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Abstract

We consider the smoothing problem for a general state space system using sequential Monte Carlo

(SMC) methods. The marginal smoother is assumed to be available in the form of weighted random

particles from the SMC output. New algorithms are developedto extract the smoothed marginal maximum

a posteriori (MAP) estimate of the state from the existing marginal particle smoother. Our method does

not need any kernel fitting to obtain the posterior density from the particle smoother. The proposed

estimator is then successfully applied to find the unknown initial state of a dynamical system and to

address the issue of parameter estimation problem in state space models.

Index Terms

Sequential Monte Carlo, Particle smoother, maximuma posteriori, unknown initial conditions

I. INTRODUCTION

Consider a state-space model

xt = f(xt−1, wt), (1)

yt = h(xt, vt), t = 1, 2, . . . (2)
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wherext is the (unobserved) state with initial densityp(x0) and yt is the measurement at time stept.

The process noiseswt, t = 1, 2, · · · , are assumed to be independent. So are the measurement noises

vt, t = 1, 2, · · · . Furthermore,(wt) is assumed to be independent of(vt). In this model, we assume that

the probability density functions forwt and vt are known. The main problem related to model (1)-(2)

is concerned with estimating the unknown statext given the set of measurementsy1:s = {y1, ..., ys}.

The complete solution is, of course, given by the posterior probability density functionp(xt|y1:s), which

reflects all knowledge about the current statext. However, for a general nonlinear dynamic system, this

posterior is often analytically intractable, but can be successfully approximated using a SMC approach,

also known as a particle filter. In such an approach the posterior is approximated by a cloud ofN weighted

particles, whose empirical measure closely approximates the true posterior distribution for largeN (see,

e.g., [1], [2], [3], [4]).

In this article1, we focus on the smoothing problem, that is, to estimatext based on the measurements

y1:T , whereT > t. In particular, we develop algorithms using SMC technique to calculate the smoothed

(marginal) MAP estimate,xMAP
t|T , given by

xMAP
t|T = argmax

xt

p(xt|y1:T ), (3)

wherep(xt|y1:T ) is the (smoother) posterior density.

Only a limited number of methods exists in the literature that deal with the MAP estimation from the

Monte Carlo based particle approximation. The main difficulty in obtaining the MAP lies in extracting

the posterior density, whose maximizer is to be found, from the particle filter/smoother. Authors in [6],

[7] use the particle with the maximum weight as the MAP estimate. This, however, does not necessarily

represent the true MAP (the mode or maximizer of the posterior density) and it can actually be far from

it ( [8], [9], [10]; see also the example in sections III-A of this article). The main reason behind this is,

of course, the fact that the weights do not represent the (posterior) density at the particle-value.

The method proposed in [11] can be used if one is interested inthe MAP sequence estimates of the

whole path,x0:t, up to the current timet. It uses the collection of all the particles up to the currenttime

to form a trellis representation of the state space and subsequently, run a so-called Viterbi algorithm to

find the path in the trellis with the highest posterior density. This, being a (joint) MAP ofx0:t, is however

not necessarily the same as themarginal MAP of xt, in which we are interested.

In this article we use the existing Monte Carlo based particle approximations of the marginal smoother

density p(xt|y1:T ) to provide the marginal MAP estimate. The more commonly usedsuch marginal

1Part of the results were presented in EUSIPCO 2008 [5].
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particle smoother in the literature is the so-called forward-backward smoother (see, for example, [12]).

This smoother reuses the support points (particles) generated during the forward (filtering) pass and only

recalculates the weights during the backward (smoothing) pass to derive the smoother approximation. To

avoid the reliance on the particles from the forward phase, the two-filter smoother has been envisaged in

[13], [14], [15], where one combines samples from particle filter in the forward direction with those from

a so called “backward information filter” to produce the (weighted) cloud representation ofp(xt|y1:T ).

As mentioned earlier, the crux of the problem lies in constructing the posterior density from the weighted

cloud representation of the distribution. As is known, one classic approach is the kernel method, where

a kernel is fitted around each particle to approximate the posterior density [16]. The main drawback of

this method is that it requires the user to choose a kernel bandwidth parameter. The density estimate is

very sensitive to this parameter and the choice of an “optimal” value is not at all obvious ( [17], [18]).

Also, the kernel method is more suitable in a static set up than in a dynamic set up, which is the case for

us. In the latter case, with the kernel density approach, oneneeds to go through the “optimal” selection

of the bandwidth at each time-step (with each new-coming data). The time aspect will only increase if

the sate-vector is multidimensional because one will then need to select an “optimal” bandwidth for each

dimension.

The novel contribution of this article is to estimate the MAP, given by (3), using only the available

(weighted) particle representation of the marginal smootherp(xt|y1:T ), that is to say that, without requiring

any exogenous method such as kernel fitting and thereby avoiding completely the process of choosing

a non-obvious “optimal” parameter. The proposed method is simple yet elegant and uses the power of

Monte Carlo samples, namely that it can be used to approximate very effectively an integral with respect

to the density from which the samples are drawn. The idea is based on the fact that, even though the MAP

estimate cannot be computed as integrals with respect to theposterior density, the posterior smoother

density fxt|y1:t
(x) of xt evaluated at any pointx can be expressed as an integral with respect to the

posterior smoother density ofxt+1.

