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Abstract 
Model-based development is one of the most significant areas in recent research and development 

activities in the field of automotive industry. As the field of software engineering is evolving, model 

based development is gaining more and more importance in academia and industry. Therefore, it is 

desirable to have techniques that are able to identify anomalies in the system models during analysis 

and design phase instead of identifying them in development phase where it is difficult to locate 

them and requires a lot of time, effort and resources to fix them. Model checking is a formal 

verification technique that facilitates to identify the defects in system model at the early stages of 

system development. There are a lot of tools in academia and industry that provide the automated 

support for model checking.  

In this master thesis one of Scania’s vehicle control system called Fuel Level Display System is 

modeled in two different model checking tools Simulink Design Verifier and UPPAAL. The 

requirements that are to be satisfied by the system model are verified in both tools. After verifying 

the requirements upon system model and checking the model against general design errors, it is 

established that the model checking can be effectively used for detecting the design errors in early 

development phases and can help developing better systems. Both the tools are analyzed depending 

upon the features supported. Moreover, relevance of model checking is studied with respect to ISO 

26262 standard. 
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1. Introduction  
1.1. Background 

Due to the increasing complexity in functionality of software applications, the popularity of model-
based development has steadily increased over the years and has become a method that is used for 
both academic and industrial software development purposes. However, verification methods such 
as manual reviews, walkthroughs or inspections of models are still frequently used in the industry. 
Manual verification methods are time-consuming and it is very hard to verify that system satisfies all 
the specifications due to a large network of dependent sub-systems.  
 
Furthermore, with the introduction of new standards, e.g., ISO 26262, requirements engineering has 
been incorporated into the product development process. Given that a set of requirements has been 
allocated to a system or sub-systems, the verification of the requirements is necessary. As a natural 
answer to this, formal model checking has emerged. Formal Model checking aims for automatic 
verification that a model meets a given set of specifications. There are tools and methods that are 
currently used for model checking during system development. The aim of this master thesis project 
is to investigate the possibility of using existing tools and methods for formal model checking in the 
development of industrial applications. 

1.2. Problem Statement 

Scania is one of the leading manufacturers of heavy trucks, buses, coaches and engines. A lot of 
effort, time, money and resources are required to fully test all the vehicle control systems deployed 
in their products. Scania wants to check if introducing model checking techniques in their systems 
can improve the quality of current testing process and can it be used as an alternative to testing, 
which will eventually help them to save some of the resources which are currently being consumed 
for testing all the vehicle control systems. Furthermore it is also required to investigate the relevance 
of model checking with respect to the latest ISO 26262 standards, and to analyze different model 
checking tools based upon their features for model checking.  

1.3. Goals 

This master thesis project can be divided into following different sub-goals 
1. Analyze the academic and industrial world to find initial set of relevant tools/methods for formal 
model checking. 
2. Narrow down the initial set of methods/tools down and finalize two suitable model checking tools 
for modeling based upon their coverage, manageability, degree of maturity, and applicability. 
3. Choose a well-documented, non-trivial best-practice example at Scania to be modeled by using the 
selected model checking tools. Selection of the vehicle control system is based upon the 
documentation, test data, requirements and state machines available for the system at Scania. 
4. Model the best practice selected vehicle control system in finalized model checking tools and 
verify the system model against the specified requirements. Also verify the system model against 
general design errors. 
5. Evaluate the results with respect to industrial relevance and usefulness in terms of compliance 
with ISO 26262. Analyze the model checking tools used during this master thesis project based upon 
the features offered by the tools.  
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1.4. About Scania Group 

This master thesis is performed at Scania Group situated in Södertälje, Sweden in REPA department. 
Scania was founded in 1891 and presently is one of the leading manufacturers of heavy trucks, buses, 
industrial and marine engines. Scania has branches in around 100 countries all over the world. 
Overall Scania has more or less 37,500 people employed in different departments. Out of 37,500 
employees 3,300 are working in research and development department in Södertälje, Sweden [3].  

 
Disclaimer:  
All the numerical values mentioned in the requirements of fuel level display system are arbitrary 
values and do not represent the actual values in Scania fuel level display system. 

2. Model Checking 
With the evolution of modern technologies dependability of organizations and individuals over 
software applications is remarkably increased. In many situations these software applications are 
critical for the safety of individuals and the environment in which they are operating. So it has 
become a strict requirement that these applications must be fail safe and error free. But due to the 
complex nature of software, this requirement cannot be achieved 100%. There exist different testing 
strategies but it is very expensive, time consuming and difficult to make a complete and 
comprehensive list of testing scripts. To cope with these limitations formal verification technique 
called model checking can be used. By using formal verification techniques verification activity can be 
initiated very early in the design process which makes verification activity more effective and less 
time consuming [1].  
 
Models describing the behavior of the system in a precise and clear manner are used by the model 
based verification techniques. Correct modeling of the system behavior can discover the 
inconsistencies in system behavior with respect to its specifications [1].  
 
In model checking all possible systems scenarios and states are explored in a brute force manner just 

like the chess program that examines all possible moves. By using this way of verification it can be 

proved that the system truly satisfies certain properties. Certain errors which remain undiscovered 

during simulation, testing and emulation can be potentially discovered by using model checking. As 

the name implies, model checking checks the model of the system that is an abstract and high level 

description of the system, it does not checks the actual program of the system. It is a great challenge 

for the developers to make a model of the system that truly represents the actual system. The main 

obstacle in model checking is the abstraction of the software application. It states that during 

abstracting the real world problem, the important and critical aspects of the system model should 

not be left out. The abstraction should be comprehensive enough to contain all the critical aspects of 

the system. Otherwise, the model checker will be useless if it cannot explore the states which could 

possibly give rise to errors and compromise the safety in some critical software applications [1]. 

Model checking is a software verification technique that uses model of the software application and 

tries to verify certain properties on the software model during execution. Precisely it can be said that 

model checking process is basically composed of designing system model, properties definition, 

running the model checker and analyzing the results [1]. 
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2.1. The Model-Checking Process 

Following are the different phases in model checking process [1] 
 
1) Designing system model: 
Model description language provided by the model checking tool under hand is used to model the 

system under consideration. Designing a system model usually involves making finite state machines 

which specify desired behavior of the system that can be defined in terms of variables, initial values 

for the variables, environmental assumptions, and description of conditions under which values of 

variables will change [1].  

2) Properties definition: 
Properties of the system to be verified against the system model are defined by using some temporal 
logic constraints for example linear temporal logic (LTL) or computation tree logic (CTL). Each model 
checking tool supports different kind of property specification language [1].  
 
3) Running the model checker:  
Model checker is executed to check the validity of the defined properties against the system model. 
Results of the model checker are stored to be analyzed at the later stages [1].  
 
4) Analyzing the results: 
Results of the model checker are analyzed. If the current property for which model checker was 
executed is satisfied by the system model then check the next property if there is any. And if the 
property is violated by the system model then analyze the counter example or error path generated 
by the model checker and based upon that refine the system model, design of system or may be the 
property. Repeat the entire above procedure until all the properties are satisfied by the system 
model. During model checking lot of states are generated by the model checker so there is a 
possibility of getting out of memory error. In such case either reduces the system model or use more 
sophisticated techniques for model checking [1]. Figure 1 presents the overall architecture of model 
checking.  
 

 
Figure 1: Model checking architecture. 
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One problem that is normally faced during model checking is the state space explosion problem. It is 
a very critical issue to examine the largest possible state spaces that can be handled with available 
resources (processor and memory). State-of-the-art model checkers can handle 108 to 109 states with 
explicit state-space enumeration. By employing efficient algorithms and customized data structures 
1020  to 10476 states can be handled [1].  

2.2. Types of model checkers 

Based on the model specification and state space, there exist different types of model checkers. 
Mainly the model checkers can be divided into two categories  
1) Explicit model checkers.  
2) Implicit model checkers.  
 
Explicit model checkers construct a searchable representation of the design model and store a 
representation of each state visited [1]. Implicit model checkers also called symbolic model checkers 
use logical representations of sets of states (such as binary decision diagrams) to describe the regions 
of model state space that satisfy the properties being evaluated. Such compact representations 
generally allow symbolic model checkers to handle a much larger state space than explicit model 
checkers [1]. 
 
Some recently developed model-checkers use satisfiability modulo theories (SMT) solvers for 
reasoning about infinite state models containing real numbers and unbounded arrays. These model 
checkers use a form of induction over the state transition relation to automatically prove that a 
property holds over all executable paths in a model. While these tools can handle a larger class of 
models, the properties to be checked must be written to support inductive proof [1]. 

2.3. Model checking in System Development Lifecycle 

Following figure 2 represents the timing for conducting model checking activity in classic waterfall 
model, during system development life cycle. Model checking can be categorized into two categories 
classic model checking and modern model checking. Classic model checking can be performed during 
analysis, design or before the coding activity in system development lifecycle. And improvements can 
be made in the system model based upon the outcomes of model checking. Modern model checking 
is carried after the coding activity. This can complement the testing activity and improvements can 
be made in the model depending upon the outcomes of model checking activity [13].  
 

 
Figure 2: Model checking in classical waterfall model 
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2.4. Model checking in the fuel level display system 

In case of Scania’s vehicle control system fuel level display system, this system is already developed, 
tested and working in their trucks. The main purpose of applying model checking to this vehicle 
control system is to investigate the validity of the design by using model checking techniques and 
also to see whether it’s feasible to replace current verification techniques used in Scania with model 
checking. Or if not completely replacing the current verification style then how model checking can 
help improving the current verification activity. Because model checking is supposed to complement 
the testing, it’s not an alternative of testing.   
 
Current verification methods employed in Scania are time-consuming and due to the large network 
of dependent sub-systems it can be hard to verify that a system meets all the specifications. By using 
model checking it can be ensured that almost 100% test coverage has been achieved and it can be 
justified with proof from model checking tools which is hard to perform in case of manual testing 
techniques.  
 
Since the fuel level display system application is already developed, tested and is working in actual 
products which mean that the system is in maintenance phase so the model checking activity in this 
case is after the testing activity during maintenance activity as shown in the following figure 3. But 
since the company is open to the changes in the design of the system depending upon the out-come 
of the model checking activity so this model checking activity can also be related to the analysis and 
design phases and also before the coding phase as described by the classical waterfall software 
development model of Pressman 1996.  
 

 
Figure 3: Model checking in case of fuel level display system. 
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3. Systematic Literature Review:  
Systematic literature review for searching the existing model checking tools was initiated on 17 
March, 2012. Springerlink, ACM Digital Library and Google Scholar search engines are used to search 
for the existing model checking tools. Systematic literature review was started with following two 
search strings.  

1. “Model checker”. 
2. “Model checking tool”. 

Following table 1 shows the results that are obtained on the basis of two search strings. This table 
differentiates the number of results based upon the title and abstract search, and whole body 
search. 
 

Search Engine Search String Title and Abstract Whole 
Paper/body 

Springerlink Model Checking Tool 966 46955 
Springerlink Model Checker 1159 11297 

ACM Digital Library Model Checking Tool Title: 9 
Abstract: 396 

17,167 

ACM Digital Library Model Checker Title: 36 
Abstract: 463 

5806 

Google Scholar Model Checking Tool Title: 133 
 

1220000 

Google Scholar Model Checker Title: 631 
 

79200 

Table 1: Initial search results based on two search strings. 

Based upon the initial research results it was discovered that the first search string “Model Checker” 

is returning most relevant results as compare to the string “Model checking tool”. Therefore the 

string “Model Checker” was finalized for this research.   

Search Engine Search String Title and Abstract Whole Paper/body 
Springerlink Model Checker 1159 11297 

ACM Digital Library Model Checker Title: 36 
Abstract: 463 

5806 

Google Scholar Model Checker Title: 631 
 

79200 

Table 2: Search results against search string "model checker". 

After reading the title, abstracts and introduction 96 papers are considered relevant. Then after 
reading the whole papers only 37 papers are found relevant, each of them presented at least one 
model checking tool. Eventually it is discovered according to the systematic literature review that 
there are 54 model checking tools present with different features and functionality that they 
support. Therefore these 54 tools are considered the currently existing tools for this systematic 
literature review about model checkers. Since the main purpose of this master thesis is not to study 
about the existing model checking tools but to perform model checking upon fuel level display 
system of Scania, that’s this systematic literature review is kept short and brief.  
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3.1. Inclusion Exclusion Criteria 

Inclusion Criteria: 
1. All papers that present at least one model checking tool are included. 
2. All the papers about model checking tools are included. 
3. All papers generally talking about model checking techniques and methodologies are 

included.  
4. All papers about how model checking tools and techniques work are included.  
5. Books, thesis, articles, journals, conference proceedings and technical reports related to 

model checking are included 
6. No specific time limit is enforces on the search. All relevant articles until the search date are 

included.   
 
Exclusion Criteria:  

1. All papers which are not in English language are excluded.  
2. All papers about how model checking tools are built are excluded. 

3.2. Model Checking Tools 

Different types of temporal logics are used by the model checking tools to express the properties of 
system as logical formulas to be verified on the system model. Most of model checking tools use 
either linear time or branching time logics. Properties that can be expressed in either of these logics 
they can also be expressed in the other one as well. But some of the tools use different types of logic 
to formulate the properties. 
 
