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Sammanfattning 

Denna avhandling består av fem artiklar och behandlar främst teori och numeriska metoder  
för att approximera kvadratur områden (quadrature domians, QDs). 

Den första artikeln behandlar entydighet och allmänna egenskaper hos tvåfas QDs. 
Vi presenterar två numeriska metoder för att approximera enfas QDs i andra artikeln. Den 

första metoden är baserad på egenskaperna hos den fria randen och så-kallade  "level set" 
metoden.  Vi  använder  "shape  optimization"  för  att  konstruera  den  andra  metoden.  Båda 
metoderna är testade i olika numeriska simuleringar.

I det tredje artikeln approximera vi flerafas QDs med hjälp av finita differens metoden. Vi 
visar att den andra metoden är monoton, konsistent och stabil. Från Barles-Souganidis sats  
följer det då att metoden är konvergent. Vi presenterar också olika numeriska simuleringar.

Vi introducerar QDs i en delmängd av Rn och studerar existens och entydighet jämte en 
numerisk metod baserad på nivå mängdmetoden i fjärde artikeln.

I den sista artikeln studerar vi hur den fria randen beter sig nära den fixa randen för ett 
semilinjärt problem. Vi visar att det enbart är enfaspunkter på den fixa randen. Från detta kan 
vi också dra slutsatsen att den fria randen är en C1-graf upp till fixa randen.



The secrets eternal neither you know nor I
And answers to the riddle neither you know nor I
Behind the veil there is much talk about us, why
When the veil falls, neither you remain nor I.

-Omar Khayyam (1048-1131)
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Part I:
INTRODUCTION

"In the middle of difficulty lies opportunity."
-Albert Einstein.





1. Free Boundary Problems

By a ''free boundary problem'' we mean a boundary value problem in which we
deal with solving a partial differential equation in a domain such that a part of
the boundary is unknown in advance. That part of the boundary is called the
free boundary. In order to solve a free boundary problem we have to provide
a boundary condition which is imposed at the free boundary. One can then
determine both the free boundary and the solution of the differential equation.
The theory of the free boundary problems, FBPs, have been stimulated by

the increased number of mathematical model to understand a vast of actual
problems in physics (plasma physics, solidification), chemistry (chemical va-
por deposition), finance (American option), biology (tissue growth), industrial
processes such as electro photography and other areas. The corresponding gov-
erning partial differential equations, PDEs, of FBPs exhibit a priori unknown
sets, free boundaries, such as interfaces, moving boundaries, shocks, etc. The
mathematical and relevant literature of this field is enormous. At this point
we refer to [27] to review a number of applications of FBPs in science and
industry.
In this part, a brief introduction of FBPs is given. To begin with, the reader

will be given an overview of some classical examples of the topic and this
is followed by the connection of FBPs and potential theory. More precisely,
we will describe a class of free boundary problems which is called quadrature
domains and shall study the corresponding theory in the one and the two phase
cases.
We shall occasionally use the Sobolev spaceWm,p(Ω) of functions u in Ω

such that ∂αu ∈ Lp(Ω) for all multi-indices α with |α| ≤ m and its subspace
Wm,p

0 (Ω) which is the closure of C∞
0 (Ω) in Wm,p(Ω). For p = 2, we use

Hm(Ω) and Hm
0 (Ω) instead ofWm,2(Ω) andWm,2

0 (Ω) respectively.

1.1 The One Phase Obstacle Problem
The obstacle problem is the most classical example of FBPs. Suppose that a
membrane is attached to two points. We also ignore gravity. Clearly if we do
not push it up or down it forms like a string (in one dimension). But let us push
it up with a non-flat object which is called an obstacle. Thus at some point the
obstacle touches the membrane and at other points the membrane stays above
the obstacle and still is a straight line there. Here the free boundary Γ, is the set
of points where the membrane leaves the obstacle. In the following we can
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Figure 1.1. The obstacle ψ touches the membrane u and we are looking for the free
boundary Γ and the solution u.

make a mathematical formulation of the obstacle problem. Suppose that we
are given a function ψ ∈ C2 as the obstacle and we have fixed the membrane
on the boundary of a domain D with g by considering g ≥ ψ. Moreover, we
may think of the graph of u as the membrane which is now forced to stay above
the obstacle. The set

Λ := {x ∈ D : u(x) = ψ(x)},

is called the coincidence set. If we set Ω = D \ Λ then the set

Γ := ∂Λ ∩D = ∂Ω ∩D,

is the corresponding free boundary which is a priori unknown. Figure (1.1)
illustrates the one phase obstacle problem in dimension one. In the equilibrium
situation, the function u is harmonic outside the contact set, i.e,

∆u = 0 in Λc, (1.1)

otherwise u = ψ. Moreover, it is clear that u = ψ on Γ and we can see that the
equilibrium is maintained when the force∇u ·n is the same when we approach
the free boundary from any side. Hence our free boundary conditions are

u = ψ and n · ∇u = n · ∇ψ, on Γ. (1.2)
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Figure 1.2. An example of obstacle problem.

For simplicity let g = 0 and set

K := {v ∈ H1
0 (D) : v ≥ ψ},

then by variational methods one can prove the following theorem, see for in-
stance [41].

Theorem 1.1. Let D be a bounded set in Rn and ψ ∈ H1
0 (D) is given. Then

the following assertions are equivalent,
1. Minimization: u ∈ K and it minimizes the energy ∥v∥2 =

∫
D |∇v|2 dx

among all v ∈ K.
2. Variational inequality: u ∈ K and

(v − u, u) :=

∫
D
∇(v − u) · ∇u dx ≥ 0 ∀v ∈ K.

3. Linear complementary problem:
−∆u ≥ 0, in D,
u ≥ ψ, in D,
(−∆u)(u− ψ) = 0, in D.

21



Figure 1.3. The inner circle is the corresponding free boundary for Figure 1.2.

Clearly (1.1) and (1.2) imply the complementary statement. We note that for
existence and uniqueness results, the minimization and variational inequality
could be good starting points and for numerical approach the complementary
problem is easy to implement.

Remark 1.2. It is not hard to prove that the coincidence set Λ is an open set,
see [41]. Now, set v := u− ψ, then the obstacle problem turns to

−∆v = −(∆ψ)χ{v>0} in D,
v ≥ 0 in D,
|∇v| = 0 on Γ, ( The FBP condition)
v = g on ∂D.

(1.3)

1.2 The Two Phase Obstacle Problem
Consider a thin film or a membrane which is fixed on the boundary of a domain
D where a part of the membrane is under a thick liquid which is supposed
to be heavier than the membrane. Now the membrane produces a pressure
downward on the part of the membrane which is above the liquid, say λ+. On
the other hand, the part of the membrane in the liquid is also pushed up by
another force, λ−, due to the liquid's weight. The mathematical interpretation
of the equilibrium state is the two phase obstacle problem. Mathematically,
when we reach the equilibrium the solution u satisfies

∆u = λ+χ{u>0} − λ−χ{u<0}, (1.4)

22



which is called the two phase obstacle problem or the two phase membrane
problem.

u < 0

u > 0
u = 0

Figure 1.4. An example of two phase obstacle problem.

Moreover, suppose that D is a bounded domain with smooth boundary and
λ± are two bounded functions onD. Then the Euler-Lagrange equation of the
following minimization problem

Minimize E(v) =

∫
D

(
1

2
|∇v|2 + λ+v+ + λ−v−

)
dx,

over
K := {v ∈ H1(D) : v − g ∈ H1

0 (D)},

is {
∆u = λ+χ{u>0} − λ−χ{u<0}, in D,
u = g, on ∂D.

(1.5)

Here u± = max(±u, 0) and the free boundary consists of the two parts

Γ1 := ∂{u > 0} and Γ2 := ∂{u < 0}.

Suppose that u is a minimizer of the energy functional E and x0 ∈ Γ :=
Γ1∪Γ2. Then we divide the free boundary points into the following parts (see
Figure 1.5):

1. We say that x0 is a positive (negative) one-phase free boundary point if
there exists a neighborhood of x0 where u is non-negative (non-positive)
in it. In other words, x0 ∈ Γ+ \ Γ− (x0 ∈ Γ− \ Γ+).

2. We say that x0 is a two-phase free boundary point if x0 ∈ Γ+ ∩ Γ−.
Moreover, if |∇u(x0)| = 0 then x0 is said to be a branching point.
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u = 0

u < 0

u > 0

x0

x3
x4

x1

x2

Figure 1.5. This figure illustrates the different types of the free boundary points. The
point x2 is a negative one-phase free boundary point, x1 is a positive one-phase point,
x0 is a negative one-phase point touching the fixed boundary, x3 is a branching point
and x4 is a two-phase point which might not be a branching point.

