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e-mail: Jan.Nordstrom@liu.se

Keywords: Superconvergence, functionals, summation-by-parts, weak boundary conditions,
stability, dual consistency

Abstract. This paper is concerned with computing very high order accurate linear function-
als from a numerical solution of a time-dependent partial differential equation (PDE). Based
on finite differences on summation-by-parts form, together with a weak implementation of the
boundary conditions, we show how to construct suitable boundary conditions for the PDE such
that the continuous problem is well-posed and the discrete problem is stable and spatially dual
consistent. These two features result in a superconvergent functional, in the sense that the order
of accuracy of the functional is provably higher than that of the solution.
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1 Introduction

Functionals can represent the lift or drag on an aircraft, energy or any other scalar quantity
computed from the solution to a partial differential equation (PDE). In many engineering ap-
plications, high order accurate functionals are often of greater interest than accurate solutions
of the equations themselves. Whenever there is a functional involved, the concept of duality
becomes important. The solution of a PDE resides in some function space, and the set of all
bounded linear functionals on that space is called its dual space. Knowledge of the functional
of interest can thus be obtained by studying the dual space. This is the main topic in functional
analysis and references can be found in any standard textbook.

In numerical analysis, and in particular for computational fluid dynamics problems, duality
have been exploited for optimal control problems [14, 8], error estimation [23, 11, 6] and con-
vergence acceleration [9, 22, 13, 2]. An extensive summary of the use of adjoint problems can
be found in [10], and more recently in [5] with focus on error estimation and adaptive mesh
refinement.

In [2], the theory of functional superconvergence was established for time-dependent prob-
lems using a finite difference method on summation-by-parts (SBP) form with boundary con-
ditions imposed weakly by the simultaneous approximation term (SAT). In order to avoid addi-
tional theoretical difficulties, Dirichlet boundary conditions for both the primal and dual prob-
lem were used. The Dirichlet boundary conditions ensured that both problems were well-posed
without additional efforts. In an Euler or Navier-Stokes calculation, however, Dirichlet bound-
ary conditions are rarely used. Unless exact boundary data is known, Dirichlet boundary con-
ditions cause reflections which pollute the solution. Other kind of boundary conditions are
well-known to increase both the accuracy and stability properties of the scheme [19, 20, 21].

In this paper, we will consider time-dependent partial differential equations of the form

ut + L(u) = f,

J(u) = (g, u)
(1)

where J(u) is a functional output of interest, L can be either linear or non-linear and u can
represent either a scalar or vector valued function. In [2], the concept of spatial dual consistency
was introduced to avoid treating the full time-dependent dual equations when discretizing using
a method of lines. The concept is motivated by the following. To find the dual problem, we
follow the notation in [2, 13], and seek a function θ in some appropriate function space, such
that

T∫
0

J(u)dt =

T∫
0

(θ, f)dt. (2)

A formal computation (assume L linear and u, θ to have compact support in space) gives

T∫
0

J(u)dt =

T∫
0

J(u)dt−
T∫

0

(θ, ut + Lu− f)dt

=

T∫
0

(θt − L∗θ + g, u)dt+

∫
Ω

[θu]T0 dΩ +

T∫
0

(θ, f)dt,

(3)

where L∗ is the formal adjoint, or dual, operator associated with L under the inner product such
that (θ, Lu) = (L∗θ, u). By having homogeneous initial conditions for the primal problem, we
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obtain the time-dependent dual problem as

−θt + L∗θ = g (4)

where we have to put an initial condition for the dual problem at time t = T . Usually one
introduces the time transformation

τ = T − t (5)

which transforms (4) to
θτ + L∗θ = g (6)

with an initial condition at τ = 0. Note that it is only the spatial part of (6) which have to be
discretized differently compared to a discretization of the primal problem (1). A discretization
which simultaneously approximates the spatial primal and dual operator consistently, is called
spatially dual consistent and produces superconvergent time-dependent linear functionals if the
scheme for the primal problem is stable [2].