Linear Time: 
[16] Linear time also called linear temporal logic or linear-time temporal logic (LTL) is a modal 
temporal logic with modalities that refer to time. In LTL formulas future can be encoded. For example 
a condition will finally be true; a condition will be true until another fact becomes true, etc. 
 
Branch Time: 
[16] Branch time also called computation tree logic (CTL) is branching-time logic. Its model of time is 

a structure like tree where the future is not determined. There are different paths in the future that 

can be followed; any one of them can be selected as future path. In CTL it can be specified that when 

an initial condition is true then all possible executions of a program avoid some unwanted state or 

condition.  

Other: 
There are model checking tools which use different type of logics to formulate the properties of the 
system to be verified as mentioned in the table below in the column named as other, next to the 
column named linear time.  
 
Real Time: 
Real time systems are the systems that operate under time sensitive environment and provide 
guaranteed response within strict time constraints. Real time column shows that the tool supports 
the modeling, verification and analyses of real time systems.  
 
Probabilistic: 
Probability is an important component in the design and analysis of complex systems. Probabilistic 
model checking is a formal verification technique for modeling and analyzing the systems. 
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Probabilistic column in the table below shows the tools that support the modeling and analysis of 
systems that exhibit probabilistic behavior. 
 
Hybrid: 
Hybrid column shows that the tools marked as hybrid supports both real time and probabilistic 
model checking approaches. 
 
GUI: 
Graphical user interface (GUI) column shows that which of the tools provide graphical user interface 
for modeling the system and for formulating the properties of the system to be verified.  
 
Availability: 
Availability column shows that under what conditions the tools is available for use. Availability of the 
model checking tools can be divided into three types  

1. Free - Free means that the tools are freely available to be downloaded and to be used for all 
kinds of users. 

2. Free Under condition - Free under condition means that tool is available to be downloaded 
and used for the academic purposes but if someone wants to use it for the commercial 
purposes then licenses are required. 

3. Commercial - Commercial means that license must be acquired for downloading and using 
the model checking tool. 
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Following table presents the model checking tools, and features supported by them, which exist until now in academia and industry [2]. 
 

Short Name Full Name Linear 
Time 

Branch 
Time 

Other Real 
Time 

Probabilistic Hybrid GUI Availability 

Alpina Alpina   Reachability     Free 

APMC Approximate Probabilistic 
Model Checker 

       Free Under 
Condition 

ARC AltaRica Checker   Modal mu-calculus     Free Under 
Condition 

Bandera Bandera        Free 

Blast Berkeley Lazy Abstraction 
Software verification Tool 

       Free 

Cadence 
SMV 

Cadence SMV        Free Under 
Condition 

Cascade Cascade   Abstract syntax tree     Free 

CADP Construction and Analysis of 
Distributed Processes 

       Free Under 
Condition 

CWB - NC The Concurrency Workbench 
of New Century 

       Free Under 
Condition 

DBRover DBRover        Commercial 

DiVinE Tool Distributed Verification 
Environment -- Tool Set 

       Free 

DREAM Distributed Real-time 
Embedded Analysis Method 

  Discrete event simulator     Free 

Edinburgh 
CWB 

Edinburgh Concurrency 
Workbench 

       Free Under 
Condition 

Expander2 Expander2        Free 

Fc2Tools Fc2Tools and Autograph        Free 

GEAR    Modal mu-calculus     Free Under 
Condition 

HSolver HSolver   Safety     Free 

HyTech         Free 
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IF IF Toolbox        Free 

INA Integrated Net Analyzer   Deadlock-freedom, 
Reachability, Coverability, 
Invariants, Structural 
Analysis 

    Free 

JPF Java PathFinder        Free 

KRONOS KRONOS        Free 

LTSA Labelled Transition System 
Analyzer 

       Free 

MCRL MCRL toolset        Free 

mCRL2 mCRL2 toolset        Free 

Mocha Mocha   ATL     Free 

Moped Moped        Free 

MRMC Markov Reward Model 
Checker 

       Free 

mucke mucke   Mu-calculus     Free Under 
Condition 

NuSMV NuSMV: a new symbolic model 
checker 

       Free 

PAT Process Analysis Toolkit        Free 

PEP PEP - Programming 
Environment based on Petri 
nets 

       Free 

PRISM Probabilistic Symbolic Model 
Checker 

       Free 

PROD PROD   Deadlock-freedom, 
Reachability 

    Free 

PVS Prototype Verification System        Free Under 
Condition 

Reactis 
Tester 

Reactis Tester   Automatic Test Case 
Generation 

    Commercial 

SGM State-Graph Manipulators        Free Under 
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Condition 

SMCWWI Simple Model Checker With 
Web Interface 

       Free 

SPIN Simple Promela Interpreter        Free Under 
Condition 

Statestep Statestep   Safety (non-reachability), 
explicit completeness 

    Free Under 
Condition 

STeP Stanford Temporal Prover        Free 

TAPAAL TAPAAL        Free 

TAPAs Tool for the Analysis of Process 
Algebras 

       Free Under 
Condition 

Temporal 
Rover 

Temporal Rover        Commercial 

The Kit The Model-Checking Kit 
 

  Deadlock-freedom, 
Reachability 

    Free 

TIMES A Tool for Modeling and 
Implementation of Embedded 
Systems 

       Free Under 
Condition 

TRON Uppaal TRON   Timed testing using model-
checking techniques 

    Free Under 
Condition 

Truth Truth        Free 

TwoTowers         Free Under 
Condition 

UPPAAL UPPAAL Toolkit        Free Under 
Condition 

VeriSoft VeriSoft        Free 

VIS Verification Interacting with 
Synthesis 

       Free 

Ymer Ymer        Free Under 
Condition 

[mc]square [mc]square        Free Under 
Condition 
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Simulink 
Design 
Verifier 
(Prover) 

Simulink Design Verifier 
(Prover) 

  SMT – Satisfiability modulo 
theories 

    Commercial 

CMurphi CMurphi        Free 

RT-SPIN Real Time - Simple Promela 
Interpreter 

       Free Under 
Condition 

Table 3: Model checking tools and their features. 

3.3. Why Simulink Design Verifier and UPPAAL? 

During this systematic literature review fifty five tools are discovered that can be used for model checking. For this master thesis project Simulink Design 
Verifier and UPPAAL are selected to perform the activity of model checking on Scania’s vehicle control system.  
 
The main reason for the selection of Simulink Design Verifier is that Scania uses Simulink to build the models of their vehicle control systems. It is desirable, 
from Scania’s point of view, to determine whether the existing Simulink models of Scania’s vehicle control system can be used in the future for model 
checking by Simulink Design Verifier or not. Building the system model from scratch in any other model checking tool requires a lot of time and resources 
and if the existing Simulink models can be used for model checking then a lot of such effort can be saved. 
 
The vehicle control system that is selected for model checking for this master thesis is a real-time system. UPPAAL is a model checking tool particularly 
suitable for modeling, simulation, validation and verification of real-time systems. It is also one of the most used, updated and continuously evolving tool. 
Hence, after discussion with supervisors from Scania, UPPAAL is selected as the second tool for model checking during this master thesis project. 



Master Thesis - Applying Model Checking for Verifying the Functional Requirements of a Scania’s Vehicle Control System.  

GSEEM (Global Software Engineering European Master)  13 

 

4. Simulink Design Verifier 
Simulink Design Verifier identifies design errors, generate test vectors, and verify designs against 
requirements. It uses formal methods to identify hard to find design errors in models without 
requiring extensive tests or simulation runs. Design errors that can be detected by Simulink Design 
Verifier include dead logic detection, integer overflow identification, division by zero, and violations 
of design properties and assertions [8].  
 
Model blocks that contain errors are highlighted in Simulink Design Verifier and it is also possible to 
highlight the blocks that do not contain any error. Signal range boundaries are calculated and test 
vectors are generated by Simulink Design Verifier for reproducing the errors later during simulation. 
Simulink Design Verifier also facilitates to perform analysis of model in simulink environment. Design 
and requirements can be validated in early phases without generating the code. Verification and 
validation activities can be conducted in the whole design phase. Model analysis supports simulation 
and allows the users to use simulation results as inputs to analyze the models by using formal 
methods. Discrete-time subset of Simulink and State flow are also supported by Simulink Design 
Verifier. State flow is typically used in embedded control designs [8]. 
 
Following are the key features provided by Simulink Design Verifier [8] 

 Simulink Design Verifier uses Polyspace and Prover Plug-In as formal analysis engines. 
 Detection of design errors like integer and fixed-point overflows, division by zero, dead logic 

detection, violations of design properties and assertions violations. 
 Simulink Design Verifier provides blocks and functions for modeling functional requirements 

and safety requirements. 
 Test vector can be generated from functional requirements. Model coverage is ensured by 

model coverage objectives which include condition, decision, and modified 
condition/decision coverage (MCDC). 

 Property satisfaction by identification of failure locations for analysis and debugging. 
 Simulink Design Verifier also provides model support for fixed-point and floating-point 

models. Support for floating point really makes a difference as compared to UPPAAL that 
does not support the floating point models.  

 

 
Figure 4: Simulink Design Verifier. 
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Formal analysis techniques manufactured by Prover Technology called Prover Plug-In and Polyspace 
formal analysis engine created by MathWorks are used by Simulink Design Verifier for formal 
analysis. Both of these formal analysis techniques depend upon rigorous mathematical procedures 
for searching the possible execution paths in the model for test cases generation and counter 
examples generation. In traditional testing methods test scenarios and expected results are 
presented with concrete data values but it’s not the same in formal analysis techniques. In formal 
analysis techniques user can work with models of system behavior rather than concrete data values. 
Models of test scenarios and verification objectives that describe expected and unexpected system 
behaviors can be included in system behavior models. Formal analysis that is conducted by using 
such models complements simulation and provides a deeper understanding of system design [8]. 

4.1.  Error Detection Using Formal Methods  

Simulink Design Verifier can discover whether certain scenarios can occur under specific conditions 

or not. This information can be used to improve the design, refine the requirements, guide the 

simulation for debugging, verification and validation. Simulink Design Verifier supports the detection 

of design errors like integer overflow, division by zero, dead logic, and assertion violations [10]. 

4.1.1. Detecting Integer Overflow and Division by Zero 

Simulink Design Verifier provides design error-detection mode to discover integer overflow and 

division by zero errors. This analysis is automatically performed which does not require the user to 

provide any additional inputs. Permitted ranges for all type of signals on every block are provided to 

direct the user in identifying the root cause of error. Results can be viewed in the form of model or in 

an HTML report format after the analysis is finished. Blocks are marked as green, yellow, or red in the 

model. Blocks marked as green shows the blocks that are proven to be unable to cause any integer 

overflow or division by zero errors. Blocks are marked with yellow when analysis cannot produce a 

conclusive result or when the time limit for the analysis is exceeded than expected. When an error is 

detected in the model execution sequence, all sub-blocks in the path that can cause integer overflow 

and division by zero are marked with yellow. Blocks marked with red shows the blocks that have 

integer overflow or divide by zero errors. For the blocks marked with red Simulink Design Verifier 

generates test cases that can reproduce the problem during simulation or testing. Test case can be 

invoked and simulation can be executed directly within simulink [10]. 

4.1.2. Detecting Dead Logic 

Test-generation mode in Simulink Design Verifier is used to detect dead logic in model, which 

identifies the model objects that are either outdated or the model objects that are proven to remain 

inactive during the execution process. Dead logic can be caused by a design error or a requirement 

error. When code is generated then, if dead logic is present in the system model it leads to dead 

code. It is very difficult to detect dead logic by testing only in simulation because even after running 

many simulations, it can be difficult to state that a specific logic or portion of model remains inactive. 

At the end of the analysis of test-generation the model is colored according to the test-generation 

criteria. Portions of model that have dead logic are marked as red and the parts of model that have 

logic which can be completely activated in simulation are marked as green. Test cases are generated 

by Simulink Design Verifier to reproduce the dead logic in simulation [10]. 

4.1.3. Detecting Assertion Violations 

To detect assertion violations Simulink Design Verifier provides assertion violation detection setting 

in property-proving mode. Simulink Design Verifier checks if there is any valid scenario that can 

http://www.mathworks.se/discovery/formal-verification.html
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trigger some assertions during simulation by remaining within the number of time steps mentioned 

in the analysis settings. All the assertions that can be violated by any valid scenario are marked with 

red. Test vector is generated for the triggered assertion. Some assertions are available in simulink by 

default and Simulink Design Verifier also provides extra blocks for defining additional constraints for 

analysis that empower the user to thoroughly analyze design behavior and detect design flaws prior 

to running the simulation [10]. 

4.2. Verification of designs against requirements 

Functional requirements of systems are traditionally clear statements about expected behaviors of 

the system. It can also be mentioned in the requirements about the behaviors that a system must 

never demonstrate. Scenarios that must never be shown by the system are referred to as functional 

safety requirements [11]. 

In order to formally check that the system design behaves according to the functional requirements, 

the requirement statements which are normally written in plain human language are first needed to 

be translated into the language that is understandable by the formal analysis engine under 

consideration. Simulink Design Verifier allows the users to state formal functional requirements using 

simulink blocks, MATLAB functions and Stateflow. Every requirement which is created in simulink for 

verification has one or more objectives associated with it. These verification objectives are eventually 

used to investigate if the system design fulfills the functional and safety requirements or not. 