One of the challenging issues in this case is that the interface could be consid-
ered as two parts. One part is when the gradient of u vanishes and one where
the gradient is non zero, and because of these two decompositions of two dif-
ferent types of growth it is not easy to obtain a growth estimate at points on
the interface. See for instance [73] and [62] and references therein.

1.3 Analysis of the Free Boundary
One of the most challenging problems in FB's theory is the regularity of the
function and the regularity of the free boundary. In this part, we try to briefly
address several relevant techniques which are required for the regularity of the
function and the free boundary that are mainly based on blow-up techniques.
To have a general discussion, we consider a general form of the problems

(1.3) and (1.5). A smooth domainD and a function g in some appropriate class
is given. We are looking for the function u and a domain Ω = Ω(u) such that

∆u = χ
Ω
, in Ω ∩D

|∇u| = 0, on ∂Ω ∩D
u = g, on ∂Ω.

(1.6)

Since we are interested in to study the free boundary locally, we restrict our-
selves to the solutions defined on the balls with centers on the free boundary.
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Definition 1.3. (Local Solution) Let x0 ∈ Γ and M,R be two positive con-
stants. For a C1,1 solution u of the free boundary problem (1.6), we say
u ∈ PR(x0,M) if

∥D2u(x)∥L∞(BR(x0)) ≤M.

We will use the abbreviated notation PR(M) for the class PR(0,M). If one
chooses R = ∞ then u is defined in Rn and is called global solution. More
precisely, u ∈ C1,1 is a global solution if

∥D2u(x)∥L∞(Rn) ≤M.

The class P∞(0,M) will also be denoted by P∞(M). If u ∈ PR(x0,M)
then the rescaling of u at x0

ur(x) = ur,x0
(x) :=

u(x0 + rx)− u(x0)

r2
, x ∈ BR/r

is in PR/r(M), see [48] section 3.3. Therefore ∥D2ur(x)∥ ≤M in BR/r and
consequently

∥∇u(x)∥ ≤M∥x∥ and ∥u(x)∥ ≤ 1

2
M∥x∥2,

for all x ∈ BR/r and when g = 0. Thus we can find a sequence ui := uri of
solutions to problem (1.6) and ri → 0 such that

ui → u0 in C1,α
loc (Rn) and for any 0 < α < 1.

We say that u0 is a blow-up of u at x0. The following lemma states the prop-
erties of blow-ups. For the proof see [48], section 3.4.

Lemma 1.4. Suppose that for some 0 < α < 1 we have ui → u0 in C1,α
loc (Rn)

then
• u0 ∈ P∞(M).
• If u0(x0) is positive (negative) then there exists i0, δ > 0 such that ui(x0)
is also positive (negative) for all i > i0 in Bδ(x0).

• u0 solves the same problem (1.6), as ui.
• ui → u0 strongly inW 2,p

loc (D) for any 1 < p <∞.

1.3.1 Interior Regularity of the Function and the Free Boundary
For the sake of clarity let x0 = 0 and u(0) = 0 and consider a general rescaling
at the origin i.e,

ur(x) =
u(rx)

rα
, x ∈ B1
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for some α > 0. It solves the same problem in B1/r for some α. For most of
the problems the optimal regularity for u is C⌊α⌋, α−⌊α⌋ when the scaling is α.
To prove the optimal regularity one first usually (depending on the problem)
prove for example Cβ (or C1,β) regularity for some 0 < β < 1. For instance,
in the one and the two phase obstacle problem, by standard elliptic theory we
get u ∈ C1,β(K) for any K ⊂⊂ D and 0 < β < 1, see for instance [31]. To
prove the regularity, we need an optimal growth for the solution, i.e,

sup
Br(z)

|u| ≤ Crα

when z is a free boundary point and r is small enough. For more information
of this method we refer to [42], [62], [41] and [71].
We also need to be sure that the blow-up does not vanish identically, other-

wise we lose all information in the limiting process. For most cases one is able
to prove an inequality is so called non-degeneracy of the form

sup
Br(z)

|u| ≥ Crα,

for some constant C.
The second interesting problem is the interior regularity of the free bound-

ary. In most cases, one expects that the free boundary is the graph of a C1-
function. The optimal regularity and non-degeneracy lead us to prove that the
free boundary has finite (n − 1)-dimensional Hausdorff measure. The main
idea to prove that a curve is a graph of C1-function is to zoom in enough and
find that it is close to a plane. We can interpret ur as the 1

r -times zoomed in.
The optimal C1,1

loc regularity for the solution to (1.5) has been proved by
Uraltseva in [71] and Shahgholian in [62]. The regularity for the free boundary
has been studied by Shahgholian, Uraltseva and Weiss in [63] and [65].

1.3.2 Monotonicity Formulas
TheWeiss monotonicity formula, [72] and Alt, Caffarelli and Friedman, (ACF
monotonicity formula) [3], are two significantly effective tools for analyzing
the free boundary problems. Using the Weiss monotonicity formula we can
often obtain that the blow-up is a homogenous function.

Theorem 1.5. (The Weiss Monotonicity Formula) Suppose that F (Du) =

∆u = f(u) where f is a smooth function and define G(t) =
∫ t
0 f(s)ds. Then

the function

W (r, u, x) :=

∫
B1

(
|∇ur|2

2
+G(u)

)
dx− α

∫
∂B1

u2r dσ
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is, under suitable assumption on f , a monotonically increasing function in r.
Moreover, W is constant if and only if u is a homogenous function of degree
α.

Theorem 1.6. (ACF Monotonicity Formula) Let v and w be two non-negative
subharmonic functions with disjoint support such thatw(0) = v(0) = 0. Then
the function

Φ(r) :=

∫
Br

|∇v|2

|x|n−2
dx

∫
Br

|∇w|2

|x|n−2
dx

is a monotonically increasing function in r.

Because of monotonically increasing ofW one is able to prove that if u0 is
a blow-up then

W (s, u0, x) = lim
i
W (s, uri , x) = lim

i
W (sri, u, x)

= lim
i
W (ri, u, x) =W (1, u0, x).

HenceW (u0) is constant and u0 must be homogenous. For more information
see [6], [14], [15], [41] and [65].

1.3.3 Optimal Regularity up to the Fixed Boundary
Another great interesting problem is the study of the behavior of the free bound-
ary close to the fixed boundary. Roughly speaking, we deal with this problem
by employing the similar tools and techniques for interior regularity such as
blow-ups, optimal growth and non-degeneracy. By similar scaling techniques
one is able to get the optimal regularity up to the fixed boundary by consid-
ering appropriate boundary conditions. In other words, we study the behavior
of blow-ups at points near the fixed boundary instead of interior points. To be
more clear, let the fixed boundary be a plane. We desire to investigate how the
free boundary approaches the fixed boundary. In most cases the answer is that
the free boundary touches the fixed one in a tangential manner. Then after the
blow-up, we have a half space solution. We refer the reader to [4], [40], [45]
and paper V in this thesis.
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2. Quadrature domains

The English word quadrature comes from the Latin word quadratura. It means
making square shaped and in general it meant to divide a land into squares. In
mathematics quadrature is referred to constructive or numerical methods for
determining areas. In this thesis the term quadrature has a related meaning.
For example, a quadrature identity will typically be an exact formula for the
integral of harmonic or analytic functions. The domain of integration is then
a quadrature domain. We say a few words of the starting point of quadrature
domains theory.
H. S. Shapiro and his group began to extend and generalize the concept of

quadrature domains, QDs, more than thirty years ago. Some main references
of QDs are [35], [66], [70] and [38].
The connection between Laplacian growth, especially Hele-Shaw flow, and

quadrature domains has been investigated by Richardson in [68]. Before that
these two theories were developing in parallel. For instance, around 1980, the
construction of quadrature domains by potential theory techniques ([57] and
[58]) and the theory of weak solutions for Hele-Shaw problem ([36] and [24])
were studied simultaneously and independently. For further reading we refer
the reader to [38] and references therein.
We shall use the following notations in this part.