We should note that it is not our goal to compare the differentexisting particle smoothers as estimates

of the true posteriorp(xt|y1:T ). Neither do we claim that MAP is superior to other estimators, such

as the minimum mean squared estimator (MMSE). MAP estimatesare, however, known to be useful

[8] when the posterior is multimodal, which appears in a natural manner in many real life applications,

e.g., in terrain aided navigation [19] and in target tracking problems [20], [21], [22]. When smoothing

is also essential one would need a MAP smoother. For instance, consider the fingerprinting localization

in wireless network based on received signal strength (RSS)measurements [23]. In such a situation, a
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so called radio map is constructed off-line using RSS measurements at different (known) locations by

drive tests. The ground vehicle locations are in turn, determined by the inexpensive global positioning

system (GPS) and inertial navigation system (INS) fusion platform, available in modern cars. However,

the main problem with these systems are the frequent GPS outage in urban environment and the drift

in INS error that grows with time. For the above problems, smoothing is shown to improve the position

estimation [24], [25]. Moreover, due to multi-path propagations and non-line-of-sight (NLOS) conditions,

observation error for GPS signal is typically non Gaussian,which often leads to multimodal posterior. So

smoothed marginal MAP estimator can be a good candidate for such an application. Another potential

application is the ground target tracking or road map extraction from smoothed tracks [26].

The rest of the article is organized as follows. We describe in Section II the proposed methodologies to

obtain the MAP for both the particle smoother mentioned above. In Section II-A we first review briefly

the method used to obtain the particle smoother based on forward-backward smoothing. Subsequently,

we describe how to obtain the MAP and demonstrate the performance of this MAP estimator through a

generic nonlinear time series model. The same is done for twofilter smoothing in Section II-B. Section III

deals with the applications of the proposed marginal MAP smoother. We begin, in Section III-A, by

validating the proposed estimator based on forward-backward particle smoother using a linear Gaussian

model. We also confirm in this example that the particle with the maximum weight does not represent

the true MAP estimator (mode of the posterior density). In Section III-B, the proposed MAP smoother

is applied to estimate the unknown initial state of a given dynamic system, which is subsequently used

in Section III-C in connection with the parameter estimation problem of a dynamic system. Finally, we

conclude the article in Section IV.

II. PARTICLE BASED SMOOTHED MARGINAL MAP ESTIMATOR (PS-MAP)

As mentioned earlier, our starting point in this article is that there already exists a (weighted) particle

cloud for the marginal smoother. Based on the weighted cloudrepresentation, we calculate the smoothed

marginal density and subsequently, extract the MAP from it.We start with the most commonly used

forward-backward smoother and then describe our algorithmfor the two filter smoother. We emphasize

once again that our purpose is not to compare these differentsmoothing methods. Rather we focus on

extracting the marginal MAP from the available particle cloud generated by either of these methods.
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A. Forward-Backward Smoothing (FBS)

The marginal smoother by forward-backward algorithm is based on the relationship (see, e.g., [12])

p(xt|y1:T ) = p(xt|y1:t)

∫
p(xt+1|y1:T )p(xt+1|xt)

p(xt+1|y1:t)
dxt+1, (4)

where,p(xt|y1:t) and p(xt+1|y1:t) are the filtering density and one step ahead predictive density respec-

tively, at timet. Thus, starting withp(xT |y1:T ), one can recursively obtainp(xt|y1:T ) from p(xt+1|y1:T ).

Using the above recursion, the marginal smoothing distribution can now be approximated by the weighted

particle cloud as described, for example, in [13]. Here, onestarts with the forward filtering pass for

computing the filtered distribution at each time step using the particle filter as

P̂ (dxt|y1:t) =
N∑

i=1

ω
(i)
t δ

x
(i)
t
(dxt), (5)

whereδxt
(dxt) denotes the Dirac delta mass located atxt. Then one performs the backward smoothing

pass as given by (4) to approximate the smoothing distribution

P̂ (dxt|y1:T ) =
N∑

i=1

ω
(i)
t|T δx(i)

t

(dxt), (6)

where the smoothing weights are obtained through the following backward recursion:

ω
(i)
t|T = ω

(i)
t

N∑

j=1

[
ω
(j)
t+1|T

p(x
(j)
t+1|x

(i)
t )

∑N
k=1 p(x

(j)
t+1|x

(k)
t )ω

(k)
t

]
(7)

with ω
(i)
T |T = ω

(i)
T . It is important to note that the forward-backward smootherkeeps the same particle

support as used in filtering step and re-weights the particles to obtain the approximated particle based

smoothed distribution. Thus, success of this method crucially hinges on the filtered distribution having

supports where the smoothed distribution is significant.

