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Robust Fault Detection with Statistical Uncertainty in

Identified Parameters

Jianfei Dong, Michel Verhaegen, and Fredrik Gustafsson

Abstract

Detection of faults that appear as additive unknown input signals to an unknown LTI discrete-time

MIMO system is considered. State of the art methods consist of the following steps. First, either the state

space model or certain projection matrices are identified from data. Then, a residual generator is formed

based on these identified matrices, and this residual generator is used for online fault detection. Existing

techniques do not allow for compensating for the identification uncertainty in the fault detection. This

contribution explores a recent data-driven approach to fault detection. We show first that the identified

parametric matrices in this method depend linearly on the noise contained in the identification data,

and then that the on-line computed residual also depends linearly on the noise. This allows an analytic

design of a robust fault detection scheme, that takes both the noise in the online measurements as well

as the identification uncertainty into account. We illustrate the benefits of the new method on a model

of aircraft dynamics extensively studied in literature.

Index Terms

Fault detection; Parameter uncertainty; Statistical analysis; Additive faults; Closed-form solution.

I. INTRODUCTION

Model-based fault detection and isolation (FDI) is a well-established technique in literature, see [1]–[4].

The main task for the practitioner is to derive the model, that is generally assumed to be given in linear

state space form represented by the matrices(A,B,C,D). Then the algorithms are easily implemented;

and given the correctness of the model, the tests satisfy various optimality criteria. However, these models
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might be quite complex [5], [6]; and there might be uncertainparameters in the model which have to be

estimated. But the stochastic uncertainty in the estimatedparameters is not taken care of in the approaches

described in the references above.

Model-free, or data-driven, FDI methods have been investigated in various tracks. One track, e.g. [7],

is via testing the changes in the statistics of signals, which are assumed to be stationary in fault-free case.

Another track, e.g. [8], [9], aims at overcoming the modeling stage by using system identification tech-

niques, e.g. prediction error methods (PEM) [10] and subspace identification (SID) methods [11]. Taking

SID as an example, two steps need to be taken. First, either the range space of the extended observability

matrix [11] or the unknown state sequence [12], [13] is identified. Then, the state space matrices, e.g.

(A,B,C,D), need to be estimated using standard realization theory. Infact, the recent literature shows

that the state space matrices,(A,B,C,D), are not really needed in designing an FDI, e.g. [8], [9]. Based

on SID [11], [13], these approaches require computing the left null of the extended observability matrix,

directly identified from measurement data, without realizing (A,B,C,D). The projection of a residual

vector onto the left null space aims at annihilating the influence of unknown initial states on the residual,

which is known as parity space analysis (PSA) [14]–[17].

One of the drawbacks of computing the parity relation from data is that the residuals hence generated

are sensitive to the approximation errors attributed to themodel reduction step in identifying the range

space of the extended observability matrix [18]. We have in [19], [20] recently developed a data-driven

FdI schemeConnected toSubspaceIdentification (FICSI), whose parameters can be directly identified

from data, with neither realizing(A,B,C,D), nor computing the range space of the extended observability

matrix together with its left null space. A key step therein is to replace in the parity relation the product

between the extended observability matrix and the initial states with a product of a matrix that depends

in an affine manner on the least squares estimated model parameters and a matrix constructed from past

input and output (I/O) signals, subject to a bias error vanishing exponentially with past horizon. In this

way the annihilation of this product does not require a projection as in PSA methods, that very much

complicates the statistical analysis of the residual.

On the other hand, despite the large amount of existing work on FDI methods, the robustness of a

detection scheme against model identification errors has not yet been investigated. The major challenge

lies in quantifying the uncertainties in the residual generator from the parameter identification errors.

As proposed in [21], an empirical estimate of the PSA residual covariance may be computed by the

identification data from a fault-free system. But an analysis of the residual distribution subject to model

errors is still an open problem in the literature. As pointedout in [18], the difficulties in analyzing the
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parameter error effect on a data-driven PSA residual include the nonlinear dependence of the identified

projection matrix on the parameter errors and the multiplication of the erroneous residual generator with

this matrix. As to be shown later in this paper, the main advantage of the FICSI formulation [19] is that

the uncertainties in the residual generator linearly depend on the parameter errors. It is hence possible to

develop a robust data-driven fault detection scheme copingwith the identification errors in a closed-form

solution. It shall be mentioned here that approaches copingwith stochastic parameter errors are also seen

in filtering methods, e.g. [22], [23], which are calledcautiousfiltering, due to the penalties imposed to the

covariance of the parameter errors. Although [22] gave a closed-form solution to cautious Wiener filters,

this solution was based on the assumption that parameter errors only exist in the numerator polynomials.

Instead of providing closed-form solutions, the approach in [23] relies on particle filters (see e.g. [24])

for linear and nonlinear systems.

The rest of the paper is organized as follows. We start in Sec.II with describing the Vector ARX model

for linear dynamic systems and linking this model to residual generation for fault detection. The error

effects on the residual generator using the identified parameters is then analyzed in Sec. III. The statistical

distribution of this residual vector is also quantified in this section, which then leads to a statistically

optimal fault detection test. Sec. IV verifies all the main arguments via simulation studies.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Notations

The notations used in this paper are standard.R
h×q denotes the set of all realh-by-q matrices.I ,0

will respectively denote an identity and a zero matrix with proper dimensions; while with subscripts,

Ih,0h×q shall denote respectively anh×h identity matrix and anh×q zero matrix.N (µ,Σ) represents

a normal distribution with meanµ and covarianceΣ. χ2
h stands for aχ2 distribution with h degrees

of freedom.E and Cov denote respectively expectation and covariance operator. vec(M) is the column

vector concatenating the columns of a matrixM. M† stands for the pseudo-inverse ofM. The operator

“⊗” shall denote Kronecker product. For two matricesM1 and M2, M1 � M2 means thatM1−M2 is

positive semi-definite.

B. Additive faults in linear Gaussian systems

Faults that can occur in a dynamic system are categorized into two classes [4], [25], [26]. The first

class of faults is called additive, which are signals additive on the model of a dynamic system, and hence

change the mean value of the distribution of the observed signals [25, Chapter 7]. For instance, drifts

November 7, 2012 DRAFT



4

system output
estimator

residual
evaluator

u
f y ŷ
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Fig. 1. Fault detection scheme, wherer represents residual.

and bias in sensor measurements and leakage in pipelines aretypical additive faults [9]. Another class

is called multiplicative, which change the transfer function of a dynamic system [25, Chapters 8,9]. A

typical example is the changes in the vibrating characteristics of a mechanical structure [25, Chapter

11]. This paper especially considers additive faults, and assumes that the system transfer function is

unchanged, which can hence be identified offline using I/O signals from the nominal system.

We shall describe the faulty system dynamics with the following discrete-time state-space model [25,

Chapter 7]:

x(k+1) = Ax(k)+Bu(k)+E f(k)+Fw(k), (1)

y(k) = Cx(k)+Du(k)+G f(k)+v(k). (2)

We consider MIMO systems; i.e.x(k)∈R
n, y(k)∈R

ℓ, andu(k)∈R
m. f (k)∈R

nf represents fault signals.

A,B,C,D,E,

F,G are real, with bounded norms and appropriate dimensions. The disturbances are represented by the

process noisew(k) ∈ R
nw and the measurement noisev(k) ∈ R

ℓ. w(k) andv(k) are assumed to be white

zero-mean Gaussian [25, Chapter 7]. The following assumptions are standard in Kalman filtering [10],

[27], [28] and subspace identification [12], [13], [29].