Simulink Design Verifier provides a block library that includes blocks and functions for defining test 

objectives, proof objectives, assertions, constraints, and dedicated set of temporal operators for 

modeling of verification objectives with temporal aspects [11]. 

Simulink Design Verifier provides two blocks to specify property proofs: 1) Proof Objective 2) Proof 

Assumption. Proof objective define the values of a signal to be proved and proof assumption ensure 

constrains on the values of signals during a proof.  

Figure 5 describes the property verification architecture that is followed in Simulink Design Verifier 

for verifying the properties. This property proving architecture is followed for verifying the properties 

of fuel level display system of Scania during this master thesis project. First of all, inputs to the 

system are defined and then assumptions sub-model defines the assumptions on the input values. 

Assumptions defined on inputs in assumptions sub-model are used by both the system model and 

the verification sub-model. Verification sub-model also uses the output from system model for 

property proving. Verification sub-model can have multiple objectives associated to it that the 

system is expected to satisfy.  
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Figure 5: Architecture for property verification in Simulink Design Verifier. 

Once requirements and verification objectives are identified and captured in the verification model 
they can be used to illustrate the correctness of system design using formal methods. Test Objective 
blocks and MATLAB functions can be used for defining test objectives. During test generation 
Simulink Design Verifier will try to find a valid test case that meets the specified test objectives. If 
there is a situation that certain objective can never be met then the system design cannot perform 
the desired feature against the specified set of analysis constraints [11]. 
 
In order to test the correctness of system design against safety requirements, proof objective blocks 
and MATLAB functions are used for specifying proof objectives. Simulink Design Verifier examines all 
possible input conditions that can cause undesired behavior during analysis and then report the 
results. System design can be proven valid or it can violate the functional safety requirements for a 
given proof objective. Whenever a violation of proof objective against requirements is detected, test 
vector is generated by Simulink Design Verifier that can be used later to demonstrate the violation 
during simulation [11]. 
 
Algorithms and logic developed in Simulink and stateflow models to generate test cases and 
parameters is analyzed by Simulink Design Verifier. This kind of analysis is required by industry for 
developing systems with high integrity level and to meet the objectives set by the standards. To 
make sure the structural test coverage criteria for test generation condition, decision and modified 
condition/decision coverage (MC/DC) techniques are used by Simulink Design Verifier [12].  
 
TÜV SÜD has certified Simulink Design Verifier. Simulink Design Verifier is certified to be used in 
development process of systems. Processes of system development must comply with ISO 26262, IEC 
61508, or EN 50128 standards [12]. 
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5. UPPAAL 
UPPAAL is a model checking tool for modeling, simulation, validation and verification of real-time 
systems that are modeled as networks of timed automata. Finite state machines with time clocks are 
known as timed automata. UPPAAL does the verification and validation of the modeled systems by 
using two techniques. 1) constraint-solving 2) on-the-fly techniques.  In UPPAAL validation is done by 
graphical simulation and verification is done by automatic model-checking. In simulation modeled 
system is executed interactively and is observed that whether the system satisfy the expected 
behavior or not. UPPAAL uses finite state automata extended with clock and data variables. UPPAAL 
uses a subset of TCTL (timed computation tree logic) to model the requirements to be verified on the 
system model. UPPAAL facilitates with the features of counter example generation and counter 
example visualization [7], [17].  
 
Typical application areas for which UPPAAL is considered best include real-time controllers and 
communication protocols in particular, those where timing aspects are critical. It is designed mainly 
to check invariant and reachability properties which are done by exploring the state-space of a 
system. Two main parts of UPPAAL are graphical user interface and a model checker engine. 
Graphical user interface is implemented in Java language and is executed on the user end. Model 
checker engine is developed is C++ and is also executed on the user work station but UPPAAL offers 
the flexibility of running the engine on a separate machine that is more powerful and can be referred 
as server. Two main advantages of UPPAAL are efficiency and easy to use. Model checker engine 
applies on-the-fly searching technique in combination with the symbolic technique which makes the 
verification problem reduced to the problem of solving simple constraints system [7].  
 
UPPAAL can also generate a problem trace automatically, that can be used to diagnose the problem 
and can also be used to explain why a property is or is not satisfied by the described system. The 
traces can be visualized graphically by using the simulator provided by UPPAAL. Three main 
components of UPPAAL are 1) editor, 2) simulator and 3) verifier. It is freely available for academic 
purposes and it also has a commercial version available for industrial use which requires purchasing 
license for commercial use. It is available for Windows, UNIX and related platforms. UPPAAL is a joint 
venture of Department of Information Technology at Uppsala University, Sweden and Department of 
Computer Science at Aalborg University, Denmark. Initial version of UPPAAL was released in 1995 
since then it has been continuously evolving and updating [17]. 
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6. Fuel Level Display System 
This section contains the detailed description for fuel level display system of Scania. Functional 
requirements that are to be verified on the system model of fuel level display system during model 
checking activity are described. The overall architecture of the vehicle control system is also 
explained in this section in detail.  

6.1. Background 

In the beginning the plan was that different existing vehicle control systems in Scania will be studied 
and one of them will be selected for model checking based upon its documentation, test data, 
requirements and state machines available. Later-on the supervisors at Scania proposed to use Fuel 
Level Display System which is a well-documented and best-practice example at Scania. This system 
has already been used in different research projects and master thesis as case study.  
 
Basic goal of the fuel level display is to keep the vehicle from running out of fuel. Current fuel level is 
continuously calculated and displayed to the driver on gauge. Driver may not monitor the fuel level 
gauge frequently so a warning is useful. A low fuel level warning is introduced to make the driver 
aware of the fuel level if fuel level in the fuel tank drops below a predefined limit and a refill is 
needed.  

6.2. Purpose 

This system intends to show the fuel level for all vehicles independent of vehicle and fuel type. 
A low fuel level warning is also present on vehicles, indicating if the fuel level is low as compared to a 
predefined limit. 

6.3. User interaction 

The fuel level is measured and presented to the driver in the instrument cluster. If the fuel level is 
below a predetermined level a warning is presented in the instrument cluster. The low fuel level 
warning could be used on both trucks and buses. Fuel level display system can be divided into 
following two sub categories   

1. Fuel level estimation: It estimates the current fuel level in the fuel tank.  
2. Low fuel level warning: it creates a warning if the fuel level in the tank is considered to be 

low as compared to a predefined value. 
There are two documents in Scania listing all the functional requirements related to fuel level 
estimation and low fuel level warning. AE201 contains the functional requirements for fuel level  
estimation and AE202 contains the functional requirements for low fuel level warning.  
 
The fuel level sensor comes in different types depending on the fuel tank, fuel injection system and 
electrical characteristics of the fuel sensor.  
Following are the different steps which are performed in fuel level display system 

1. Read fuel height 
2. Calculate fuel level 
3. Send fuel level 
4. Detect and display low fuel level 
5. Display fuel level 
6. Calculate fuel level multiple sources 
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6.4. Configuration Parameters 

There are following 4 different types of variants for fuel level display system 
1. Truck with fuel engine 
2. Bus with fuel engine 
3. Bus with gas engine 
4. Truck with gas engine 

There are multiple types of sensors and multiple sizes of fuel tanks that are used in fuel level display 
system. Total fuel level can be either calculated by COO (Coordinator) or received from CAN 
(Controller area network). For the sake of simplicity and clarity in this master thesis only one type of 
system variant is considered that is truck with fuel engine. One type of sensor and one size of fuel 
tank is considered and the variant where total fuel level is calculated by COO is used.  
 

Variant 1 Truck with fuel engine 

fuelLevelSensorParam 15 (Wema-general : short) 
fuelTankSizeLeft 13 (450 liter volume: General) 

fuelTankSizeRight Same as for fuelTankSizeLeft 

fuelLevelTotalParam 10 (Total fuel level calculated by COO) 
Table 4: Parameters for fuel level display system. 

6.5. System Architecture 

Following figure 6 shows the components at abstract level that are involved in the fuel level display 
system. Fuel level sensor is mounted inside the fuel tank. ECUs (electronic control units) that are 
involved in fuel level display system are COO (coordinator), EMS (engine management system) and 
ICL (instrument cluster). Gauge is not a separate component it is a part of ICL. 
 

 
Figure 6: Fuel level display system - components involved. 

Figure 7 shows the information flow between different components involved in fuel level display 
system. Fuel Rate (RTDB_FUEL_CONSUMPTION_RATE_E) comes from EMS through red CAN bus to 
RTDB (real time data base). Value from fuel level sensor (RTDB_FUEL_LEVEL_E) inside the tank comes 
through blue CAN bus to RTDB. COO uses the values from RTDB through different buses for 
performing different operations.  
 
COO reads fuel level sensor value (RTDB_FUEL_LEVEL_E) on blue CAN bus, parking brake value 
(RTDB_PBRAKE_APPLIED_HIGH_E) on red CAN bus, fuel Rate (RTDB_FUEL_CONSUMPTION_RATE_E) 
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on red CAN bus, old fuel volume (RTDB_FUEL_LEVEL_E) on yellow bus from RTDB. COO places fuel 
level (RTDB_UP_FUEL_LEVEL_TOT_E) and low fuel level indication 
(RTDB_UP_LOW_FUEL_LEVEL_IND_E) in RTDB through yellow CAN bus.  
 

ICL uses the fuel level (RTDB_UP_FUEL_LEVEL_TOT_E) and low fuel level indication 
(RTDB_UP_LOW_FUEL_LEVEL_IND_E) from RTDB through yellow CAN bus to indicate the fuel level 
and the low fuel level warning respectively.   
 

 
Figure 7: Fuel level display system - information flow. 

Requirements mentioned in document AE201 and AE202 are implemented inside the COO. * With 
AE201 and AE202 represent that here only subsets of these requirements that are mentioned in the 
documents are implemented. All the requirements mentioned in table 5 are implemented inside 
COO. Rests of the requirements are either background requirements or assumptions about the 
system. Only the requirements that are mention in the table 5 are considered relevant for model 
checking. 
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6.6. Allocation Element Requirements 

Table 5 contains the functional requirements for fuel level display system of scania that are to be 
verified on the fuel level display system model in both Simulink Design Verifier and UPPAAL during 
model checking activity.  
 

Disclaimer:  
All the numerical values mentioned in the requirements of fuel level display system are arbitrary 
values and do not represent the actual values in Scania fuel level display system. 
 

ID Description Reference 
AE201 

AER-01 “TotalFuelLevel should be the output of a filter that includes information 
from both fuelLevel and fuelRate to achieve a stable signal. The filter 
should be implemented with a Kalman algorithm given by the following 
equations and with the feedback gain K=1.0786*10-5.” [14]. 

 

 

 
“K(t) is calculated using the theory of Kalman filters based on a estimated 
variance for the inputs u(t) and ys(t). Variance(u(t))= 9.9334e-013 and 
Variance(ys(t))= 0.0085 gives K= 1.0786e-005.” [14]. 
 

AER_201_11 

AER-02 “The start-up state for the totalFuelLevel estimated should be the state 
saved from last shutdown if the stored value and fuelLevel doesn’t differ 
with more than 15% of the total volume or if fuelLevel is above 95% of the 
useable tank capacity.” [14]. 
 

AER_201_12 

AER-03 “If a refill of the tank is done while the ECU is on it should be detected by 
the algorithm if the sensor(s) indicates a 35% increase compared to the 
estimated volume. The increase should be held at least 10 seconds so that 
sloshing is ignored.” [14]. 

AER_201_13 
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AER-04 “The refill detection should be possible only when the parking brake is 
applied. The parking brake should be steadily applied for at least 10 
seconds before the vehicle is considered to be parked.” [14]. 
 

AER_201_14 

AER-05 “If a refill is detected the filter algorithm should not be used, the estimate 
should instead the value indicated by the fuel level sensor(s) until the refill 
is done (parking brake released). When the refill is ended the algorithm 
continues to calculate using the current value from fuel level sensor(s) 
signal as initial value.” [14]. 

AER_201_15 

AE202 
AER-06 “The lowFuelLevelWarning should be set to 1 (true) when input 

totalFuelLevel is below a pre-defined level. The level should be 15% for 
tank sizes equal or below 905liters and 12% for tanks sizes larger than 
905liters.” [15]. 

AER_202_2 

AER-07 “The lowFuelLevelWarning should be kept true, once it is activated, until 
the algorithm is restarted by an ECU shutdown or if the totalFuelLevel 
reaches above 25%.” [15]. 

AER_202_3 

AER-08 “Output signal lowFuelLevelWarning should have initial value 0 (false).” 
[15]. 

AER_202_5 

Table 5: Requirements for fuel level display system. 
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7. Simulink Design Verifier - Verification Model and Results 
Figure 8 represent the verification model built in simulink that is used for verification and property 
proving of fuel level display system in Simulink Design Verifier. It contains the block for input 
assumptions, a block that represent the simulink model of fuel level display system, blocks for all the 
requirements of fuel level display system that it is supposed to satisfy and a verification button for 
each requirement.  

 

 
Figure 8: Simulink Design Verifier - verification model. 

Figure 9 represents the model of fuel level display system in Simulink that is to be verified against the 

requirement and to see whether the requirements are satisfied by the system model or not. In the 

next section Simulink model of fuel level display system is presented briefly. Complete model of the 

fuel level display system cannot be presented in this thesis because of the privacy policies of Scania. 