To obtain the smoothed marginal MAP, one needs the posteriordensity p(xt|y1:T ) from the above

cloud representation. Here, we proceed as follows. Using the Bayes’ rule, one can write the one step

ahead predictive density in equation (4) as

p(xt+1|y1:t) =
p(xt+1|y1:t+1)p(yt+1|y1:t)

p(yt+1|xt+1)
. (8)

Then equation (4) becomes
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p(xt|y1:T ) = p(xt|y1:t)×

×

∫
p(xt+1|y1:T )p(xt+1|xt)p(yt+1|xt+1)

p(xt+1|y1:t+1)p(yt+1|y1:t)
dxt+1

=
p(xt|y1:t)

p(yt+1|y1:t)

∫ [
p(xt+1|xt)p(yt+1|xt+1)

p(xt+1|y1:t+1)

]
×

×p(xt+1|y1:T )dxt+1

≈
p(xt|y1:t)

p(yt+1|y1:t)

∫ [
p(xt+1|xt)p(yt+1|xt+1)

p(xt+1|y1:t+1)

]
×

×P̂ (dxt+1|y1:T ).

Making use of the particle representation ofP̂ (dxt|y1:T ), given by (6), and subsequently approximating

the above integration by a Monte Carlo integration method, one obtains

p(xt|y1:T ) ≈
p(xt|y1:t)

p(yt+1|y1:t)
×

×
N∑

j=1

[
p(x

(j)
t+1|xt)p(yt+1|x

(j)
t+1)

p(x
(j)
t+1|y1:t+1)

]
ω
(j)
t+1|T . (9)

Further approximating the filtered densityp(xt+1|y1:t+1) from the running particle filter [8] as

p(xt+1|y1:t+1) ≈
p(yt+1|xt+1)

∑
k p(xt+1|x

(k)
t )w

(k)
t

p(yt+1|y1:t)
(10)

we can rewrite equation (9) as

p(xt|y1:T ) ≈ p(xt|y1:t)
N∑

j=1

[
p(x

(j)
t+1|xt)

N∑
k=1

p(x
(j)
t+1|x

(k)
t )ω

(k)
t

]
ω
(j)
t+1|T . (11)

The smoothed marginal density,p(xt|y1:T ) is obtained at any support pointxt and the corresponding

MAP estimate can then be extracted by finding the location of its global maximum. At this point, one

can in principle, employ any standard optimization technique to arrive at the MAP estimate. In general,

however, this maximization step is nontrivial due to the possible multimodalities arising from the non

Gaussian nature of the posterior.

Following the argument, as used in [11], that the particles form a randomized adaptive grid approx-

imation of the values of the posterior, we select the particle at which the density is the highest as the
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MAP, i.e.,

xMAP
t|T ≈ argmax

x
(i)
t

p(x
(i)
t |y1:t)×

×
N∑

j=1

[
p(x

(j)
t+1|x

(i)
t )

N∑
k=1

p(x
(j)
t+1|x

(k)
t )ω

(k)
t

]
ω
(j)
t+1|T , (12)

whereN is the number of particles used at each time step. By using equation (7), the estimator can be

further simplified to

xMAP
t|T ≈ argmax

x
(i)
t

p(x
(i)
t |y1:t)

ω
(i)
t|T

ω
(i)
t

, (13)

where the filtered densityp(xt|y1:t) at the particle cloud{x(i)t }Ni=1 can be evaluated during the forward

filtering step [8] as

p(x
(i)
t |y1:t) ≈

p(yt|x
(i)
t )
∑

j p(x
(i)
t |x

(j)
t−1)w

(j)
t−1

p(yt|y1:t−1)
. (14)

Sincep(yt|y1:t−1) in equation (14) is independent ofx(i)t , to obtainxMAP
t|T , one can replacep(x(i)t |y1:t)

in equation (13) by the unnormalized filtered density

q(x
(i)
t |y1:t) = p(yt|x

(i)
t )
∑

j

p(x
(i)
t |x

(j)
t−1)w

(j)
t−1. (15)

The summary of the procedure is presented in Algorithm 1.

We note here that a numerical problem may arise in evaluatingequation (13) if the filtered weights

attached to some particles are very small. This may happen when the “particle degeneracy” occurs. This

problem can be effectively addressed using a combination ofefficient importance proposal (see, e.g.,

[27]) along with resampling steps.

To demonstrate the computation of FBS based smoothed marginal MAP, we consider the nonlinear

time series model:

xt =
xt−1

2
+

25xt−1

1 + x2t−1

+ 8cos(1.2t) + wt, (16)

yt =
x2t
20

+ vt, t = 1, 2, . . . (17)

wherewt ∼ N(0, 10) and vt ∼ N(0, 1) with initial prior p(x0) ∼ N(0, 5). The above model is highly

nonlinear and when the measured data is (large) positive, state density may become symmetric bimodal.