Assumption 1:The pair(C,A) is detectable; and there are no uncontrollable modes of(A,FQ1/2
w ) on

the unit circle, whereQ1/2
w · (Q1/2

w )T is the covariance matrix ofw(k).

Fault detection can be regarded as a residual generation andevaluation problem. A residual is the

deviation between measurements and model-equation based computations [30]. A fault detection scheme

can be illustrated as in Fig. 1. The essential goals of this paper are to develop the output estimator based

on least-squares (LS) estimates of system parameters, and moreover to robustify the residual evaluator

against the stochastic errors in the LS estimates of the parameters. To this end, we will first review the

parameter identification problem and the residual generation problem in this section.
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C. Vector ARX description of linear dynamic systems and parameter identification

Since both parameter identification and residual generation are based on a nominal system model, we

will first set f (k) = 0 in (1,2), and consider the following model:

x(k+1) = Ax(k)+Bu(k)+Fw(k), (3)

y(k) = Cx(k)+Du(k)+v(k). (4)

In system identification literature [10]–[13], the I/O relationship of the model (3,4) is usually re-

formulated by the following innovation form [27], [28], with the innovation signal defined ase(k) =

y(k)−Cx̂(k)−Du(k).

x̂(k+1) = Ax̂(k)+Bu(k)+Ke(k), (5)

y(k) = Cx̂(k)+Du(k)+e(k). (6)

Here,K is the Kalman gain. The innovatione(k) is white Gaussian with a covariance matrix denoted by

Σe, as determined byw(k) andv(k), [10], [11], [13].

A closed-loop observer thus results from (5,6); i.e.

x̂(k+1) = (A−KC)x̂(k)+(B−KD)u(k)+Ky(k), (7)

y(k) = Cx̂(k)+Du(k)+e(k). (8)

For brevity, denoteΦ , A−KC, B̃, B−KD in what follows. Under Assumption 1,Φ is stable.

For the well-posedness of the problem, we assume that the plant (3,4) is internally stable, with or

without closed-loop stabilizing control. Under this assumption, x(k),u(k),y(k) are bounded for anyk.

Due to the stability ofΦ, Ex̂(k) is bounded for anyk (see e.g. [28, Theorem 9.2.2]).

Starting from the time instantk− p and solving by recursion forp sampling instants till the time

instantk, it is easy to derive:

x̂(k) = Φpx̂(k− p)+
p−1

∑
τ=0

Φτ ·
[

B̃ K
]

·




u(k− τ −1)

y(k− τ −1)



. (9)

The output equation can hence be written in the following form, by substituting (9) into (8):

y(k) = CΦpx̂(k− p)+
p−1

∑
τ=0

CΦτ ·
[

B̃ K
]

·




u(k− τ −1)

y(k− τ −1)



+
[

D 0
]

·




u(k)

y(k)



+e(k). (10)

This equation is known as a vector autoregressive model withexogenous inputs (Vector ARX or VARX),

which is generally used as a first step in subspace identification [12], [31], [32].
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The output equation (10) establishes a linear transformation from past I/Os to outputs. We have shown in

our previous work that this equation can be used in developing predictive controllers [33] and identifying

estimation filters for additive actuator and sensor faults [20]. There are two main benefits in using this

VARX description. First, the parameters therein can be consistently identified from data measured in

closed-loop plants by solving a single least-squares problem, and hence do not contain model reduction

errors in realizing the state-space matrices(A,B,C,D). Second, and more importantly, this output equation

has a linear dependence on the parameter identification errors, and hence enables analyzing and developing

FDI solutions robust to the stochastic parameter identification errors. It is hence the objective of this

current paper to link this output equation to fault detection, where the parameters are corrupted with

stochastic identification errors.

We emphasize that in the output equation (10), the parameters that need to be identified are{D,CΦ j B̃,CΦ jK,

j = 0, · · · , p−1}, instead of(A,B,C,D) or CΦp.

Replace the time indexk in (10) respectively by a sequence of time indicest, t + 1, · · · , t +N− 1.

Collect y(t),y(t+1), · · · ,y(t+N−1) into a block row vector, and denote it byYid; i.e.

Yid =
[

y(t) y(t+1) · · · y(t+N−1)
]

.

Here, the subscripts “id” indicate thatYid contains the output signals collected from an identification

experiment, and will be used to identify model parameters. The following data equation thus results:
[

y(t) y(t+1) · · · y(t+N−1)
]

=CΦp ·
[

x̂(t − p) x̂(t− p+1) · · · x̂(t +N− p−1)
]

︸ ︷︷ ︸

Xid

+

[

CΦp−1B̃ CΦp−1K · · · CB̃ CK | D
]

·

















u(t− p) u(t − p+1) · · · u(t+N− p−1)

y(t− p) y(t− p+1) · · · y(t+N− p−1)
...

...
...

u(t−1) u(t) · · · u(t+N−2)

y(t−1) y(t) · · · y(t+N−2)

u(t) u(t+1) · · · u(t+N−1)

















︸ ︷︷ ︸

Zid

+

[

e(t) e(t+1) · · · e(t+N−1)
]

︸ ︷︷ ︸

Eid

.

(11)

With the notations of the data matrices as defined in the equation above, (11) can be further written in
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a compact form:

Yid =CΦp ·Xid +
[

CΦp−1B̃ CΦp−1K · · · CB̃ CK D
]

·Zid +Eid. (12)

For brevity, we shall denote the sequence of Markov parameters in (12) as

Ξ =
[

CΦp−1B̃ CΦp−1K · · · CB̃ CK D
]

.

From (12), the estimation ofΞ can be formulated in a least-squares sense as:

Ξ̂ , argmin
Ξ

‖Yid −Ξ ·Zid‖
2
2 . (13)

It has been proven in subspace identification literature that the state-space model (5,6) can be con-

sistently identified from data measured in closed-loop plants via first solving the LS problem (13), e.g.

[12], [34].

As a standard assumption of persistent excitation in systemidentification (see e.g. [10]), the data matrix

Zid is bounded and has full row rank; i.e.∃ρ
z,id

> 0 such that

ZidZ
T
id � ρ2

z,id
I . (14)

Besides, we will use the following explicit bound on the covariance matrix of the unknown state sequence

vec(Xid) in the analysis; i.e.∃σ̄xx > 0 such that

‖Cov(vec(Xid))‖2 ≤ σ̄xx. (15)

If the data matrixZid has full row rank, then the LS problem (13) has a solution withthe following

structure,

Yid ·Z
†
id =CΦp ·Xid ·Z

†
id +Ξ+Eid ·Z

†
id,

which contains the parameter estimate,

Ξ̂ = Yid ·Z
†
id , (16)

and the errors,

∆Ξ̂ , Ξ− Ξ̂ =CΦpXid ·Z
†
id +Eid ·Z

†
id. (17)

The minus signs on the right hand side of (17) are absorbed into the unknown random variablesXid ,Eid

for simplicity.

TreatingΣe as known, or using the estimate,

Σ̂e = Cov
(
Yid − Ξ̂ ·Zid

)
, (18)

in its place, is a standard practice in the statistical signal detection literature [3], [35]. We shall hence

not distinguish between̂Σe andΣe in the rest of the paper.
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D. Output estimator based on the VARX model

We can hence link the VARX model (10) to fault detection, by employing (10) to compute output

signals. In fault detection literature, residuals are often generated in a sliding window of more than

one sampling instants; i.e.[k− L+1, · · · ,k] up to the current time instantk. We shall hence refer to

[k−L+1, · · · ,k] as the detection window, and callL the detection horizon.