Scania already has the model of fuel level display system available in simulink but that model covers 

all the four variants of fuel level display system plus it also covers all the sensor type and all sizes of 

fuel tank, it also contains some extra features which are not part of the actual system. In order to 

make the model according to requirements the model is simplified and all the extra details are 

removed from it. Now the following simulink model is for one system variant, one type of fuel level 

sensor, one type of fuel tank and where total fuel level is calculated by COO.  
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7.1. Model of Fuel Level Display system in Simulink 

Constants 
All the values that are written in capital letters in the fuel level display models in Simulink are 
constants and the following table 6 presents the values of all the constants that are used in fuel level 
display system model in Simulink and their description.  
 
Constant Value Description Used in 

Module 
PCT_TO_DEC_F32  1/100 Conversion from percentage to decimal. Figure 16 

VOLUME_DIFF_ACCEPTED
_F32  

0.1 10% volume diff between estimated and 
sensor value is accepted to use the stored 
estimate from shutdown as startup value.  

Figure 18 

NEAR_TOP_PERCENTAGE_
F32  

90 Using a limit to always start with the raw 
sensor value if fuel level is high. This will 
override the condition that there have to 
be 10% difference in volume at startup for 
using the raw value. It is useful when the 
tank is top-filled with small amounts. 

Figure 18 

REFUEL_DETECTION_LIMIT
_F32  

30 Refuel detection. Figure 21 

L_PER_H_TO_M3_PER_S_
F32  

1/(1000*3600) Liter per hour to m3 per second. Figure 23 

LITER_TO_M3_F32  1/1000 Liter to m3. Figure 24, 
Figure 26 

KALMAN_FEEDBACK_GAIN
_F32  

1e-009 * 10780 Kalman gain calculated as specified in 
AER201.  

Figure 25 

TS_F32 0.01 COO7 constants. Figure 25 

EPSILON_F32 1.1755 e-038 Value used to avoid divide by zero 
situation.  

Figure 27 

LOW_IND_RELEASE_LEVEL
_F32  

20 Used if a refuel is not detected by the 
algorithm the low level warning should be 
turned off. 

Figure 30 

LOW_FUEL_LEVEL_LARGE
_TANKS_F32  

7 Percent warning level (large tanks above 
900 liter capacity) 

Figure 31 

LARGE_TANK_LIMIT_F32  900 Above 900bliters theoretical volume is 
considered as large tanks. 

Figure 31 

LOW_FUEL_LEVEL_NORM
AL_TANKS_F32  

10 Percent warning level. Figure 31 

LOW_FUEL_LEVEL_IND_A
CTIVE_U08  

uint8(10) Parameter. Figure 33 

Table 6: Constants used in Simulink model of fuel level display system. 
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Due to the confidentiality concerns of Scania this report only contains a small portion of fuel level 
display system that is modeled in simulink, complete Simulink model of fuel level display system 
cannot be presented in this report due to the privacy policies of Scania.  
 
Figure 9 presents the block that represents the fuel level display system in the verification model 
with two main inputs and outputs as shown in the figure 9 below.   
 
 

 
Figure 9: Fuel level display system. 

When the model present in figure 9 is expanded by double clicking on it then the model that is 

present in figure 10 below is opened. 

 
Figure 10: Fuel level display system algorithm. 

Model present in figure 10 contains a sub block named algorithm which contains within it the model 

that is present in the figure 11 below which contains 3 sub blocks representing evaluate parking 

brake, fuel level estimation algorithm and low fuel level warning.  
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Figure 11: Fuel level display system algorithm. 

Expanding evaluate parking brake sub block presents the following model showed in figure 12, which 

has a state flow for evaluate parking brake applied.  

 
Figure 12: Evaluate parking brake. 

Evaluate parking brake applied state flow contains within it the state flow present in figure 12, which 

evaluates if parking brake has been applied consecutively during 0.5 seconds.  
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Figure 13: Evaluate parking brake applied. 

Sub block fuel level estimation algorithm in figure 11 contains three sub blocks named calculate 

current volume levels, algorithm reset calculation and Kalman observer estimation present in figure 

14 which can be seen by expanding the fuel level estimation algorithm sub block present in figure 11. 

 
Figure 14: Fuel level estimation algorithm. 
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Algorithm reset calculation sub block in figure 14 contains the following model present in figure 15 

which contains a state flow called refuel detection.  

 
Figure 15: Algorithm reset calculation. 

State flow for refuel detection in figure 15 contains the following state flow present in figure 16 in it 

that is used to check if refuel is performed or not.  

 
Figure 16: Refuel detection. 

The main state in model present in above figure 16 contains the following state flow present in figure 

17 that is the actually process for the detection of refuel.  
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Figure 17: Refuel detection. 
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7.2. Input Assumptions 

Figure 18 represents the input assumptions block in verification model. Following section represent 

how the assumptions on input params and signals are defined. Later-on the buttons are used to set 

the input assumptions for each requirement to be verified by the Simulink Design Verifier.  

 
Figure 18: Input assumptions. 

Input assumptions block in figure 18 contains the model present in figure 19 which contains 3 sub 

blocks params assumptions, signal assumptions and verification selectors. 
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Figure 19: Input assumptions. 

Params assumptions sub block present in figure 19 contains the model present in figure 20. This 

actually defines the limits on all the input params used in fuel level display system. These are 

activated and deactivated by using the instructions present behind verification buttons because each 

requirement require different params not all of them.  

 
Figure 20: Params assumptions. 

Signals assumptions sub block present in figure 19 contains the model present in figure 21. This 

actually defines the limits on all the input signals used in fuel level display system. These are 

activated and deactivated by using the instructions present behind verification buttons because each 

requirement require different signals not all of them. 
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Figure 21: Signal assumptions. 

Figure 22 to Figure 26 show how the scenarios are generated for refill and requirement AER-07 

(AER202_03). Verification selectors sub block present in figure 19 contains the model present in 

figure 22 which contains two sub blocks refill scenario and AER202_03 scenario.  

 
Figure 22: Verification selectors. 

Refill scenario sub block present in figure 22 contains the model present in figure 23 which contains a 

state flow refill scenario generator.  
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Figure 23: Refill scenario. 

The refill scenario generator state flow present in figure 23 contains the state flow present in figure 

24 which actually describes that how the scenario is generated for the refill.  

 
Figure 24: Refill scenario generator. 

AER202_03 scenario sub block present in figure 22 contains the model present in figure 25 which 

contains a state flow AER202_03 scenario generator.  
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Figure 25: AER202_3 scenario. 

AER202_03 scenario generator state flow present in figure 25 contains the state flow present in 

figure 26 which actually describes how the scenario is generated for the requirement AER-07 

(AER202_03) that is “To verify that he lowFuelLevelWarning should be kept true, once it is activated, 

until the algorithm is restarted by an ECU shutdown or if the totalFuelLevel reaches above 20%” [15]. 

 
Figure 26: AER202_3 scenario generator. 
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7.3. Activation buttons 

Figure 27 presents the buttons that are used to run the verification for each requirement according 

to their names. Every button has code written behind it that is used to set the input assumption for 

each requirement in the input assumptions block.  

 
Figure 27: Verification buttons. 

Common code behind for buttons (1-7) 
 
mdlname = bdroot(gcb); 
prop_path1 = [mdlname '/AER201_11/P_201_11'] 
prop_path2 = [mdlname '/AER201_12/P_201_12'];                               
prop_path3 = [mdlname '/AER201_13_14/P_201_13_14'];                             
prop_path4 = [mdlname '/AER201_15/P_201_15']; 
prop_path5 = [mdlname '/AER202_2/P_202_2']; 
prop_path6 = [mdlname '/AER202_3/P_202_3'];  
prop_path7 = [mdlname '/AER202_5/P_202_5'];                               
 
assump_path1 = [mdlname '/input_assumptions/selector']; 
assump_path2 = [mdlname '/input_assumptions/signals_assumptions/fuelLevel']; 
assump_path3 = [mdlname '/input_assumptions/signals_assumptions/pbrake']; 
assump_path4 = [mdlname '/input_assumptions/signals_assumptions/oldFuelVolume']; 
 
if strcmp(get_param(gcs, 'Dirty'), 'on')                                         
save_system;                                                                    
end   
sldvdemo_helper('run',gcbh); 
Table 7: Common code behind for buttons (1-7). 

Code behind button AER_201_11 
Simulink.BlockDiagram.loadActiveConfigSet('fuel_verification_0','config1.m'); 
 
set_param(prop_path1,'enabled','on') 
set_param(prop_path2,'enabled','off') 
set_param(prop_path3,'enabled','off') 
set_param(prop_path4,'enabled','off') 
set_param(prop_path5,'enabled','off') 
set_param(prop_path6,'enabled','off') 
set_param(prop_path7,'enabled','off') 
 
set_param(assump_path1,'Value','2') 
set_param (assump_path2,'intervals', '[1 60]') 
Table 8: Code behind button AER_201_11. 
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Code behind button AER_201_12 
Simulink.BlockDiagram.loadActiveConfigSet('fuel_verification_0','config2.m');        
 
set_param(prop_path1,'enabled','off') 
set_param(prop_path2,'enabled','on') 
set_param(prop_path3,'enabled','off') 
set_param(prop_path4,'enabled','off') 
set_param(prop_path5,'enabled','off') 
set_param(prop_path6,'enabled','off') 
set_param(prop_path7,'enabled','off') 
 
set_param(assump_path1,'Value','2') 
set_param (assump_path2,'intervals', '[1 100]') 
Table 9: Code behind button AER_201_12. 

Code behind button AER_201_13_14 
Simulink.BlockDiagram.loadActiveConfigSet('fuel_verification_0','config2.m');    
       
set_param(prop_path1,'enabled','off')                                            
set_param(prop_path2,'enabled','off')                                            
set_param(prop_path3,'enabled','on')                                             
set_param(prop_path4,'enabled','off')                                            
set_param(prop_path5,'enabled','off')                                            
set_param(prop_path6,'enabled','off')                                            
set_param(prop_path7,'enabled','off')                                            
                                                                                 
set_param(assump_path1,'Value','1')                                              
set_param(assump_path3,'intervals','true')                                       
set_param (assump_path2,'intervals', '60') 
Table 10: Code behind button AER_201_13_14. 

Code behind button AER_201_15 
Simulink.BlockDiagram.loadActiveConfigSet('fuel_verification_0','config2.m');    
 
set_param(prop_path1,'enabled','off')                                            
set_param(prop_path2,'enabled','off')                                            
set_param(prop_path3,'enabled','off')                                             
set_param(prop_path4,'enabled','on')                                            
set_param(prop_path5,'enabled','off')                                            
set_param(prop_path6,'enabled','off')                                            
set_param(prop_path7,'enabled','off')                                            
                                                                                 
set_param(assump_path1,'Value','1')                                              
set_param(assump_path3,'intervals','true')                                       
set_param (assump_path2,'intervals', '60') 
Table 11: Code behind button AER_201_15. 
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Code behind button AER_202_02 
Simulink.BlockDiagram.loadActiveConfigSet('fuel_verification_0','config2.m');    
                                                                                                                                      
set_param(prop_path1,'enabled','off')                                            
set_param(prop_path2,'enabled','off')                                            
set_param(prop_path3,'enabled','off')                                             
set_param(prop_path4,'enabled','off')                                            
set_param(prop_path5,'enabled','on')                                            
set_param(prop_path6,'enabled','off')                                            
set_param(prop_path7,'enabled','off')                                            
                                                                                 
set_param(assump_path1,'Value','2') 
set_param (assump_path2,'intervals', '[0 9]') 
set_param(assump_path3,'enabled','off') 
set_param (assump_path4,'intervals', '72')                                      
Table 12: Code behind button AER_202_02. 

Code behind button AER_202_03 
Simulink.BlockDiagram.loadActiveConfigSet('fuel_verification_0','config1.m');    
 
set_param(prop_path1,'enabled','off')                                            
set_param(prop_path2,'enabled','off')                                            
set_param(prop_path3,'enabled','off')                                             
set_param(prop_path4,'enabled','off')                                            
set_param(prop_path5,'enabled','off')                                            
set_param(prop_path6,'enabled','on')                                            
set_param(prop_path7,'enabled','off')                                            
                                                                                 
set_param(assump_path1,'Value','3') 
set_param (assump_path2,'intervals', '60') 
set_param(assump_path3,'enabled','off') 
set_param (assump_path4,'intervals', '346')                                      
Table 13: Code behind button AER_202_03. 

Code behind button AER_202_05 
Simulink.BlockDiagram.loadActiveConfigSet('fuel_verification_0','config1.m');    
 
set_param(prop_path1,'enabled','off')                                            
set_param(prop_path2,'enabled','off')                                            
set_param(prop_path3,'enabled','off')                                             
set_param(prop_path4,'enabled','off')                                            
set_param(prop_path5,'enabled','off')                                            
set_param(prop_path6,'enabled','off')                                            
set_param(prop_path7,'enabled','on')                                            
                                                                                 
set_param(assump_path1,'Value','2') 
set_param (assump_path2,'intervals', '11') 
set_param(assump_path3,'enabled','off') 
set_param (assump_path4,'intervals', '465')                                      
Table 14: Code behind button AER_202_05. 

Code behind button View Options 
The last button named View Options has sldvdemo_helper('showopts',gcbh);  in code behind and can be used to open the 
dialog box of configuration parameters. 
Table 15: Code behind button View Options. 

