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Robust Fault Detection with Statistical Uncertainty in

Identified Parameters

Jianfei Dong, Michel Verhaegen, and Fredrik Gustafsson

Abstract

Detection of faults that appear as additive unknown inpgihals to an unknown LTI discrete-time
MIMO system is considered. State of the art methods consisiedfollowing steps. First, either the state
space model or certain projection matrices are identifietchfdata. Then, a residual generator is formed
based on these identified matrices, and this residual gemesaused for online fault detection. Existing
techniques do not allow for compensating for the identificatincertainty in the fault detection. This
contribution explores a recent data-driven approach ttt fitection. We show first that the identified
parametric matrices in this method depend linearly on thisenoontained in the identification data,
and then that the on-line computed residual also depenéarlinon the noise. This allows an analytic
design of a robust fault detection scheme, that takes batmdlise in the online measurements as well
as the identification uncertainty into account. We illurthe benefits of the new method on a model

of aircraft dynamics extensively studied in literature.

Index Terms

Fault detection; Parameter uncertainty; Statistical y@isl Additive faults; Closed-form solution.

. INTRODUCTION

Model-based fault detection and isolation (FDI) is a walablished technique in literature, see [1]-[4].
The main task for the practitioner is to derive the modelt thayenerally assumed to be given in linear
state space form represented by the matri@e®,C,D). Then the algorithms are easily implemented;

and given the correctness of the model, the tests satisiyusaoptimality criteria. However, these models
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might be quite complex [5], [6]; and there might be uncerfgamameters in the model which have to be
estimated. But the stochastic uncertainty in the estimpéedmeters is not taken care of in the approaches
described in the references above.

Model-free, or data-driven, FDI methods have been invatgid)in various tracks. One track, e.g. [7],
is via testing the changes in the statistics of signals, whre assumed to be stationary in fault-free case.
Another track, e.g. [8], [9], aims at overcoming the modglgtage by using system identification tech-
niques, e.g. prediction error methods (PEM) [10] and subsp@entification (SID) methods [11]. Taking
SID as an example, two steps need to be taken. First, eitbgatige space of the extended observability
matrix [11] or the unknown state sequence [12], [13] is idf@d. Then, the state space matrices, e.g.
(A,B,C,D), need to be estimated using standard realization theorfadi the recent literature shows
that the state space matricés, B,C,D), are not really needed in designing an FDI, e.g. [8], [9]. &8hs
on SID [11], [13], these approaches require computing tfienldl of the extended observability matrix,
directly identified from measurement data, without realiz{A,B,C,D). The projection of a residual
vector onto the left null space aims at annihilating the erfice of unknown initial states on the residual,
which is known as parity space analysis (PSA) [14]-[17].

One of the drawbacks of computing the parity relation frortada that the residuals hence generated
are sensitive to the approximation errors attributed torttoelel reduction step in identifying the range
space of the extended observability matrix [18]. We havel®i,[[20] recently developed a data-driven
Fdl schemeConnected toSubspacddentification (FICSI), whose parameters can be directiytified
from data, with neither realizingA, B,C,D), nor computing the range space of the extended obseryabilit
matrix together with its left null space. A key step therairta replace in the parity relation the product
between the extended observability matrix and the initiales with a product of a matrix that depends
in an affine manner on the least squares estimated model gsmamand a matrix constructed from past
input and output (I/0) signals, subject to a bias error J@ng exponentially with past horizon. In this
way the annihilation of this product does not require a pige as in PSA methods, that very much
complicates the statistical analysis of the residual.

On the other hand, despite the large amount of existing worlEDl methods, the robustness of a
detection scheme against model identification errors hayetobeen investigated. The major challenge
lies in quantifying the uncertainties in the residual gem@r from the parameter identification errors.
As proposed in [21], an empirical estimate of the PSA redidaoaariance may be computed by the
identification data from a fault-free system. But an analydithe residual distribution subject to model

errors is still an open problem in the literature. As pointed in [18], the difficulties in analyzing the
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parameter error effect on a data-driven PSA residual irchh@ nonlinear dependence of the identified
projection matrix on the parameter errors and the multipiic of the erroneous residual generator with
this matrix. As to be shown later in this paper, the main athge of the FICSI formulation [19] is that
the uncertainties in the residual generator linearly ddpmnthe parameter errors. It is hence possible to
develop a robust data-driven fault detection scheme copitigthe identification errors in a closed-form
solution. It shall be mentioned here that approaches copitigstochastic parameter errors are also seen
in filtering methods, e.qg. [22], [23], which are calledutiousfiltering, due to the penalties imposed to the
covariance of the parameter errors. Although [22] gave aedeorm solution to cautious Wiener filters,
this solution was based on the assumption that paramet@samly exist in the numerator polynomials.
Instead of providing closed-form solutions, the approachi] relies on particle filters (see e.g. [24])
for linear and nonlinear systems.

The rest of the paper is organized as follows. We start in B&gth describing the Vector ARX model
for linear dynamic systems and linking this model to residyeneration for fault detection. The error
effects on the residual generator using the identified patars is then analyzed in Sec. lll. The statistical
distribution of this residual vector is also quantified instlsection, which then leads to a statistically

optimal fault detection test. Sec. IV verifies all the maiguanents via simulation studies.

[I. PRELIMINARIES AND PROBLEM FORMULATION
A. Notations

The notations used in this paper are stand®&9 denotes the set of all re&kby-q matrices.|,0
will respectively denote an identity and a zero matrix wittoger dimensions; while with subscripts,
In, Onxq Shall denote respectively @nx h identity matrix and arh x q zero matrix..4"(u,%) represents
a normal distribution with meam and covariance. Xﬁ stands for ax? distribution with h degrees
of freedom.E and Cov denote respectively expectation and covarianceatmpeve¢M) is the column
vector concatenating the columns of a matdx M stands for the pseudo-inverse Mf The operator
“®" shall denote Kronecker product. For two matridds and M,, M1 = M, means thaiM; — M5 is

positive semi-definite.