Similar to deriving (12), replace the time indexk in (10) respectively by the sequence ofL time indices,

k−L+1, · · · ,k. Collect y(k−L+1), · · · ,y(k) into a column vector, and denote it byyk,L; i.e.

yk,L =
[

yT(k−L+1) yT(k−L+2) · · · yT(k)
]T

.

Similarly, denote the lumped input vector and lumped innovation vector along the detection window

respectively byuk,L andek,L. Then, the following lumped output equation follows:










y(k−L+1)

y(k−L+2)
...

y(k)











=











CΦp · x̂(k−L− p+1)

CΦp · x̂(k−L− p+2)
...

CΦp · x̂(k− p)











︸ ︷︷ ︸

bk,L

+











CΦp−1B̃ CΦp−1K · · · CΦB̃ CΦK CB̃ CK

0 0 CΦp−1B̃ CΦp−1K · · · CΦB̃ CΦK
...

. . .
. . .

. . .
...

0 · · · 0 CΦp−1B̃ · · · · · · CΦL−1K

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

D 0

CB̃ CK D 0
...

...
.. .

. . .
. . .

. . .

CΦL−2B̃ CΦL−2K · · · · · · CB̃ CK D 0











·






























u(k−L− p+1)

y(k−L− p+1)
...

u(k−L)

y(k−L)

u(k−L+1)

y(k−L+1)
...

u(k)

y(k)






























+











e(k−L+1)

e(k−L+2)
...

e(k)











.

(19)

Note that the big matrix containing the Markov parameters has a structure, with the block to the left of the

vertical line representing a block Hankel matrix, and the block to its right showing a block lower triangular

Toeplitz structure. Besides, the Hankel matrix corresponds to a time window withp sampling instants,

i.e. [k−L− p+1,k−L]; while the Toeplitz matrix coincides with the detection window [k−L+1,k].

We will therefore refer to[k−L− p+1,k−L] as the past window, and callp the past horizon.

November 7, 2012 DRAFT



9

For clarity, we shall explicitly denote the block Hankel matrix as

HL,p
z =











CΦp−1B̃ CΦp−1K · · · · · · · · · CB̃ CK

0 0 CΦp−1B̃ CΦp−1K · · · CΦB̃ CΦK
...

...
...

0 · · · 0 CΦp−1B̃ · · · · · · CΦL−1K











, (20)

where the superscripts “L, p” remind respectively the detection horizonL (number of block rows) and

the past horizonp (number of block columns). Similarly, define the following two Toeplitz matrices,

respectively corresponding to the inputs and outputs in thedetection window:

T L
u =











D

CB̃ D
...

...
. . .

CΦL−2B̃ CΦL−3B̃ · · · D











,T L
y =











0

CK 0
...

...
.. .

CΦL−2K CΦL−3K · · · 0











, (21)

where the superscript “L” reminds that there areL block columns and rows.

It is convenient to introduce a new notation to denote the lumped I/Os in the past window, i.e.z(k) =

[uT(k), yT(k)]T, and collect the lumped I/Os in the past window intozk−L,p, i.e.

zk−L,p =
[

zT(k−L− p+1) zT(k−L− p+2) · · · zT(k−L)
]T

.

Now, the lumpedL-step output equation (19) can be expressed in a compact formas

yk,L = bk,L +HL,p
z zk−L,p+T L

u uk,L +T L
y yk,L +ek,L. (22)

Remark 1: It is tedious but straightforward to show that (22) is equivalent to the output equation in

classical parity space approaches [14]–[17], if it is also derived from the closed-loop observer form (7,8);

i.e.

yk,L =OL · x̂(k−L+1)+T L
uuk,L +T L

y yk,L +ek,L, (23)

whereOL denotes the extended observability matrix:
[

CT (CΦ)T · · · (CΦL−1)T
]T

.

The benefit of using Eq. (22) is that all the parameters in the matricesHL,p
z ,T L

u ,T
L
y only depend on the

sequence of Markov parametersΞ, which can be consistently identified from data by solving the single LS

problem (16). Besides, instead of computing the left null space ofOL to annihilate the unknown product

OL · x̂(k−L+1), as in the classical PSA methods [14]–[17], this product is replaced bybk,L+H
L,p
z zk−L,p

in (22), where the bias termbk,L is negligible if p is large enough. �
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E. Residual generator and its distribution

A residual generator for fault detection is a direct consequence of comparing the measured and

computed outputs in the sliding window[k−L+1,k]:

rk,L = (I −T L
y )yk,L−HL,p

z zk−L,p−T L
u uk,L. (24)

In the fault free case, the residual has two components, i.e.

rk,L = bk,L +ek,L. (25)

Since the innovation signalse are white, the covariance matrix ofek,L can be written asΣL
e = IL ⊗Σe.

In the presence of additive faults, the residual is still computed by (24), but the unknown fault signals

will contribute an additive term to (25). To see this, we shall turn to Eqs. (1,2). Similarly, define the

innovation signal ase(k) = y(k)−Cx̂(k)− Du(k)− G f(k). The following closed-loop observer form

results.

x̂(k+1) = Φx̂(k)+Bu(k)+(E−KG) f (k)+Ky(k), (26)

y(k) = Cx̂(k)+Du(k)+G f(k)+e(k). (27)

Remark 2:The additive fault signals,f (k), can be considered as extra external inputs. We shall

assumef (k) to be deterministic but unknown, which only change the mean of the residual (31), in-

stead of its covariance. Therefore, following standard Kalman filtering theory, e.g. [27, Chapter 7]

and [28, Chapter 9], the innovation signals,e(k), are white. Besides,E(e(k)|past I/Os, faults) = 0; and

Cov(e(k)|past I/Os, faults) is only determined byw(k) andv(k), [27], [28]. �

For brevity, denoteẼ = E−KG. Now, similar to the derivation of (19), (26,27) lead to the following

lumped output equation with faults:

yk,L = bk,L +HL,p
z zk−L,p+T L

u uk,L +T L
y yk,L +ϕ f +ek,L, (28)

whereϕ f =
[

H
L,p
f T L

f

]

·fk,p+L, with fk,p+L =
[

f T(k−L− p+1), · · · , f T(k)
]T

. The matrix,
[

H
L,p
f

∣
∣T L

f

]

,

explicitly reads as










CΦp−1Ẽ · · · CΦẼ CẼ G

0 CΦp−1Ẽ · · · CΦẼ CẼ G
...

. . .
...

. . . . . .

0 · · · CΦp−1Ẽ · · · CΦL−2Ẽ CΦL−3Ẽ · · · G











.
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Thus, in the presence of additive faults, the residual contains the following three components:

rk,L = ϕ f +bk,L +ek,L. (29)

Here,ϕ f changes the mean ofrk,L, as long asfk,p+L /∈ Ker
([

H
L,p
f T L

f

])

. Moveover, as will be further

detailed in the companion paper [36],
[

H
L,p
f T L

f

]

is needed in computing the projection directions to

isolate individual fault input channels.

Under Assumption 1 and noting that the innovation signalse(k) are white Gaussian based on standard

Kalman filter theories [10], [27], [28], the distribution ofrk,L belongs to the following parametric family

[3]:

rk,L ∼







N (Ebk,L,ΣL
e), fault free,

N
(
Ebk,L +ϕ f ,ΣL

e

)
, faulty.

