcGQ) web
Institute for Breast, bladder,

1000 Chicago Genomics and lung, prostate, http://www.igsb.
Cancer Genome Systems Biology 1,000 head, neck, org/research/ca
Project (IGSB), University of leukemias and ncer/

Chicago lymphomas
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3.1 Methods for detecting and analyzing mutations in
cancer.

In recent years, the process of detecting mutations has been greatly
accelerated [84], reflecting underlying technological advances. [85,
86] The need for rational analytical strategies is clear given the
increasing availability of patient material and the more rapid
acquisition of sequencing data. [87] When searching for genetic
biomarkers at the beginning of this era of personalized treatment,
it is important to separate extremes by stratifying patients for
biomarker discovery [80], to distinguish between genuine markers
and false positives. It is also important to bear in mind potential
bias in the reference genome that sequences are aligned against,
since inter-individual variation can falsely be mistaken for
acquired mutations. This can be is avoided if both normal and
tumor tissue samples are available.[88, 89]

3.2 Whole genome sequencing of cancers

With the recent advances in sequencing technology and the
associated reduction in costs, whole genome sequencing has
become an increasingly viable option for a growing number of
research labs. [90] Its major advantages for patients are that it can
reduce the time required to identify a treatment and that the
treatment selected will be chosen based on the patient’s genetic
makeup [87]. When dealing with disease causing events
(mutations, structural variations) in regulatory regions and
pseudogenes [91], whole genome sequencing provides a more
complete view of the patient’s disease than is obtained using
methods such as genome wide association studies (GWAS). [92, 93]
GWAS has been the method of choice for detecting disease causing
variants across the genome. However, it can only be used to study
variations in specific genes and thus may overlook potential rare
variants, which is a prerequisite for personalized medicine. [94]
Exome sequencing has a potential bias in that when searching for
biomarkers, one can only obtain results in the genes included in the
capture kits. However, low-frequency mutations are more easily
detected than in WGS due to the method’s more extensive
coverage.

Various issues can present challenges for these methods, including
low sample volume, sample handling (fresh frozen versus formalin
fixed paraffin embedded tissues) and purity, tumor heterogeneity,
variation in cancer progression and in the bioinformatic analyses
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applied. These all have to be considered carefully when selecting a
sequencing platform.[41]

3.3 Chemotherapy and prediction of toxicity

Our constitutional genetic composition partially determines our
response to chemotherapy. [95] It is becoming more and more
evident that to be successful, personalized drug therapies will have
to account for both the patient’s constitutional genotype and the
specific mutations involved in their tumor. The mutations in the
tumor are widely accepted to determine which drug will be most
effective for the patient. For example, in the case of lung cancer,
Erlotinib is the preferred drug for patients with mutations in the
EGFR gene [96], while Crizotinib is most beneficial for those with a
mutation in the ALK gene. [97] However, most patients are still
treated with classical chemotherapeutic drugs. These drugs are
associated with adverse drug reactions and high variability in
response even for patients with the same histology and grade of
disease. Normal inter-individual genetic variability is considered to
be largely responsible for these divergent responses. If a patient is
likely to respond adversely to a particular drug, it may be
necessary to identify an alternative treatment, adjust dosage, or
employ some form of pre-medication. Conversely, a patient who is
predicted to tolerate the drug can be given a higher dosage and
may thus be treated more effectively. The dosages used in classical
chemotherapy are based on body surface are and weight [98] and
most drugs have a small therapeutic window, and so there is great
interest in developing individualized treatments based on genetic
markers for toxicity and pharmacokinetics. [99, 100] For example,
there have been studies on the toxicity of anticancer drugs such as
combinations of carboplatin/paclitaxel [101] and
gemcitabine/carboplatin [80, 102-104]. These drugs are either
transported into the cells by genes known to be highly
polymorphic, or metabolized by such genes, hence interesting
targets for studies on individual toxicity.