 
 
 
 
 



Master Thesis - Applying Model Checking for Verifying the Functional Requirements of a Scania’s Vehicle Control System.  

GSEEM (Global Software Engineering European Master)  38 

 

7.4. Property Verification 

This section represents all the requirements as they are formulated in Simulink Design Verifier 
supported format and how the blocks for property verification are defined in simulink to be verified 
by Simulink Design Verifier.  
 

 
Figure 28: AER-01 (AER201_11). 

Figure 29 and 30 present how the requirement AER-01 (AER_201_11) is implemented in simulink. 
“The requirement is to verify that totalFuelLevel should be the output of a filter that includes 
information from both fuelLevel and fuelRate to achieve a stable signal. The filter should be 
implemented with a Kalman algorithm.” [14]. Details of the requirement are mentioned in Table 5. 
 

 
Figure 29: Property verification - AER-01 (AER201_11). 
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Figure 30: Property verification - Kalman filter. 

Following 2 tables contain the code written behind MATLAB function pre-processing and post-

processing for verification of requirement.  

Code behind preProcessing function block 
 
function [input_32,x0] = fcn(Xest,TS,K,fl,fr,oldFuelVolume,tankCapacity) 
  
%covert current raw fuel level (fl) from percentage to litres 
rawLevel = tankCapacity * fl * 0.01; 
  
%compute the startup state (x0) for the Kalman filter 
if ( (abs(rawLevel - oldFuelVolume) > ((10/100)*tankCapacity)) || (fl > 90) ) 
    x0_ = rawLevel; 
else 
    x0_=oldFuelVolume; 
end 
  
%scale the fuel rate (fr) from L/hour to M3/sec 
fr = fr * 2.7778e-007; 
  
%convert levels from litres to M3 
x0 = double(x0_ * 0.001); 
rawLevel = rawLevel * 0.001; 
  
% input for Next State 
input_32 = double(((K/TS)*(rawLevel - Xest)) - (fr)); 
  
%%%%%%%%%%%%%%%%%%%%_end_%%%%%%%%%%%%%%%%%% 
Table 16: Code behind preProcessing function block. 
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Code behind postProcessing function block 
 
function FL_Kalman  = fcn(estVol,tankCapacity) 
  
% fule estimate in litres (convert from M3) 
flEstPct_ = estVol * (1/ 0.001); 
  
% convert to percentage and use max function to avoid division by 0 
flEstPct_ = (flEstPct_ * single(100))/ max(tankCapacity,1.1755e-038);  
  
%saturate between 0 and 100% and output %age value in FL_Kalman 
if (flEstPct_ > 99.5 ) 
    flEstPct_ = single(100); 
end 
  
FL_Kalman = max (flEstPct_, single(0)); 
%%%%%%%%%%%%%%%%%%%%_end_%%%%%%%%%%%%%%%%%% 
Table 17: Code behind postProcessing function block. 

Figure 31 and Figure 32 show how the requirement AER-02 (AER_201_12) is implemented in 

simulink. “The requirement is to verify that the start-up state for the totalFuelLevel estimated should 

be the state saved from last shutdown if the stored value and fuelLevel doesn’t differ with more than 

10% of the total volume or if fuelLevel is above 90% of the useable tank capacity.” [14]. 

 
Figure 31: AER-02 (AER201_12). 

 
Figure 32: Property verification - AER-02 (AER201_12). 

Figure 33 and Figure 34 show how the requirement AER-03 (AER_201_13) and AER-04 (AER_201_14) 
are implemented in simulink to be verified by Simulink Design Verifier.  
 
“Requirement AER-03 (AER_201_13) is to verify that if a refill of the tank is done while the ECU is on 
it should be detected by the algorithm if the sensor(s) indicates a 30% increase compared to the 
estimated volume. The increase should be held at least 5 seconds so that sloshing is ignored.” [14]. 
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“Requirement AER-04 (AER_201_14) is to verify that the refill detection should be possible only when 
the parking brake is applied. The parking brake should be steadily applied for at least 5 seconds 
before the vehicle is considered to be parked.” [14]. 
 
 

 
Figure 33: AER-03 (AER201_13) and AER-04 (AER201_14). 

 
Figure 34: Property Verification - AER-03 (AER201_13) and AER-04 (AER201_14). 

Figure 35 and Figure 36 show how the requirement AER-05 (AER_201_15) is implemented in simulink 
to be verified by Simulink Design Verifier. “The requirement is to verify that if a refill is detected the 
filter algorithm should not be used, the estimate should instead the value indicated by the fuel level 
sensor(s) until the refill is done (parking brake released). When the refill is ended the algorithm 
continues to calculate using the current value from fuel level sensor(s) signal as initial value.” [14]. 
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Figure 35: AER-05 (AER201_15). 

 
Figure 36: Property verification - AER-05 (AER201_15). 

Figure 37 and Figure 38 represent how the requirement AER-06 (AER_202_2) is implemented in 

simulink. “The requirement is to verify that the lowFuelLevelWarning should be set to 1 (true) when 

input totalFuelLevel is below a pre-defined level. The level should be 10% for tank sizes equal or 

below 900liters and 7% for tanks sizes larger than 900liters.” [15]. 
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Figure 37: AER-06 (AER202_2). 

 
Figure 38: Property verification - AER-06 (AER202_2). 

Figure 39 and Figure 40 represent how the requirement AER-07 (AER_202_3) is transformed in 

simulink model to be verified by Simulink Design Verifier. “The requirement is to verify that the 

lowFuelLevelWarning should be kept true, once it is activated, until the algorithm is restarted by an 

ECU shutdown or if the totalFuelLevel reaches above 20%.” [15].  

 
Figure 39: AER-07 (AER202_3). 
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Figure 40: Property verification - AER-07 (AER202_3). 

Figure 41 and Figure 42 represent how the requirement AER-08 (AER_202_5) is transformed in 

simulink model later to be verified by Simulink Design Verifier. “The requirement is to verify that the 

output signal lowFuelLevelWarning should have initial value 0 (false).” [15]. 

 
Figure 41: AER-08 (AER202_5). 

 
Figure 42: Property verification - AER-08 (AER202_5). 
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7.5.  Results of Property Verification 

In Simulink Design Verifier while proving the properties of system either the properties will be 
satisfied by the system model or there will be some scenario for which the property will be falsified 
and counter example will be generated.   
 
Simulink Design Verifier checks all possible inputs against all possible paths and after testing all the 
possible scenarios generate the results whether the property is satisfied or not. If the property is 
satisfied then a detailed report is generated. And if the property is falsified then counter example is 
generated by the system along with the Harness model.  
 
Following are the reports and other related artifacts that are generated by Simulink Design Verifier in 
property proving. First let us consider one of the requirements to show how property proving works. 
When user starts the property verification for requirement e.g. AER202_03 by clicking on the 
corresponding button Simulink Design Verifier starts verifying the property and performs a number 
of steps. If the property is satisfied then the verification block for requirement becomes green as 
shown in the figure 43 below.  
 

 
Figure 43: Requirement verification - AER-07 (AER202_3). 

 
Following is the report that is generated when the specified property is satisfied.   
 

 
Figure 44: Property proving result window. 

 
By clicking on Generate detailed analysis report link present in above figure 44 a detailed report of 
property verification is generated as shown in the figure 45 below.  
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Figure 45: Property proving detailed report. 
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Let us consider one of the requirements to show how property proving works in case if the property 
is falsified. When user starts the property verification for requirement e.g. AER201_12 by clicking on 
the corresponding button Simulink Design Verifier starts verifying the property and performs a 
number of steps. If the property is not satisfied by the system model then the verification block for 
requirement becomes red as shown in the figure 46 below. 
Following figures present the reports that are generated when property is falsified. 
 

 
Figure 46: Requirement verification - AER-02 (AER201_12). 

 
Following figure 47 presents the report that is generated when the property is falsified.  
 

 
Figure 47: Property proving result window. 

 
By clicking on Generate detailed analysis report link present in above figure 47 a detailed report of 
property verification is generated as shown in the figure 48 below. 
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Figure 48: Property proving detailed report. 
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By clicking on Generate harness model link present in above figure 47 harness model is generated as 
shown in the figure 49 below. Harness model allows the user to simulate a copy of original model 
using the test cases or counterexamples that are generated by Simulink Design Verifier. 
 

 
Figure 49: Harness model for AER-02 (AER201_12). 

Harness model contains the inputs, size-type, test unit and test case explanation blocks. Inputs are as 
shown in the figure 50 and the test unit contains a copy of the whole model of fuel level display 
system.  
 

 
Figure 50: Input signals for AER-02 (AER201_12). 
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Harness model is only generated in case when objective is falsified. The harness model contains the 
following items: 
 
Inputs 
Inputs block also called input signal builder block contains signals that comprise the test cases or 
counterexamples that Simulink Design Verifier generated. This block contains signals only for input 
signals that are used in the model. If an input signal has no effect on the output of the model, that 
signal is not included in this block shown in harness model. By double-clicking the Inputs block the 
signal builder dialog box can be viewed and also its signals as shown in the figure 50 can be seen that 
present the signal builder block and the signals for verification of property. Each signal group 
represents a unique test case or counterexample. In the signal builder dialog box, each tab can be 
selected to view the signals associated with a particular test case or counterexample. 
 
Size-Type 
Size-type subsystem block is responsible for transmitting the signals from the Inputs block to the Test 
Unit block. Size-type subsystem block is responsible for verifying that the signals are of the 
appropriate size and data type as the system in Test Unit block is expecting them. 
 
Test Unit 
This Subsystem block contains a copy of the original model that Simulink Design Verifier analyzed. 
Original model of fuel level display system in Simulink Design Verifier is present in section 9.1. 
 
Test Case Explanation 
The test case explanation block contains a document that documents the test cases or counter 
examples generated by Simulink Design Verifier. By double-clicking this block the description of each 
test case or the counterexample can be viewed. This block lists either the test objectives that each 
test case achieves or the proof objectives that each counterexample falsifies. 
 
All the requirements mentioned in table 5 for fuel level display system are proved to be satisfied by 
the model of fuel level display system in Simulink Design Verifier.  
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7.6.  General Design error detection 

This section describes about the verification that is done in Simulink Design Verifier software to 
identify the design errors in system model without focusing on any specific requirement. The 
previous section 9 checks whether particular requirements and properties are satisfied by the system 
model or not, but this section does the verification in general for identifying the design errors like 
integer overflow errors, division by zero errors, and check specified intermediate minimum and 
maximum values.  
The version of Matlab that is used during this thesis is Matlab R2011b. In this version of Matlab the 
Simulink Design Verifier software supports the automatic detection of following kind of design errors 
[15]. 

1. Integer overflow 
2. Division by zero 
3. Check specified intermediate minimum and maximum values 

Detection of these kinds of design errors is supported automatically in Simulink Design Verifier 
software. Users can simply select the type of design errors that they want to detect in their model 
and Simulink Design Verifier software will automatically run the process and check whether there are 
any design error of  selected type in the model or not. Following figure 51 shows the dialog box that 
can be used to select which kind of design errors users want to detect in their model.  
 

 
Figure 51: Configuration for Design error detection. 

 
Model of fuel level display system is checked against all the three kind of design errors and it is 
established that there are no such errors present in the system model of fuel level display system.  
After checking all type of design error in the model when analysis is started, Simulink Design Verifier 
generates the analysis report present in figure 53 to figure 55 and highlights the system model with 
green color as shown in the figure 52 below, which means no overflow or division-by-zero errors are 
detected during analysis and also the analysis did not detect any intermediate or output signals 
outside the range of user-specified constraints. 
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Model can also be highlighted in red, orange or grey color after analysis. Red means that there are 
design errors of specified king in the system model.  Orange represents for at least one objective, the 
analysis could not determine if there was design error or not. This can happen if the analysis times 
out, or the software cannot determine if an error occurred or not. System model highlighted in grey 
show that this particular model was not the part of analysis [15]. 
 

 
Figure 52: System model after design error detection analysis. 

After completing the analysis, Simulink Design Verifier software generates the following dialog box 
present in figure 53, which represents the overall status of design error detection activity. In design 
error detection activity of fuel level display system model all the objectives are proven valid and no 
design error of specified type is identified in the fuel level display system model.  
 

 
Figure 53: Results of design error detection. 

After clicking on the generate detailed analysis report link in the above figure 53 detailed analysis 
report can be viewed. Following figure 54 and figure 55 represents the detailed analysis report for 
design error detection in case of fuel level display system model.  
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Figure 54: Detailed design error detection analysis report1. 
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Figure 55: Detailed design error detection analysis report2. 
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8.  UPPAAL Model and Verification Results 
UPPAAL is a model checking tool in which real time systems can be modeled, validated and verified. 
UPPAAL is recommended for the system that can be modeled as timed automatons. Systems in 
UPPAAL are modeled as states and transitions between the states. Timed automaton in UPPAAL 
communicate by using the channels and shared data structures. Following figure 56 presents the 
overall architecture of fuel level display system designed in UPPAAL. 
 

 
Figure 56: Fuel level display system - UPPAAL Architecture Design. 

Model of fuel level display system in UPPAAL consists of six automaton fuel level sensor, fuel level 
estimation algorithm, evaluate parking brake, parking brake, refill detection and low fuel level 
warning. Main tree structure of fuel level display system in UPPAAL is presented in figure 57 showing 
the entire automaton and their local declarations along with global declarations and system 
declarations sections.  
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Figure 57: UPPAAL Model Navigation Tree. 