(30)

More details of the bias effect on the residual distributionwill be analyzed in Sec. III.

If L ≤ p, then Σe and the identified parameterŝΞ from (16) can fully parameterize (24). We shall

denote the Hankel and Toeplitz parametric matrices comprising Ξ̂ by H̄
L,p
z , T̄ L

u , T̄
L
y , and rewrite the

residual generator built by the identified parameters as

rk,L = (I − T̄ L
y )yk,L−H̄L,p

z zk−L,p− T̄ L
u uk,L. (31)

Since the residual is a linear function of the estimated matrices, the residual again becomes Gaussian

with an additional covariance matrix denoted byΣL
∆Ξ̂; i.e.

rk,L ∼







N (µk,L,ΣL
e +ΣL

∆Ξ̂), fault free,

N

(

µk,L +ϕf ,ΣL
e +ΣL

∆Ξ̂

)

, faulty.
(32)

Here,µk,L = Erk,L, when no additive faults are present, and it will be analyzedlater.

Remark 3: In comparison, the data-driven PSA methods proposed in [8],[9] require first identifying

the range ofOL from identification data, and then computing its left null space by SVD. Here, the first

step is prone to stochastic parameter identification errors; while the second one contains model reduction

errors. Quantifying the statistical distribution of this computed left null space would be a difficult task.

In fact, even if such a distribution can be obtained, it is still needed to project the computedyk,L by

(23) with erroneous parameters onto this left null space. This procedure further complicates the analysis

of the statistical distribution of the projected output vector. The benefit of the residual defined in (31) is

that it avoids an error analysis of the SVD and the products ofstatistical variables. �

We are now ready to formulate the main problem to be solved in this paper.
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Problem 1: What is the additional covarianceΣL
∆Ξ̂ in (32) by using the uncertain data model in (31),

and is this distribution significantly different from the one in (30)? What is then the optimal test for the

residual in (31)?

III. ROBUST DATA-DRIVEN FAULT DETECTION

With the assumption that the lumped I/Oz(k) is a quasi-stationary process (see e.g. [10, Chapter 2]),

the asymptotic analyses in system identification methods [10], [12] have established the following facts:

• lim p→∞EΞ̂ = Ξ;

• limN,p→∞ Cov(vec(∆Ξ̂)|Zid) = limN→∞
(

1
N ·R−1

zz ⊗Σe
)
= 0, whereRzz denotes the correlation matrix

of z(k), and has bounded inverse due to the quasi-stationarity ofz(k).

In other words, withN, p → ∞, Ξ̂ = Ξ holds exactly. Therefore, limN,p→∞ Cov(rk,L) = IL ⊗Σe; i.e. the

covariance of the data-driven residual vectorrk,L is only determined by the innovation vectorek,L.

However, in practice, the duration of an identification experiment cannot be infinite; and the past

horizon p cannot be too long for the computation of the residual vectorto be practical. But whenN and

p are finite,Ξ̂ is both biased and stochastic, as can be seen in (17). The error effects on the residual

distribution and fault detection are hence the objectives of this section.

A. Dependence of the residual vector on parameter identification errors

Since in (29) the fault-dependent termϕ f only changes the residual mean, instead of its covariance, we

shall takeϕ f = 0 in the analysis of the residual covariance, without loss ofgenerality. The preliminary

step before deriving the additional covarianceΣL
∆Ξ̂ in (32) is to explicitly write the uncertainties inrk,L

in terms of the stochastic errors,∆Ξ̂.

Lemma 1: If the Markov parameters contained in̄T L
u , T̄ L

y , andH̄L,p
z are identified by (16) from finitely

many I/O samples, then the residual vector (31) computed at time instantk has the following structure:

rk,L = ζk,L +ek,L +βk,L +bk,L. (33)

Here,ζk,L andβk,L are defined as:

ζk,L =
(
ZT

ol ⊗ Iℓ
)
· (Z†,T

id ⊗ Iℓ) ·vec(Eid), (34)

βk,L =
(
ZT

ol ⊗ Iℓ
)
· [Z†,T

id ⊗ (CΦp)] ·vec(Xid), (35)
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with the data matrixZol given by

Zol =




zk−L,p zk−L+1,p · · · zk−1,p

u(k−L+1) u(k−L+2) · · · u(k)





∈ R
(p(m+ℓ)+m)×L.

Proof: See Appendix B.

Here, the subscripts, “ol”, remind that the elements ofZol are the I/Os measured online. Besides, for

the convenience of analyzing Cov(rk,L), ζk,L andβk,L are expressed in terms of respectively vec(Eid)

and vec(Xid), instead of the matricesEid ∈ R
ℓ×N andXid ∈ R

n×N.

Note that the bias termsβk,L andbk,L are unknown, and stochastic by the definition of Kalman filter

states [27], [28]. For the boundedness ofEbk,L during the implementation of the fault detection scheme,

we assume that both the nominal system and the system under the influence of additive faults are internally

stable; i.e.∃∞ > ρ̄z,ol > 0 such that

‖Zol‖2 ≤ ρ̄z,ol ,∀k. (36)

Under this assumption, the state sequence,

x̂k−p,L =
[
x̂T(k− p−L+1) · · · x̂T(k− p)

]T
,

of the observer (7,8) has a bounded covariance, according tothe standard Kalman filter theory [27], [28].

For the analysis to follow, we shall assume that

‖Cov(x̂k−p,L)‖2 ≤ σ̄xx,∀k, (37)

where for simplicity but without loss of generality, the same boundσ̄xx as in (15) is used.

B. Analysis of the residual covariance

We shall now analyze and solve Problem 1 based on the residualstructure (33). The key ideas are to

quantify the composite covariance matrixΣL
e+ΣL

∆Ξ̂ in (32) with regard to the stochastic termζk,L+ek,L,

and to derive an error bound in approximating Cov(rk,L) by its computable components,ΣL
e +ΣL

∆Ξ̂. We

shall also show that this error bound exponentially decays as the past horizonp increases.

Since the covariance of both vec(Eid) andek,L are known, Cov(ζk,L+ek,L) can be explicitly quantified

as follows. First, note that vec(Eid) is due to the noise in the identification data, prior to the implemen-

tation of the detection algorithm. The two white noise sequences,ek,L and vec(Eid), are independent.

Besides, the elements inZid ,Zol are all measured quantities, respectively during identification experiment
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and online implementation. Hence, vec(Eid) is independent ofZol ; and ek,L is independent ofZid.

Therefore,

Cov(ζk,L +ek,L) = Cov(ζk,L)+Cov(ek,L), ΣL
∆Ξ̂ +ΣL

e , ΣL
∆Ξ̂,e.

Based on (34) in Lemma 1 and Property (47) in Lemma 2 in the appendix, ΣL
∆Ξ̂ is derived as follows.

ΣL
∆Ξ̂ = E

{

(ZT
ol ⊗ Iℓ) ·

(

(Z†,T
id ⊗ Iℓ) ·vec(Eid)

)

·
(

vecT(Eid) · (Z
†
id ⊗ Iℓ)

)

· (Zol ⊗ Iℓ)
}

= (ZT
ol ⊗ Iℓ) ·E

[

(Z†,T
id ⊗ Iℓ) ·vec(Eid) ·vecT(Eid) · (Z

†
id ⊗ Iℓ)

]

· (Zol ⊗ Iℓ).