In fact, this model has become ade facto benchmark problem in the particle filtering community due

to the attractive nonlinear and/or non Gaussian characteristics (see e.g., [1], [9], [2]). For this nonlinear
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Algorithm 1 FBS marginal MAP
Input: y0, · · · , yT

1. FBS initialization:

a) setp(x0|x−1) = p(x0) (known)

b) drawx
(i)
0 ∼ p(x0), i = 1, · · · , N

c) computeω(i)
0 = p(y0|x

(i)
0 ) and normalize

2. run FBS

3. available FBS output:
{
x
(i)
t , ω

(i)
t , ω

(i)
t|T

}
, t = 0, · · · , T , where ω

(i)
T |T = ω

(i)
T

4. estimate the marginal MAP (using (13) and (15))

a) for t = 1, · · · , T ,

xMAP
t|T ≈ argmax

x
(i)
t

{
p(yt|x

(i)
t )×

×
∑

j

p(x
(i)
t |x

(j)
t−1)w

(j)
t−1

}ω(i)
t|T

ω
(i)
t

.

b) for t = 0,

xMAP
0|T ≈ argmax

x
(i)
0

p(x
(i)
0 )ω

(i)
0|T

problem, we use the “Exact Moment matching (EMM) proposal” as in [28] during forward filtering step

with particle sample sizeN = 500 andT = 200. The smoothed marginal MAP outputs along with the

ground truth fort = 25, · · · , 75 is shown in Figure 1.

B. Two-Filter Smoothing (TFS)

We describe, in this section, how the smoothed marginal MAP can be obtained from the particle cloud

generated by the generalized two-filter smoother. We start with a brief description of how two filter

particle smoother is obtained. For this, we follow [13].

In the two-filter smoother framework, the so-called backward information filterp(yt:T |xt) is calculated

sequentially fromp(yt+1:T |xt+1) as

p(yt:T |xt) = p(yt|xt)

∫
p(xt+1|xt)p(yt+1:T |xt+1)dxt+1. (18)

As noted by [13],p(yt:T |xt) is not a probability density function inxt and actually, its integral overxt may

not even be finite. The smoothing algorithm in [14], [15] assumes implicitly that
∫
p(yt:T |xt)dxt < ∞.
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Figure 1. Ground truth and smoothed marginal MAP outputs

However, if this assumption does not hold, SMC based methods, which can only approximate finite

measures, will not work anymore. To avoid this, “generalized two-filter smoothing” has been proposed

by [13], where the smoothing distributions are computed through a combination of forward filter and an

auxiliary probability distributionp̃(xt|yt:T ) in argumentxt. This auxiliary density is defined through a

sequence of artificial distributionsγt(xt) as

p̃(xt|yt:T ) ∝ γt(xt)p(yt:T |xt).

It then follows from (18) that

p̃(xt|yt:T ) ∝ γt(xt)p(yt|xt)×

×

∫
p(xt+1|xt)

p̃(xt+1|yt+1:T )

γt+1(xt+1)
dxt+1. (19)

This in turn, is used to generate recursively the weighted particle representation of the backward infor-

mation filter

p̃(dxt|yt:T ) ≃
N∑

k=1

ω̃
(k)
t δ

x̃
(k)
t

(dxt). (20)

The marginal smootherp(xt|y1:T ) is then computed by combining the outputs of the forward filter
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(FF) and the backward information filter (BIF) as

p(xt|y1:T ) ∝ p(xt|y1:t−1)p(yt:T |xt)

=

(∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1

)
×

×

(
p̃(xt|yt:T )

γt(xt)

)
. (21)

Evaluating the integral in (21) by Monte Carlo integration using the forward filter cloud(x(j)t−1, ω
(j)
t−1)

one obtains

p(xt|y1:T ) ∝




N∑

j=1

p(xt|x
(j)
t−1)ω

(j)
t−1



(
p̃(xt|yt:T )

γt(xt)

)
. (22)

Finally, the particle cloud representation is obtained using the cloud(x̃(k)t , ω̃
(k)
t ) from the backward filter:

p(dxt|y1:T ) ≃
N∑

k=1

ω̃
(k)
t|T δx̃(k)

t
(dxt) (23)

where

ω̃
(k)
t|T ∝

ω̃
(k)
t

γt(x̃
(k)
t )

N∑

j=1

p(x̃
(k)
t |x

(j)
t−1)ω

(j)
t−1. (24)

Thus, in essence the particles from the forward filter are used to re-weight those from the backward filter

so that they represent the marginal smoother distribution.We refer the readers to the original article by

[13] for more details.

Now we describe how to derive the smoothing density from the particle smoother obtained as above.