B. Additive faults in linear Gaussian systems

Faults that can occur in a dynamic system are categorizedtivid classes [4], [25], [26]. The first
class of faults is called additive, which are signals adeitn the model of a dynamic system, and hence

change the mean value of the distribution of the observedatsg[25, Chapter 7]. For instance, drifts

November 7, 2012 DRAFT



output
estimator

y

- T residual
O—) alarm
Tr evaluator

Fig. 1. Fault detection scheme, wheareepresents residual.

and bias in sensor measurements and leakage in pipelinggpical additive faults [9]. Another class
is called multiplicative, which change the transfer fuantiof a dynamic system [25, Chapters 8,9]. A
typical example is the changes in the vibrating charadiesi©of a mechanical structure [25, Chapter
11]. This paper especially considers additive faults, assumes that the system transfer function is
unchanged, which can hence be identified offline using I/@agfrom the nominal system.

We shall describe the faulty system dynamics with the falgadiscrete-time state-space model [25,

Chapter 7]:
X(k+1) = Ax(Kk)+Bu(k)+Ef(k)+Fw(k), 1)
y(k) = Cx(k)+Du(k)+Gf(k)+v(k). 2

We consider MIMO systems; i.&(k) € R", y(k) € RY, andu(k) € R™. f(k) € R" represents fault signals.
A,B,C,D,E,

F,G are real, with bounded norms and appropriate dimensions.didturbances are represented by the
process noisev(k) € R™ and the measurement noigg) € R’. w(k) andv(k) are assumed to be white
zero-mean Gaussian [25, Chapter 7]. The following assumgtare standard in Kalman filtering [10],
[27], [28] and subspace identification [12], [13], [29].

Assumption 1:The pair(C,A) is detectable; and there are no uncontrollable mode(mﬁQ\%,/Z) on
the unit circle, WhereQ&,/z-(Q\}/z)T is the covariance matrix of/(k).

Fault detection can be regarded as a residual generatiorevaidation problem. A residual is the
deviation between measurements and model-equation basggltations [30]. A fault detection scheme
can be illustrated as in Fig. 1. The essential goals of thiepare to develop the output estimator based
on least-squares (LS) estimates of system parameters, arebver to robustify the residual evaluator
against the stochastic errors in the LS estimates of thengeas. To this end, we will first review the

parameter identification problem and the residual germrairoblem in this section.
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C. Vector ARX description of linear dynamic systems and patar identification

Since both parameter identification and residual generatie based on a nominal system model, we

will first set f(k) =0 in (1,2), and consider the following model:
x(k+1) = Ax(k)+Bu(k)+Fw(k), (3)
y(k) = Cx(K)-+Du(k)+ v(Kk). 4)

In system identification literature [10]-[13], the I/O retanship of the model (3,4) is usually re-
formulated by the following innovation form [27], [28], viitthe innovation signal defined agk) =
y(k) — CX(k) — Du(K).

X(k+1) = AX(k)+Bu(k)+ Ke(k), (5)
y(k) = CX(k)+Du(k)+e(k). (6)
Here,K is the Kalman gain. The innovatiatk) is white Gaussian with a covariance matrix denoted by

>, as determined bw(k) andv(k), [10], [11], [13].

A closed-loop observer thus results from (5,6); i.e.
X(k+1) = (A—KC)X(k)+ (B—KD)u(k)+Ky(k), (7)
y(k) = CX(K)+ Du(k) +e(K). (8)

For brevity, denoted £ A— KC,B £ B— KD in what follows. Under Assumption Ip is stable.

For the well-posedness of the problem, we assume that the (8a4) is internally stable, with or
without closed-loop stabilizing control. Under this asgion, x(k),u(k),y(k) are bounded for ank.
Due to the stability of®d, EX(k) is bounded for ank (see e.g. [28, Theorem 9.2.2]).

Starting from the time instarkk — p and solving by recursion fop sampling instants till the time

instantk, it is easy to derive:

(9)

(k) = ¢pi(k—p)+p_l¢f.[|§ K}- ukk—1-1) .
TZO y(k—1-1)

The output equation can hence be written in the followingnfoby substituting (9) into (8):

. e uk—1-1) u(k)
y(k) = CoPR(k—p)+ 5 Co [ B K } +[ D 0 } +e(K). (10)
o y(k—1-1) y(k)
This equation is known as a vector autoregressive modelexitiyenous inputs (Vector ARX or VARX),

which is generally used as a first step in subspace identificfi2], [31], [32].
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The output equation (10) establishes a linear transfoondtom past 1/0Os to outputs. We have shown in
our previous work that this equation can be used in devegppirdictive controllers [33] and identifying
estimation filters for additive actuator and sensor falt®d].[ There are two main benefits in using this
VARX description. First, the parameters therein can be isterstly identified from data measured in
closed-loop plants by solving a single least-squares propbnd hence do not contain model reduction
errors in realizing the state-space matricesB,C,D). Second, and more importantly, this output equation
has a linear dependence on the parameter identificatiorsearnd hence enables analyzing and developing
FDI solutions robust to the stochastic parameter identifinaerrors. It is hence the objective of this
current paper to link this output equation to fault detectiwhere the parameters are corrupted with
stochastic identification errors.

We emphasize that in the output equation (10), the parasiétarneed to be identified af®, CdIB, ChIK,
j=0,---,p—1}, instead of(A,B,C,D) or CPP.

Replace the time indek in (10) respectively by a sequence of time indi¢ets+1,--- ,t+N — 1.
Collecty(t),y(t+1),---,y(t+N—1) into a block row vector, and denote it Bg; i.e.