Here, the second equality is due to the statistical independence between vec(Eid) andZol. Since vec(Eid)

contains a sequence of white and zero-mean random variables, by standard derivations, e.g. in [10, Sec.

9.3] and [12] and references therein, we can write

E

[

(Z†,T
id ⊗ Iℓ) ·vec(Eid) ·vecT(Eid) · (Z

†
id ⊗ Iℓ)

]

= E

[(

Z
†,T
id ⊗ Iℓ

)

·E
[
vec(Eid) ·vecT(Eid)

]
·
(

Z
†
id ⊗ Iℓ

)]

= E

[(

Z
†,T
id ⊗ Iℓ

)

· (IN ⊗Σe) ·
(

Z
†
id ⊗ Iℓ

)]

= E

(

Z
†,T
id ·Z†

id

)

⊗Σe

= E
(
ZidZ

T
id

)−1
⊗Σe.

In the third equality, Property (45) in Lemma 2 is used. It is also a standard practice in least squares and

system identification to use sample estimates to replace theexpectationE(ZidZ
T
id). See e.g. [10, Sec. 9.6].

Besides, due to the Hankel structure of the data matrixZid , the matrix multiplication inZidZ
T
id naturally

leads to sample estimates of the expectations, i.e.ZidZ
T
id ≈ E(ZidZ

T
id) and(ZidZ

T
id)

−1 ≈ E
(
ZidZ

T
id

)−1
;

therefore,

E
(
ZidZ

T
id

)−1
≈ E

[
E
(
ZidZ

T
id

)]−1
=
[
E
(
ZidZ

T
id

)]−1
≈ (ZidZ

T
id)

−1.

As N → ∞, the approximation in the above equation becomes strict equality. For simplicity, we shall

ignore the approximation error in using the sample estimates as in standard practice. We therefore have

ΣL
∆Ξ̂ =

[

ZT
ol

(
ZidZ

T
id

)−1
Zol

]

⊗Σe, and

ΣL
∆Ξ̂,e =

[

ZT
ol

(
ZidZ

T
id

)−1
Zol

]

⊗Σe+ IL ⊗Σe. (38)

Since
(
ZidZ

T
id

)−1
is determined byZid, which andZol and Σe are all known,ΣL

∆Ξ̂,e can be computed.

However,ΣL
∆Ξ̂,e does not fully characterize Cov(rk,L), which also depends on the covariance ofβk,L+bk,L.

The latter cannot be estimated, but indeed decays with the past horizonp. The following theorem quantifies

the error bound in approximating Cov(rk,L) by ΣL
∆Ξ̂,e.
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Theorem 1:Let the signals in the identification experiment and fault detection respectively satisfy

(14,15) and (36,37). Then the following matrix

ΣL
∆Ξ̂,e =

(

ZT
ol

(
ZidZ

T
id

)−1
Zol + IL

)

⊗Σe

approximates the covariance matrix of the residualrk,L computed by (31) in the following sense:

∥
∥
∥Cov(rk,L)−ΣL

∆Ξ̂,e

∥
∥
∥

2
≤

(

1+
ρ̄2

z,ol

ρ2
z,id

)

· ‖CΦp‖2
2 · σ̄

2
xx.

Proof: See Appendix C.

Due to the boundedness of̄ρz,ol, σ̄xx and ρ2
z,id

> 0,

(

1+
ρ̄2

z,ol

ρ2
z,id

)

· σ̄2
xx is bounded. Hence, the approxi-

mation error decays exponentially with the past horizonp.

Remark 4:Note from (38) thatΣL
∆Ξ̂ relies not only on the identification data, but also on the online

I/O signals measured during the implementation of the residual generator. This means that the covariance

matrix of the data-driven residual vector cannot be entirely determined by the identification data. This is

fundamentally different from the robust fault detection scheme in [37], where it is the model changes (or

multiplicative faults), instead of additive faults, that are detected. The fact making this difference is that

a residual generator (a filter with uncertain parameters) isinvolved in the data-driven method proposed

in this paper, but not required by the scheme in [37]. �

C. Statistically optimal fault detection test against identification errors

Now, due to (25), whenϕ f = 0,µk,L =Erk,L =E(βk,L+bk,L). And according to Theorem 1, Cov(rk,L)

can be approximated byΣL
∆Ξ̂,e with an arbitrarily small error ifp is chosen sufficiently large. The

distribution ofrk,L can hence be expressed as:

rk,L ∼







N

(

Eβk,L +Ebk,L,ΣL
∆Ξ̂,e

)

, fault free,

N

(

Eβk,L +Ebk,L +ϕ f ,ΣL
∆Ξ̂,e

)

, faulty.

Whiten rk,L by
(

ΣL
∆Ξ̂,e

)− 1
2
, i.e. r̃k,L ,

(

ΣL
∆Ξ̂,e

)− 1
2
rk,L. The test statistic for the changing mean inr̃k,L

can be written as [3], [35]

τ(k), r̃T
k,L · r̃k,L =

∥
∥
∥
∥

(

ΣL
∆Ξ̂,e

)− 1
2
rk,L

∥
∥
∥
∥

2

2
. (39)

However,τ(k) defines a noncentralχ2 distribution even in the fault free case, with a non-centrality

parameter

λrk,L =

∥
∥
∥
∥

(

ΣL
∆Ξ̂,e

)− 1
2
· (Eβk,L+Ebk,L)

∥
∥
∥
∥

2

2
.
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Denote this distribution byτ(k)∼ χ2
Lℓ,λrk,L

, with Lℓ degrees of freedom (DoF) [3], [35]. The parameter

λrk,L is again unknown. But if the past horizonp also satisfies

‖CΦp‖2
2 <

ζ ·Lℓ

‖Σ−1/2
e ‖2

2

(
‖E [vec(Xid)]‖2+‖Ex̂k−p,L‖2

)2 , (40)

for an arbitrarily smallζ > 0; then the cumulative distribution function (cdf) ofτ(k) under the fault free

case can be approximated by that of a centralχ2 distribution. Detailed analysis is given in Appendix D.

The fault detection test can hence be derived based on the central χ2 distribution, i.e.χ2
Lℓ, as follows.

τ(k)

faulty

≷

no fault

γα ,

whereγα denotes the detection threshold, determined by a chosen false alarm rate (FAR)α .

Remark 5: In practice, the inequality (40) cannot be explicitly checked, due to the unknown parameters

therein, e.g. the mean of the Kalman filter states. A practical way is to tunep andL such that in nominal

case, the test statisticτ(k) defined in (39) leads to an FAR as close as possible to the chosen FAR,

when compared to the theoretical threshold required by theχ2
Lℓ test under the chosen FAR. This tuning

procedure can be carried out using the identification data. �

Remark 6: In the proposed method, the past horizonp is required to be large. It is known in system

identification literature that estimating a higher order VARX model (12), i.e. with biggerp, leads to

larger parameter covariance, and thus more uncertainties in the residual generator. But in this paper, this

increased covariance has been explicitly taken into account in the covariance of the residual vector.�

By (38) and the matrix inversion lemma, the test statisticτ(k) defined in (39) can be decomposed into

two terms, i.e.

τ(k) = rT
k,L(Σ

L
e)

−1rk,L −rT
k,L

[(

ZT
ol

(
ZolZ

T
ol +ZidZ

T
id

)−1
Zol

)

⊗Σ−1
e

]

rk,L,

where the first term is normalized only by the innovation covariance, and represents the nominal design;

while the second term is a correction against the parameter errors. The robust design can hence be

schematically shown in Fig. 2.