Following table 18 contains the global declarations for UPPAAL model of fuel level display system.   

 
// Global declarations for UPPAAL model. 

const int N=2; 
const int INPUT =0; 
const int OUTPUT=1; 
urgent chan refueled[N]; 
broadcast chan pbSet[N],data[N],  warningSet[N]; 
 
const int SC_FACTOR1 =44; //Scaling Factor, everything multiplied by 44 
const int SC_FACTOR2 = 7; //Scalling factor for fuelLevelTot to avoid loss of precision due to rounding of integer 
const int TOT_SCALE = SC_FACTOR1 * SC_FACTOR2; 
 
const int LARGE_TANK_LIMIT=900; 
const int LOW_FUEL_LEVEL_LARGE_TANKS = 7*TOT_SCALE; 
const int LOW_FUEL_LEVEL_NORMAL_TANKS = 10*TOT_SCALE; 
 
//System input Signals (simulink signal variable names are preserved) 
const int fuelRate=SC_FACTOR1 * 30; 
int fuelLevelSensor= SC_FACTOR1 * 1; //FuelLevelSensor value is multiplied by SC_FACTOR1 
const int oldFuelVolume=SC_FACTOR1 * 1; 
bool pBrakeAppliedHigh=false; 
 
//System input Parameters (simulink parameter variable names are preserved) 
const int fuelTankSizeLeft = 450; 
const int fuelTankSizeRight = 450; 
const int mantleVolumeTot = SC_FACTOR1 * 728; 
const int upLowFuelLevelInd = 10; 
 
//intermediate values 
int x0 = 0; //startup state for kalman (just assumed for simulation) 
int levelInMainPartRawLitre = 0; 
int fuelConsumptionTot; 
int newVolumeState; 
bool refuelDetected=false; 
const int PER_MAX = 100 * SC_FACTOR1; 
const int PER_MIN = 0; 
const int tanksizes = fuelTankSizeLeft + fuelTankSizeRight; 
 
//system outputs (simulink output variable names are preserved) 
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int lowFuelLevelInd = 0; //output warning indicator 
int fuelVolume = 0; //output fuel level in litres 
int fuelLevelTot = 0; // output fuel level in %age 
 
//system clock (not used) 
int sys_x; 
 
//simulation configuration 
const int SIM_FL_INCREASE=32*SC_FACTOR1; 
const int SIM_NORMAL=10; 
const int SIM_PARKED=20; 
const int SIM_REFILL=30; 
const bool NO_REFILL=true; 
 
int SIM_MODE = SIM_NORMAL; 
Table 18: Global declarations for UPPAAL model. 

Figure 58 presents the automata for fuel level sensor. It handles the different states of fuel level 

sensor. Fuel level sensor can be in normal state, parked state or refill state. States are also created to 

keep the fuel level values between 0 and 100. Minimum value of the fuel level can be 0 and 

maximum value can be 100.  

 

 
Figure 58: Automata for fuel level sensor. 

Table 19 contains the local declarations for fuel level sensor automata.  

// Local declarations for fuel level sensor automata.  
clock x; 
void sensorInput_normal() 
{ 
 fuelLevelSensor = fuelLevelSensor - (((((fuelRate*100)/3600))*PER_MAX)/mantleVolumeTot +1); 
 /*if(pBrakeAppliedHigh) {SIM_MODE = SIM_PARKED;} 
 else if (pBrakeAppliedHigh && lowFuelLevelInd ==1)  
 else {SIM_MODE = SIM_NORMAL;}*/ 
} 
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void sensorInput_parked() 
{ 
 fuelLevelSensor = fuelLevelSensor - ((((5*SC_FACTOR1*500)/3600))*PER_MAX)/mantleVolumeTot;  
} 
void sensorInput_refill() 
{ 
 fuelLevelSensor = fuelLevelSensor + (SIM_FL_INCREASE); 
} 
Table 19: Local declarations for fuel level sensor automata. 

Figure 59 presents the automata for fuel level estimation algorithm. It waits for the input from fuel 
level sensor. When it receives the input from fuel level sensor then it calls three functions 
currentVolumeLevels(), x_= get_x0(), kalman_output() code of these functions is present in table 20. 
If refuel is detected then it keeps on doing the same thing. And when refuel is not detected then it 
calls the three functions currentVolumeLevels(), x_=newState(), kalman_output() code of these 
functions is present in table 20.  

 
Figure 59: Automata for fuel level estimation algorithm. 

Table 20 contains the local declarations for fuel level estimations algorithm automata.  

// Local declarations for fuel level estimation algorithm automata. 
clock x; 
int x_; 
const int H_TO_SEC = 3600; 
const int K_NUM = 5; //numerator  (k = 1.078e-005 [kalman gain]) 
const int K_DEN=10000; //denumerator  
const int GCD = 10000; 
const int NEAR_TOP_PERCENTAGE=90; 
const int VOLUME_DIFF_ACCEPTED=10; 
 
int newState() 
{   
 int fr = fuelRate; 
 int rfl = levelInMainPartRawLitre; 
 if(levelInMainPartRawLitre>=0) 
 { 
  newVolumeState = ((x_ * GCD) - ((100*fr*GCD)/H_TO_SEC) + (K_NUM*(rfl-x_)))/K_DEN; 
 } 
  
 //limit the output volume state between 0 and mantleVolumeTot 
 if (newVolumeState<0) {newVolumeState=0;fuelVolume=0;} 
 else if 
(newVolumeState>mantleVolumeTot){newVolumeState=mantleVolumeTot;fuelVolume=mantleVolumeTot;}  
 else {fuelVolume = newVolumeState;}  
 return newVolumeState; 
} 
void currentVolumeLevels() 
{ 
 levelInMainPartRawLitre = (fuelLevelSensor * mantleVolumeTot)/PER_MAX; 
} 
void kalman_output() 
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{ 
 fuelLevelTot = (fuelVolume * PER_MAX * SC_FACTOR2)/mantleVolumeTot; //convert to a scaled 
percentage 
} 
int get_x0() 
{ 
 int volDiffBetweenEstAndMeas; 
 int val = levelInMainPartRawLitre - oldFuelVolume; 
 if(val<0) 
  volDiffBetweenEstAndMeas = val * (-1); 
 else  
  volDiffBetweenEstAndMeas = val; 
 
 if (volDiffBetweenEstAndMeas > ((VOLUME_DIFF_ACCEPTED * mantleVolumeTot)/100) || 
(fuelLevelSensor>(NEAR_TOP_PERCENTAGE*SC_FACTOR1)) || (refuelDetected==true))  
  x0 = levelInMainPartRawLitre; 
 else 
  x0 = oldFuelVolume; 
 newVolumeState = x0; 
 fuelVolume = newVolumeState; 
 return x0;  
} 
int abs(int val) 
{ 
 if(val<0) 
 return (val * (-1)); 
 else return val; 
} 
Table 20:  Local declarations for fuel level estimation algorithm automata. 

Figure 60 presents the automata for evaluating parking brake. Parking brake is not considered to be 

applied until it is continuously applied for 50 time units. If the parking brake is continuously applied 

for 50 time units then the value of parking brake is set to true. When the parking brake is released 

then its value is set to false.  

 
Figure 60: Evaluate parking brake automata. 



Master Thesis - Applying Model Checking for Verifying the Functional Requirements of a Scania’s Vehicle Control System.  

GSEEM (Global Software Engineering European Master)  60 

 

Figure 61 contains the automata for parking brake. When the low fuel level warning is set to true and 

parking brake is not applied then it makes pBrakeAppliedHigh=true, x=0 and SIM_MODE = 

SIM_PARKED. And when parking brake is applied and low fuel level warning is set to false then it 

makes pBrakeAppliedHigh=false, x=0, SIM_MODE = SIM_NORMAL . 

 
Figure 61: Parking brake automata. 

EvaluateParkingBrake and ParkingBrake automaton only have “clock x;” declared in their local 
declaration sections.   
 
Figure 62 contains the automata for refill detection. Before detecting the refill parking brake must be 
set to true. When the parking brake is applied only then refill can be detected. If the increased value 
of the fuel is not maintained until 500 time units then it means there is no refill and system goes back 
to the initial state. If the increased value of the fuel is maintained until 500 time units then it means 
there is a refill and startDetaction() function is called. Code for startDetection() function is present in 
table 21. Refill is considered valid only if the increase in the value is at least 30 percent otherwise 
there is no refill. And this 30 percent increase must also be held for at least 500 time units to ignore 
the sloshing otherwise it’s not considered as refill and system goes back to the initial state. 
Condition() and Condition() functions are called at different states, code for both these functions is 
present in table 21. 
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Figure 62: Automata for refill detection. 

Table 21 contains the local declarations and code for refill detection automata.  

// Local declarations for refill detection automata.  
clock x; 
int levelWhenDetectionStarts = 0; 
bool backToInitialize; 
bool _30PerIncrease; 
void condition1() 
{ 
 backToInitialize = (pBrakeAppliedHigh == false) || (fuelLevelSensor < 
((90*levelWhenDetectionStarts)/100)); 
} 
void condition2() 
{ 
 if(fuelLevelSensor - levelWhenDetectionStarts >=(30*SC_FACTOR1)) 
  _30PerIncrease = true; 
 else if(fuelLevelSensor - levelWhenDetectionStarts < (30*SC_FACTOR1)) 
  _30PerIncrease = false; 
 else 
  _30PerIncrease = false; 
} 
void startDetection() 
{ 
 levelWhenDetectionStarts=fuelLevelSensor; 
 if(!NO_REFILL) 
 { 
  SIM_MODE=SIM_REFILL; 
 } 
} 
Table 21: Local declarations for refill detection automata. 

Figure 63 contains the automata for low fuel level warning. If the value of fuel does below certain 

predefined value then the warning is activated and if the low fuel level warning indicator is on then 
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the warning is routed and displayed to the derived and it is kept on until a refill is detected. If the low 

fuel level warning indicator is off then the warning is not routed. Initial value of the low fuel level 

warning is set to false.  

 
Figure 63: Low fuel level warning automata. 

Table 22 contains the local declarations and code for low fuel level warning automata.  
// Local declarations for low fuel level warning automata.  

clock x; 
bool lowLimitReached_B; 
bool reset_B,active_B; 
void warningLevel() 
{ 
if (tanksizes>LARGE_TANK_LIMIT && fuelLevelTot < LOW_FUEL_LEVEL_LARGE_TANKS) 
 lowLimitReached_B = true; 
else if (tanksizes<=LARGE_TANK_LIMIT && fuelLevelTot < LOW_FUEL_LEVEL_NORMAL_TANKS) 
 lowLimitReached_B = true; 
else 
 lowLimitReached_B = false; 
} 
void warningReset() 
{ 
 if (fuelLevelTot > 20*TOT_SCALE || refuelDetected) 
 { 
  reset_B=true; 
 } 
 else 
  reset_B=false; 
} 
 
void routeWarning() 
{ 
 if (upLowFuelLevelInd ==10) 
 { 
  lowFuelLevelInd=active_B; 
 } 
 else 
 { 
  lowFuelLevelInd=0; 
 } 
} 
Table 22: Local declarations for low fuel level warning automata. 
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Table 23 contains the code of template instantiations for fuel level display system.  

// Template instantiations. 
sensor = FuelLevelSensor(); 
kalman = FuelLevelEstimationAlgorithm(); 
warning = LowFuelLevelWarning(); 
eval_pb = EvaluateParkingBrake(); 
parkBrake = ParkingBrake(); 
refillDetect = RefillDetection(); 
 
// List one or more processes to be composed into a system. 
//system sensor, kalman;  //For simulation of sensor and filter relationship 
//system eval_pb,parkBrake;   //Enabling parking brake while simulating 
system sensor, kalman, warning, eval_pb,parkBrake, refillDetect; //For verification of LowFuelWarning 
//system sensor, kalman, warning;  
Table 23: Template instantiations. 
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8.1. UPPAAL – Requirements Verification  

UPPAAL has a complete separate component called verifier to check safety and liveness properties. 
For properties verification UPPAAL explores the state space of a system model on-the-fly. Verification 
component of UPPAAL also supports an editor where the requirement can be specified to be verified 
upon the system model.  UPPAAL supports a sub set of TCTL (timed computation tree logic) as query 
language to model the requirements to be verified upon system model. 
Safety and liveness properties of fuel level display system are checked and all the requirements of 
fuel level display system that are mentioned in table 5 are verified on the system model during this 
master thesis project.  
 
Following table 24 presents the queries that can be performed in UPPAAL verifier. Where p and q are 
state formulas of the form: (P1.state and x<3). 
 

Property Description 
E<> p There exists a path where p eventually holds. 

A[] p For all paths p always holds. 

E[] p There exists a path where p always holds. 

A<> p For all paths p will eventually hold. 
p --> q Whenever p holds q will eventually hold. 

p imply q Whenever p holds q holds. 
Table 24: Queries supported by UPPAAL verifier. 

 
Following are the requirements of fuel level display system as they are represented in UPPAAL 
verifier supported language and verified.  
 
A[] not deadlock 
The above query checks if there is any deadlock in the system model. And if there is no deadlock in 
the system model then the result returned against the verification of this property is “Property is 
satisfied”. In case of fuel level display system model there is no deadlock in the system model hence; 
this property is satisfied by the verifier.  
 