A discretization of the primal problem (1) can be written as

d

dt
uh + Lhuh = f, (7)

where uh is the discrete approximation of u and Lh is a discrete approximation of L, including
the boundary conditions. It is thus required that (7) is both stable and that the discrete dual
operator, L∗

h, is a consistent approximation of L∗, including the dual boundary conditions.
A difference operator for the first derivative is said to be on SBP form if it can be written as

D1 = P−1Q (8)

where P defines a norm by
||u||2 = uTPu (9)

and Q satisfies the SBP property

Q+QT = EN − E0, (10)

where
EN = diag[0, . . . , 0, 1], E0 = diag[1, 0, . . . , 0]. (11)

The second derivative operator can be constructed either by applying the first derivative twice,
i.e.

D2 = (P−1Q)2 (12)

which results in a wide operator, or a compact operator with minimal bandwidth of the form

D2 = P−1(−H + (EN − E0)S) (13)

as described in [3, 17, 16]. In this paper, we consider only diagonal norms [25]. A first deriva-
tive SBP operator is essentially a 2s-order accurate central finite difference operator which have
been modified close to the boundaries such that it becomes one-sided. Together with the di-
agonal norm, the boundary closure is accurate of order s making the SBP operator accurate of
order s + 1 in general [25]. For problems with second derivatives, the compact operator can
be modified with higher order accurate boundary closures to gain one extra order of accuracy
[17, 26].
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The discrete inner product in an SBP setting is defined by

(uh, vh)h = uThPvh (14)

and hence the discrete adjoint operator can be computed, according to the definition

(vh, Lhuh)h = (L∗
hvh, uh)h, (15)

as
L∗
h = P−1LThP. (16)

The proof that a stable and spatially dual consistent SBP scheme produces superconvergent
linear functionals is presented in [2]. The proof is based on the fact that the mass matrix, P , in
the norm is a high order accurate integration operator [12, 13].

The procedure for constructing stable schemes which superconvergent linear functionals can
now be summarized as follows;

1. Determine boundary conditions such that both the primal and dual problems are well-
posed

2. Discretize the primal problem and ensure stability

3. Compute L∗
h and chose the remaining parameters (if any) such that the continuous adjoint

L∗ is consistently approximated with the dual boundary conditions

While the procedure seems somewhat abstract, we will show using representative equations
that the computations are straight forward. Note that a stable and consistent discretization of
the primal problem does not imply that the dual problem is consistently approximated. In fact,
that is rarely the case. Note also that spatial dual consistency, and hence superconvergence, is
merely a choice of coefficients. Superconvergence is thus obtained at no extra computational
cost.

In [2, 13] it was necessary to reduce the equations, which contained second derivatives, to
first order form (often called the local discontinuous Galerkin, LDG, form). For systems in
higher dimension, the LDG form quickly becomes tedious due to the extra variables that has
to be introduced, and it is desirable that it can be avoided. The LDG form was a result of
the Dirichlet boundary conditions imposed for the primal equations. Other kind of boundary
conditions will improve both the stability and accuracy of the numerical scheme [20, 21], and
at the same time, as we shall see, remove the need of the LDG form.

2 Linear incompletely parabolic system

Consider the linear incompletely parabolic system of equations on 0 ≤ x ≤ 1 given by

Ut + AUx = BUxx, (17)

where U = [p, u]T and

A =

[
ū c̄
c̄ ū

]
, B =

[
0 0
0 ε

]
, (18)

together with a linear functional of interest,

J(U) =

1∫
0

GTUdx. (19)
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Equation (17) can be viewed as the symmetrized [1], one-dimensional Navier-Stokes equations,
linearized around a flow field with constant velocity ū > 0 and speed of sound c̄ > 0. In this
case, we assume ū < c̄ and hence (17) requires two boundary conditions at the inflow boundary,
x = 0, and one at the outflow boundary at x = 1. The boundary conditions we consider are of
the form