Algorithm 1 summarizes the robust data driven fault detection approach.
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+
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r
T
k,L[(Z

T
ol(ZolZ

T
ol +ZidZ

T
id)

−1

·Zol)⊗Σ−1
e ]rk,LZol

fault detection
nominal

correction for robustness

system

Fig. 2. Robust fault detection against stochastic parameter errors. To the right of the vertical dashed line: above the dotted line

is the nominal detection scheme, below the dotted line is thecorrection of the statistic for robustness.

Algorithm 1 (Robust Data-Driven Fault Detection):

Design Phase:

1) choose the horizonsL ≤ p and the false alarm rateα , and determine the thresholdγα ;

2) measure the I/O signals from a plant, and form the data matrix Zid;

3) computeΞ̂ by (16) andΣ̂e by (18);

4) form the Hankel and Toeplitz matrices̄HL,p
z , T̄ L

u , T̄
L
y .

Implementation Phase at time instantk:

1) measure the pastp+L I/Os andu(k) from the plant, and form the data matrixZol;

2) compute the residualrk,L by (31) and the covarianceΣL
∆Ξ̂,e by (38);

3) compute the test statisticτ(k) by (39) and compare it to the thresholdγα .

IV. SIMULATION STUDIES

A. Illustration of the main idea with a simple example

Consider a SISO zeroth order system; i.e.

y(k) = d ·u(k)+e(k),

wheree(k) is zero mean white Gaussian with varianceσ2
e . The scalard is a static gain. Now, the purpose

is to design a residual generator of the following form from data; i.e.

r(k) = y(k)− d̂ ·u(k). (41)

Here, the detection horizon isL = 1; andd̂ is from the LS estimate (16):

d̂ = Yid ·U
†
id,
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whereUid andYid collect respectivelyN I/O data samples measured from this plant from a previous

time instantt. Due to the static property of the system, the past horizon isp= 0. Thus,Zid = Uid in

(16) andYid ,Uid ∈ R
1×N. It is easy to derive the error statistics of the estimate; i.e.

∆d̂ = d− d̂ =Eid ·U
†
id,

var(∆d̂) = σ2
e

UidU
T
id
.

The variance, var(∆d̂), is determined by the SNR, defined as 10· log10
1/N·UidU

T
id

σ2
e

.

Now, the residual in (41) has the following structure, when no fault signal is added:

r(k) = du(k)+e(k)− d̂u(k) = ∆d̂ ·u(k)+e(k).

Obviously, both∆d̂ ·u(k) ande(k) contribute to var(r(k)). Due to the independence of∆d̂ ande(k) and

the fact thatu(k) is a known quantity,

var(r(k)) = var(∆d̂ ·u(k))+var(e(k))

= u2(k) ·var(∆d̂)+σ2
e

= u2(k)·σ2
e

UidU
T
id
+σ2

e .

The first term in the last equality corresponds to the additional covariance information targeted in Problem

1, which consists of two factors; i.e. var(∆d̂) of the identified parameter andu(k) measured during the

implementation of the residual generator. Moreover,r2(k)/var(r(k)) is χ2 distributed with one DoF,

denoted asχ2
1 .

Let us now consider the numerical values,d = 2,σe = 1,N = 2. The input was chosen asu≡ 0.001

in the identification experiment, leading to an SNR of−60dB, and var(∆d̂) = 5×105 ≫ σ2
e . We did 104

Monte Carlo (MC) simulations with independent innovation sequences in the identification experiment,

and collected 104 different estimates of̂d. The distribution of∆d̂ is plotted in Fig. 3(a). We then used the

104 estimates,d̂, in computing the residual via (41), whereu(k) was set to 2. Hence,u2(k) ·var(∆d̂) =

2×106 ≫ σ2
e . The distribution ofr2(k)/var(r(k)) is plotted in Fig. 3(b), and found to perfectly follow

the theoreticalχ2
1 distribution. In contrast, the distribution ofr2(k)/σ2

e shown in Fig. 3(c) significantly

deviates fromχ2
1 , due to the dominant majority of its population valued much higher than 10.8, or the

99.9% probability bound of theχ2
1 distribution. The few nontrivial values in this plot are dueto the very

rare events wherer2(k)/σ2
e evaluates lower than 10.8.

B. Fault detection in a MIMO dynamic system

1) Model and simulation parameters:Consider a linearized VTOL (vertical take-off and landing)

model, originally appeared in [38] and also studied in [3], [21], in the form of (3,4); withD = 0,F = I4,
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Fig. 3. Distribution of respectively∆d̂ in (a), r2(k)/var(r(k) in (b), andr2(k)/σ2
e in (c). Solid: theoretical distributions. Dots:

empirical probabilities evaluated in continuous bins, as the ratio between the number of points in each bin and the totalnumber

of MC simulations 104 (283 bins within the 6σ bound for (a), and 217 bins within the 99.9% cdf bound for (b) and (c)).

and A,B,C as discretized at a sampling rate of 0.5 seconds, from the following continuous time model

(distinguished from discrete-time model by the subscript “c”),

ẋc(t) = Acxc(t)+Bcuc(t)

yc(t) = Ccxc(t)

Ac =











−0.0366 0.0271 0.0188 −0.4555

0.0482 −1.01 0.0024 −4.0208

0.1002 0.3681 −0.707 1.42

0 0 1 0











,Cc =











1 0 0 0

0 1 0 0

0 0 1 0

0 1 1 1











,

Bc =




0.4422 3.5446 −5.52 0

0.1761 −7.5922 4.49 0





T

.

The process and measurement noise,w(k),v(k), are assumed to be zero mean white noise, respectively

with a covariance ofQw = 0.25· I4 andQv = 2 · I2.

In the identification experiment, an empirical stabilizingoutput feedback controller was used; i.e.

u(k) =−




0 0 −0.5 0

0 0 −0.1 −0.1



 ·y(k)+ψ(k),

whereψ(k) is a zero-mean white noise with a covariance of diag(1,1), which ensures that the system is

persistently excited to any order. 2000 data samples were collected from the simulation.

The past horizon was chosen asp= 15. The covariance of the identified parameters (see e.g. [18]),

i.e.

Cov(vec(Ξ̂)) = (ZidZ
T
id)

−1⊗Σe, (42)
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has a maximum singular value of 0.044, corresponding to an SNR of 10 log10(1/N ·1/‖Cov(vec(Ξ̂))‖2) =

−19.4dB. Based on the steady-state Kalman filter (see e.g. [27], [28]) of the discrete-time VTOL model,

‖CΦp‖2
2 was found to be 2.1×10−5. The other parameters of Algorithm 1 were chosen asL = 10,α =

0.005. The design phase of this algorithm produced the parameters,Ξ̂, Σ̂e,(ZidZ
T
id)

−1,H̄L,p
z , T̄ L

u , T̄
L
y ,H̄

L,p
f , T̄ L

f .

The online detection experiment is designed as follows. Theinitial states of the system were set as

[10 10 1 1]T . An LQG tracking controller was used, to maintain a verticalvelocity (the second output)

of 40. The purpose of this closed-loop experiment is to show the advantage of the robust fault detection

method, when the I/O signals in the system are large enough for ΣL
∆Ξ̂,e to be significantly different from

ΣL
e.

2) Fault detection results:Consider the following actuator faults. The first actuator was stuck at−3 in

the interval of 301≤ k≤ 600; and the second actuator had a bias of−5 in the interval of 901≤ k≤ 1200.

The simulation was run for 1200 sampling instants.