Ya=|y) yt+1) - yt+N-1) |

Here, the subscriptsid” indicate thatYjy contains the output signals collected from an identificatio

experiment, and will be used to identify model parametehs fllowing data equation thus results:

[y yt+1) o yteN-1) |
—COP-| R(t—p) K(t—p+1) - KA+N—p-1) |+
Xid

[ ut—p) ut—p+l) - uft+N—p—1)
yt—p) ylt-p+1) -+ y(t+N-—p-1)

[ccbpflé CoPlK ... CB CK | D|- : : : -
u(t—1) u(t) o Uu(t+N-=-2)
y(t—1) y(t) o Y(t+N=2)
u(t) ut+1) - ut+N-1) |

Zi
[et) et+1) - et+N-1) |.
Eig

(11)

With the notations of the data matrices as defined in the agquabove, (11) can be further written in
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a compact form:
Yia =COP- Xig + [CoP16 COPIK ... CB CK D|:Zia+Ei. (12)
For brevity, we shall denote the sequence of Markov paraméte(12) as
== [cor18 coPK .. CB CK D|.
From (12), the estimation &t can be formulated in a least-squares sense as:
= £ argmin||Yig —=Zal3. (13)

It has been proven in subspace identification literature tie state-space model (5,6) can be con-
sistently identified from data measured in closed-loop glasa first solving the LS problem (13), e.g.
[12], [34].

As a standard assumption of persistent excitation in syatentification (see e.g. [10]), the data matrix

Ziq is bounded and has full row rank; i.églid > 0 such that
ZiaZy = Qiidl- (14)

Besides, we will use the following explicit bound on the caaace matrix of the unknown state sequence

vedq Xjq) in the analysis; i.edoyy > 0 such that
[Cov(veq Xig))|l2 < Oxx- (15)

If the data matrixZig has full row rank, then the LS problem (13) has a solution i following

structure,
Yy 2 =CoOP. Xy Z, + =+ Eq - Z},,
which contains the parameter estimate,
Z=Yy Z), (16)
and the errors,
AZ2= _Z=COPXy Z + Eq-Z). 7)

The minus signs on the right hand side of (17) are absorbedtet unknown random variablesy, Eig
for simplicity.

TreatingZe as known, or using the estimate,
Se=Cov(Yig — = Zia) (18)

in its place, is a standard practice in the statistical digiedection literature [3], [35]. We shall hence

not distinguish betweeB and Z. in the rest of the paper.
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D. Output estimator based on the VARX model

We can hence link the VARX model (10) to fault detection, bypéoging (10) to compute output

signals. In fault detection literature, residuals are rofteenerated in a sliding window of more than

one sampling instants; i.ék— L+ 1,--- k] up to the current time instakk We shall hence refer to

[k—L+1,--- k] as the detection window, and c&llthe detection horizon.

Similar to deriving (12), replace the time indkjn (10) respectively by the sequencelofime indices,

k—L+1,--- ,k Collecty(k—L+1),---,y(k) into a column vector, and denote it by, ; i.e.

v = yTk-L+1) y'(k-L+2)

.
y' (k)

Similarly, denote the lumped input vector and lumped intiovavector along the detection window

respectively byu, andey . Then, the following lumped output equation follows:

y(k—L+1)
y(k—L+2)

y(k)

CO- 2B Co--2K

COP-R(k—L—p+1)
COP-R(k—L—p+2)

+

COP-R(k— p)

bl

CB CK DO

CoP-1B8 CoP-1K
0 0

CoB
CoP1B CoP-1K

0 CoP-1B

CoK CB CK

CPB  CoK

Cot-1K

(19)

Note that the big matrix containing the Markov parametessdatructure, with the block to the left of the

vertical line representing a block Hankel matrix, and theckilto its right showing a block lower triangular

Toeplitz structure. Besides, the Hankel matrix corresgaioda time window withp sampling instants,

i.e. [k—L— p+1,k—L]; while the Toeplitz matrix coincides with the detection aiaw [k — L + 1,k].

We will therefore refer tdk—L — p+1,k— L] as the past window, and cal the past horizon.
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For clarity, we shall explicitly denote the block Hankel mratas

_ngpflLS, CoP-1K ... CB CK
. 0 0 CoP1B CoOPK ... COB CoOK
Hz’p = . . . ) (20)
0 0 CoP-1B ... ... quL—lK_

where the superscriptd.;'p” remind respectively the detection horizan(number of block rows) and
the past horizorp (number of block columns). Similarly, define the followinga Toeplitz matrices,

respectively corresponding to the inputs and outputs indétection window:

s ) - )
. CB D . CK 0
Ty = . . . ’ Ty - . . . ’ (21)
Co- 28 CoP-3B .- D CO- 2k CP-3k .- 0

where the superscripl” reminds that there ark block columns and rows.
It is convenient to introduce a new notation to denote thepleenl/Os in the past window, i.e(k) =

[u (k), y" (k)]T, and collect the lumped 1/Os in the past window infg | p, i.e.
zkLp=| 2"(k—L—p+1) Z'(k-L-p+2) --- Z'(k—L) }T.
Now, the lumped.-step output equation (19) can be expressed in a compactderm
YL = biL + Hy Pz p+ Truie + Ty il + ek (22)

Remark 1:1t is tedious but straightforward to show that (22) is eqléwh to the output equation in
classical parity space approaches [14]-[17], if it is aleawkd from the closed-loop observer form (7,8);
i.e.

YL = O -R(K—L+1) + Tyuir + Tyl + ek, (23)
whereO" denotes the extended observability matrix:
CT (CCD)T . (Cq)Lfl)T

The benefit of using Eq. (22) is that all the parameters in thHicresHZL’p,Tl},TyL only depend on the
sequence of Markov parameté&rswhich can be consistently identified from data by solvingdingle LS
problem (16). Besides, instead of computing the left nudicgpofO" to annihilate the unknown product
O -%(k—L+1), as in the classical PSA methods [14]-[17], this producejdaced b)bk7L+HzL’pzk_L7p

in (22), where the bias tery is negligible if p is large enough. 0
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10

E. Residual generator and its distribution

A residual generator for fault detection is a direct congeqe of comparing the measured and

computed outputs in the sliding windojk— L + 1,k]:
riL = ( _TyL)yk,L_HzL"pzka,p_TuL'Ufk,L- (24)
In the fault free case, the residual has two components, i.e.
L = bkl +exL- (25)

Since the innovation signaksare white, the covariance matrix ef; can be written a§'é = ®Ze.