E<> (volDiffBetweenEstAndMeas != ((VOLUME_DIFF_ACCEPTED * mantleVolumeTot)/100) || 
(fuelLevelSensor!=(NEAR_TOP_PERCENTAGE*SC_FACTOR1))) 
imply (x0 ==oldFuelVolume) 
Above query verifies that the start-up state for the totalFuelLevel estimated should be the state 
saved from last shutdown if the stored value and fuelLevel doesn’t differ with more than 10% of the 
total volume or if fuelLevel is above 90% of the useable tank capacity. It covers requirement AER-02 
(AER_201_12) mentioned in the table 5. Result returned against this query by UPPAAL verifier is 
“Property is satisfied” which means that AER-02 (AER_201_12) is satisfied by the fuel level display 
system model in UPPAAL.  
 
E[] (volDiffBetweenEstAndMeas == ((VOLUME_DIFF_ACCEPTED * mantleVolumeTot)/100) || 
(fuelLevelSensor==(NEAR_TOP_PERCENTAGE*SC_FACTOR1))) 
imply (x0 == levelInMainPartRawLitre) 
Above query verifies that the start-up state for the totalFuelLevel estimated should be the current 
fuel volume in the fuel tank (levelInMainPartRawLitre) when the stored value and fuelLevel differ 
with more than 10% of the total volume or fuelLevel is above 90% of the useable tank capacity. This 
is not explicitly mentioned in AER-02 (AER_201_12) requirement but is implemented in the fuel level 
display system. It covers else portion of the requirement AER-02 (AER_201_12) mentioned in the 
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table 5. Result returned against this query by UPPAAL verifier is “Property is satisfied” which means 
that AER-02 (AER_201_12) is satisfied by the fuel level display system model in UPPAAL.  
 
E<> refillDetect.RefuelDetected 
Above query verifies that the refuel can be detected if there is 30 percent increase in fuel level. It 
covers requirement AER-03 (AER_201_13) mentioned in the table 5. Result returned against this 
query by UPPAAL verifier is “Property is satisfied” which means that AER-03 (AER_201_13) is satisfied 
by the fuel level display system model in UPPAAL.  
 
E<> refillDetect.stopDetected 
Above query verifies that the parking brake is steadily applied for at least 5 seconds and the vehicle is 
considered to be properly parked. It covers requirement AER-04 (AER_201_14) mentioned in the 
table 5. Result returned against this query by UPPAAL verifier is “Property is satisfied” which means 
that AER-04 (AER_201_14) is satisfied by the fuel level display system model in UPPAAL.  
 
E<>refillDetect.stopDetected imply refillDetect.RefuelDetected 
Above query verifies both requirements AER-03 (AER_201_13) and AER-04 (AER_201_14) together at 
the same time. It actually verifies that refuel can only be detected if the vehicle is properly parked 
which means that the parking brake is steadily applied for at least 5 seconds. Result returned against 
this query by UPPAAL verifier is “Property is satisfied” which means that AER-03 (AER_201_13) and 
AER-04 (AER_201_14) are satisfied by the fuel level display system model in UPPAAL even when they 
are verified at the same time. 
 
E[]   refillDetect.RefuelDetected imply (fuelLevelTot/SC_FACTOR2==fuelLevelSensor) 
Above query verifies that if a refill is detected the filter algorithm should not be used, the estimate 
should instead the value indicated by the fuel level sensor(s) until the refill is done (parking brake 
released). When the refill is ended the algorithm continues to calculate using the current value from 
fuel level sensor(s) signal as initial value. It covers the requirement AER-05 (AER_201_15) mentioned 
in the table 5. Result returned against this query by UPPAAL verifier is “Property is satisfied” which 
means that the requirement AER-05 (AER_201_15) is satisfied by the fuel level display system model 
in UPPAAL.  
 
E<> fuelLevelSensor<= (10*SC_FACTOR1) imply warning.set_a ll  warning.set_b 
Above query verifies that there exists a warning state when fuel level is below 10%. It covers the 
requirement AER-06 (AER_202_2) mentioned in the table 5. Result returned against this query by 
UPPAAL verifier is “Property is satisfied” which means that the requirement AER-06 (AER_202_2) is 
satisfied by the fuel level display system model in UPPAAL.  
 
E<> refillDetect.RefuelDetected imply not (warning.set_a ll  warning.set_b) 
Above query verifies that when a refuel is detected then the low fuel level warning is not set. It 
covers the requirement AER-07 (AER_202_3) mentioned in the table 5. Result returned against this 
query by UPPAAL verifier is “Property is satisfied” which means that the requirement AER-07 
(AER_202_3) is satisfied by the fuel level display system model in UPPAAL.  
 
 
E<> sensor.start imply (lowFuelLevelInd ==  0) 
Above query verifies that the initial value of low fuel level warning is set to false which means by 
default it is inactive. It covers the requirement AER-08 (AER_202_5) mentioned in the table 5. Result 
returned against this query by UPPAAL verifier is “Property is satisfied” which means that the 
requirement AER-08 (AER_202_5) is satisfied by the fuel level display system model in UPPAAL.  
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Requirement AER-01 (AER_201_11) mentioned in table 5 cannot be verified by using UPPAAL verifier. 
This is the actual Kalman algorithm that keeps on running during the system execution, it can only be 
checked by using the simulator during execution, to see if all the values in variables are correct and 
are updating correctly. This requirement is verified by analyzing the values during simulation.  

9. Results 
This section contains the results of requirements verification in both Simulink Design Verifier and 

UPPAAL. The tables contains the requirements ids of the requirements assigned in this thesis report, 

reference to the requirement ids that are present in the Scania documents, status of the requirement 

verification, time taken by the tools to verify the requirement and a comment field to mention the 

additional information. At the end of the tables, status of general design error detection offered by 

the tools is also presented.  

9.1. Requirements Verification Results of Simulink Design Verifier 

Requirement 
ID 

Requirement 
Reference 

Status Time Comment 

AER-01 AER_201_11 Cannot be 
Verified 

 Proof cannot be completed within the 
available resources.  

AER-02 AER_201_12  Verified  02 Seconds Requirement specification is not consistent 
with the simulink model.  

AER-03 AER_201_13 Verified 238 
Seconds 

Fuel level greater than 30%. Due to limited 
resources this requirement cannot be 
verified for complete range of fuel level 
sensor values (1-100) at once. Proved for 
one value of fuel level sensor at a time e.g. 
31, 49, 70, 90 or 100.  
 

AER-04 AER_201_14 

AER-05 AER_201_15 Verified 24 Seconds Fuel level greater than 30%. Due to limited 
resources this requirement cannot be 
verified for complete range of fuel level 
sensor values (1-100) at once. Proved for 
one value of fuel level sensor at a time e.g. 
31, 49, 70, 90 or 100. 

AER-06 AER_202_2 Verified 03 Seconds   

AER-07 AER_202_3 Verified 25 Seconds  
AER-08 AER_202_5 Verified 01 Seconds  

Integer overflow Verified 43 Seconds No integer overflow errors detected. 

Division by zero Verified No divide by zero errors detected. 
Check specified intermediate 
minimum and maximum values 

Verified No errors are detected against specified 
intermediate minimum and maximum 
values.  

Table 25: Requirements Verification Results of Simulink Design Verifier. 
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9.2. Requirements Verification Results of UPPAAL 

Requirement 
ID 

Requirement 
Reference 

Status Time 

AER-01 AER_201_11 Cannot be Verified.  It is not possible to specify these 
types of requirements in UPPAAL verifier for 
verification.   Variables values of Kalman algorithm are 
validated in UPPAAL simulator. 

 

AER-02 AER_201_12  Verified  .016 Seconds 

AER-03 AER_201_13 Verified  .016 Seconds 

AER-04 AER_201_14 Verified  .016 Seconds 
AER-05 AER_201_15 Verified .016 Seconds 

AER-06 AER_202_2 Verified .016 Seconds 

AER-07 AER_202_3 Verified .016 Seconds 
AER-08 AER_202_5 Verified .016 Seconds 

Dead lock detection Verified 120 Seconds 
Table 26: Requirements Verification Results of UPPAAL. 
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10.  Analysis of Model checking tools 
In this section the model checking tools that are used in this master thesis project are analyzed based 
upon the experiences that are acquired while performing model checking for fuel level display 
system of Scania. This analysis is based upon the features supported by the tools for model checking.  

10.1. Simulink Design Verifier   

Simulink Design Verifier is a model checking tool that identifies design errors in the system model, 
generate test vectors for model checking, and verify system designs against specified requirements. 
Simulink Design Verifier software makes use of formal techniques to find the design errors in system 
model and it does not require extensive tests or simulation runs. Design errors that can be detected 
by Simulink Design Verifier in the system model include dead logic detection, integer overflow 
identification, division by zero, and violations of design properties and assertions [8]. 
 
Polyspace and Prover Plug-In are the formal analysis engines that are used behind Simulink Design 
Verifier software as model checkers. In Simulink Design Verifier software blocks and functions are 
used for modeling functional requirements and safety requirements that are later verified on the 
system model. If the requirements are satisfied by the system model then the software returns the 
result true against the requirements verification and if the requirements are not satisfied then 
counter example is generated, that can be used to identify why the requirements are not satisfied 
[8].  
 
Simulink Design Verifier also supports the functionality of generating test vector from functional 
requirements. It also provides the feature that ensures the model coverage by using model coverage 
objectives which include condition, decision, and modified condition/decision (MCDC) [8]. 
 
Simulink Design Verifier software provides model support for fixed-point models and it also provides 
support for floating-point models, which makes it more useful for the systems that require handling 
of floating point values. Support for floating point really makes a difference as compared to UPPAAL 
because UPPAAL does not support the floating point models [8]. 
 
Simulink Design Verifier software supports many features of Simulink and Stateflow but not all of 
them. There are some features and blocks of Simulink, and few features of Stateflow that are not 
supported by Simulink Design Verifier software. If any one of the unsupported features or blocks is 
used in system model that is to be verified by Simulink Design Verifier then the model is not verified 
and error is generated at the initial stage that the model is not compatible, because the compatibility 
of the system model is automatically checked by the Simulink Design Verifier before starting any 
analysis on it. Compatibility of model can also be checked independently before starting any analysis 
[9].    
 
Result of compatibility check can be; model is compatible, model is incompatible or model is partially 
compatible. In case if the model is compatible, this is the ideal case and analysis is started on the 
model without any delay. In case if the model is incompatible, analysis is not started and log is 
generated in order to trace, identify and fix the compatibility issues. Partial compatibility notification 
is generated if at least one object in model is incompatible. Analysis can be continued with partial 
compatibility but in such a situation the analysis results might be incomplete or not exactly the same 
as expected [9].  
 
Simulink Design Verifier software provides a functionality called block replacement, which can be 
used to define rules to automatically perform block replacement in system model, if there are some 
unsupported blocks used in the model. Unsupported blocks are replaced by supported blocks, which 
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have same functionality, on the basis of these block replacement rules. In block replacement 
Simulink Design Verifier makes a separate copy of model and replaces the unsupported blocks with 
supported blocks in the copy without changing the original model. However, in the case study for this 
master thesis project block replacement mechanism is not used, because the blocks and features 
that are used during the model construction of fuel level display system in Simulink are all those that 
are supported by Simulink Design Verifier software [9].   

10.2. UPPAAL 

UPPAAL is a model checking tool for modeling, simulation, validation and verification of real-time 
systems that are modeled as networks of timed automata. UPPAAL uses computation tree logic (CTL) 
that is branching time logic for modeling the requirements to be verified on system model. 
  
In UPPAAL behavior of the system under consideration is modeled as concurrent timed automata. 
Templates in UPPAAL represent generic behavior of system entities, and when the templates are 
instantiated then they represent precise behavior of entities in system model.   
 
Different basic types of variables are supported in UPPAAL. Four predefined types for variables in 
UPPAAL are int, bool, clock, and chan. Other types like arrays and records can be defined over these 
existing types.  
 
Events in UPPAAL can be observed as edges that are enabled in any instance of a template. Timers 
associated with them act as event sources, and channels can activate an edge which appear as an 
event. Edges in UPPAAL are referred as transitions in other model checking tools. The concept of an 
event is implicit in UPPAAL and is coupled with the definition of an edge. 
 
State of the system model in UPPAAL can be seen as the state of all the automaton in system, 
constraints on clocks, and values of variables. States in UPPAAL can be anyone of three kinds 1) 
initial, 2) urgent or 3) committed. No time passes when there is a transition through a committed or 
urgent state, therefore they act as instantaneous intermediaries among states.  
 
It is a obligation for all template in UPPAAL model to have an initial state with initial attributes. Final 
states are not compulsory but their absence can lead to a deadlock situation. 
 
In UPPAAL edges contain select, guard, synchronization, and update options that can be specified for 
each edge. An automaton can initiate an edge that is individually synchronized with some other 
automaton in system model. Transition is permitted in UPPAAL only if a condition is satisfied and 
synchronization channel can be used to stimulate this by a message. Channels in UPPAAL provide a 1-
to-1 communication relationship between two edges, but there also exist channels that are called 
broadcast channels that provide one-to-many relationship among edges. Updates in UPPAAL are 
responsible for making the change in variables values as a consequence of transition. 
 