We checked (40) based on the steady-state Kalman filter:

Lℓ

‖Σ−1/2
e ‖2

2

(
‖vec(Xid)‖2+‖x̂k−p,L‖2

)2 = 5.4×10−5 > ‖CΦp‖2
2.

Here, we used̂xk−p,L, instead ofEx̂k−p,L, since the latter cannot be evaluated. In practice, (40) cannot

be computed. Practical method for tuningp,L is suggested in Remark 5.

We tested and compared four data-driven fault detection solutions all with p= 15,L = 10. These are

Pss, the classical model-based PSA, with(A,B,C,D,K) identified by the PBSID-OPT method of [12];

Pmp, the data-driven PSA, proposed in Sec. 3 of [18];Fno, the nominal data-driven method proposed in

Sec. II of this paper, without considering the parameter identification errors;Frb, the robust data-driven

method, as proposed in Sec. III of this paper. The test thresholds were all computed with the false alarm

rate of 0.5%, as in theχ2 test. The results are illustrated in Fig. 4 and compared in the following table,

where FA and MA means the number of respectively false alarmsand missed alarms; and SCR is the

overall successful classification rate.

FA MA Delay SCR

Pss 584 0 0 51.33%

Pmp 254 3 0 78.58%

Fno 556 0 0 53.67%

Frb 16 1 0 98.58%

As indicated by their large magnitudes above the thresholdsunder the fault-free case in Fig. 4, none
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of the nominal data-driven algorithms can correctly quantify the distribution of their test statistics, since

only the innovation signals are considered therein to be stochastic. Besides, the statistics ofPss under the

nominal cases were even further away from the threshold thanthose ofPmp, because the identified state

space matrices not only inherit the errors from the Markov parameters identified first, but also contain

model reduction errors and the errors from solving a second least-squares [12]. Consequently,Pss become

highly nonlinear in the noise originally contained in the identification data.

The robust data-driven method correctly accounts the composite covariance information contained

both in the innovation signals and in the parameter identification errors, as can be seen from the correct

theoretical threshold separating the fault-free case fromthe faulty one. The FAR is significantly reduced,

but is slightly higher than the design parameter,α = 0.5%, mainly due to the FAs from sampling instant

601 to 610. SinceL = 10, it took 10 sampling instants for the fault signals to entirely retreat from the

detection window. However, the robust data-driven method has a lowered sensitivity to faults, compared

with its nominal counterpart, as can be seen from the reducedgap between the test statistics of respectively

the fault-free case and the faulty one. This is the conservativeness to pay for the robustness.

V. CONCLUSIONS

In this paper, we have explicitly analyzed the effect of parameter identification errors on the data-driven

fault detection design. We have also derived in closed-formthe residual vector covariance in terms of

both the innovation signals and the parameter identification errors. Besides, we have established the error

bound in neglecting the contribution of the bias terms due toinitial states to the residual; and showed that

this error decays with the past horizon. All the analytical results are tested in the simulation studies, which

have validated that the data-driven fault detection methoddeveloped in this paper has clearly improved

performance compared to the nominal data-driven solutionswithout taking into account the identification

uncertainty, especially when the SNR of the identification data is low. A robust fault isolation method

against parameter errors is developed in the companion paper [36]. Possible future directions are to

extend the robust fault detection method to deal with multiplicative faults and to linear parameter varying

systems.
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[30] R. Isermann and R. Ballé, “Trends in the application ofmodel-based fault detection and diagnosis of technical processes,”

Control Engineering Practice, vol. 5, pp. 709–719, 1997.

[31] A. Dahlen and W. Scherrer, “The relation of the CCA subspace method to a balanced reduction of an autoregressive

model,” Journal of Econometrics, vol. 118, pp. 293–312, 2004.

[32] S. Qin and L. Ljung, “On the role of future horizon in closed-loop subspace identification,” inthe Proceedings of the 14th.

IFAC Symposium on System Identification, New Castle, Australia, 2009, pp. 1080–1084.

[33] J. Dong and M. Verhaegen, “CautiousH2 optimal control using uncertain markov parameters identified in closed loop,”

Systems & Control Letters, vol. 58, pp. 378–388, 2009.

[34] A. Chiuso, “The role of vector autoregressive modelingin predictor based subspace identification,”Automatica, vol. 43,

pp. 1034–1048, 2007.

[35] S. Kay,Fundamentals of Statistical Signal Processing: DetectionTheory. Prentice-Hall, 1998.

[36] J. Dong, M. Verhaegen, and F. Gustafsson, “Robust faultisolation with statistical uncertainty in identified parameters,”

IEEE Transactions on Signal Processing, vol. 60, pp. 5556–5561, 2012.

[37] O. Kwon, G. Goodwin, and W. Kwon, “Robust fault detection method accounting for modelling errors in uncertain systems,”

Control Engineering Practice, vol. 2, pp. 763–771, 1994.

[38] K. Narendra and S. Tripathi, “Identification and optimization of aircraft dynamics,”Journal of Aircraft, vol. 10, pp. 193–199,

1973.

[39] J. Brewer, “Kronecker products and matrix calculus in system theory,”IEEE Transactions on Automatic Control, vol. 25,

pp. 772–781, 1978.

[40] M. Sankaran, “Approximations to the non-central chi-square distribution,”Biometrika, vol. 50, pp. 199–204, 1963.

APPENDIX A

PROPERTIES OFKRONECKER PRODUCTS

In the paper, the following properties of Kronecker products [39] are frequently used.

Lemma 2:For matricesM1,M2,M3,M4 with proper dimensions, the following properties hold:

vec(M1 ·M2 ·M3) = (MT
3 ⊗M1) ·vec(M2), (43)

(M1⊗M2)⊗M3 = M1⊗ (M2⊗M3), (44)

(M1⊗M2) · (M3⊗M4) = (M1 ·M3)⊗ (M2 ·M4), (45)

(M1+M2)⊗M3 = M1⊗M3+M2⊗M3, (46)

(M1⊗M2)
T = MT

1 ⊗MT
2 . (47)
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APPENDIX B

PROOF OFLEMMA 1

We only consider the fault-free case. By the output equation(10), for i = 1, · · · ,L, we can write

y(k−L+ i) = CΦpx̂(k− p−L+ i)+e(k−L+ i)+(Ξ̂+∆Ξ̂) ·




zk−L+i−1,p

u(k−L+ i)



 .

Here,Ξ is replaced bŷΞ+∆Ξ̂. Since∆Ξ̂ ·




zk−L+i−1,p

u(k−L+ i)



 is a column vector, it equals vec



∆Ξ̂ ·




zk−L+i−1,p

u(k−L+ i)







,

which by Property (43), can be written as
([

zT
k−L+i−1,p uT(k−L+ i)

]

⊗ Iℓ
)

·vec(∆Ξ̂)

On the other hand, by Property (43), Eq. (17) can be rewrittenin a vectorized form; i.e.

vec(∆Ξ̂) = (Z†,T
id ⊗ Iℓ) ·vec(Eid)+ [Z†,T

id ⊗ (CΦp)] ·vec(Xid).

We hence have

∆Ξ̂ ·




zk−L+i−1,p

u(k−L+ i)



=
([

zT
k−L+i−1,p uT(k−L+ i)

]

⊗ Iℓ
)

·
{

(Z†,T
id ⊗ Iℓ)vec(Eid)+ [Z†,T

id ⊗ (CΦp)]vec(Xid)
}

.