3.4 Target enrichment

In the absence of sufficient resources to study the entire genome, it
is more efficient to focus on the functional parts of the genome to
put findings in a more clinically relevant context. This can be
achieved either by studying individual genes of interest, or looking
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at all genes at once (the exome), and thereby reducing the
complexity of the analysis. [105] The main benefits of this
approach are reduced costs and shorter analysis times, due to the
sequencing of fewer bases and the associated reduction in the
volume of data generated.

PCR

A major landmark within gene technology occurred in 1983, when
Kary Mullis developed the polymerase chain reaction technique, or
PCR, which can be used to amplify a particular DNA sequence from
minute amounts of starting material. [106] This technique
revolutionized molecular biology research at the time, and earned
Mullis the Nobel Prize ten years later.

The components needed for the reaction are a DNA template
covering the region of interest, primers complementary to the ends
of each opposite strand of the template, DNA polymerase,
nucleotides, magnesium, and an optimal buffer solution. Fragments
of up to 40 kb have been successfully amplified. [107] The design of
primers that will capture regions of interest is not always
straightforward, but there are numerous online in silico PCR tools
for testing primer performance. [108, 109] In addition, there are
commercial PCR kits that offer good specificity and accuracy in
mutation detection.[110] [111, 112]

Whole genome amplification

When dealing with a large number of target regions, PCR becomes
much too time consuming and also requires lots of DNA. Under
such conditions, whole genome amplification (WGA) is a superior
alternative. Various technologies have been developed for this
purpose, including primer extension preamplification (PEP) and
degenerate oligonucleotide primed PCR (DOP-PCR). [113, 114]
However, multiple displacement amplification (MDA) is generally a
better choice for mutation analysis due to its higher accuracy, low
bias and superior yields. [115] This method relies on the phi29
polymerase enzyme, which has better proofreading activity than
the Taq polymerase used in PCR. Other advantages of this enzyme
include the fact that it needs very little starting material and
generates fragments with lengths of up to 10 kB. The reaction
times can be fast (90 min) [116] and no thermal cycling is needed.
The use of random hexamers requiring no primer design in
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combination with strand displacement makes this method
appropriate for global analysis over the entire genome. As with all
amplification methods, there is the potential for the introduction of
mutations, but the introduction of bias can be avoided through
careful sample selection. [117, 118]

Sequence capture

The advantage of exome capture is that it produces less data to
analyze and the resulting analyses are more rapid. Its major
drawbacks are its reliance on expensive hardware and the need for
a relatively large quantity of input material required, which is not
always possible for cancer samples. [119]

The first commercial capture kit entered the market in 2009,
covering the 180000 exons distributed on the 30 million bases that
make up the 1% of the genome that encodes proteins. [120] This
technology is based on hybridization of DNA probes immobilized
on a solid phased array, where unbound fragments are washed
away, and the remaining fragment pool is enriched and eluted.
Soon after this array based kit was introduced, another company
released an in-solution kit that allowed for automated processing.
Based on the NCBI Consensus CDS database (CCDS), this kit
covered 50 Mb, with additional probes (or “baits”) around the
exons and additional human non-coding RNAs and miRNAs.

The Haloplex method uses a different approach, namely the
fragmentation of DNA by restriction enzymes in conjunction with
biotinylated probes designed to hybridize to both ends of the
fragments to form circular DNA strands that are ligated together.
[121] The recently released TruSeq Exome Enrichment Kit from
[llumina requires only 500 ng of input material. [122]

A recent comparison of the performance of exome capture Kkits
provided by several vendors was published in Genome Biology
(2011). It was reported that Nimblegen had a slightly better
capture, and that all kits have difficulties in regions with high GC
contents. [123] Interestingly, in another comparison between
Nimblegen, Agilent and I[llumina, Agilent and Illumina were able to
detect a greater total number of variants due to Nimblegen’s
coverage of fewer genomic regions by Nimblegen. [124]
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The company 23andme has been providing raw exome data for less
than 1000$ since September 2011, allowing anyone to submit their
DNA. [125]

3.5 Data analysis

A natural consequence of the recent developments of sequencing
platforms in combination with the dramatic reduction in costs is
the production of very large quantities of data - on the order of
gigabytes to terabytes. There has been an explosion in the number
of analytical tools available to the research community for handling
these large amounts of sequencing data, ranging from alignment
programs to variant calling programs and programs for functional
analysis to facilitate biological interpretation. It is not feasible to
summarize them all in this thesis, but a brief overview of some of
the tools that are relevant to the studies included in the thesis is
provided below.