Note that using (20) one can rewrite equation (19) as

p̃(xt|yt:T ) ∝ γt(xt)p(yt|xt)
N∑

k=1

p(x̃
(k)
t+1|xt)

γt+1(x̃
(k)
t+1)

ω̃
(k)
t+1. (25)

It then follows from (22) that

p(xt|y1:T ) ∝




N∑

j=1

p(xt|x
(j)
t−1)ω

(j)
t−1


×

×

(
p(yt|xt)

N∑

k=1

p(x̃
(k)
t+1|xt)

γt+1(x̃
(k)
t+1)

ω̃
(k)
t+1

)
. (26)

The required smoothed marginal MAP can now be obtained by maximizing the unnormalized smoothing

density, given by the right hand side of equation (26). Furthermore, when this maximization is done
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along the particles̃x(i)t , we have

p(x̃
(i)
t |y1:T ) ∝




N∑

j=1

p(x̃
(i)
t |x

(j)
t−1)ω

(j)
t−1


×

×

(
p(yt|x̃

(i)
t )

N∑

k=1

p(x̃
(k)
t+1|x̃

(i)
t )

γt+1(x̃
(k)
t+1)

ω̃
(k)
t+1

)

=


 1

γt(x̃
(i)
t )

N∑

j=1

p(x̃
(i)
t |x

(j)
t−1)ω

(j)
t−1


×

×

(
γt(x̃

(i)
t )p(yt|x̃

(i)
t )

N∑

k=1

p(x̃
(k)
t+1|x̃

(i)
t )

γt+1(x̃
(k)
t+1)

ω̃
(k)
t+1

)
.

From equations (24) and (25) this reduces to

p(x̃
(i)
t |y1:T ) ∝


 ω̃

(i)
t|T

ω̃
(i)
t



(
p̃(x̃

(i)
t |yt:T )

)
. (27)

Hence, the required MAP can be obtained as

xMAP
t|T = argmax

x̃
(i)
t

p̃(x̃
(i)
t |yt:T )

ω̃
(i)
t|T

ω̃
(i)
t

, (28)

wherep̃(x̃(i)t |y1:T ) is evaluated using equation (25). A summary of the procedureis presented in Algorithm

2. We now demonstrate the computation of TFS based smoothed marginal MAP on the same time series

model as given in (16)–(17) with particle sample sizeN = 1000 andT = 200. We use the EMM proposal

during forward filtering step. For this example, we select the artificial densityγt(xt) to be a time-invariant

densityγ(xt) as in [13], but approximated by a mixture of two Gaussian densitiesγ(xt) = W1N(µ1,Σ1)+

(1−W1)N(µ2,Σ2). For calculatingγ(xt), a long sample pathx0:Tf
(Tf ≫ T ) is simulated using (16)

and then the Gaussian mixture is fitted to the empirical measure π̂(dx) = 1
Tf−T0

∑Tf

t=T0+1 δXt(dx), where

T0 is the burn-in period. We selectT0 = 2000 and Tf = 20000. Next we use an EM like algorithm

( [29], with β = 0) to select the parameters of the mixture. Starting withW
(ini)
1 = 0.5, µ

(ini)
1 = 5,

Σ
(ini)
1 = 200, µ(ini)

2 = −5 andΣ(ini)
2 = 200, the final estimates are obtained asW

(∗)
1 = 2.3987 · 10−007,

µ
(∗)
1 = 16.2565, Σ(∗)

1 = 0.6273, µ(∗)
2 = −0.0343 andΣ(∗)

2 = 109.2576. The backward proposal is taken

to be a Gaussian approximation of the optimal backward proposal popt(xt|xt+1, yt). This is obtained as

follows. We first approximate the joint distribution ofxt, xt+1 and yt by a Gaussian distribution with

matching moments up to second order, calculated numerically over50 Monte Carlo runs. From the theory

of multivariate Gaussian, it then follows thatp(xt|xt+1, yt) is Gaussian. The smoothed marginal MAP

outputs along with the ground truth fort = 25, · · · , 75 is shown in Figure 2.
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Algorithm 2 TFS marginal MAP
Input: y0, · · · , yT

1. FF initialization:

a) setp(x0|x−1) = p(x0) (known)

b) drawx
(i)
0 ∼ p(x0), i = 1, · · · , N

c) computeω(i)
0 = p(y0|x

(i)
0 ) and normalize

2. run FF fort = 1, · · · , T

3. available FF output:
{
x
(i)
t , ω

(i)
t

}
, t = 0, · · · , T

4. BIF initialization:

a)
{
x̃
(j)
T , ω̃

(j)
T

}N

j=1
obtained by

resampling
{
x
(i)
T , ω

(i)
T

}N

i=1

5. selectγt(·) fot t = 0, · · · , T

6. run BIF for t = T − 1, · · · , 0

7. available BIF output:
{
x̃
(j)
t , ω̃

(j)
t

}N

j=1
, t = 0, · · · , T

8. TFS output:

a) (from (23)-(24))
{
x̃
(j)
t , ω̃

(j)
t|T

}N

j=1
for t = 1, · · · , T

b)
{
x̃
(j)
0 , ω̃

(j)
0|T

}N

j=1
for t = 0 where

ω̃
(k)
0|T ∝

ω̃
(k)
0

γ0(x̃
(k)
0 )

p(x̃
(k)
0 ).