Now, assembley(k−L+ i), i = 1, · · · ,L into yk,L, and arrange the terms, the residual structure (33) follows.

APPENDIX C

PROOF OFTHEOREM 1

Again, ek,L and vec(Eid) are independent, white, and have zero mean. Withϕ f = 0, the mean of the

residual equals

Erk,L = Eβk,L +Ebk,L = [IL ⊗ (CΦp)] ·Ex̂k−p,L +
[

(ZT
olZ

†,T
id )⊗ (CΦp)

]

·E [vec(Xid)] .

For simplicity, we will also use the sample estimatesZ
†
idZol to replaceE(Z†

idZol) in this proof.

With the cross correlations of the independent terms left out, the covariance ofrk,L takes the following

form,

Cov(rk,L) = Cov(βk,L)+Cov(bk,L)+Cov(ζk,L)+Cov(ek,L).

To seeE
(

(βk,L −Eβk,L) ·ζ
T
k,L

)

= 0, note that the closed-loop observer states inXid are independent of

the innovation signals contained inEid, given the measured past I/O signals. This can be seen from (7),

and is similar to the standard discussions in Kalman filtering; e.g. [27, Chapter 7]. However, vec(Xid)

is stochastic with bounded covariance matrix as given in (15), but distributed independently of vec(Eid).
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In Cov(rk,L), Cov(ζk,L)+Cov(ek,L) is derived in (38). The other two terms are derived as follows.

Cov(bk,L) = [IL ⊗ (CΦp)] ·Cov(x̂k−p,L) ·
[
IL ⊗ (CΦp)T]

Here,CΦp is the true constant parameter of the plant, and can hence be moved outside the “Cov” operator.

Besides, sincex(k)− x̂(k) has zero mean, and is uncorrelated with the past I/Os [27, Chapter 7], we have

Cov(βk,L) =
[

(ZT
olZ

†,T
id )⊗ (CΦp)

]

·Cov(vec(Xid)) ·
[

(Z†
idZol)⊗ (CΦp)T

]

.

Then due to (15,37), and Properties (44,45),

Cov(bk,L)+Cov(βk,L)

� [IL ⊗ (CΦp)] ·
[
IL ⊗ (σ̄2

xxIn)
]
·
[
IL ⊗ (CΦp)T

]
+
[

(ZT
olZ

†,T
id )⊗ (CΦp)

]

·
[
IN ⊗ (σ̄2

xxIn)
]
·
[

(Z†
idZol)⊗ (CΦp)T

]

=
(

IL +ZT
olZ

†,T
id Z

†
idZol

)

⊗
[
(CΦp)(σ̄2

xxIn)(CΦp)T
]

=
(
IL +ZT

ol(ZidZ
T
id)

−1Zol
)
⊗
[
(CΦp)(σ̄2

xxIn)(CΦp)T
]
.

Now, due to the inequalities (14,36),

ZT
ol

(
ZidZ

T
id

)−1
Zol �

ρ̄2
z,ol

ρ2
z,id

I .

The error bound can finally be quantified as

‖Cov(rk,L)−ΣL
∆Ξ̂,e‖2

= ‖Cov(bk,L)+Cov(βk,L)‖2

≤
∥
∥
∥IL +ZT

ol

(
ZidZ

T
id

)−1
Zol

∥
∥
∥

2
·
∥
∥(CΦp)(σ̄2

xxIn)(CΦp)T
∥
∥

2

≤

(

1+
ρ̄2

z,ol

ρ2
z,id

)

· ‖CΦp‖2
2 · σ̄2

xx.

This completes the proof.

APPENDIX D

ANALYSIS OF THE CONDITION TO IGNORE THE NONCENTRALITY IN THE DISTRIBUTION OF τ(k)

First, recall that the cdf of the noncentralχ2 distribution, denoted asP(τ(k);Lℓ,λrk,L), has no closed-

form expression inLℓ and λrk,L , but can be approximated by the cdf of a normal distribution (denoted

by PN ) [40]; i.e.

PN







1−ab(1−a+0.5(2−a)cb)−

(

τ(k)
Lℓ+λrk,L

)a

a
√

2b(1+cb)






.

Here, the scalarsa,b,c are defined as

a= 1−
2
3

(Lℓ+λrk,L)(Lℓ+3λrk,L)

(Lℓ+2λrk,L)
2 , b=

Lℓ+2λrk,L

(Lℓ+λrk,L)
2 , c= (a−1)(1−3a).
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Clearly,PN is parameterized by the linear combinations of the DoF,Lℓ, and the non-centrality parameter,

λrk,L ; i.e. Lℓ+ i ·λrk,L , i = 1,2,3. Hence, ifλrk,L ≪ Lℓ, thenLℓ+ i ·λrk,L ≈ Lℓ, i = 1,2,3; and thusχ2
Lℓ,λrk,L

reduces toχ2
Lℓ. This is what remains to show.

We shall now derive an upper bound of‖Er̃k,L‖2.

‖Er̃k,L‖2 ≤

∥
∥
∥
∥

(

ΣL
∆Ξ̂,e

)− 1
2
Eβk,L

∥
∥
∥
∥

2
+

∥
∥
∥
∥

(

ΣL
∆Ξ̂,e

)− 1
2
Ebk,L

∥
∥
∥
∥

2
.

Similar to the derivations in proving Theorem 1, we have
∥
∥
∥
∥

(

ΣL
∆Ξ̂,e

)− 1
2
Eβk,L

∥
∥
∥
∥

2

2

= E [vec(Xid)]
T ·
{[

Z
†
idZol ·

(
ZT

ol(ZidZ
T
id)

−1Zol + Iℓ
)−1

·ZT
olZ

†,T
id

]

⊗ [(CΦp)TΣ−1
e (CΦp)]

}

·E [vec(Xid)]

≤ E [vec(Xid)]
T ·
{

IN ⊗ [(CΦp)TΣ−1
e (CΦp)]

}
·E [vec(Xid)]

≤ E [vec(Xid)]
T ·
(

‖Σ−1/2
e ‖2

2 · ‖CΦp‖2
2 · INn

)

·E [vec(Xid)]

= ‖Σ−1/2
e ‖2

2 · ‖CΦp‖2
2 · ‖E [vec(Xid)]‖

2
2.

In the first inequality, we use the fact that for an arbitrary matrix M, M(I +MTM)−1MT ≺ I .1

Similarly,
∥
∥
∥
∥

(

ΣL
∆Ξ̂,e

)− 1
2
Ebk,L

∥
∥
∥
∥

2

2
≤ ‖Σ−1/2

e ‖2
2 · ‖CΦp‖2

2 · ‖Ex̂k−p,L‖
2
2.

Collecting these inequalities together and using the condition (40), we have

λrk,L =
∥
∥Er̃k,L

∥
∥2

2 < ‖Σ−1/2
e ‖2

2 · ‖CΦp‖2
2 ·
(
‖E [vec(Xid)]‖2+‖Ex̂k−p,L‖2

)2
< ζ ·Lℓ,

for 0< ζ ≪ 1.

1By Schur complement,M(I +MT M)−1MT ≺ I ⇔

[

I M

MT I +MT M

]

≻ 0⇔ I +MTM−MT M = I ≻ 0.
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Fig. 4. Test statistics of the four different data-driven fault detection scheme. Upper:Frb (solid) andFno (dash-dotted). Middle:

Pss (solid). Lower:Pmp (solid). Horizonal dashed lines: the statistical detection threshold determined by the FARα = 0.5%.
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