In the presence of additive faults, the residual is still pated by (24), but the unknown fault signals
will contribute an additive term to (25). To see this, we shatn to Eqgs. (1,2). Similarly, define the
innovation signal ae(k) = y(k) — CX(k) — Du(k) — Gf(k). The following closed-loop observer form

results.
X(k+1) = @dX(k)+Buk)+ (E—KG)f(k)+Ky(k), (26)
y(k) = CX(K)+Du(k) + Gf(k)+ e(k). (27)

Remark 2: The additive fault signalsf(k), can be considered as extra external inputs. We shall
assumef (k) to be deterministic but unknown, which only change the mefathe residual (31), in-
stead of its covariance. Therefore, following standardnial filtering theory, e.g. [27, Chapter 7]
and [28, Chapter 9], the innovation signaésk), are white. Besidedi(e(k)|past I/Os, faults= 0; and
Cov(e(k)|past I/0s, faultsis only determined bwv(k) andv(k), [27], [28]. O

For brevity, denoté&E = E — KG. Now, similar to the derivation of (19), (26,27) lead to trodidwing

lumped output equation with faults:
YL = biL + Hy Pz p+ Ty + Tyl + @1 + ekl (28)

wherewt = [H{PTE| - fpse, with fiopi = [T (k—L—p-+ 1), fT(K)]". The matrix, [ H{ | T ],

explicitly reads as

[ CoP-l1E ... COoE  CE G ]
0 CoP-1E COE| CE G
0 CoPE ... |CO-2E CO“3E .- G |
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Thus, in the presence of additive faults, the residual ¢osttne following three components:
L =@t +bL+exL. (29)

Here,p+ changes the mean @f |, as long asfy pL ¢ Ker([H'f"ID T]!-D Moveover, as will be further
detailed in the companion paper [36{]H'f"pT]!-} is needed in computing the projection directions to
isolate individual fault input channels.

Under Assumption 1 and noting that the innovation sige@hs are white Gaussian based on standard

Kalman filter theories [10], [27], [28], the distribution @f; belongs to the following parametric family

[3]:
N (Ebg,25), fault freg
e N (EbL +1,25), faulty. (30)
More details of the bias effect on the residual distributwiti be analyzed in Sec. Ill.
If L < p, thenZe and the identified parametets from (16) can fully parameterize (24). We shall
denote the Hankel and Toeplitz parametric matrices comgris by I?Ié"p,TL',-,T)',-, and rewrite the

residual generator built by the identified parameters as
riL = (1 = Ty)ywL — Hy Pz p— Ty (31)

Since the residual is a linear function of the estimated icedr the residual again becomes Gaussian

with an additional covariance matrix denoted I)g/e; ie.

N (L, Ze+252), fault free

. y (32)
JV(Hk7L+(‘0f,ze+zAé), faulty.

kL ~

Here, . = Er, when no additive faults are present, and it will be analylzegt.

Remark 3:In comparison, the data-driven PSA methods proposed in[$8fequire first identifying
the range ofO" from identification data, and then computing its left nulasp by SVD. Here, the first
step is prone to stochastic parameter identification ervanie the second one contains model reduction
errors. Quantifying the statistical distribution of thisnaputed left null space would be a difficult task.
In fact, even if such a distribution can be obtained, it ifl steeded to project the computeg | by
(23) with erroneous parameters onto this left null spacés Procedure further complicates the analysis
of the statistical distribution of the projected output teecThe benefit of the residual defined in (31) is
that it avoids an error analysis of the SVD and the productstatistical variables. O

We are now ready to formulate the main problem to be solvetiggaper.
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Problem 1: What is the additional covarian&ie in (32) by using the uncertain data model in (31),
and is this distribution significantly different from theein (30)? What is then the optimal test for the

residual in (31)?

I1l. ROBUST DATA-DRIVEN FAULT DETECTION

With the assumption that the lumped I&X) is a quasi-stationary process (see e.g. [10, Chapter 2]),
the asymptotic analyses in system identification metho@} [12] have established the following facts:
o limp E= ==
o limy p e COV(VedAZ)| Zig) = My e (% - R; ®%¢) =0, whereR;;, denotes the correlation matrix
of z(k), and has bounded inverse due to the quasi-stationaritykof

In other words, withN, p — o, = = = holds exactly. Therefore, liflp—oCoV(1k|) = IL ® Z¢; i.€. the

covariance of the data-driven residual vecitr is only determined by the innovation vectey .
However, in practice, the duration of an identification expent cannot be infinite; and the past

horizon p cannot be too long for the computation of the residual veitidye practical. But wheMN and

p are finite,= is both biased and stochastic, as can be seen in (17). Theeffects on the residual

distribution and fault detection are hence the objectiviethis section.

A. Dependence of the residual vector on parameter identibicaerrors

Since in (29) the fault-dependent tegm only changes the residual mean, instead of its covarianee, w
shall takeps = 0 in the analysis of the residual covariance, without losgerierality. The preliminary
step before deriving the additional covariarii‘A&: in (32) is to explicitly write the uncertainties in
in terms of the stochastic errors=.

Lemma 1:If the Markov parameters containedit, T.', andHx P are identified by (16) from finitely

many I/O samples, then the residual vector (31) computeiinat instantk has the following structure:
L = CkL+exL+BkL+bkL. (33)
Here,{x and B¢ are defined as:
G = (Zhol)-(ZLT o) ved Eq), (34)

B = (ZLo) (2L © (CoP)-ved Xiq), (35)
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13

with the data matrixZ, given by

7 Zk—L,p Zk—L+1,p o Zk-1p
ol =
uk—L+1) uk-L+2) --- uk)
c R(P(MH6)+m) <L
Proof: See Appendix B. |

Here, the subscriptspt”, remind that the elements df, are the I/Os measured online. Besides, for
the convenience of analyzing Coy ), ¢« and B are expressed in terms of respectively \i8g)
and ve¢Xijq), instead of the matriceEiq € RN and Xjq € R™N,

Note that the bias term8y; and by are unknown, and stochastic by the definition of Kalman filter
states [27], [28]. For the boundednessEd#i | during the implementation of the fault detection scheme,
we assume that both the nominal system and the system umdefltitence of additive faults are internally
stable; i.e 3o > p, o > 0 such that

| Zot||2 < Pzol, VK. (36)

Under this assumption, the state sequence,
B pL= [ (k—=p-L+1) - £ (k—p)]",
of the observer (7,8) has a bounded covariance, accorditigetstandard Kalman filter theory [27], [28].
For the analysis to follow, we shall assume that
[Cov(@k_pL)ll2 < Oxx VK, (37)

where for simplicity but without loss of generality, the sammoundoyy as in (15) is used.