9. estimate the marginal MAP (using (28) and (25)) as

xMAP
t|T = argmax

x̃
(i)
t

{
γt(x̃

(i)
t )p(yt|x̃

(i)
t )×

×
N∑

k=1

p(x̃
(k)
t+1|x̃

(i)
t )

γt+1(x̃
(k)
t+1)

ω̃
(k)
t+1

} ω̃(i)
t|T

ω̃
(i)
t

.

DRAFT



Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

13

20 30 40 50 60 70 80
−30

−20

−10

0

10

20

30

Time step

S
ta

te
 V

al
ue

Ground truth and  smoothed marginal MAP outputs

Truth
smoothed marginal MAP

Figure 2. Ground truth and smoothed marginal MAP outputs

III. N UMERICAL EXAMPLES

A. Validation of the FBS based smoothed marginal MAP and comparison with other estimators

In this section we validate the proposed MAP estimator2. We do this on the basis of a linear-Gaussian

model. In particular, we verify numerically that the proposed estimator converges to the true MAP (the

analytical solution), given by the Kalman smoother. For this we consider a simplified one dimensional

target tracking [20] problem where a nearly constant velocity model is used for the state dynamics. We

use the state vectorxt , [pt, vt]
T , where the scalar variablespt andvt denote the position and velocity,

respectively, of the target andyt is the measurement at time stept. The discrete time state space model

is given by :

xt+1 =


 1 ∆

0 1


xt +


 ∆2/2

∆


wt (29)

yt =
(

1 0
)
xt + et, t = 1, 2, . . . , T. (30)

Here ∆ = 4 is the measurement scan interval,wt and et are the process and measurement noises,

respectively, given bywt ∼ N (0, 52) andet ∼ N (0, 202). The noise sequences are serially independent

and also independent of each other. The initial state is assumed to be distributed according to a zero

2We stress again our assumption that the particle cloud representation is given to us. Thus any specific particle filter

implementation is irrelevant to our problem formulation.
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mean Gaussian random variable with a diagonal covariance matrix


 100 0

0 1


 . For the simulation we

have usedT = 30. Since the above state space model is linear Gaussian, the exact smoothed marginal

MAP can be obtained analytically using a Kalman smoother running on the same data. For the particle

filter, we use state transition density as proposal with resampling at every step. Next, we compute the

smoothed marginal MAP using different number of particles and compare them with the exact smoothed

marginal MAP as obtained from the Kalman smoother. The accuracy of the proposed MAP is assessed

in terms of the root mean square error (RMSE), given by

RMSE =


 1

M

M∑

j=1

(
âjt − ajt

)2



1

2

(31)

whereM is the number of Monte Carlo runs,̂ajt is our proposed estimate of a desired quantity (say

positionpt or velocity vt) at time t for j-th (Monte Carlo) run andajt is the corresponding output from

the Kalman smoother. The mean and standard deviation (Std) of the RMSE values (over theT = 30

time steps) against different number of particles are shownin Table I below:

Nr. of particles Position Velocity

mean Std mean Std

50 25.6564 11.6652 18.2127 4.1586

250 9.6446 5.0851 17.1901 4.3301

500 7.0625 1.6735 16.1167 4.1403

1000 6.6446 1.6810 16.4073 4.1379

2000 6.0519 1.6673 15.5771 3.9074

Table I

RMSEAS A FUNCTION OF NUMBER OF PARTICLES USED

The results indicate that with increasing number of particles, the RMSE values converge to a limit. It

should not be surprising that the limit is not zero. From the definition (equation (31)) it is clear that even

if the MAP estimates converge to the true MAP, the RMSE would not converge to zero. Since both the

MAP estimate and the true MAP are time dependent and stochastic, it would converge, under ergodicity

conditions, to some sort of standard deviation of the error of the estimate, which is determined by the

variances of the noise processes. From the convergence of RMSE values we conclude that the errors of

the estimates remain within bound.

For the sake of completeness, we also compare the performance of the proposed smoothed marginal

DRAFT



Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

15

MAP (PS MAP) with that of the smoother particle with the maximum weight (PS MW). We use a particle

smoother withN = 2000 particles. We estimate the (squared) errors of the estimators with respect to the

exact smoothed marginal MAP (Kalman smoother). The root mean squared position and velocity errors

over 30 Monte Carlo runs and over 30 time steps are shown in Figure 3 and Figure 4, respectively.
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Figure 3. RMSE position error
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Figure 4. RMSE velocity error

We see in Figure 3 that the RMSE of the position estimates whenusing the PS-MW is quite far off as

DRAFT



Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

16

compared to that of the PS-MAP. This is a clear indication that the PS MW estimator does not represent

the true marginal MAP. On the other hand, Figure 4 shows that the two estimators behave almost similarly

for the velocity component of the RMSE, with PS MW performinga bit worse than PS MAP.

Next, we apply our marginal smoother MAP estimator to estimate the unknown initial condition of

the state. Subsequently, using the same approach, we have addressed parameter estimation problems by

considering the parameter as an additional state.