With the use of channels, processes can be synchronized that permits simultaneous operating 
instantiations of automaton. One-to-many synchronization can be achieved on broadcast channels. 
When two processes are synchronized then both edges are activated at once. States in UPPAAL do 
not maintain any history. If it is required by the states to maintain history it can be achieved by 
utilizing variables or flags. 
 
In UPPAAL there is no support for floating point values, which makes modeling of the systems that 
require handling of fractional point values very tricky. Mathematical tricks are required to model 
such a system in UPPAAL, even after doing that, it cannot be guaranteed that the system will produce 
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100 percent the identical behavior as expected. Automatons in UPPAAL are timed and time has 
explicit meaning and is very critical.  
 
There is no concept of composition of states in UPPAAL. States cannot be composed within other 
states. Templates and functions in UPPAAL are parameterized that can be declared to be either call 
by value or call by reference. 

10.3. Tools Comparison 

Following table 27 presents some major points of comparison of Simulink Design Verifier and 
UPPAAL. 
 

Simulink Design Verifier UPPAAL 
Simulink blocks, state flows and Matlab functions 
are used for system modeling. 

Timed automata, states and transitions are used 
for system modeling. 

Supports floating point models.  No support for floating point models. 

Simulink blocks, state flows and Matlab functions 
are used for requirements specification.  

Subset of TCTL (Timed computational tree logic) 
is used for requirements specification.  

Code can be generated from the simulink model 
directly.  

In current version of UPPAAL no support for code 
generation from UPPAAL model.  

Require more time for property proving  Property verification is very efficient  

Limited block support in Simulink Design Verifier 
against blocks offered by Simulink for system 
modeling. 

All features are offered by UPPAAL designer are 
supported in verifier.  

Table 27: Tools comparison. 
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11.  Relevance of Model checking with respect to ISO26262 
 
ISO (International Organization for Standardization) is a worldwide organization working in preparing 
international standards.  
 
ISO 26262 is a specific standard of ISO about Road Vehicles – Functional Safety. ISO 26262 has 9 sub 
parts of which Part 6 (Product Development at the Software Level) and Part 8 (Supporting Processes) 
mainly talks about the use of verification in product development. Part 6 (Product Development at 
the Software Level) highlights the different methods for verification and ASIL’s associated to them 
and whether the method is recommended to be used in the systems of that specific ASIL or not [5]. 
Part 8 (Supporting Processes) generally describes the verification activity in general in product 
development. Main purpose of verification is to guarantee that the system under consideration 
satisfy all the requirements [6]. 
 
Automotive Safety Integrity Level (ASIL) 
According to ISO 26262, the risk of each hazardous event is evaluated based on 3 factors  

 Severity (impact of possible damage or injury)  
 Exposure (frequency of the situation)  
 Controllability (avoidance of damage through timely reactions of the persons involved) 

 
Table 28, 29 and 30 are used to determine the values for severity, exposure and controllability. 
 

 Class 

S0 S1 S2 S3 

Description 

No Injuries Light and moderate 
injuries 

Severe and life-
threatening 
injuries (survival 
probable) 

Life-threatening injuries 
(survival uncertain), 
fatal injuries  
 

Table 28: Classes of severity [4]. 

 Class 

E0 E1 E2 E3 E4 

Description 
Incredible  Very low 

probability 
Low 
probability  

Medium 
probability  

High probability  

Table 29: Classes of probability of exposure regarding operational situations [4]. 

  Class 

C0 C1 C2 C3 

Description 
Controllable 
in general  

Simply controllable Normally 
controllable 

Difficult to control or 
uncontrollable  

Table 30: Classes of controllability [4]. 

Table 31 is used to determine the value for ASIL based upon the values of severity, exposure and 

controllability. 

 

 

 



Master Thesis - Applying Model Checking for Verifying the Functional Requirements of a Scania’s Vehicle Control System.  

GSEEM (Global Software Engineering European Master)  72 

 

Severity class 

 

Probability class 

 

Controllability class 

 

C1  C2  C3  

S1 

E1  QM  QM  QM  

E2  QM  QM  QM  

E3  QM  QM  A  

E4  QM  A  B  

S2 

E1  QM  QM  QM  

E2  QM  QM  A  

E3  QM  A  B  

E4  A  B  C  

S3 

E1  QM  QM  A  

E2  QM  A  B  

E3  A  B  C  

E4  B  C  D  

Table 31: ASIL determination [4]. 

[5] Depending on the values of severity, exposure and controllability, the appropriate safety integrity 
level for a given function or hazard is calculated by using the ASIL determination table. ASIL has 4 
levels (A, B, C, D) with D representing the most critical and A the least critical level. QM (quality 
management) in ASIL determination table represents that no requirement to comply with ISO 26262 
[4]. Four levels of ASIL can have one of three values (++, +, o).  

 “++” represents that the method is highly recommended for the specified ASIL. 
 “+” represents that the method is recommended for the specified ASIL. 
 “o” represents that the method has no recommendation for or against its usage for the 

specified ASIL. 
 
[4] ISO 26262 says that the software architectural design shall be verified according to [6] clause 9, 
and by using the software architectural design verification methods listed in the following table 32 to 
demonstrate the following properties:  

 Verify the compliance of software architectural design with the software safety 
requirements. 

 Check the compatibility of software architecture design with the target hardware. 
 Verify that all the design guidelines are properly followed. 

 

Methods of Verification 
ASIL 

A B C D 
Walk-through of design ++ + o o 

Inspection of design + ++ ++ ++ 

Simulation of dynamic parts of the design + + + ++ 
Prototype generation o o + ++ 

Formal Verification o o + + 

Control flow analysis + + ++ ++ 
Data flow analysis + + ++ ++ 

Table 32: Software architecture design verification methods. 
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According to ISO 26262 standards formal verification has no significance for the systems of either 
ASIL A or ASIL B. Formal verification is only recommended for the systems of either ASIL C or ASIL D.  
 
Scania has not yet formally assigned the ASIL to their systems but it will be done in the near future 
because research work is being carried out to check the functional safety of their systems. Therefore 
in case of fuel level display system that is used as a case study in this thesis project if the ASIL 
assigned to this system is either ASIL C or ASIL D only then model checking is relevant for this system 
and if the ASIL of this system is either ASIL A or ASIL B then there is no need for performing model 
checking activity for this particular vehicle control system according to ISO 26262 standard.  
 
Verification can be divided into two sub categories 1) Formal Verification 2) Simple Verification. 
Formal verification is the process of proving or disproving system properties using formal methods 
(i.e., mathematically precise, algorithmic methods). A formal proof of a property guarantees that no 
simulation of the specified system will violate the property which hence eliminates the need for 
writing additional test cases to check the property. Propositional logic, symbolic simulation, model 
checking, theorem proving and floating point verification are different methods for formal 
verification.  Methods for simple verification are review, walk-through, inspection, simulation, 
engineering analyses, demonstration, and testing. Model checking is one of the methods for formal 
verification. Model Checking is very good alternative to simulation and testing for validation and 
verification of systems. Given a system model and properties that the system model is supposed to 
satisfy, the model checking tools explore the complete state space of system model to see if the 
mentioned system properties are satisfied by the system model or not. Either the given properties 
are verified by the model checking tool or the model checker generates counter examples. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Master Thesis - Applying Model Checking for Verifying the Functional Requirements of a Scania’s Vehicle Control System.  

GSEEM (Global Software Engineering European Master)  74 

 

12.  Conclusion 
In this master thesis project initially the academic and industrial world are explored to find model 
checking tools that can be used for model checking. After performing the systematic literature 
review for existing model checking tools in academia and industry, two model checking tools 1) 
Simulink Design Verifier and 2) UPPAAL are finalized to be used during this master thesis project. 
After that one of Scania’s vehicle control systems called fuel level display system is selected for 
performing the activity of model checking by using the selected model checking tools. All the 
requirements that the model of fuel level display system is supposed to satisfy are listed. Fuel level 
display system is considered to be the well-documented, non-trivial best-practice example at Scania. 
Selection of this application is based upon the documentation, test data, requirements and state 
machines available. Moreover this particular system has already been used in many other research 
oriented tasks and other master thesis as well.  
 
Model of Scania’s Fuel Level Display System is created in Simulink Design Verifier and UPPAAL. 
Requirements of the fuel level display system are verified on the designed system model. All the 
functional requirements are verified on the system model. There is one requirement that could not 
be model checked. The rest of requirements are all satisfied. Moreover system models are also 
verified against general design errors like integer and fixed-point overflows, division by zero, dead 
logic detection, deadlock detection, violations of design properties and assertions violations. 
 
Model checking tools Simulink Design Verifier and UPPAAL are compared with each other depending 
upon their advantages and disadvantages. There are certain advantages and disadvantages 
associated with each tool for performing model checking in any of them. Eventually the choice of 
model checking tool is dependent upon the system to be verifier and it’s characteristics for which 
model checking is being performed.  
 
In future if Scania wants to perform model checking for their other vehicle control systems, Simulink 
Design Verifier is a feasible option. Scania already has the model of the vehicle control system 
available in Simulink so if Simulink Design Verifier is used as a model checking tool, then it will 
require less time for model checking, because only the properties are to be modeled and systems 
models are already available. Existing system models of vehicle control systems in Simulink can be 
used for model checking with minor modifications. On the other hand in any other tool models of the 
systems will have to be created first.  
  
After analyzing the relevance of model checking according to ISO 26262 standards it is concluded 
that model checking has no significance for the systems of either ASIL A or ASIL B. Model checking is 
recommended by ISO 26262 for the systems of either ASIL C or ASIL D.  
 
Model checking tools are provided with the system model and the properties of the system that the 
model is supposed to satisfy. Model checking tools verify whether the properties are satisfied by the 
system model or not. If the properties are satisfied then the system model is verified against the 
specified requirements and if the properties are not satisfied then model checking tools generate 
counter examples that can help identifying why the properties are not satisfied and where are the 
faults in system model.  
 
Model checking should be used to complement the testing process instead of replacing the testing 
process with it. Model checking can help ensure the system to be functionally feasible for the users 
and environment. Modeling checking can help identifying the design faults in the system model that 
cannot be detected with other testing techniques. With model checking design faults are detected at 
the early stages of system development, where they are easier to fix and require less time, less effort 
and less resources for fixing the design errors, instead of encountering the errors during the final 
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stages of system development, where it is very hard to fix them and require lot of time, effort and 
resources. Since the software applications in systems are becoming more and more important, so the 
model based development is gaining more importance and model checking techniques are the best 
solution to ensure the quality of the systems and to guarantee that there are no design errors in the 
system model and the system model satisfies all the specified requirements 

13.  Future work 
After working on this master thesis future work can be suggested in different areas; one from the 
point of view of Scania, the other in general in the field of model checking and improvements in the 
tools that are used in this master thesis project for model checking.  
 
During this master thesis project model checking of fuel level display system of Scania is performed. 
There are a lot of other systems at Scania for which the model checking is needed to be done in 
order to have the models of all the systems checked formally against the design errors and specified 
functional requirements. Other systems at Scania for which model checking activity can be 
performed are Gearbox Management System, Articulation Control Systems, Engine Management 
System, Brake Management System, Suspension Management System, Locking and Alarm System, All 
Wheel Drive System, Instrument Cluster System, Tachograph System, Visibility System, Air Processing 
System, Body Work System, Bus Chassis System, Audio System, Crash Safety System, Automatic 
Climate Control, Auxiliary Heater System Water to Air, Auxiliary Heater System Air to Air, Clock and 
Timer System, Road Transport Informatics Gateway, and Road Transport Informatics System etc. 
These systems are relatively more safety critical as compared to the fuel level display system. 
According to ISO 26262 standard model checking is more relevant for systems that are more safety 
critical. 
 
Generally in the domain of model checking as future work it is recommend to write automated 
transformation rules for automatically transforming the model from Simulink Design Verifier to 
UPPAAL and vice versa. Later on it is suggested to implement some plug-in or small tool based upon 
these rules that will be able to transform the model automatically created in Simulink Design Verifier 
to UPPAAL model and vice versa.  
 
There are some limitations of Simulink Design Verifier that can be improved to make it a better 
model checker. Simulink Design Verifier software can be extended to support the features and blocks 
of simulink that are not yet supported by Simulink Design Verifier software. Also in UPPAAL there are 
lots of places for improvement. UPPAAL can be extended to support fractional values; new data 
types can be introduced to support fractional values in UPPAAL. UPPAAL can also be extended to 
generate deployable code automatically from the UPPAAL model. Feature of plotting the values on a 
graph will also be a nice addition in UPPAAL that can help better understand and analyze the results. 
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Acronyms and abbreviations 
 

Acronym or Abbreviation Definitions 

MDH Mälardalen University 
GSEEM Global Software Engineering European Master 

IEC 61508 International Electrotechnical Commission 

TÜV SÜD Technischer Überwachungs – Verein (Technical 
Examination/Monitoring Association) 

EN 50128 Software for railway control and protection systems 
AE Allocation Element 

AER Allocation Element Requirement 

LTL Linear Temporal Logic 
TCTL Timed Computation Tree Logic 

GUI Graphical User Interface 

MCDC Modified Condition Decision Coverage 

COO Coordinator 
CAN Controller Area Network 

ECU  Electronic Control Units 

EMS Engine Management System 
ICL  Instrument Cluster 

ISO International Organization for Standardization 

ASIL Automotive Safety Integrity Level 
Table 33: Acronyms and abbreviations. 

  

 

  

  

  

  

 