B. Analysis of the residual covariance

We shall now analyze and solve Problem 1 based on the resttuature (33). The key ideas are to
guantify the composite covariance matﬂngZ'-é in (32) with regard to the stochastic terfp, + ey,
and to derive an error bound in approximating Ggy ) by its computable componemﬁ'éJrZzé. We
shall also show that this error bound exponentially decaytha past horizom increases.

Since the covariance of both dq) andey . are known, Col L +ex ) can be explicitly quantified
as follows. First, note that vé&iy) is due to the noise in the identification data, prior to thelengen-
tation of the detection algorithm. The two white noise semes,e and ve¢Ejq), are independent.

Besides, the elements #iy, Zo are all measured quantities, respectively during ideatific experiment
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and online implementation. Hence, V#%q) is independent ofZ,; and ey is independent ofZy.
Therefore,

Cov(Ckr +exi) = Cov(Cir) +Covlext) & Zp= + 25 £ 2

Based on (34) in Lemma 1 and Property (47) in Lemma 2 in the raaqh'yzuaZLé is derived as follows.

S = E{(Z; INE <(ZL’T ® 1) 'VeC(Eid)> : <VeCT(Eid) (Zh® |4)> (Zo® |4)}
= (Z3®1)-E|(Z] ©1)-ved E) -ved (Ea)- (Z}@11)| -(Za @1,
Here, the second equality is due to the statistical indepecelbetween vé&iy) and Z,. Since ve€Eiq)
contains a sequence of white and zero-mean random variddyledandard derivations, e.g. in [10, Sec.

9.3] and [12] and references therein, we can write

[(ziLvT @) -ved Eq) -ved (Eq) - (2], ® u)}
ZLT®I[> [ved Eiq) vecT(Eid)]-<ZiL®lg>]
zi o1 (neze)- (Zh o))

NN

N
o —+
—

' N
o —+
N—
&

™M

(0]

In the third equality, Property (45) in Lemma 2 is used. Itlsoaa standard practice in least squares and
system identification to use sample estimates to replaoemmectatiorE(ZidZiL). See e.g. [10, Sec. 9.6].
Besides, due to the Hankel structure of the data maix the matrix multiplication inZig Z;|, naturally
leads to sample estimates of the expectations gz} ~ E(Ziq Z;) and (Za Z}) *~E (ZqZ])

therefore,

-1 -1

E(ZuZl) ' ~E[E(ZuZy)] = [E(ZaZh)] "~ (ZaZh)

As N — o, the approximation in the above equation becomes stricalgguFor simplicity, we shall
ignore the approximation error in using the sample estimatein standard practice. We therefore have
-1
25 = |23 (ZaZh) " Za| @26, and

zzé,e = [Zgl (Zid Zi-(rj)ilZol] ®R2e+ 1 ®2e. (38)

Since(ZidZ.T)*l is determined byZj4, which andZ, andZ. are all known,Zzee can be computed.

HoweverZL does not fully characterize Com (), which also depends on the covariancegf + by .

The latter cannot be estimated, but indeed decays with stdpazonp. The following theorem quantifies

the error bound in approximating Coy ) by -
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Theorem 1:Let the signals in the identification experiment and faultedgon respectively satisfy

(14,15) and (36,37). Then the following matrix
-1
2heo— (20 (20Z)) " Za+1 ) 0%
approximates the covariance matrix of the residyal computed by (31) in the following sense:

<1 Pz CoP|3- o2
5 = +p2 H HZ'O-XX'

HCov(rk,L) ~ %=,

Zzid
Proof: See Appendix C. [ |
52
Due to the boundedness pf |, Oxx and piid >0, (1+ Zg"') - @2, is bounded. Hence, the approxi-
- Zzid

mation error decays exponentially with the past horipon

Remark 4:Note from (38) thal‘ZLé relies not only on the identification data, but also on thenanl
I/O signals measured during the implementation of the tedigenerator. This means that the covariance
matrix of the data-driven residual vector cannot be entidgdtermined by the identification data. This is
fundamentally different from the robust fault detectioheme in [37], where it is the model changes (or
multiplicative faults), instead of additive faults, thatealetected. The fact making this difference is that
a residual generator (a filter with uncertain parameteri\vslved in the data-driven method proposed

in this paper, but not required by the scheme in [37]. O

C. Statistically optimal fault detection test against it&oation errors

Now, due to (25), wherpt =0, p . = Eri = E(BkL + bk ). And according to Theorem 1, Coy | )
can be approximated biLée with an arbitrarily small error ifp is chosen sufficiently large. The

distribution ofr | can hence be expressed as:

N <EBK7L+Ebk7L,ZZie), fault free

TKL ~
N (E:@k,L +Eby + ¢t zZé,e) , faulty.

_1 _1
Whiten ry . by <Zk§ e) ‘e FrL = (Zke e) ’ riL. The test statistic for the changing meanrin

1
2

T(k) £ FI.,L TR = H (Zz;e) Tkl (39)

2
However, 1(k) defines a noncentrg{? distribution even in the fault free case, with a non-ceityral

parameter
2

_1
)‘Tk,L = H (zzé,e) z. (EBK,L‘FEbk’L)

2
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Denote this distribution by (k) ~ XEE,ATKL’ with L¢ degrees of freedom (DoF) [3], [35]. The parameter
Ar is again unknown. But if the past horizgnalso satisfies

-l
|2e 213 (I ved Xia)] ll2+ [Edw-pol2)*
for an arbitrarily small{ > 0; then the cumulative distribution function (cdf) ofk) under the fault free

IC®P|3 <

(40)

case can be approximated by that of a cengratlistribution. Detailed analysis is given in Appendix D.

The fault detection test can hence be derived based on thfab,eﬁ distribution, i.e.xfé, as follows.

faulty
(k) 2 Ya,
no fault
wherey, denotes the detection threshold, determined by a choses &&rm rate (FARY.