HL,RU ∓BUx = GL,R (20)

where HL,R are to be determined for well-posedness of both the primal and dual problems.
There are many different forms of the matrices HL,R in (20) available which give well-

posed inflow or outflow boundary conditions. The typical way to determine the structure of
HL,R is to diagonalize the hyperbolic part of the equation and consider the ingoing or outgoing
characteristics. This method will provide an energy estimate with optimal damping properties
[20]. However, the dual problem associated with the linear functional (19) will most likely be
ill-posed. Well-posedness of the primal problem does not imply well-posedness of the dual
problem. For other than homogeneous Dirichlet boundary conditions, the choice of boundary
conditions such that both the primal and dual problems are well-posed, is a non-trivial task.

Since we are only interested in the spatial dual operator, it is sufficient to consider the steady,
inhomogeneous, problem

AUx −BUxx = F. (21)

In this case, the differential operator L is given by

L = A
∂

∂x
−B ∂2

∂x2
(22)

and we seek θ = [φ, ψ]T such that
J(U) = (θ, F ). (23)

Integration by parts gives

J(U) = (G,U)− (θ, LU − F )

= (G− L∗θ, U)− [θTAU − θTBUx + θTxBU ]10 + (θ, F ),
(24)

where
L∗θ = −Aθx −Bθxx (25)

and hence the dual operator is given by

L∗ = −A ∂

∂x
−B ∂2

∂x2
. (26)

To determine the boundary conditions for the dual problem, we have to find a minimal set of
conditions such that

[θTAU − θTBUx + θTxBU ]10 = 0 (27)

after the homogeneous boundary conditions for the primal problem have been applied. This is
what put restrictions on the matrices HL,R in (20). Not only does the boundary terms have to
vanish, they will also have to satisfy the number and form for the dual equation. Wrong choice
of boundary conditions for the primal problem will cause the dual problem to be ill-posed since
too many, or too few, boundary conditions are placed on the dual equations and hence existence
or uniqueness is lost [7].
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2.1 Left boundary conditions

By considering only the terms at x = 0, we can write (27) as

θT (AU −BUx) + θTxBU = UT ((A−HT
L )θ +Bθx) (28)

after having applied the homogeneous boundary conditions for the primal equation. The bound-
ary conditions for the dual equation are thus given by

(A−HT
L )θ +Bθx = 0. (29)

The form of the matrix HL can now be determined. Since the left boundary is an inflow bound-
ary for the primal equation, but an outflow boundary for the dual equation, only one boundary
condition is allowed for the dual equation. The boundary condition (29) hence have to be of
rank one and thus it is required that

A−HT
L =

[
0 0
αL βL

]
(30)

or equivalently

HL =

[
ū c̄− αL
c̄ ū− βL

]
. (31)

Any other form of HL would impose too many boundary conditions for the dual equation and
it would not be well-posed. The coefficients αL, βL have to be chosen such that we obtain an
energy estimate for both the time-dependent primal and dual problems.

We can now turn our attention back to the primal equation to determine the coefficients
αL, βL. By applying the energy method to (17) and considering only the left boundary terms,
we get

||U ||2t = UTAU − UTBUx − UT
x BU. (32)

By assuming homogeneous boundary conditions,

HLU −BUx = 0, (33)

we can write (32) as
||U ||2t = −UTMLU (34)

where

ML = −A+HL +HT
L =

[
ū c̄− αL

c̄− αL ū− 2βL

]
(35)

and we have to chose the coefficients αL, βL such that

ML ≥ 0. (36)

Since ML has a rather easy structure, the eigenvalues can be directly computed as

µ
(L)
1,2 = ū− βL ±

√
(ū− βL)2 − ū(ū− 2βL) + (c̄− αL)2 (37)

and it is easy to see that both eigenvalues are positive if

αL = c̄, βL ≤
ū

2
. (38)

Since ML is symmetric, the choices in (38) ensures that

||U ||2t ≤ 0 (39)

and hence the boundary conditions for the primal equation are well-posed.
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Remark 1. Note that the choices of αL, βL in (38) are not unique. Any choice such that

(c̄− αL)2 − ū(ū− 2βL) ≤ 0 (40)

is sufficient to obtain an energy estimate and hence a well-posed problem.