Rn The Euclidean space of dimensionN,
µ an arbitrary measure,
Ω an open subset of Rn (generally connected),

|Ω| the volume of Ω,
Lp(Ω) the usual Lebesgue space with respect to the Lebesgue measure,

HLp(Ω) the subspace ofLp(Ω) that consists of harmonic functions inΩ,
SLp(Ω) the subspace ofLp(Ω) that consists of subharmonic functions inΩ,

χΩ the characteristic function ofΩ,
Ck(Ω) the class of k times continuously differentiable functions inΩ,

We always denote the fundamental solution of the Laplace equation by G in
Rn. In other words for x ∈ Rn \ {0},

G(x) =

{
1

N(N−2)ωN
|x|2−N , for N ≥ 3,

− 1
2π ln |x|, for N = 2,

where ωN is the volume of unit sphere in Rn. It is known that if Ω is open and
bounded then for G(x − y) considered as a function of x ∈ Ω, the following
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holds

G(x− y) ∈ HL1(Ω), ∀y ∈ Ωc,

−G(x− y) ∈ SL1(Ω), ∀y ∈ Ω,

±Gj = ± ∂G

∂xj
∈ SL1(Ω), ∀y ∈ Ωc, 1 ≤ j ≤ N,

see [34]. Moreover, the linear combinations with positive coefficients of the
functions

±Gj(x− y), G(x− y), x ∈ Ω, ∀y ∈ Ωc and −G(x− y), ∀y ∈ RN ,

are dense in SL1, and the linear combination with real coefficients of the func-
tions Gj(x− y) and G(x− y) for y ∈ Ωc are dense in HL1, see [34].

2.1 One Phase Case
In this section we give a formal definition of a quadrature domain. First we
introduce the Newtonian potential and some of its important properties. The
basic sources for theses results are [5], [21] and [43].
Let µ be a measure. ByUµ wemean the Newtonian potential of the measure

µ defined by

Uµ(x) := (G ∗ µ)(x) =
∫
Rn

G(x− y)dµ(y), x ∈ Rn.

Thus, UχΩ (from now on UΩ for simplicity) is the Newtonian potential of Ω
considered as a body with density one.

Theorem 2.1. If µ is a Radon measure with compact support then Uµ and
∇Uµ are defined a.e. and are in L1

loc. Moreover, if µ is positive then Uµ is
defined everywhere.

Remark 2.2. A measure µ on a measurable space (X ,Σ) is inner regular if
for every A ∈ Σ we have µ(A) = sup{K : K is a compact set in A} and it is
called Radon measure if it is inner regular and locally finite.

Theorem 2.3. Suppose that µ is a Radon measure with compact support then
one has

−∆Uµ = µ,

in the sense of distributions.

Corollary 2.4. If µ is a Radon measure with compact support then Uµ is har-
monic in the complement of supp(µ).
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Theorem 2.5. If µ is a Radon measure with compact support then

|Uµ(x)| = O(|x|2−N ) → 0 as |x| → ∞ if N ≥ 3,

and

Uµ(x) = − 1

2π
ln |x|

∫
dµ+O(|x|−1) as |x| → ∞ if N = 2.

Generally, if −∆u = µ then we can not derive that u = Uµ, since one can
add any harmonic function to u. But if u behaves like a potential at infinity we
are able to conclude u = Uµ.

Theorem 2.6. Suppose that µ is a Radon measure with compact support and
−∆u = µ. If for N ≥ 3 the function u satisfies

u(x) → 0 as |x| → ∞

and

u(x) = − 1

2π
ln |x|

∫
dµ+O(|x|−1) as |x| → ∞ if N = 2,

then u = Uµ.

Now we define the quadrature domain.

Definition 2.7. Suppose that µ is a measure with compact support. By a
quadrature domain with respect to µ we mean an open connected set Ω ⊂ Rn

such that supp(µ) ⊂ Ω and ∫
Ω
h dx =

∫
h dµ, (2.1)

holds for all h ∈ HL1(Ω). We will say Ω is a quadrature domain (QD) and
write Ω ∈ Q(µ,HL1).

In the simplest case, it is known that the discD(a; r) is a quadrature domain
w.r.t Dirac measure (see [25]) and the quadrature identity then reduces to the
ordinary mean value property for harmonic functions:

h(a)|D(a; r)| =
∫
D(a;r)

h dx.

Generally, if Ω is a bounded domain in Rn and∫
Ω
hdx = |Ω|h(x0), (2.2)
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holds for all h ∈ HL1(Ω), where x0 is an arbitrary point, then Ω is a ball
centered at x0, see [25]. Thus a quadrature identity can be thought of as a
generalized mean value property.
The quadrature identity (2.1) is equivalent to the following identities (see

[34]), {
UΩ = Uµ, inRn \ Ω,
∇UΩ = ∇Uµ, inRn \ Ω.

(2.3)

It has been explained in [37] and [56] that Ω ∈ Q(µ,HL1) is equivalent to
finding a pair (u,Ω) of solution of the following one-phase free boundary prob-
lem: {

∆u = χΩ − µ in Rn,

u = |∇u| = 0, in Rn\Ω,
(2.4)

where u = Uµ−UΩ is the so-called modified Schwarz potential (MSP) of the
pair (µ,Ω). We refer to [22], [28] and [44] and references therein for further
reading.

2.1.1 Subharmonic QDs
Let µ be a measure with compact support. By a subharmonic quadrature do-
main we mean an open connected set Ω ⊂ Rn such that supp(µ) ⊂ Ω and∫

Ω
h dx ≥

∫
h dµ, (2.5)

holds for all h ∈ SL1(Ω). We write Ω ∈ Q(µ, SL1) if (2.5) holds. M. Sakai
in [58] and [59] has studied the subharmonic QDs in details.
Suppose that µ = αδ0 where δ0 is the Dirac mass at origin and α > 0. Then

Q(µ,HL1) = Q(µ, SL1) = {B(0; r)},

where r ≥ 0 is determined by |B(0; r)| = α, see [34].
A similar discussion shows that Ω ∈ Q(µ, SL1) if and only if Uµ ≥ UΩ

in Rn and Uµ = UΩ in Rn \ Ω. From a PDE point of view, Ω ∈ Q(µ, SL1)
if and only if u and Ω := {x : u(x) > 0} solve the following free boundary
problem, (see [37]) 

∆u = χΩ − µ in Rn,

u ≥ 0, in Rn,

u = 0, in Rn \ Ω.
(2.6)

Example 2.8. Set µ = (2x2 + y4)χ
A
where A is the annulus making by

B1 = B1(0) and B2 = B1.4(0). Figure 2.1 and 2.2 illustrate the numer-
ical approximation for the solution of (2.6) and |∇u| on the free boundary
respectively.
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(a) (b)

A

Figure 2.1. An example of a one phase quadrature domain with respect to the measure
µ = (2x2 + y4)χ

A
where A is the annulus in the figure (a). Figure (a) shows the first

iteration and Figure (b) illustrates the numerical approximation of Ω.

(a) (b)
Figure 2.2. Figures (a) and (b) depict |∇u| on the outer boundary of Figure 2.1 (a) and
(b) respectively.

It is easy to give examples of (harmonic) QDs that are not subharmonic QDs.

Example 2.9. Let µ = µα = αρ where α > 0 and ρ is the mass uniformly
distributed on S = ∂B(0, 1). Define

Ωβ = {x ∈ R2 : β < π|x|2 < β + α},

where β ≥ 0, Ω = Ω0 ∪ {0} and clearly |Ωβ| = α. Sakai in [58] has proved
that for each 0 < α ≤ eπ there exists a unique β = βα with π − α < βα < π
such that ∫

Ωβα

Gdx =

∫
Gdµα.
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Figure 2.3. The surface of the function in Figure 2.1, (b).

For 0 < α ≤ π one can prove (see [34]),

Q(µα,HL
1) = Q(µα, SL

1) = {Ωβα
},

and for all α > π

Q(µα,HL
1) = {Ω,Ωβα

} and Q(µα, SL
1) = {Ωβα

}.

For more details, see [66].

2.2 Two Phase Case
Two-phase quadrature domains has been introduced recently by Emamizadeh,
Prajapat and Shahgholian in [23]. They have studied the existence and geo-
metrical properties of the two phase case. In this section we briefly address
some properties of this class of domains.
Let Ω be an open and bounded subset of Rn and H̃(Ω) be the set of all

Uη where η is a signed Radon measure with compact support in Ωc. It is not
difficult to show that all functions in H̃(Ω) are harmonic inΩ and if h ∈ H̃(Ω)

then h ∈ L1
loc(Rn). Moreover, for x ∈ Ωc we have G(x − ·) = U δx ∈ H̃(Ω).

The proof of the next lemma could be find for instance in [5].

Lemma 2.10. Suppose that h is harmonic in a bounded open set D such that
Ω ⊂⊂ D. There exists a measure ν with compact support such that supp(ν) ⊂
D \ Ω and h = Uν in Ω.
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Figure 2.4. A two phase quadrature domain by considering two Dirac measures con-
centrated on two points.

These useful properties of H̃(Ω) provide us necessary tools to have the fol-
lowing definition for the two phase quadrature domain.