Mapping and variation calling

It is never straightforward to select an alignment method, and one
must generally compromise between accuracy and speed. The
alignment of reads against a reference genome is the essential first
step in most sequencing experiments, in order to place them in a
genomic context for subsequent analyses such as the identification
of deviations and abnormalities. [126] The major concern is bias in
the mapping and difficult genomic regions, which generates
caveats in the final consensus sequence. Several groups have tried
to improve the accuracy of this process, and numerous
sophisticated tools have been developed. [127] One issue with the
large amounts of sequence data produced by genomic sequencing
is the requirement of enormous computer power, to the point that
traditional Smith-Waterman based approaches such as BLAT and
BLAST no longer have sufficient resources to handle the submitted
queries. [128-130] Programs such as MOSAIK, Bowtie and BWA
solve this problem for example by indexing the reference genome,
making the process faster. [131-133]

Tools such as MOSAIK and MAQ look for a probable read match
using hash tables, and then MOSAIK extend these hits by using
Smith-Waterman algorithms. These tools are generally considered
to have higher accuracy [132, 134] than faster tools based on
Burrows-Wheeler algorithms [135] including BWA and Bowtie.
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There is also a wide range of available SNV callers. Depristo et al
[136] at the BROAD Institute have suggested a best practice
protocol tailored for use with 1000genomes [137], that relies on
the Genome Analysis Toolkit (GATK), currently one of the best
tools for this purpose. [138]

For RNA sequencing, Trapnell et al from the Broad institute
published a best practice document in Nature Protocols in 2012
based on the program Tophat [139] for alignment of transcripts in
combination with Cufflinks [140] for expression level
determination. [141] There are many additional programs
available for these purposes as well.

The growing community of bioinformatics users benefits from
open source sites such as Github (https://github.com), where they
can obtain scripts prepared by others, and forums such as
seqanswers.com where it is possible to rapidly consult other
experts in the field.

Tools with convenient graphical user-friendly interfaces such as
the CLC Genomic Workbench [142] and Avadis [143] make the
process of sequence mapping and variation calling relatively
straightforward for new users.

Quality analysis

There are several ways of assessing quality control for mutation
analysis on each specific call at single nucleotide level, such as
coverage, phred score and alignment quality. A simple measure of
the accuracy of variations throughout a sequenced genome is the
transition/transversion rate [117], where transitions are A<->G
and C<->T substitutions, and transversions are A<->C, A<->T, C<-
>G and G<->T. Since there are twice as many possible
transversions, the expected ratio is 0.5, however transitions occur
more frequently and so the actual ratio in the exome is around
three. (The ratio is around two in the genome). [144, 145] The ratio
of homozygotes to heterozygotes also provides a quick measure of
the data’s quality, and is usually around two. [145, 146]

The number of heterozygous calls on the X and Y chromosomes in
males provides a rough estimate of the number of false positives,
which can arise due to duplications, recombinations in
pseudoautosomal regions and sequencing errors. [147]
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Functional analysis

High throughput sequencing experiments generate data for several
thousand variations. Fortunately, tools have been developed for
extracting relevant data from such files. [148] [149]

Numerous online bioinformatic tools are available for downstream
genomic analyses, ranging from genome browsers (UCSC [150],
Ensemble[151]), to integrated variation databases (Hapmap [152],
dbSNP [153], SNPper[154]) to gene ontology and enrichment
analysis tools (DAVID [155, 156], Ingenuity [157]). These are
extremely useful for end users who need to simplify complex data
to facilitate biological interpretation.