It is, however, not only the primal equation which has to be well-posed. The time-dependent
dual equation with its dual boundary conditions need also be well-posed with the conditions
given by (38). By introducing the time transformation,

τ = T − t, (41)

we can write the time-dependent dual equation as

θτ − Aθx = Bθxx. (42)

The well-posedness of the dual problem is proven in

Proposition 1. The time-dependent dual problem (42) is well-posed with the dual boundary
conditions (29) and the parameters given in (38).

Proof. By applying the energy method to (42), and only considering the terms at x = 0, we
obtain

||θ||2τ = −θTAθ − θTBθx − θTxBθ
= −θT (−A+HL +HT

L )θ

= −θTMLθ

(43)

after applying the boundary conditions (29). The positiveness of ML, with the choices (38),
were already proven in the energy estimate of the primal equation.

To summarize, the left homogeneous boundary conditions for the primal problem are given
by

HLU −BUx = 0 (44)

and for the dual problem by
(A−HT

L )θ +Bθx = 0 (45)

where HL are given by (31) with the coefficients defined in (38).

2.2 Right boundary conditions

The right boundary, x = 1, is an outflow boundary for the primal problem and hence only one
boundary condition can be used, while we have two variables in the system. This immediately
puts restrictions on the boundary condition

HRU +BUx = GR (46)

in such a way that HR is required to have the form

HR =

[
0 0
αR βR

]
. (47)
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For any other form of HR, too many boundary conditions are placed at the outflow boundary
and the primal problem is ill-posed. The coefficients αR, βR has to be determined such that both
the time-dependent primal and dual problems are well-posed. The energy method applied to the
time-dependent primal problem results, as before, in

||U ||2t = −UTMRU (48)

where

MR = A+HR +HT
R =

[
ū c̄+ α

c̄+ α ū+ 2β

]
. (49)

We can directly compute the eigenvalues of the symmetric matrix MR as

µ
(R)
1,2 = ū+ βR ±

√
(ū+ βR)2 − ū(ū+ 2βR) + (c̄+ αR)2 (50)

and see that they are both positive if we chose

αR = −c̄, βR ≥ −
ū

2
. (51)

With the choices of αR, βR given in (51), the boundary conditions lead to a well-posed primal
problem.

Remark 2. Note that the choices of αR, βR in (51) are not unique. Any choice such that

(c̄+ αR)2 − ū(ū+ 2βR) ≤ 0 (52)

is sufficient to obtain an energy estimate and hence a well-posed problem.

To determine the boundary conditions for the dual problem, we restrict (27) to the terms at
x = 1. After applying the homogeneous primal boundary conditions, we obtain

θT (AU −BUx) + θTxBU = UT ((A+HT
R)θ +Bθx) (53)

and hence the boundary conditions for the dual problem are given by

(A+HT
R)θ +Bθx = 0. (54)

Morever, it is required that the top row of A + HT
R is non-zero since two boundary conditions

are required for the dual equation. This is fulfilled by (51) since

A+HT
R =

[
ū 0
c̄ ū+ βR

]
. (55)

The well-posedness of the dual boundary conditions for the time-dependent dual problem is
given in

Proposition 2. The time-dependent dual problem (42) is well-posed with the dual boundary
conditions (54) and the parameters given in (51).

Proof. As before, the energy method applied to the time-dependent dual problem gives

||θ||2τ = −θT (A+HR +HT
R)θ

= −θTMRθ,
(56)

where positiveness of MR is already proven from the energy estimate of the primal equation.
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To summarize, the right homogeneous boundary conditions for the primal problem are given
by

HRU +BUx = 0 (57)

and for the dual problem by
(A+HT

R)θ +Bθx = 0 (58)

where HR are given by (47) with the coefficients defined in (51).