Definition 2.11. LetΩ± be two open, disjoint and connected subsets ofRn and
µ± be two positive Radonmeasures with compact supports. Moreover, suppose
that λ± are two positive constants. We say that Ω = Ω+ ∪ Ω− is a two phase
quadrature domain, with respect to µ±, λ± and H̃(Ω), if supp(µ±) ⊂ Ω±,
and∫

Ω+

λ+h dx−
∫
Ω−

λ−h dx =

∫
h (dµ+ − dµ−), ∀h ∈ H̃(Ω). (2.7)

We then writeΩ± ∈ Q(µ±, H̃(Ω)) orΩ ∈ Q(µ, H̃(Ω))whereµ = µ+−µ−,
see Figure 2.4.

Set f := λ+χΩ+ −λ−χΩ− and suppose that y ∈ Ωc. We know that h(x) :=
hy(x) = G(x− y) ∈ H̃(Ω) and consequently (2.7) yields

Uf = Uµ in Rn \ Ω.

In addition, there is a strong connection between FB theory and two phase
quadrature domains that we have studied in the first paper. By considering
supp(µ±) ⊂ Ω± we have shown that Ω ∈ H̃(Ω) if and only if (u,Ω) be a
solution of the following free boundary problem{

∆u = (λ+χΩ+ − µ+)− (λ−χΩ− − µ−), in Rn,

u = 0, in Rn \ Ω.
(2.8)
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Example 2.12. Let µ+ = πδ0 and µ− = 3πχB where B is a ball centered at
the origin with radius r0. One can find an appropriate r0 such that the pair

Ω+ = {x : |x| < 1} and Ω− = {x : 1 < |x| < 2}

are the corresponding two phase quadrature domain, see [29].

Investigating the existence and the uniqueness for two phase QDs are more
sophisticated compare to the one phase QD. To the best of our best knowledge,
the only literature [23] and [29] deal with the existence for the two phase case.
The uniqueness of the two phase case have studied in the first paper of this
thesis by considering some restrictions.
It is desirable to set up accurate conditions on µ±, even in the one phase case,

to guarantee the existence however it is a challenging problem and not easy to
cope with. For instance, if one consider µ− << µ+ then Ω− shrinks and one
loses the existence. It means that in general, we have to put some balance
condition for µ± to get the existence. The most accurate known condition is
the Sakai's condition, see [23] and references therein.

Theorem 2.13. Let µ± be two given measure with compact supports and λ±
two constants such that satisfy in the Sakai's condition, i.e.,

sup
r>0

µ±(Br(x)

|Br(x)|
≥ λ±2N , x ∈ supp(µ±).

Then the two phase problem (2.8) has a unique solution.

2.3 Application to Hele-Shaw flow
One of the most known example of Laplacian growth is viscous fluids in Hele-
Shaw cell. By Laplacian growthwemean the dynamics of an interface between
two distinct flows which is driven by a harmonic field. See for instance [17,
52]. In this subsection we study the Hele-Shaw problem.
Suppose that some incompressible fluid is confined between two parallel

plates and we inject more fluid into the gap between the plates with moderate
velocity. Consequently the fluid will occupy more space. We are interest-
ed in the behavior of boundary of the fluid region which is a free boundary.
Richardson has formulated this problem as follows, see [52].
Tomodel this problemmathematically let µ be a positive, finite and non zero

measure with compact support and supp(µ) ⊆ D where D is an open subset
of Rn with C1-boundary. Let pD be the superharmonic function such that{

−∆p
D
= µ inD,

p
D
= 0 on ∂D.

(2.9)
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The Cell

Liquid

Injection

Figure 2.5. A Hele-Shaw cell.

We are looking for a family of regionsDt for t ≥ 0, such that ∂Dt moves with
the velocity −∇p

Dt
where p

Dt
is the unique solution of (2.9).

Let D0 and µ be as above and I be an open interval. A map I ∋ t →
Dt ⊂ Rn is a weak solution of the free boundary problem if the function
ut ∈ H1(Rn) defined by χDt

− χD0
= ∆ut + tµ, satisfies ut ≥ 0 and

< ut, 1 − χDt
>= 0 where < ·, · > is the duality between H1

0 and its dual
space H−1. For more details see [36].

Theorem 2.14. Suppose that µ and D0 be as before and T > 0. Then there
exists a weak solution

[0, T ] ∋ t→ Dt ⊂ Rn,

for the problem which is unique and if ut is the function appearing above then
ut is also unique and

ut =

∫ t

0
p

Dτ
dτ.

Moreover, Dt can be chosen to be

Dt = D0 ∪ {z : ut(z) > 0}.
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2.4 Multi Phase Case
Let µi for 1 ≤ i ≤ m be measures with compact and disjoint supports. By
a multi phase QD we mean Ω :=

∪m
i=1Ωi where supp(µi) ⊂ Ωi := {x :

ui(x) > 0} solve the following FB problem
∆ui = λiχΩi

− µi in Ωi,

ui = 0 on ∂Ωi,

|∇ui| = |∇uj | on Γij := ∂Ωi ∩ ∂Ωj ,

|∇ui| = 0 on ∂Ωi \
∪

Γij ,

(2.10)

which is understood in the distribution sense and ∪i∂Ωi is the free boundary.
It turns out that Ωi ∩ Ωj = ∅ for i ≠ j. In general, the existence and the
uniqueness of the solution of (2.10) are open problems, but if we consider
µi = δi where δi is Dirac measure at the point xi, then this problem has a
unique solution.

Figure 2.6. A five phase QD.

This problem could be translated into the multi phase fluid theory which is a
generalization of two phase flow. For instance the problem in two phase cas-
es is similar to the two phase Hele-Shaw flows (Muskat problem), see Figure
2.6. Here, the phases are immiscible and non chemically related. The applica-
tions of multi phase flows are in a wide variety of industries, including power,
petroleum or modeling of propagating steam explosions.
To be more precise, consider a Hele-Shaw cell and inject fluids at a number

of points into it. The fluids regions grow as circular discs and we initially have
disjoint blobs of fluids. It is clear that before the regions meet each other the
growth of any one, does not affect on the others. But they finally coalesce and
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form a multi-phase quadrature domain, see Figure 2.6. Here we review some
interesting questions,

• How can we construct an efficient numerical scheme for the problem?
• Do we have any hole between the phases after we get the solution?
• What kind of assumptions are sufficient to have a connected multi phase
QD?

• What is the convergence rate of the numerical scheme?
For further reading aboutmulti phaseHele-Shaw flow see [18], [19], [20], [53],
[54] and [55] and references therein. Indeed, [17] is also a good reference of
the application of quadrature domains in fluid dynamics.
From mathematical standpoint, the multi phase case is a complicated prob-

lem. For instance, whilemany explicit solutions to the single-phaseHele-Shaw
problem are known, solutions to the two-phase problem (also known as the
Muskat problem) are scarce. To the best of our knowledge, there is no sub-
stantial theory concerning existence, uniqueness and geometrical properties of
the solution and the corresponding free boundary. However, the more gen-
eral mathematical question of the global existence and well-posedness of the
Muskat problem has been investigated by Siegel, Caflisch and Howison [12]
and Ambrose [1].
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3. Viscosity Solutions and Numerical
approximations

LetMn be the set of all real-valued n×n symmetric matrices. In this chapter
we consider a general form of second order PDE

F (x, u(x), Du(x), D2u(x)) = 0, in Ω. (3.1)

where F : Ω×R×Rn×Mn → R is continuous with respect to all variables.
We also suppose that F is proper which means

F (x, r1, p,M) ≤ F (x, r2, p,M), ∀r1 ≤ r2, M ∈ Mn. (3.2)

This property is very important for the uniqueness (for the comparison princi-
ple). Without this assumption the comparison principle does not hold even for
the classical solutions.