Currently, research groups have gone from investigating a limited
set of candidate genes to generating lists of several thousand
altered genes. The need for rational gene or variant selection
strategies is evident [101] and it is increasingly important to
consider the biological significance of any given change. A
commonly used strategy is to annotate identified variants and
select interesting candidates according to their severity or possible
damage to phenotype. This is facilitated by resources such as
Annovar. [158]

Large collaborative efforts such as the Danish 200 exome project
[18] and the 1000 genomes project [17] have contributed
tremendously in this area, generating annotations for many rare
mutations. Planned projects such as the sequencing of Faroe
Islands entire population of 50 000 (Fargen) will postulate a model
for integrating whole genome sequencing into healthcare systems
in other countries.

3.6 RNA sequencing

The sequencing technologies described above have made it
possible to further expand sequence analyses by examining the
transcriptome, and there is a growing number of RNA sequencing
projects [159, 160]. This shift of focus into the world of
transcriptomics, has shed light on RNA editing and gene fusions,
and has established pipelines for determining gene expression
levels, identifying differentially expressed genes, and detecting
splice variants and non coding RNA.

There are two main principles in transcriptome shotgun
sequencing; poly-A selection and ribosomal RNA depletion. The
workflow in the former involves removal of the abundant
ribosomal RNA by capturing mRNA through hybridization of the
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polyadenylated 3’-end to poly d(T) probes, followed by reverse
transcription of the processed transcript to cDNA. The latter
principle involves hybridizing the unwanted rRNAs to specific
biotinylated probes [161], removing them using streptavidin-
coated magnetic beads, and then converting the target RNA to
cDNA. A comparison published by Cui et al. in 2010 suggested that
the rRNA depletion approach works better for the analysis of
additional non coding RNAs. [162] Realizing the need for a more
complete analysis, and enable reads of low abundant transcripts, it
could be useful to remove the most highly expressed transcripts.

A true RNA sequencing approach has been developed by Helicos,
which has developed a system for direct RNA-sequencing without
conversion to cDNA, (DRSTM), to avoid amplification and ligation
bias. [163, 164]

Splice variants

Alternative splicing refers to the process of combining exons of a
gene in more than one way to enable transcription of alternative
transcripts, splice variants, that give rise to different isoforms of a
protein encoded by a single gene. This creates an enormous
diversity of proteins from a limited set of genes. Alternative
splicing is a common event in humans, and it has been suggested
that approximately 90% of genes are processed in this manner.
[165] Together with transcriptional regulation, this mechanism
determines tissue specific expression. [166]

The functional properties of the resulting protein are altered by
how the RNA is spliced, and studies have shown that splice variants
influence cancer. [167, 168] Additionally, mutations in splice sites
in tumor suppressor genes that make their encoded proteins non-
functional can be an important cause of cancer. [169]

Allele specific expression

Allelic imbalances in gene expression can arise from several
factors, including genomic imprinting and common variation. [170]
Fluctuations in gene expression due to variations within a gene
(cis), in regulatory genes (trans), or some combination of these two
events (cis by trans) are evenly distributed across the genome.
[171][172]

An associated problem with RNA sequencing is read mapping bias
in regions with polymorphic sites, where the reference allele gets
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more support and thus introduces bias. This is due to the fact that
the reference genome is single stranded. Studies aiming to address
this issue are ongoing, using strategies based on polymorphic loci
in the reference [173], or improving the statistical framework by
calibrating a model based on DNA sequencing. [174]

MMSEQ and AlleleSeq are examples of tools that use variation data
to create more accurate references in order to improve mapping
and identify allele-specific events.[175, 176]

Digital expression

Gene expression profiling has shifted from DNA microarrays to
RNA sequencing [177], with improved accuracy and sensitivity,
although challenges such as bias towards highly abundant
transcripts has to be considered when performing such studies.
[178]

Digital expression can be measured by quantitative counting of
transcripts, normalized for exon length, which is commonly
discussed in units of Reads Per Kilobase of exon model per Million
mapped reads (RPKM). The RPKM value for a given experiment is
given by:

Total exon reads

RPKM =
Mapped reads (millions)xExon length (KB)

where Total exon reads is the number of reads covering an exon, an
exon-exon junction, or exon-intron junction of a gene; exon length
(KB) is the total length of all the exons of a gene, divided by 1000;
and mapped reads (millions) is the number of reads that have been
mapped to a gene, divided by 1 000 000 [179] [180].