B. Estimation of (unknown) initial condition

1) Linear model: We consider the following

xt = 0.8xt−1 + wt (32)

yt = xt + vt (33)

with wt ∼ N(0, 1) and vt ∼ N(0, 0.1). The initial statex0 is assumed to be unknown (constant). The

simulated data{xt, yt}t=0:500 is generated starting withx∗0 = 10. To estimate the unknown initial statex0,

we start with initial priorp(x0) ∼ U [0, 20] whereU [a, b] denotes uniform probability density function

with lower bounda and upper boundb respectively. We useN = 500 particles and the optimal proposal

as given in [2] in the forward filtering step. The estimate of the initial unknown state is taken as the MAP

of p(x0|y0:T ) 3. The mean and variance of the estimator over30 Monte Carlo runs are shown in Table

II. The result shows that the smoothed initial density peaksaround the true initial state, even though we

have started with a pretty wide uniform initial prior.

Mean(xMAP

0|500 ) V ar(xMAP

0|500 )

9.9726 0.0915

Table II

MEAN AND VARIANCE OF ESTIMATED INITIAL STATE

Though not needed for this exercise, we have nonetheless calculated for all0 ≤ t ≤ T = 500, the

proposed MAP for the smoothed marginal densityp(xt|y0:T ) and the corresponding mean. We notice in

3With an uniform priorp(x0), note from Eq. (13) that for estimating the initial condition, we are essentially picking the

(smoothed) particle with the highest weight. However, withother choice of prior, the estimate (i.e. the smoothed marginal MAP)

is different from the particle with highest weight.
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the simulations that the MAP and the mean of the smoothed marginal density at a given time step are

the same, as expected for a linear Gaussian model.

2) Nonlinear model: Here, we consider the nonlinear time series model as given in(16)–(17). The

simulated data{xt, yt}t=0:500 is generated starting withx∗0 = 10. As in the previous case, we start with

initial prior p(x0) ∼ U [0, 20]. For this nonlinear problem, we use the EMM proposal during forward

filtering step with particle sample sizeN = 500. The estimate of the initial unknown state is given by

the particle based MAP ofp(x0|y0:T ). We repeat this MAP state estimate for30 Monte Carlo runs. The

mean and variance of the estimator are shown in Table III. Theresult in Table III is really remarkable

as we can see by comparing with Table II. Even for highly nonlinear model as considered above and

with wide uniform initial prior, the result is almost as goodas in linear case. Of course the variance is

somewhat larger, but that is to be expected given the highly nonlinear nature of the problem.

Mean(xMAP

0|500 ) V ar(xMAP

0|500 )

9.7165 0.9236

Table III

MEAN AND VARIANCE OF ESTIMATED INITIAL STATE

It is also interesting to study the behaviour of the smootherwhen the initial distribution is supported

on a larger interval. Starting withp(x0) ∼ U [−40, 40], we have calculated for all0 ≤ t ≤ T = 500, the

proposed MAP for the smoothed marginal densityp(xt|y0:T ) and the corresponding mean. These estimates

for the first10 time steps for a particular realization are shown in Figure 5while the corresponding filtered

and smoothed pdfs (unnormalized versions) forx0 are shown in Figure 6. We notice that the filtered as

wel as the smoothed pdf are bimodal with (local) peaks aroundthe true initial state,x∗0 = 10 and its

reflected value−10. In the filtered version both peaks are equally high (suggesting the inability of the

filter to decide between these two values), whereas in the smoothed version, the peak at+10 is much

higher. This shows the improved performance of the smootherin comparison with the filtered density.

Furthermore, although the dominant mode of the smoother density is very close to the true initial state

x∗0 = 10, the contribution from the weaker mode, shifts the smoothedmean away fromx∗0 (as seen in

Figure 5, the smoothed mean is near8 here). This further strengthens the justification of using the MAP

in such a scenario.
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Figure 5. Simulated state (Xsyn), MAP and mean of the marginal smoothed posterior for the first 10 time steps
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C. Parameter estimation

One of the common approaches of estimating a parameter in a state-space model is to augment the

parameter as an extra state with a small artificial dynamics and then take the filtered estimate as the

estimate of the parameter. The artificial evolution, however, in effect, renders the fixed parameter into
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a slowly varying one. As a result, the variance of the filteredestimate of the parameter increases over

time [30], which limits the precision of the resulting estimate. Looking from another perspective at this

augmented framework, one may observe that only the initial augmented state is not corrupted by artificial

noise.