3.1 Viscosity Solutions
It is clear that even for linear PDEs the existence of solution is not an easy
problem. But one of the best method is to investigate a weaker sense of the
solution by multiplying a test function and then establish the existence and
regularity. However, for a non-linear PDE, this strategy does not work unless
the equation is an Euler-Lagrange equation of a functional. It turns out that one
need to establish a new type of weak solution. This category of solution which
is so called viscosity solutions is intimately connected with numerical analysis
and scientific computing and it provides efficient tools to perform convergence
schemes, see next section. For further reading about viscosity solution see for
instance [7] and [39] and references therein.
More precisely, by considering suitable assumptions on the PDE and ap-

propriate boundary conditions the classical solutions are in general unique but
they might not exist. For example, for the Eikonal equation |u′(x)| = 1 in
Ω = (−1, 1) with boundary conditions u(−1) = u(1) = 0 there is no clas-
sic C1 solution. One could consider that the Lipschitz solution instead of C1

which implies that the derivative does not exist at every point but just almost
every where. In this case we get the existence but not uniqueness. Crandall
and Lions introduced a different notion of weak solution in 1982 which works
very well for many first- and second-order nonlinear PDEs. This class of solu-
tion are also well-setup for the existence, uniqueness and stability of solutions
in the viscosity sense.
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Definition 3.1. A continuous function u is called
• a viscosity sub(super)solution for the equation (3.1) if for every ψ ∈
C2(Ω) and local maximum (minimum) point x0 ∈ Ω of u− ψ then

F

(
x0, u(x0), Dψ(x0), D

2ψ(x0)

)
≤ (≥)0,

• a viscosity solution of (3.1) if and only if it is both viscosity subsolution
and supersolution.

Some important remarks:
1. For a PDE of order k one can make similar definition by considering test

functions in Ck.
2. For viscosity subsolution (supersolution) it is enough to consider u being

upper semi continuous (lower semi continuous).
3. We note that the equation F = 0 and −F = 0 are different in viscosity

sense. For instance, we can show that u(x) = −|x| + 1 is a viscosity
solution for |u′| − 1 = 0 in (−1, 1) but not for the −|u′|+ 1 = 0.

4. If u solves (3.1) in e the viscosity sense then −u solves

−F (x,−u(x),−Du(x),−D2u(x)) = 0.

Definition 3.2. The fully non-linear second order partial differential equation
(3.1) is called degenerate elliptic if forM1,M2 ∈ Mn withM1 ≤M2 then

F (x, r, p,M2) ≤ F (x, r, p,M1),

whereM1 ≤M2, meansM2−M1 is a nonnegative definite symmetric matrix.

Theorem 3.3. Suppose that u ∈ C2 is a classical solution of (3.1) then it is a
viscosity solution if one of the following statements holds:

1. The equation (3.1) is a first order PDE.
2. The equation (3.1) is degenerate elliptic.

Proof. Letψ ∈ C2 andu−ψ has a local maximum atx0 then clearlyDu(x0) =
Dψ(x0) and D2u(x0) ≤ D2ψ(x0). First suppose that the equation (3.1) does
not depend on D2u. Hence

0 = F (x0, u(x0), Du(x0)) = F (x0, u(x0), Dψ(x0))

which shows that u is a viscosity subsolution. Similarly we can prove that u
is also a viscosity supersolution.
Now if F is a degenerate elliptic then by the definition (3.2)

0 = F (x0, u(x0), Du(x0), D
2u(x0)) ≥ F (x0, u(x0), Du(x0), D

2ψ(x0)).
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If we consider that u−ψ has a local minimum at x0 thenD2u(x0) ≥ D2ψ(x0)
and we obtain

0 = F (x0, u(x0), Du(x0), D
2u(x0)) ≤ F (x0, u(x0), Du(x0), D

2ψ(x0)).

Remark 3.4. This theorem asserts that the viscosity solution is consistent with
that of a classical solution. Theorem 1 in chapter 10 of [26] shows that the
statement is correct at any point where the viscosity solution is differentiable.

3.2 Numerical Methods
3.2.1 A Degenerate Elliptic Scheme
In this section we shall highlight parts of the theory of a convergent finite dif-
ference method for obstacle type problems without going into the technical
details. We build a convergent numerical scheme for degenerate elliptic equa-
tions for which the uniqueness of viscosity solution is quite well known, see
[16]. This class of equations includes free boundary problems, Hamilton Jaco-
bi equations and fully non-linear elliptic equations. More precisely we aim to
build such a scheme that preserves ellipticity. The discrete ellipticity proper-
ty is called monotonicity. For convergence we have to provide monotonicity,
consistency and stability to guarantee the convergence, see [49].
Let F [u](x) := F (x, u(x), Du(x), D2u(x)) be a degenerate elliptic opera-

tor. Consider a grid on a domain D that consist of N points xi ∈ D. Let Ni

denotes the set of all neighbors of xi. At each grid point we present a scheme by
F i[u] for F and we suppose that u(xi) = ui is a grid function. For simplicity
and from now on, we write a scheme in the following form

F i[u] := F i(ui, ui − uj) where uj = u(xj) and xj ∈ Nj .

We will discuss a class of nonlinear schemes which are monotone. This class
is called degenerate elliptic schemes and it provides a strong form of stability
and enjoys non-expansivity in the max norm. For the reader's connivence we
provide the most important definition of the concepts used in this part.
By stability we mean that for every h > 0 the scheme has a solution uh

which is uniformly bounded independently of h .

Definition 3.5. Suppose thatF is a degenerate elliptic equation with a solution
mapping S that maps continuous boundary data g, to a continuous solution u.

• We say that S is monotone if for all continuous functions g1, g2 defined
on ∂D

g1(x) ≤ g2(x) on ∂D then S(g1)(x) ≤ S(g2)(x), x ∈ D.
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• The scheme F i is consistent at x if for every ψ ∈ C2 which is defined in
a neighborhood of x

F i[ψ](x) → F [ψ](x) as h→ 0,

where h is the mesh spacing.
• The scheme F is degenerate elliptic if F i is a non decreasing function of
ui and the differences ui − uj .

Barles and Souganidis have shown that a consistent, stable approximation
scheme converges uniformly on compact subsets to the unique viscosity solu-
tion provided it is monotone, see [8].

Remark 3.6. In the work of Barles and Souganidis, they do not indicate how
to build such schemes and in general constructing a monotone scheme is the
most challenging part. A natural way for building a monotone scheme is to
implement the finite difference method.

As an example we look at a simple problem and we try to construct a conver-
gent scheme. Let u ∈ L∞(D) be the solution of the classical obstacle problem

∆u = f(x)χ
Ω

in D,
u > 0 in Ω,
u = |∇u| = 0 in D \ Ω,
u = g on ∂D.

(3.3)

for f ∈ L∞(D) and g a nonnegative function on the boundary ofD. It is easy
to see that u satisfies in

F (x, u,Du,D2u) : = max(−tr(D2u) + f, u− g)

= max(−∆u+ f, u− g) = 0.
(3.4)

One can easily verify that (3.4) is a degenerate elliptic equation and its viscosity
solution is a weak solution of (3.3) by Theorem 3.3.
For simplicity we continue in dimension two and assume thatD is a rectan-

gle. Let g = 0 andN be a uniform grid onD with mesh spacing△x = △y =
h. We use the grid function Ui,j for the approximation of uij := u(xi, yj)
where (xi, yj) ∈ N for 1 ≤ i ≤ p, 1 ≤ j ≤ q. To discretize (3.4) we use the
five stencil points for the Laplacian and get the discrete form of (3.4)

max(Ui,j − Ui,j +
fi,jh

2

4
, Ui,j) = 0,

where Ui,j = (Ui−1,j + Ui+1,j + Ui,j−1 + Ui,j+1)/4. By a simple calculation
one obtains

F i,j [u] := min(
fi,jh

2

4
− Ui,j , 0). (3.5)
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It is easily verified that this scheme is monotone, stable and consistent and
consequently this method is convergent. Moreover, the viscosity solution of
(3.3) that is also a weak solution and vice versa.
A very general form of the obstacle type problems is

max(F (x, u,Du,D2u), u− g) = 0

or min(F (x, u,Du,D2u), u− g) = 0 or even

max
(
min(F (x, u,Du,D2u), u− g1), u− g2

)
= 0.

It is possible to obtain a degenerate elliptic scheme for these formulations, see
[49].
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Part II:
OVERVIEW OF THE PAPERS

"Anyone who has never made a mistake has never tried anything new."
-Albert Einstein.





4. Overview of Paper I

In this article, we study a two phase free boundary problem which is the gener-
alization of the one phase quadrature domains, QDs. We prove the uniqueness
along other qualitative properties of the solution.
Suppose that two measures µ± with compact supports and two constants

λ± > 0 are given. Let u and two domains Ω± solve the following free bound-
ary problem{

∆u = (λ+χΩ+ − µ+)− (λ−χΩ− − µ−), in Rn,

u = 0, in Rn \ Ω,
(4.1)

where supp(µ±) ⊂ Ω± and Ω = Ω+∪Ω−. The main result of this article is to
prove the uniqueness of the solution to (4.1). We also study the link between
the theory of the quadrature domain and (4.1).
The first step is to provide an appropriate definition for the two phase QDs

by considering a proper class of test functions.
Let Ω be an open and bounded subset of Rn. Suppose that H̃(Ω) denotes

the set of all potentials Uη, where η is a signed Radon measure with compact
support in Ωc. One can easily verify if h ∈ H̃(Ω) then h ∈ L1

loc(Rn) and
clearly all functions in H̃(Ω) are harmonic in Ω. Moreover, for x ∈ Ωc we
have G(x− ·) = U δx ∈ H̃(Ω).