As an alternative to RPKM, Fragments Per Kilobase of transcript
per Million mapped reads (FPKM) is also widely used. If one of the
two reads of a fragment in paired end RNA sequencing is of poor
quality, the level of expression measured in RPKM might be
skewed since that fragment will be counted once, whereas when
using FPKM, both reads must be mapped. FPKM is calculated by
counting fragments.
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Present investigation

The main objective of the research presented in this thesis is to
examine the application of recent technologies in genomic
sequencing and their use to analyze variation in different cancer
types. As recent technologies are readily available, the ability to
rapidly screen the genomes of individual cancer patients enables
clinicians and physicians to quickly identify appropriate and
efficient treatments. The vast amount of data generated during
such investigations requires systematic tools that can provide a
reliable and high quality overview of the patient’s genomic data
even when dealing with small and highly heterogenic tumor
samples, and the large individual differences between patients.

4.1 The papers

In paper I, we investigated the benefits of using a common
amplification method, phi29 amplification, in a large patient
cohort, focusing on the frequently mutated p53 tumor suppressor
gene. In paper II, we extended this to cover the entire exome, by
performing sequence capture using samples from 16 patients. In
recognition of the need for useful bioinformatics tools for analyzing
large genomic datasets, Paper IIl presents a successful search
strategy for identifying relevant biomarkers for toxicity arising
from chemotherapy applied to ovarian cancer patients. Building on
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this, in paper IV we performed sequence capture on DNA from
blood samples originating from 32 lung cancer patients with
varying degrees of toxicity, in order to analyze the relationships
between genetic markers identified using the bioinformatics
approaches described in paper III.

Validation of whole genome amplification for analysis of the
p53 tumor suppressor gene in limited amounts of tumor
samples

Molecular characterization of tumor biopsies has become
increasingly important in the field of personalized cancer medicine,
but is complicated by the fact that only small quantities of tumor
tissue are usually available.

In paper I, we validated whole genome amplification on scarce
genetic material required for downstream genetic analyses. We
identified a total of 40 mutations in exons 5-8 in p53 by Sanger
sequencing of whole genome amplified tumor tissue in 123 lung
cancer patients. Using this result as a reference, we investigated
the overlap between unamplified and whole genome amplified
pools of the 123 tumor samples, focusing specifically on exon 7 due
to its high mutation frequency. Exon 7 was amplified with PCR and
cloned into E. coli. 80% of all mutations were recovered in the
amplified DNA, compared to 65% in the unamplified material,
suggesting that mutations are more easily detected when whole
genome amplification of DNA was used. To further support our
findings, we then simulated (in silico) the theoretical coverage over
all exons for both unamplified and amplified DNA, and found that
whole genome amplified DNA requires less coverage compared to
unamplified samples in order to analyze mutations previously
identified by Sanger sequencing of the individual samples. In
conclusion, whole genome amplification can be used to increase
the size of initially small samples, without altering their genetic
composition.

Assessment of whole genome amplification for sequence
capture and massive parallel sequencing

In paper II, we wanted to investigate the robustness of the findings
presented in paper I, to see if they are valid for all genes. We
extended the search area to the entire exome by using Sequence
Capture on whole genome amplified DNA from 16 lung cancer
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patients. Tumor and healthy tissue samples were taken from all
patients and sequenced using the HiSeq2000 from Illumina. In
addition, we had access to RNA from 11 of the 16 patients, and
performed RNA-seq, which was used to validate the mutations
observed. We found an average overlap of 74% of mutations
between unamplified and whole genome amplified DNA from
tumor tissue in genes. Several quality checkpoints led us to suggest
a strategy for selecting samples to include for genomic analysis. We
observed that 89 % of all SNVs identified by sequencing tumor
samples following WGA could be confirmed by sequencing
unamplified material. WGA appears to contribute to a somewhat
higher mutation frequency by introducing artefacts, but with RNA-
sequencing of the right sequencing depth these could be corrected
for.