Remark 5:In practice, the inequality (40) cannot be explicitly chedkdue to the unknown parameters
therein, e.g. the mean of the Kalman filter states. A pralci#eg is to tunep andL such that in nominal
case, the test statistic(k) defined in (39) leads to an FAR as close as possible to the chesR,
when compared to the theoretical threshold required bwﬁ@dest under the chosen FAR. This tuning
procedure can be carried out using the identification data. O

Remark 6:1n the proposed method, the past horizois required to be large. It is known in system
identification literature that estimating a higher orderRA model (12), i.e. with biggemp, leads to
larger parameter covariance, and thus more uncertaimi#eiresidual generator. But in this paper, this
increased covariance has been explicitly taken into addoutme covariance of the residual vectof]

By (38) and the matrix inversion lemma, the test statistic) defined in (39) can be decomposed into

two terms, i.e.
_ -1 _
T(K) = ri (25) TreL — iy [(zg, (Zo 2L + Zia Z})) ZO|> ®3; 1} TiLs

where the first term is normalized only by the innovation c@rece, and represents the nominal design;
while the second term is a correction against the parameterse The robust design can hence be
schematically shown in Fig. 2.

Algorithm 1 summarizes the robust data driven fault dedbectipproach.
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system

fault detection nominal

residual | kL [ T ,<i\_1 + T
— ) (2 T o—| x2
y| generatol kL (Ze) kL ——| x2 test|— alarm
I
p
—{ delays & L (Z3(Za 2+ Zia Zih)
——(structureg  Zol | Zol) @ L

Fig. 2. Robust fault detection against stochastic parangters. To the right of the vertical dashed line: above toted line

correction for robustness

is the nominal detection scheme, below the dotted line isctreection of the statistic for robustness.

Algorithm 1 Robust Data-Driven Fault Detection:

Design Phase

1) choose the horizons < p and the false alarm rate, and determine the threshoyd;
2) measure the 1/O signals from a plant, and form the dataixnaiy;

3) compute= by (16) and%e by (18);

4) form the Hankel and Toeplitz matricdizL’p,TuL,TyL.

Implementation Phase at time instantk:

1) measure the pagt+L I/Os andu(k) from the plant, and form the data matr#;

2) compute the residual; by (31) and the covarian(‘ﬂ-ée by (38);

3) compute the test statistigk) by (39) and compare it to the threshalgl.

IV. SIMULATION STUDIES
A. lllustration of the main idea with a simple example

Consider a SISO zeroth order system; i.e.
y(k) =d-u(k) + e(k),

wheree(k) is zero mean white Gaussian with variargg The scalad is a static gain. Now, the purpose

is to design a residual generator of the following form froata] i.e.
r(k) =y(k) —d-u(k). (41)
Here, the detection horizon Is= 1; andd is from the LS estimate (16):

&: Kd Uv:;jv
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where Uiy andYjq collect respectivelyN 1/0O data samples measured from this plant from a previous
time instantt. Due to the static property of the system, the past horizop4s0. Thus,Zjy = Ujq in

(16) andYiy,Uiq € RN, It is easy to derive the error statistics of the estimate; i.

Ad = d—d=Eq-U},

2

_ Oe
varlAd) = Tl
. N : , 1/N-Uiq U}
The variance, vdAd), is determined by the SNR, defined as- IliglOT'.

Now, the residual in (41) has the following structure, whenfault signal is added:

~ ~

r(k) = du(k) +e(k) — du(k) = Ad - u(k) + e(k).

Obviously, bothAd - u(k) ande(k) contribute to vafr (k)). Due to the independence Afl ande(k) and
the fact thatu(k) is a known quantity,
var(r(k)) = var(Ad-u(k)) +var(e(k))
= W(k)-varAd) + o2

The first term in the last equality corresponds to the aduficovariance information targeted in Problem
1, which consists of two factors; i.e. &d) of the identified parameter ang{k) measured during the
implementation of the residual generator. Moreovétk) /var(r(k)) is x? distributed with one DoF,
denoted ax?.

Let us now consider the numerical valuéls+= 2,0, = 1,N = 2. The input was chosen as= 0.001
in the identification experiment, leading to an SNR-680dB, and vafAd) = 5x 10° > 02. We did 1¢
Monte Carlo (MC) simulations with independent innovati@ysences in the identification experiment,
and collected 19different estimates afl. The distribution ofAd is plotted in Fig. 3(a). We then used the
10* estimatesd, in computing the residual via (41), when¢k) was set to 2. Hence(k) - varAd) =
2x 10° > ¢2. The distribution ofr?(k)/var(r(k)) is plotted in Fig. 3(b), and found to perfectly follow
the theoreticaly? distribution. In contrast, the distribution of(k)/02 shown in Fig. 3(c) significantly
deviates fromy?, due to the dominant majority of its population valued mudaghbr than 108, or the
99.9% probability bound of the? distribution. The few nontrivial values in this plot are digethe very

rare events where?(k)/a2 evaluates lower than 18,

B. Fault detection in a MIMO dynamic system

1) Model and simulation parameters€Consider a linearized VTOL (vertical take-off and landing)

model, originally appeared in [38] and also studied in [2]1][ in the form of (3,4); withD = 0,F = I,
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0 I
-2500 -2000 -1500 -1000 -500 0 500 1000 1500 2000 2500 0 2 4 6 8 10 12 0 2 4 6 8 10 12
(a)

Fig. 3. Distribution of respectivelpd in (a), r2(k) /var(r (k) in (b), andr2(k)/o2 in (c). Solid: theoretical distributions. Dots:
empirical probabilities evaluated in continuous bins,lesratio between the number of points in each bin and the hotaber
of MC simulations 16 (283 bins within the & bound for (a), and 217 bins within the 9% cdf bound for (b) and (c)).

andA,B,C as discretized at a sampling rate 06 Geconds, from the following continuous time model

(distinguished from discrete-time model by the subscrgd),”
Xe(t) = AcXc(t) + Beuc(t)

Ye(t) = Coxe(t)

00366 00271 00188 —0.4555 | (100 0]
| 00482 -101 00024 —40208| [0 1 0 0
P = | 01002 asesr o707 w42 |'" |00 10|
0 0 1 0 | (00111
- T
o _ | 04422 3sass 552 0
| 01761 —7.5022 449 0

The process and measurement noigg),v(k), are assumed to be zero mean white noise, respectively
with a covariance ofQy, = 0.25-14 andQ, =2-I>.
In the identification experiment, an empirical stabiliziagtput feedback controller was used; i.e.