Definition 4.1. Let Ω± be two open, disjoint and connected subsets of Rn and
µ± be two positive Radonmeasures with compact supports. Moreover, suppose
that λ± are two positive constants. We say that Ω = Ω+ ∪ Ω− is a two phase
quadrature domain, with respect to µ±, λ± and H̃(Ω), if supp(µ±) ⊂ Ω±,
and ∫

Ω+

λ+h −
∫
Ω−

λ−h =

∫
h (dµ+ − dµ−), ∀h ∈ H̃(Ω). (4.2)

We then write Ω± ∈ Q(µ±, H̃(Ω)) or Ω ∈ Q(µ, H̃(Ω)) where µ = µ+ − µ−.

The most trivial examples of two phase QDs arise when the positivity part
and the negativity part are two disjoint one phase QDs with respect to two
measures. For non-trivial examples, see [29].

Remark 4.2. It is a challenging problem to find appropriate conditions on the
measures to guarantee the existence of QDs even in the one phase case. For
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the one phase case Sakai in [60] has established such a condition andGardiner
and Sjödin have considered a stronger version of Sakai's condition to get the
existence for the two phase case, see [29].
Obviously one has to make a balance between the measures to obtain the

existence. In other words, if the intensity of one of the measures is much smaller
than the other then the bigger one will cover the smaller one and we lose the
existence.

4.1 Main result
Let f = λ+χΩ+ − λ−χΩ− and µ = µ+ − µ−. For y ∈ Ωc we know that
h(x) = hy(x) = G(x− y) ∈ H̃(Ω) and consequently (4.2) implies

Uf = Uµ, in Rn \ Ω.

For u = Uf − Uµ, we can prove that Ω ∈ H̃(Ω) if and only if (u,Ω) is a
solution of the following free boundary problem

∆u = (λ+χΩ+ − µ+)− (λ−χΩ− − µ−), in Rn,

u = 0, in Rn \ Ω,
supp(µ±) ⊂ Ω±.

(4.3)

The main contribution of this paper is to answer the following question.
IfΩ± andD± satisfy (4.2) then what is the relation between these domains?

Lemma 4.3. If Ω± and D± satisfy (4.2) then for Ω := Ω+ ∪ Ω− and D :=
D+ ∪ D−, there is a measure ν with compact support such that Ω , D ∈
Q(ν, H̃) and supp(ν) ⊂ Ω ∩D. Moreover, Ω ∩D ̸= ∅ and

λ+|Ω+| − λ−|Ω−| = λ+|D+| − λ−|D−|. (4.4)

Concerning the uniqueness we take into account another important proper-
ties for the domains. We assume that the domains are solid otherwise one loses
the uniqueness, see [34] and [59]. Now by considering the sign conditions

Ω± := {±u > 0}, D± := {±v > 0},

then it is easy to get u = v and Ω± = D±, just by applying the maximum
principle. The main theorem of this paper is as follows.

Theorem 4.4. Suppose that u and v are two solutions of (4.3) with the corre-
sponding domains Ω± and D±. Let Ω− ⊂ {u < 0} and D+ ⊂ {v > 0} and
suppose that Ω− ∪D+c is connected. Then Ω± = D±.
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We briefly explain the idea of the proof. First we can see that v is non-
negative in Rn \D− and u is non-positive in Rn \Ω+. Then let Ω∪D ⊂ BR

and w = u− v. We can prove that{
∆w ≥ 0 in L = BR \ (D+ ∪ Ω−),

w ≤ 0 on ∂L.

Finally by using the strong maximum principle it is verified that u = v in L.
For the last part it is easy to show that

Ω+ ∪D− ⊂ D+ ∪ Ω−.

On the other hand we have

Ω+ ∩ Ω− = D+ ∩D− = ∅.

Hence Ω+ ⊂ D+ and D− ⊂ Ω− which contradict (4.4) and this proves the
theorem.
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5. Overview of Paper II

The main contribution of this paper is to find numerical schemes for the so-
lution of the following FBP, arising from the one phase quadrature domain
theory.
Find u and Ω = {x : u(x) > 0} such that

∆u = χΩ − µ, in Rn,

u ≥ 0, in Rn,

u = ∥∇u∥ = 0, in Rn \ Ω,
supp(µ) ⊂ Ω.

(P)

Here µ is a Radon measure with compact support and Ω is its corresponding
quadrature domain. The function u and Ω are unknown and ∂Ω is the free
boundary.
The first numerical approach is based on blow-up techniques and we present

a link between the theoretical and numerical parts of the free boundary theory.
The second method is constructed by employing the shape optimization tech-
niques. See [50], [51] and [61] for further reading about the level set method
and [67] for the shape optimization analysis.

5.1 First Numerical Method
This method is mainly based on the properties of the free boundary and the
level set method. In order to explain the idea, we look at the problem (P) in
one dimension. We have

u′′ = 1, in Ω \ supp(µ). (5.1)

Now if we consider xf as the free boundary point and multiply (5.1) by u′ and
then integrate over (x, xf ) we will end up with

1

2
(u′)2(x) = u(x).

In higher dimensions, we prove that |∇u(x)|√
2u(x)

goes to one when x approaches
the free boundary.
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Theorem 5.1. Let x0 be a regular free boundary point and x ∈ {u > 0} then

lim
x→x0

|∇u(x)|√
2u(x)

= 1. (5.2)

To prove this theorem, one needs some techniques such as optimal growth,
non-degeneracy and blow-up. For full description of these concepts, see [48].
Let x0 = 0 be a regular point and u0 be a global homogenous solution of

degree two, then by Theorem 3.22 in [48] we deduce that u0(x) = 1
2 [(x ·e)

+]2

where e is a unit vector. Therefore by rescalling the problem we get∥∥∥∥u(rx)r2
− 1

2
[(x · e)+]2

∥∥∥∥ → 0,

which leads us to (5.2).
Now we would like to construct a sequence (Ωk, uk)which converges to the

solution of Problem (P). To begin with, consider the following problem{
∆uk = 1− µ, in Ωk,
∂uk

∂nk
= −θuk, on ∂Ωk.

(5.3)

Theorem 5.1 states that θuk should behave as
√
2uk, so we choose

θ =

(
2

sup
∂Ωk−1

uk−1

)1/2

. (5.4)

We mention that to get an appropriate value for θ in step k, let θ be as in (5.4)
and solve (5.3) to obtain the value of uk on ∂Ωk. Then iterate the formula (5.4)
to converge and obtain the optimal value for θ.
By the level set method, the displacement of the boundary Ω(t) can be ob-

tained by considering the following equation:

∂ϕ

∂t
+ ζ

√
2u(t) = 0, on ∂Ω(t). (5.5)

In order to use the level set method, one has to extend the velocity field. Let
v be the velocity extension to a big domain T such that supp(µ) ⊂ T . This
leads us to extract the level set formulation

∂ϕ

∂t
+ v(t) = 0, in T \ supp(µ). (5.6)

The first algorithm is given as follows. Choose a tolerance such that TOL <<
1 and let Ω0 be an initial guess. Compute uk on Ωk which is the solution of
(5.3). Then extend the velocity and find the level set function ϕ from (5.6) and
get Ωk+1. If sup

∂Ωk+1

|uk+1| < TOL, then stop otherwise, set k = k + 1 and

iterate the previous steps.
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5.2 Second Numerical Method
One of the essential tools to design and construct an industrial structure is
shape optimization. The shape optimization consist of finding a geometry
which minimizes a given functional with specific constraint. From a math-
ematical point of view, in shape sensitivity we analyze how the solution of a
PDE changes when the domain is changing with a velocity field. For further
reading, see for instance [67].
To beginwith, letΣ ⊂ DwhereD is an approximation for the corresponding

quadrature domain w.r.t the measure µ. Sakai in [60] has proved the existence
of such a D. Consider the following minimization problem

min
Σ⊂D

E(Σ) :=

∫
Σ

1

2
|∇u

Σ
|2dx−

∫
Σ
(1− µ)u

Σ
dx. (5.7)

We clarify the link between Problem (P) and theminimization problem (5.7) by
classical shape calculus. It is easy to derive that if Σ has a sufficiently smooth
boundary and V is a smooth velocity field then

dE(Σ,V) = −3/2

∫
Σ
div(|∇u

Σ
|2V) dx = −3/2

∫
∂Σ

|∇u
Σ
|2V · n ds. (5.8)

We conclude that for a solution of Problem (P), ∇u
Σ
is vanishing on ∂Σ.