Identification of candidate SNPs for drug induced toxicity from
differentially expressed genes in associated tissues

With established reliability of the investigated technologies in
papers | and II, we applied them in studies with closer biological
context. In paper III, we use a meta-analysis search tool for mining
large collections of high-throughput genomic datasets to identify
candidate genes for predicting paclitaxel/carboplatin-induced
myelosuppression and neuropathy.

We searched for expressed genes that were affected by drug
exposure and were present in tissues associated with this toxicity.
From the resulting list of candidate genes, we selected the ten top-
ranked genes and identified 42 non-synonymous single nucleotide
polymorphisms (SNPs) in silico. As a proof of concept, the selected
SNPs were genotyped in 94 ovarian and lung cancer patients
treated with carboplatin and paclitaxel. We observed variation in
11 SNPs, of which seven were present at a sufficient frequency for
statistical evaluation. Of these seven SNPs, three were present in
the genes ABCA1 and ATM, and found to be significantly or
borderline associated with either thrombocytopenia or
neuropathy.
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Using whole exome sequencing to identify genetic candidates
for carboplatin and gemcitabine induced toxicities.

Normal inter-individual is considered to be the main factor
responsible for differences in the therapeutic effects of cancer
chemotherapy and adverse drug reactions between individuals.

In paper IV, we addressed inter-individual variability by studying
genetic variants to improve cancer drug therapies. We collected
clinical data and DNA from 243 non-small cell lung cancer patients
that had all been treated with carboplatin in combination with
gemcitabine. The patients were divided into four groups according
to their toxicity levels (Common Toxicity Criteria, CTC-grade).

We selected and compared 16 level 0-1 patients to 16 level 3-4
patients, and sequenced the exomes of these 32 ‘extremes’ using an
[llumina HiSeq2000.

For each patient, we identified 5000-6800 non-synonymous SNPs
and around 100 indels with non-synonmous effects. We then
compared the genotypes of these groups to identify potential
genetic variants associated with carboplatin- and gemcitabine-
induced myelosuppression.

We have selected six bioinformatic strategies for identifying
optimal candidates:
1) Fisher’s test on wild type vs. variant allele frequency in the
two toxicity groups
2) Identification of genetic variants that are not in Hardy-
Weinberg equilibrium and for which there is a genetic
difference between the groups
3) Distribution among 60 a priori candidate genes from
literature
4) Meta analysis of gene expression data using Nextbio
5) Pathway analysis using Ingenuity
6) Network analysis using Funcoup
The top 60 genetic variants will be validated using the Sequenom
platform. At present, more than 350 lung cancer patients treated
with gemcitabine and carboplatin are included in this study.
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Future perspectives

The catalogue of technologies for investigating the molecular
events underpinning cancer extends far beyond the scope of this
thesis, but massively parallel sequencing will almost certainly
continue to play a key role in cutting edge research in this field for
the foreseeable future. Ethical issues could arise from the use of
recent technologies, which enable the patient to consider their own
data while even experts are unsure as to how it should be
interpreted.

Whole genome sequencing

The cost of whole genome sequencing has fallen dramatically, and
is thus accessible to most researchers. If no mutations or
biomarkers are detected in the exome, the natural next step would
be to extend the analysis to whole genome sequencing (before
epigenetic studies), and to search for major structural changes
such as rearrangements. [181]

As yet, there are no tools for efficiently evaluating all of the
information generated from such studies and it is hard for most
researchers to keep pace with the developments in sequencing
technology. This is expected to become less severe as the
outsourcing [182] of bioinformatic analyses becomes increasingly
common, reducing the time invested by non-specialists as well as
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the costs incurred and the volume of tissue required. In addition,
community based solutions to common issues can be obtained
from online forums, which are rapidly becoming increasingly
powerful and useful resources. [183]