00 -05 O
u(k) = — -y(K) + (k)
0 0 -01 -01
where (k) is a zero-mean white noise with a covariance of (lag)), which ensures that the system is
persistently excited to any order. 2000 data samples wdkected from the simulation.
The past horizon was chosen ps= 15. The covariance of the identified parameters (see e.{), [18
i.e.

Cov(ved3)) = (ZiuZy) '@ Ze, (42)
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has a maximum singular value of0@4, corresponding to an SNR of 10{g¢l/N-1/||Cov(veqZ))| ) =
—19.4dB. Based on the steady-state Kalman filter (see e.g. [27]) [@&he discrete-time VTOL model,
|C®P||2 was found to be 2 x 10~°. The other parameters of Algorithm 1 were choseras10,a =
0.005. The design phase of this algorithm produced the paeasjgt 5., (Zig Zjy) 2, I:IZL’p,Tl},TyL,I?fL’p,TfL.

The online detection experiment is designed as follows. ifital states of the system were set as
(10101 f. An LQG tracking controller was used, to maintain a vertigelocity (the second output)
of 40. The purpose of this closed-loop experiment is to sHmvadvantage of the robust fault detection
method, when the I/O signals in the system are large enougﬁzfge to be significantly different from
5L, |

2) Fault detection resultsConsider the following actuator faults. The first actuataswgtuck at-3 in
the interval of 30K k < 600; and the second actuator had a bias-6fin the interval of 90K k < 1200.
The simulation was run for 1200 sampling instants.

We checked (40) based on the steady-state Kalman filter:

L/
12e ™13 (Ived Xia) 12 + [ &x-poll2)”

Here, we usedty_p |, instead ofE€¢_ ), since the latter cannot be evaluated. In practice, (40hatan

=54x107°> ||CDP|3.

be computed. Practical method for tunipg. is suggested in Remark 5.

We tested and compared four data-driven fault detectiontisok all with p=15L = 10. These are
Pss the classical model-based PSA, with,B,C,D,K) identified by the PBSID-OPT method of [12];
Pnp the data-driven PSA, proposed in Sec. 3 of [18};, the nominal data-driven method proposed in
Sec. Il of this paper, without considering the parametentifieation errors;F,, the robust data-driven
method, as proposed in Sec. Il of this paper. The test toidstwere all computed with the false alarm
rate of 05%, as in they? test. The results are illustrated in Fig. 4 and compared énfafiowing table,
where FA and MA means the number of respectively false alaamis missed alarms; and SCR is the

overall successful classification rate.

FA  MA Delay SCR
Pss | 584 0 0 51.33%
Pmp | 254 3 0 78.58%
Fno | 556 0 0 53.67%
Frp 16 1 0 98.58%

As indicated by their large magnitudes above the threshatdier the fault-free case in Fig. 4, none
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of the nominal data-driven algorithms can correctly qusrttie distribution of their test statistics, since
only the innovation signals are considered therein to behststic. Besides, the statisticsf under the
nominal cases were even further away from the threshold tthase ofP,, because the identified state
space matrices not only inherit the errors from the Markosapeeters identified first, but also contain
model reduction errors and the errors from solving a seceastisquares [12]. Consequeniy become
highly nonlinear in the noise originally contained in themdification data.

The robust data-driven method correctly accounts the ceitgp@ovariance information contained
both in the innovation signals and in the parameter ideatifio errors, as can be seen from the correct
theoretical threshold separating the fault-free case fitmarfaulty one. The FAR is significantly reduced,
but is slightly higher than the design parameter- 0.5%, mainly due to the FAs from sampling instant
601 to 610. Since. = 10, it took 10 sampling instants for the fault signals to ety retreat from the
detection window. However, the robust data-driven methasl & lowered sensitivity to faults, compared
with its nominal counterpart, as can be seen from the redgapdetween the test statistics of respectively

the fault-free case and the faulty one. This is the conseerass to pay for the robustness.

V. CONCLUSIONS

In this paper, we have explicitly analyzed the effect of paeter identification errors on the data-driven
fault detection design. We have also derived in closed-fitenresidual vector covariance in terms of
both the innovation signals and the parameter identifinagiwors. Besides, we have established the error
bound in neglecting the contribution of the bias terms duiait@l states to the residual; and showed that
this error decays with the past horizon. All the analytiealuits are tested in the simulation studies, which
have validated that the data-driven fault detection mett@ekloped in this paper has clearly improved
performance compared to the nominal data-driven solutigtisout taking into account the identification
uncertainty, especially when the SNR of the identificatiatadis low. A robust fault isolation method
against parameter errors is developed in the companionr g@8pg Possible future directions are to
extend the robust fault detection method to deal with miid@pive faults and to linear parameter varying

systems.
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APPENDIX A

PROPERTIES OFKRONECKER PRODUCTS

In the paper, the following properties of Kronecker produ®&9] are frequently used.