Therefore dE(Σ,V) = 0, which means that the solution of Problem (P) is
a critical point of the shape functional E.
Now in order to construct a scheme we consider an evolution Σt = Σ(t) =

{φ(x, t) < 0}. Let ∂Σ = {φ(x, t) = 0} and we desire that if t increases then
Σt converges to the solution of Problem (P), Ω. This can be done by finding
an appropriate velocity field. If Σt ⊂ Ω then

∂u
Σt

∂n is negative on ∂Σt because
dE changes sign at ∂Ω. Hence we choose

V(t) · n = −
∂u

Σt

∂n
,

and consequently

dE(Σt,V(t)) = 3/2

∫
∂Σt

|∇u
Σt
|2
∂u

Σt

∂n︸ ︷︷ ︸
<0

ds < 0. (5.9)

The second algorithm is as follows.
Set t = 0 and choose an initial domainΣ0 such that supp(µ) ⊂ Σ0. The next

step is to solve ∆ut = 1 in Σt \ supp(µ) with Dirichlet boundary condition
ut = 0 on Γt and compute V · n = −∇ut · nΓt

where ut = u
Σt
. We need a

stopping condition so if ∥∇ut∥L2(Γ) << ϵ then stop, otherwise move the free
boundary in the normal direction. For instance, in dimension one we can apply
xt+1 = xk − u′(xt) and get the new shape Σt+1, with the free boundary Γt+1.
By iterating these processes we will get the numerical approximation.
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6. Overview of Paper III

In this article, we investigate the following problem.
Let µi, i = 1, · · · ,m be finite measures with compact supports and λi(x) be

non-negative Lipschitz continuous functions. Find functions ui and domains
Ωi := {x ∈ Rn|ui(x) > 0} for i = 1, · · · ,m such that supp(µi) ⊂ Ωi and

∆ui = λiχΩi
− µi in Ωi,

ui = 0 on ∂Ωi,

|∇ui| = |∇uj | on Γij := ∂Ωi ∩ ∂Ωj ,

|∇ui| = 0 on ∂Ωi \
∪

Γij .

(6.1)

There is a vast literature on the problem for k = 1 but to the best of our knowl-
edge there is not much work for the case k = 2.These cases arise from the theo-
ry of the quadrature domain which is quite well studied for the one phase case.
In this article, we design two numerical methods and prove that the numerical
approximation converges to the viscosity solution of the given problems (6.1)
in the cases k = 1, 2. First we reformulate the problem and extract degenerate
elliptic equations for the one and the two phase cases.
Suppose that supp(µ) ⊂ Ω. We can prove that the viscosity solution of

L(x, u,Du,D2u) := min(−∆u+ λ− µ, u) = 0, (Min-Formula)

is a solution of {
∆u = λ− µ in Ω = {u > 0},
u ≥ 0 in Rn,

(6.2)

and vice versa. Now we try to state a similar statement for the two phase case.
Suppose that u is the solution of{

∆u = λ+χ
Ω+ − µ+ − (λ−χ

Ω− − µ−), in Rn,

Ω± = {±u ≥ 0}.
(6.3)

We prove that u satisfies the following non-linear equation in Ω = Ω+ ∪ Ω−,
which is calledMin-Max formula,

Lu := min
(
−∆u+ λ+ − µ+,max(−∆u− λ− + µ−, u)

)
= 0. (6.4)

We establish the relation between the two phase case of the problem and the
Min-Max formula as follows,
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• Equation (6.4) is a degenerate elliptic equation and has a unique viscosity
solution.

• Suppose that µ± are two Dirac measures. The weak solution of (6.3) is
a viscosity solution of (6.4) and vice versa.

6.1 Numerical Methods
6.1.1 Degenerate elliptic scheme
Generally, at each grid point, xi, we write a finite difference scheme, L as
follows

Li
h[u] = Lh[ui, ui − uj

∣∣
j=N(i)

], i = 1, . . . , N,

where uj = u(xj) is shorthand for the list of neighbors uj |j=N(i). Also by ui
we mean the average of uj |j=N(i). For the sake of simplicity, we drop h and
write

Li[u] = L[ui, ui − uj ],

The scheme L is degenerate elliptic if each component Li[u] = L[ui, ui − uj ]
is non-decreasing in each variable.
For example, we discretize Min formula in two dimensions and obtain the

following degenerate elliptic scheme

0 = Li[u] : = min(−∆hui + λh − µh, ui)

= min(4(ui − ui) + (λh − µh)h
2, ui)

= ui +min(−ui + (λh − µh)h
2/4, 0),

where µh is an appropriate discretization of µ. Similarly it is easy to find the
following discretization for Min-Max problem (6.4) where µ±h are appropriate
discretizations of µ±,

Li[u] = L[ui, ui − uj ]

= min
( ∑

j=N(i)

(ui − uj) + (λ+h − µ+h )h
2,

max(
∑

j=N(i)

(ui − uj)− (λ−h − µ−h )h
2, ui)

)
= 0.

(6.5)

Lemma 6.1. The scheme (6.5) is degenerate elliptic, monotone, stable and
consistent.

Corollary 6.2. Suppose that µ± are Dirac measures. As a corollary of the
previous lemma and Barles-Souganidis Theorem we obtain that the scheme
(6.5) converges to the unique viscosity solution of (6.4).
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We construct the first numerical algorithm for the two phase case based on
Min-Max formulation. Suppose that a tolerance, TOL, and a big enough setD
are given. First of all, we find a discretization formula for the function λ± and
the measures µ± and apply the finite difference scheme (6.5)

uk+1
i = max

(
uki +

µ+h − λ+h
4

h2,min(uki +
λ−h − µ−h

4
h2, 0)

)
.

If infxi∈Ωk
|uk+1

i − uki | ≤ TOL then stop, otherwise iterate the previous step.
We note that to have a better acceleration for convergence one can apply the
multi-grid method, see [32].

6.1.2 An iterative method for the general case
In general case of the problem we can construct another iterative method. Sup-
pose that ui for i = 1, · · · ,m are the solutions for the problem (6.1) with
the corresponding positivity sets Ωi. Similar to the first method we discretize
∆ui = λiχΩi

−µi and iterate by the following process. IfXi ∈ supp(µi) then

u
(k+1)
i (Xi) = max

u(k)i (Xi)−
∑
j ̸=i

u
(k)
j (Xi) +

(µj − λj)h
2

4
, 0

 , (6.6)

otherwise

u
(k+1)
i (Xi) = max

u(k)i (Xi)−
∑
j ̸=i

u
(k)
j (Xi)−

λjh
2

4
, 0

 . (6.7)

This process leads us to a numerical approximation of the problem (6.1). The
main idea of this method arises from the discretization of the two phase case.
More precisely, if we discretize∆(u+−u−) = λ+χΩ+ −µ+−(λ−χΩ− −µ−)
where u± = max(±u, 0), Ω = {±u > 0} and obtain u± by imposing the
condition u+(Xi)u

−(Xi) = 0, then we end up with the discretization formulas
(6.6) and (6.7), see [11].

55



7. Overview of Paper IV

In this paper, we study the quadrature domains in a subdomain ofRn. Suppose
that a measure µ with compact support and a fixed domainK ⊂ Rn are given.
We investigate the existence and the uniqueness of the following problem

∆u = cλ⌊
Ω
−µ, in K,

u = 0, in K \ Ω,
u ≥ 0, in K,

supp(µ) ⊂ K.

(7.1)

HereΩ := {u > 0}, c > 0 and λ is the Lebesguemeasure. We always consider
Γ0 := ∂Ω∩ ∂K ̸= ∅, otherwise the problem has been studied by Shahgholian
and Gustafsson, see [37]. The problem is also similar to the obstacle problem
when |∇u| = 0 on Γ0. We use some potential theory techniques such as bal-
ayage to obtain the existence and the uniqueness of Ω along with some of its
properties. We study an application of this problem and a numerical scheme
to approximate the solution is also given.
For any Ω ⊂ K and a signed Radon measure ν with compact support, we

define

HK(Ω, ν) = {Uν
K : supp(ν) ⊂ K \ Ω},

and SK(Ω, ν) = {Uν
K , supp(ν) ⊂ K and ν ≤ 0 in Ω, }where Uµ

K denotes the
Green potential of µ onK.
Suppose that K ⊂ Rn and µ is a measure with compact support in K. We

say Ω ⊆ K is aK- (S)QD if∫
Ω
h dx = (≥)

∫
h dµ, ∀h ∈ HK(Ω),

(
h ∈ SK(Ω)

)
(7.2)

and supp(µ) ⊂ Ω. We call (7.2) a K- (sub) quadrature identity and Ω a K-
(sub) quadrature domain and write Ω ∈ Q(µ,K)

(
Ω ∈ SQ(µ,K)

)
. Obvious-

ly, SQ(µ,K) ⊆ Q(µ,K).