Remark 3. Note how it is the problem which requires the least number of boundary conditions
which sets restrictions on the form of the boundary conditions. When also considering well-
posedness of the dual problem, it can be used to reduce the number of unknown parameters in
the boundary conditions of the primal problem.

2.3 Discretization, stability and spatial dual consistency

To discretize systems of equations, it is convenient to introduce the Kronecker product which
is defined for arbitrary matrices C,D as

C ⊗D =


C11D C1,2D · · · C1nD
C21D C22D · · · C2nD

... . . . . . . ...
Cn1D Cn2D · · · CnnD

 . (59)

For the matrix inverse and transpose we have

(C ⊗D)−1,T = C−1,T ⊗D−1,T (60)

if the usual matrix inverses are defined. Furthermore, a useful property which will be extensively
used, is the mixed product property,

(C ⊗D)(C̃ ⊗ D̃) = CC̃ ⊗DD̃, (61)

if the usual matrix products are defined.
Using the Kronecker product, equation (17) with the boundary conditions (20) can be dis-

cretized using the SBP-SAT technique as

Ut + (D1 ⊗ A)U = (D2 ⊗B)U

+ (P−1E0 ⊗ ΣL)((IN+1 ⊗HL)U − (D1 ⊗B)U −GL)

+ (P−1EN ⊗ ΣR)((IN+1 ⊗HR)U + (D1 ⊗B)U −GR)

(62)

where ΣL,R are 2× 2 matrices which have to be determined for stability. The second derivative
is approximated using the wide operator,D2 = D1D1 = (P−1Q)2. The matrices ΣL,R are given
in

Proposition 3. The scheme (62) is energy stable by choosing

ΣL = ΣR = −I. (63)
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Proof. We let GL = GR = 0 and apply the energy method to (62). By using the SBP properties
of the operators, we obtain

||U ||2t = UT (E0 ⊗ A+ ΣLHL +HT
LΣT

L)U − UT (EN ⊗ A− ΣRHR −HT
RΣT

R)U

− 2UT (E0D1 ⊗B + ΣLB)U + 2UT (END1 ⊗B + ΣRB)U

− 2 ((D1 ⊗ I2)U)T (P ⊗B) ((D1 ⊗ I2)U)

(64)

where the last term is purely dissipative. By chosing

ΣL = ΣR = −I, (65)

equation (64) simplifies to

||U ||2t ≤ −UT (E0 ⊗−A+HL +HT
L )U − UT (EN ⊗ A+HR +HT

R)U (66)

where, by construction,

−A+HL +HT
L ≥ 0, A+HR +HT

R ≥ 0. (67)

Since the Kronecker product preserves positive (semi) definiteness, we have

||U ||2t ≤ 0 (68)

and the scheme is energy stable.

The unique choice (63) of penalty matrices renders the scheme not only energy stable, but
also spatially dual consistent. To prove this we must show that the discrete adjoint operator L∗

h

consistently approximates the discrete adjoint L∗, including the dual boundary conditions (29)
and (54). This is done in

Proposition 4. The scheme (62) is spatially dual consistent with the choices of ΣL,R given in
(63).

Proof. For GL,R = 0, we can write the scheme (62) as

d

dt
Uh + LhUh = 0 (69)

where

Lh = (D1 ⊗ A)− (D2 ⊗B)

+ (P−1E0 ⊗ I2)((IN+1 ⊗HL)− (D1 ⊗B))

+ (P−1EN ⊗ I2)((IN+1 ⊗HR) + (D1 ⊗B)).