Lemma 2:For matricesMy, M», M3, My with proper dimensions, the following properties hold:

vedM;-Mz-M3) = (M3 @Mj)-vedMy), (43)
(Mi@M2)@M3 = M1® (M2®Ms), (44)
(M1®@M2) - (Mg®Ma) = (M1-Mg) @ (Mz2-Ma), (45)
(M1+Mz)®M3 = Mp®@Mz+Mz® Ms, (46)
(MiaM)T = M{eM]. (47)
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APPENDIX B

PROOF OFLEMMA 1

We only consider the fault-free case. By the output equati®), fori =1,---,L, we can write

Zk—L+i-1,p

y(k—L+i) = COPRk—p—L+i)+ek—L+i)+(Z+AZ)-
u(k—L+i)

- ~ ~ ZK—L4i— - ZK—L4i—
Here,= is replaced by +A=. SinceA=- KLHTLP s a column vector, it equals vg\= - koLrLe ,
u(k—L+1) u(k—L+1i)
which by Property (43), can be written as

([zI—L—H—l,p u'(k—L+ i)] ® |4) -veqAZ)

On the other hand, by Property (43), Eq. (17) can be rewritiem vectorized form; i.e.

veqAs) = (ZLT@l) ved Eq)+[Z5" @ (COP)]-ved Xig).
We hence have
AZ. u(kkiuflp) = (o Liap Tk=L+i)]@1)-{(Z] @1)ved Eq) + 2 @ (COP)ved Xia) }

Now, assemblg(k—L+i),i=1,---,L into yi, and arrange the terms, the residual structure (33) follows

APPENDIXC

PROOF OFTHEOREM 1

Again, e and ve¢Ejq) are independent, white, and have zero mean. \With= 0, the mean of the

residual equals
Er =B +Eby = [IL® (COP)]- By pu+ (24 Z4") @ (COP)| - E[ved Xia)].

For simplicity, we will also use the sample estima&%Zm to repIaceE(ZiBZm) in this proof.
With the cross correlations of the independent terms left thie covariance ofy | takes the following
form,

Cov(rkL) = Cov(BkL)+ Coviby )+ Cov(k)+Coviexy).

To seek ((3k,|_ —EBkL)- QIL> =0, note that the closed-loop observer stateXip are independent of
the innovation signals contained Wiy, given the measured past 1/O signals. This can be seen frhm (7
and is similar to the standard discussions in Kalman filtersg. [27, Chapter 7]. However, veXjq)

is stochastic with bounded covariance matrix as given i), (6t distributed independently of VidEiq ).
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In Cov(ry ), ComCkL) +Cov(ek ) is derived in (38). The other two terms are derived as follows
Cov(by) = [IL® (CPP)]- Cov(Ek_pL) - [IL® (COP)T]

Here,C®P is the true constant parameter of the plant, and can hencebedwoutside the “Cov” operator.

Besides, since&(k) —X(k) has zero mean, and is uncorrelated with the past I/Os [27pt€hE], we have
Cov(Bku) = |(Z5Z") @ (COP)| - Covtved(Xia)) - | (Z}1Za) @ (COP)T|.
Then due to (15,37), and Properties (44,45),
Cov(bkL) + Cov(BkL)

=< [1L® (CPP)]- [IL @ (GZdn)] - (1L (COP)T] + | (2], Z45T) @ (COP)] - [In @ (T2n)] - | (2, Zo1) @ (COP)T |
- (IL +zg|ziQTZiLzol>  [(COP)(02dn) (COP)T]
= (IL+Z5(Zia Zg) "' Zo1) @ [(CPP)(T5dn) (COP)T].
Now, due to the inequalities (14,36),
pzol

_z id

Z5 (ZuZg) Y70 = l.

The error bound can finally be quantified as
[Cov(ry L) — ZZE.,e
= [|Cov(biL) + Cov(BkL) |2

L)
<HIL+Z (Z,dzig)*lzo.
pZO
<(1+5). P33

This completes the proof.

|2

|| (C@P)(a5dn) (COP) T,

APPENDIXD

ANALYSIS OF THE CONDITION TO IGNORE THE NONCENTRALITY IN THE DSTRIBUTION OF T(K)
First, recall that the cdf of the noncentgf distribution, denoted aB(t(k);L¢, Ay, , ), has no closed-

form expression irLZ and A, , but can be approximated by the cdf of a normal distributidented
by Pn) [40]; i.e.

l—ab(l—a—|—0,5(2_a)cb)_< 1(k) >a

L0+ Ar,
a\/2b(1+ch)

Pn

Here, the scalarg,b,c are defined as

2(LOAAn N(LE+3A, ) LE+2M,, =
3 (Ll+2A )2 (LA )P

a—1)(1-3a).
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Clearly, Py is parameterized by the linear combinations of the DdF-and the non-centrality parameter,
Args e LO+i Ay ,i=1,23. Hence, ifA,, < L¢, thenLl+i-A,, ~LLi=1,23; and thusy?, ,

' ’ ' ’ TR L
reduces toxZ,. This is what remains to show.

We shall now derive an upper bound [@E7 ||>.

_1 _1
HEfk.,Lust(z;;e) “EB +H<zZee) “Ebi,
, e

2
Similar to the derivations in proving Theorem 1, we have

1 2
H (Zhee) "B ,
—Eved Xu)|" - {2} Zor- (28(Z0Z}) 2o +10) - 232" | @ [(COP)TZLHCPP)]} - E [ve Xig)]
< E|veq Xig)]"- {In ® [(CPP) 5, 1(CPP)]} - E [veq Xig)]

<Eved Xig)]"- (1% 23 |COP3- Inn) - E [ved Xia)]

1/2
P2|3- |ICoP3- | E [ved Xia)] 3

=|[Ze
In the first inequality, we use the fact that for an arbitrargtix M, M(1+M™M)~IMT < .2
Similarly,

~1/2

1 2
2 2 2 . 2
” (st.e) Eby || <|[|Ze” 7|5 [|CPP||3- [[Edyk_pLll-
' 2

Collecting these inequalities together and using the ¢mmd{40), we have

~ 2 -1/2 « 2
Mg = EAcL]ly < 12?13 ICOPI3- (IE[ved Xio)] |2+ [ Edxpill2)* < ¢ -LE,

forO< {« 1.

| M

1 Ta—1pT
By Schur complementM(l +M'M)"*M' < | &
y P ( ) [MT I+MTM

]>O©I+MTM—MTMI>O.
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Fig. 4. Test statistics of the four different data-drivenlfaletection scheme. Uppd#y, (solid) andF,, (dash-dotted). Middle:
Pss (solid). Lower: Pmp (solid). Horizonal dashed lines: the statistical detectioreshold determined by the FAR= 0.5%.

November 7, 2012 DRAFT



	Robust Fault Detection With Statistical Uncertainty in Identified Parameters-TitlePage.pdf
	Robust_dd_detection