Hence in our approach, we consider the marginal smoother of the initial augmented state to be the

estimate of the true (fixed) parameter. It is expected that asmore and more observations are available,

the smoothed estimate would converge to the true parameter value. We proceed here with the following

dynamic system:

xt+1 = f(xt, wt+1; θ), (34)

yt = h(xt, vt), t = 0, 1, . . . (35)

whereθ is a fixed unknown parameter,(xt) are the unobservable state with (known) initial prior density

p(x0) and (yt) are the observation. The process noises(wt) are assumed to be independent of the

measurement noises(vt). We start with the usual procedure of augmenting the state space by treating the

parameter as additional state. Note that the dimension of the state increases by the numbers of parameters

augmented. Now the augmented state space can be written as

xt+1 = f(xt, θt, wt+1) (36)

θt+1 = θt + ηt+1 (37)

yt = h(xt, vt), t = 0, 1, . . . (38)

with θ0 = θ, which is unknown here. Now, using notationXt+1 = [xt+1 θt+1]
′

andWt+1 = [wt+1 ηt+1]
′

,

where[· · · ]
′

denotes vector transpose, the above model can be rewritten as

Xt+1 = f̄(Xt,Wt+1)

yt = h̄(Xt, vt)

for some f̄ and h̄. We estimate the initial state vectorX0 using marginal the MAP smoother. The

corresponding estimation for the augmented stateθ0 is taken as the estimated parameter. We consider

the following two numerical examples for this parameter estimation approach. We begin with a linear

example:

xt = θxt−1 + wt (39)

yt = xt + vt (40)
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with wt ∼ N(0, 1) and vt ∼ N(0, 0.1) and (unknown) true parameterθ = θ∗ = 0.5. We takeηt ∼

N(0, 0.0025). Note thatθ0 is independent ofx0. With p(x0) ∼ N(0, 5), we started withp(θ0) ∼ U [−5, 5].

We useN = 1000 particles and state transition density as our proposal during forward filtering step.

The mean and the standard deviation of the estimator ofθ over30 Monte Carlo runs are shown in Table

IV below. Although the assumption of uniform initial prior is radically different from the knowledge of

True parameter Mean(θMAP

0|500 ) Std(θMAP

0|500 )

0.5 0.422 0.265

Table IV

TRUE PARAMETER, MEAN AND STANDARD DEVIATION OF THE ESTIMATED PARAMETER

exact initial condition (parameter), we see the parameter estimate to be quite good.

Next we consider the following nonlinear example:

xt =
xt−1

2
+

θxt−1

1 + x2t−1

+ 8cos(1.2t) + wt, (41)

yt =
x2t
20

+ vt, (42)

wherewt ∼ N(0, 10) andvt ∼ N(0, 1). The true parameter isθ = θ∗ = 25. With knownp(x0) ∼ N(0, 5),

we started withp(θ0) ∼ U [−50, 50]. We useN = 1000 particles and state transition density as proposal

during forward filtering step. We setηt ∼ N(0, 5). The estimate ofθ for 30 Monte Carlo runs is shown in

Table V. As remarked after Table IV, we see the same pattern ina nonlinear problem as well. We observed

True parameter Mean(θMAP

0|500 ) Std(θMAP

0|500 )

25.0 27.259 1.241

Table V

TRUE PARAMETER, MEAN AND STANDARD DEVIATION OF THE ESTIMATED PARAMETER

that this estimation procedure works quite well even in nonlinear cases. However, the computational

burden with the growing memory requirement is a major stumbling block here. Additionally, when the

number of parameters is large, the dimension ofXt+1 also increases and the effective exploration of the

state space in region where the joint probability ofXt+1 is high, becomes difficult with a finite number

of (relatively small) samples.
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IV. CONCLUSIONS

In this article we have considered the problem of estimatingthe smoothed marginal MAPxMAP
t|T , given

by (3), of unobservedxt from all the observations,y1:T , up to timeT (> t), where(xt), (yt) follow a

general state space model, given by (1)-(2). In doing so, we assume that a marginal particle smoother

for the posteriorp(xt|y1:T ) already exists. The naive choice of the particle with maximum (smoothed)

weight does not represent the true MAP estimator as observedby the authors in [8] and [9]; and confirmed

further by the example in section III-A. The newly proposed estimator for the marginal smoother MAP

is based on the theoretically sound fact that the posterior density evaluated at any arbitrary point can

be expressed as an integral with respect to the posterior density from the “previous” time-step. The

proposed method is selfsufficient in the sense that it does not need any exogenous method such as kernel

fitting and therby avoiding the non-obvious and computationally expensive choice of the optimal kernel

bandwith. The algorithm corresponding to the most commonlyused forward-backward particle smoother

is developed in Section II-A and that for the two filter smoother in Section II-B. We have performed

a quick validation of the proposed estimator (using forward-backward smoother) in Section III-A. Here

we have considered a linear Gaussian model for which the trueMAP is given by the Kalman smoother.

A numerical comparison of our estimator with the true MAP suggests that as the number of particle

increases the proposed MAP estimates stay close to the true MAPs (the errors remain within bound).

After the successful validation step we have applied the proposed MAP estimator to find the unknown

initial state of a given dynamical system (Section III-B). We notice that even for highly nonlinear model

with wide uniform initial prior the result is very good. Thisis subsequently applied (Section III-C) to

address the parameter estimation problem in dynamical systems. We observe reasonably good results in

this application as well.
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