7.1 Main Results
We can prove that if the measure is concentrated enough then SQ(µ,K) ̸= ∅.

56



Theorem 7.1. Suppose thatK ⊂ Rn and µ is a positive measure with compact
support inK which satisfies

lim sup
r→0

µ(Br(x))

λ(Br(x))
≥ 2n, for all x ∈ supp(µ).

Then supp(µ) ⊂ ωµ
K and SQ(µ,K) ̸= ∅.

The idea is to prove that ωµ
K := {V µ

K < Uµ
K} is a K- SQD where −∆V µ

K
is called the partial balayage of µ on K. As a result, we can show that if
Ω1,Ω2 ∈ SQ(µ,K) then Ω1 ≡ Ω2 up to a Lebesgue null set. The next lemma
clarifies the relation between the PDE formulation (7.1) and theK- SQDs.

Lemma 7.2. If u := Uµ
K − V µ

K , and Ω = {u > 0} satisfy the problem (7.1)
then Ω ∈ SQ(µ,K).

To be more precise we can prove that

Ω = {u > 0} ∈ SQ(µ,K) ≡


∆u = χ

Ω
− µ inK,

u = 0 on ∂Ω ∪ ∂K,
|∇u| = 0 on ∂Ω ∩K,
u > 0 in Ω.

The proof is a direct consequence of the definition of the balayage and the
properties of the function u = Uµ

K − V µ
K .

An application of this class of QDs is in the rock mechanics. Suppose that
K is a porous medium, like a rock, and supp(µ) is a source of a fluid located
in the rock. It is clear that the saturated part is unknown in advance and it
depends on the time. One could apply Darcy's law and Baiocchi transform to
derive a PDE formulation for the problem. Gustafsson in [33] has studied the
behavior of the boundary of the saturated set when the source is located on ∂K.
For K = Rn

+ := {x ∈ Rn : x1 > 0}, the problem becomes the Hele-Shaw
problem in the half space, see [9] and [10].

Theorem 7.3. Suppose that K is a bounded region, as a rock, and let µ be a
positive finite measure such that supp(µ) ⊂ K. If Ω is the saturated part of
the rock at the time t0, then Ω is aK- SQD.

We also construct a numerical scheme based on the level set method. The
main idea is to construct a sequence of domains {Ωi}, which satisfies a se-
quence of elliptic PDEs, see (7.3), and update ∂Ωi with an appropriate velocity
field. More precisely, if Ωi is an approximation of Ω such that ∂Ωi ∩ ∂K ̸= ∅
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then we obtain the corresponding function ui by solving
∆ui = χ

Ωi
− µ inK,

ui = 0 on ∂K,
|∇ui| = 0 on ∂Ωi ∩K.

(7.3)

To find an updated domain Ωi+1, we move ∂Ωi with the velocity field ui in
the normal direction and obtain ∂Ωi+1.
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8. Overview of Paper V

Suppose that B1 is the unit ball, Π = {x ∈ Rn : x1 = 0} and B+
1 = B1 ∩

{x : x1 > 0}. Let λ± be two positive constants, 0 < p < 1 and u± :=
max{±u, 0}. In this paper we study minimizers of the functional

E(u) :=

∫
B+

1

(
|∇u|2 + 2(λ+(u+)p + λ−(u−)p)

)
dx, (8.1)

over

K = {u ∈W 1,2(B+
1 ) : u = 0 on B1 ∩Π and u = f on ∂B+

1 \Π},

where f ∈W 1,2(B1) ∩ L∞(B1). LetM and R be two positive constants and
consider 0 ∈ Γ ∩Π. Define

PR(M) := {u : u is a minimizer of E in B+
R and ∥u∥L∞(B+

R) ≤M.}

The main theorem of this paper is as follows.

Theorem. Let u ∈ P1(M) in dimension two. Then, in a neighborhood of the
origin, u does not change the sign. Moreover, the free boundary is a C1 graph
with a modulus of continuity depending only onM,λ± and p.

In other words, the free boundary approaches the fixed one in a tangential
manner. It is not hard to prove that the corresponding Euler Lagrange formu-
lation of (8.1) is

∆u = p
(
λ+(u+)p−1χ{u>0} − λ−(u−)p−1χ{u<0}

)
in B+

1 ∩ {u ̸= 0},
u = f on ∂B+

1 \Π,
u = 0 on B1 ∩Π.

(8.2)
Equation (8.2) reduces to the two-phase obstacle problem when p = 1.
In [30] it is proved that the minimizer is in C1,β−1

loc when β = 2/(2− p) and
in [46] it has been proved the C1 regularity of the free boundary in dimension
two. We use the notation Ω+ = {u > 0}, Ω− = {u < 0}, Γ± = ∂Ω±,
Γ = Γ+ ∪ Γ− and refer to Γ as the free boundary.
First we prove that anyminimizer is Hölder continuous up to the fixed bound-

ary by applying theMorrey's embedding theorem, see [29]. We use the follow-
ing lemma to get the C1,α regularity up to the fixed boundary, see [47]. The
idea of the proof could be find in [13].
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Lemma 8.1. Let u ∈ H1(B+
1 ). Assume there exist two constants C and α

such that for each x0 ∈ B+
1

2

there is a vector A(x0) with the property

∫
Br(x0)∩B+

1

|∇u(x)−A(x0)|2 dx ≤ Crn+2α, for every r <
1

2
. (8.3)

Then u ∈ C1,α(B+
1

2

) and we have the estimate

∥u∥
C1,α(B+

1
2

)
≤ C0(C).

Let x0 ∈ Γ and consider the following rescaled function for a given mini-
mizer u of (8.1)

ux0,r(x) =
u(x0 + rx)

rβ
, β =

2

2− p
, r > 0.

In the case x0 = 0, we use the notation ur = u0,r. Consequently if we can
find a sequence ux0,rj , rj → 0 such that

ux0,rj → u0 in C1
loc(Rn ∩ {x1 > 0}) (or C1

loc(Rn)),

we obtain u0 as the blow-up of u at x0. It is easy to see that u0 is a global
minimizer of (8.1), i.e., a minimizer in Rn ∩ {x1 > 0} or in Rn.
In this case the Weiss's monotone function is considered as

W (r, x0, u) = r−2β

∫
B+

r (x0)

(
|∇u|2 + 2G(u)

)
dx− β

r1+2β

∫
∂B+

r (x0)
u2(x) ds,

forG(u) = 2λ+(u+)p+2λ−(u−)p and r > 0. Then as wementioned before it
implies that any blow-up is homogenous of degree β. We also can prove a non-
degeneracy property. Suppose that u is a minimizer of (8.1) and x0 ∈ Γ+∩Π.
Then for some constant c+ = c+(λ+)

sup
∂B+

r (x0)∩Ω+

u ≥ c+rβ, 0 < r <
1

2
. (8.4)

Consequently we obtain that the limit of free boundary points are always free
boundary points. Then by using these two important properties in dimension
two, we deduce that for u ∈ P∞(M) one of the following holds:

1. u(x) = c+(x+1 )
β , for the one phase non-negative points.

2. u(x) = −c−(x−1 )β , for the one phase non-positive points.
By the above categorization we can prove that the origin is a one phase point
for u ∈ P1(M).
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8.1 Main Result
We note that any free boundary point, say the origin, that touches the flat part is
a one phase point. It means that the function u has a sign close to the origin. We
can prove that the free boundary has a normal close to e1 when it approaches
Π.

Proposition 8.2. Let u ∈ P1(M). For any δ > 0 there are ε = ε(λ±, p,M, δ)
and ρ = ρ(λ±, p,M, δ) so that x ∈ Γ and x1 < ε imply

Γ ∩B+
ρ (x) ⊂ Kδ(x) ∩B+

ρ (x).

Here Kδ(z) = {|x1 − z1| < δ
√

(x2 − z2)2 + · · ·+ (xn − zn)2}. To prove
the main theorem we have to show that the normal of Γ at a point x, i.e., νx
is uniformly continuous. Alt and Philips in [2] proved that the free boundary
is a C1-graph far from the flat part and on the other hand by the previous
proposition we know that the normal of the free boundary approaches e1 as we
approach Π. These all statements, assure that the free boundary is a uniform
C1-graph up to Π.
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