Genetic research on cancer

One of the dominant trends in cancer research is the use of recently
developed DNA sequencing technologies to explore and analyze
cancers. Such studies have produced long lists of ‘cancer genes’
[82] but have not identified any common hot spot genes [184]. It is
clear that cancer is a very genetically complex disease that is
affected by both extensive genetic variation and epigenetic factors,
as well as the patient’s environment. This makes it a difficult
disease to study. [185] Thirty years ago, it was expected that the
problem of cancer could be solved relatively quickly [186], but we
are still far away from a deeper understanding. The identification
of mutated cancer causing genes has dominated research since that
time. [187]

More recently, the availability of increasingly large bodies of data
from numerous studies has shifted the emphasis of research to
targeted treatments and personalized drugs. Both the identification
of optimal treatments and diagnoses have been facilitated by
mutation profiling. [188] The massive output of cancer-related
data in recent years has prompted the development of new
methods for its integration and analysis on a large scale. [189, 190]

Single cell/molecule analysis

In tandem with the development of more sophisticated techniques
for unbiased amplification of genetic material and sequencing
technologies that require ever smaller quantities of input material,
single cell analyses are becoming increasingly important
components of disease progression analyses. For example, the
detection of circulating tumor cells from complex samples has been
simplified and commercial kits are becoming available to
researchers. [191-193]
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Global analysis towards personalized medicine

It has become more evident that genetic network interactions play
an important role in the interplay between vertical inhibition
(along pathways), horizontal inhibition (across pathways) and
differential inhibition (synergy effects) in cells. Pathway analyses
are therefore becoming part of the routine analysis pipeline in both
genetics and proteomics. With collaborations between research
groups working with different molecular platforms on the same
patient biopsy [194], global analysis of DNA, RNA and proteins will
ultimately increase the signal to noise ratio of all platforms. [195] It
is more beneficial for the patient if this kind of communication can
make relevant data rapidly available to clinicians, ensuring that
they efficiently receive the optimal treatment. Recent advances in
technology have made it possible to explore a patient’s entire
genetic map in detail, allowing progression from monotherapies to
sophisticated combinatorial therapy. Eleven new cancer drugs
have been approved in 2012 alone [196], and in the near future
there will be 500 compounds hitting hundreds of targets.
(Comment by Michael Pellini, Foundation Medicine, WIN
conference, Paris 2012)
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Abbreviations

A Adenine

ATP Adenosine triphosphate

C Cytosine

CCDh Charge-coupled device

CCDS Consensus coding sequence

cDNA Complementary DNA

ChIP-Seq Chromatin immunoprecipitation sequencing

CNV Copy number variation

CTC Common Toxicity Criteria

ddNTP Dideoxynucleotidetriphosphate

DNA Deoxyribonucleic acid

DOP-PCR Degenerate oligonucleotide primed PCR

DRSTM Direct RNA-sequencing technologies

FDA Food and Drug Administration

FFPE Formalin fixed paraffin embedded

FPKM Fragments per kilobase of transcript per million
mapped reads

G Guanine

GWAS Genome wide association studies

KB Kilobase

MDA Multiple displacement amplification

MPS Massively parallel sequencing

mRNA Messenger RNA

NCLC Non-small cell lung cancer

ncRNAs Non coding RNA

NGS Next generation sequencing

PCR Polymerase chain reaction

PEP Primer extension preamplification

PPi Pyrophosphate

RNA Ribonucleic acid

RNAi RNA interference

rRNA Ribosomal RNA

RPKM Reads per Kilobase of exon model per million
mapped reads

SCLC Small cell lung cancer

siRNA Small interfering RNA

SMRT Single molecule realtime

SNP Single nucleotide polymorphism
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SNV
SOLiD

SPRI

tRNA

WES

WGA
WGS

Single nucleotide variation

Sequencing by oligonucleotide ligation and
detection

Solid phase reversible immobilization
Thymine

Transfer RNA

Uracil

Whole exome sequencing

Whole genome amplification

Whole genome sequencing
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