(70)

The discrete dual operator is defined by

L∗
h = (P ⊗ I2)−1LTh (P ⊗ I2). (71)

A somewhat tedious calculation shows that

L∗
h = −(D1 ⊗ A)− (D2 ⊗B)

− (P−1E0 ⊗ I2)((IN+1 ⊗ A−HT
L ) + (D1 ⊗B))

+ (P−1EN ⊗ I2)((IN+1 ⊗ A+HT
R) + (D1 ⊗B))

(72)

which is a consistent approximation of (26) including the dual boundary conditions (29) and
(54). The scheme is hence spatially dual consistent.
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2.4 Numerical results

A forcing function have been chosen such that an analytical solution is known, and the rates
of convergence are computed with respect to the analytical solution. This is known as the
method of manufactured solutions [24, 15]. The solution in this case is given by

p(x, t) = (arctan(x)− δ cos(αx− t) + 1)e−x
2

u(x, t) = (arctan(x) + δ sin(αx− t) + 1)e−x
2 (73)

and the weight functions in the functionals are chosen such that

J(p) = 1 +
π

4
− log(2)

2
+
δ(sin(t− α)− sin(t))

α
(74)

J(u) = 1 +
π

4
− log(2)

2
+
δ(cos(t)− cos(t− α))

α
. (75)

In (62), the second derivative is approximated using the first derivative operator twice, which
results in a wide operator. There are compact second derivative operators with better accuracy
[17, 16]. When considering the discrete dual problem, however, spatial dual consistency can
only be obtained if the second derivative operator can be factorized into the product of two
consistent first derivative operators. Indeed, the scheme (62) is dual inconsistent when the
second derivative is compactly discretized. In Table 1 we present the numerical results regarding
the order of convergence of the solution and functionals using both a wide and compact second
derivative operator. The time integration is performed until time t = 0.2 with the classical
4th-order Runge-Kutta method using 1000 time steps. Artificial dissipation has been added as
described in [18, 4].

Wide operator Compact operator
N 64 96 128 160 64 96 128 160

s = 2
p 3.0530 3.0426 3.0377 3.0345 3.2055 3.2539 3.1971 3.1560
u 2.8870 2.9740 2.9973 3.0061 3.8368 4.0364 4.0903 4.1204

J(p) 2.5584 3.9209 4.2617 4.4285 2.3289 3.2762 3.6065 3.7740
J(u) 4.2536 4.2841 4.3698 4.4192 3.3403 3.5314 3.7163 3.8343

s = 3
p 3.9528 4.2587 4.4108 4.4797 4.7882 4.3370 4.0411 4.0424
u 5.1102 4.8158 4.6828 4.5782 6.0147 6.7091 6.8642 6.5443

J(p) 2.8420 4.6607 5.5723 5.9361 5.8846 4.3321 2.9507 4.3215
J(u) 4.4917 5.6177 5.9905 6.1948 5.9529 2.0560 3.9205 4.6030

s = 4
p 4.8682 4.7599 4.7595 4.7499 3.6345 4.4454 4.6180 4.6752
u 4.2438 5.1204 5.2586 5.2981 4.8689 6.4603 7.2947 7.7447

J(p) 5.0355 7.7071 8.1376 8.5775 3.7680 6.0404 6.5043 6.8383
J(u) 6.5365 7.3625 8.0564 8.5796 5.0693 5.8672 6.4344 6.8063

Table 1: Convergence rates for the variables and functionals using both the wide and compact second derivative
operator

As can be seen from Table 1, the spatially dual consistent scheme with the wide second
derivative operator results in superconvergent functionals. The same scheme with a compact
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operator has no functional superconvergence due to its dual inconsistency. Note, however, that
the variable u has higher order of convergence than that of p in the inconsistent discretization.
A possible explanation for this is that the boundary closure of the compact second derivative
operator has higher order of accuracy, and hence u gain accuracy when compactly discretized
[17].

3 Conclusions

We have presented a stable and spatially dual consistent boundary treatment of an incom-
pletely parabolic system of equations in one space dimension. It was shown how to construct
well-posed boundary conditions such that superconvergent functionals were obtained. Another
benefit compared to having Dirichlet boundary conditions is that a reduction to a first order
system can be avoided.

The choice of parameters for energy stability is unique due to the form of the boundary
conditions. The unique choice of parameters also lead to a spatially dual consistent scheme
which produced superconvergent linear functionals.

Spatial dual consistency is merely a choice of parameters in the scheme, and hence the
superconvergence was obtained without additional computational cost compared to a standard
scheme.
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