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Abstract

During recent years, thermal mixing and thermal fatigue has received
significant attention within the nuclear industry since the phenomena has
led to component failures. The purpose of this Master Thesis is to make
preparatory simulations for the thermal mixing experiment that will be
performed at the Royal Institute of Technology within the THEMFE project.
The aim is to verify that the proposed geometry and the flow conditions of
the experiment will lead to low frequent temperature oscillations of the order
of 0.1-1 Hz as seen in previous experiments. Such low frequencies are typical
for thermal fatigue. The THEMFE experiment is a simplification of a reactor
control rod. The proposed geometry consists of a top-tube and control rod
stem. Both the top-tube and the control rod are cylindrical in shape. In
addition there are only two hot inlet jets and two cold ones.

Thermal mixing is studied by using a transient Computational Fluid
Dynamics solver for the incompressible filtered Navier-Stokes equations,
namely Large Eddy Simulations in OpenFOAM. The study focuses on the
region near the control rod stem. Therefore a refined grid is used in that
region. During the simulations 208 processor cores are utilized.

The results reveal indeed low frequent temperature oscillations in the lower
part of the mixing region near the control rod stem. The present results
verify that the proposed geometry and flow conditions can be applied in the
THEMFE experiment.

This work is carried out within the framework of DKC-TS, Distribuerat
Kompetenscentra - Termohydraulik och Strömning, Vattenfall’s initiative to
exchange knowledge and experiences between nuclear units within the area of
thermal hydraulics and fluid mechanics.

Keywords: Thermal mixing, Mixing region, Low frequency temperature
oscillations, Computational Fluid Dynamics, Large Eddy Simulation,
Incompressible flow.
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Chapter 1

Introduction

Turbulent mixing of two streams with different temperature can cause temperature
fluctuations that may lead to thermal fatigue. Thermal fatigue has received
increasing attention in recent years in the nuclear industry due to component
failures. Control rod drive problems were observed during the refueling outage
of Unit 3 of Oskarshamn Nuclear Power Plant in Sweden in October 2008 [7, 25].
A crack at the welded joint at the control rod stem was discovered (Figure A.1)
[25]. This led to inspections by the Swedish Radiation Safety Authority (SSM) at
all remaining control rods at Oskarshamn 3 and at its "twin" reactor Forsmark 3.
Results from Forsmark 3 revealed that about 25% of the 197 checked control rod
drives were found to have crevices or relevant cracks and one was broken [7]. Cracks
that were found at the upper part of the stem of many control rods is believed to
originate from thermal fatigue that is caused by mixing of cold laminar crud flow
in the annular gap between the control rod stem and the top tube (60◦C) and hot
turbulent bypass flow (276◦C), forming jets through holes in the guide tube [25].

This master thesis is one part of a thermal mixing experiment that will be performed
by the Nuclear Reactor Technology (NRT) Division at the Royal Institute of
Technology (KTH) in Sweden. The project is called THEMFE (Thermal Mixing
and Fatigue Experiment) and was initiated by: SSM, Forsmarks Kraftgrupp AB,
Ringhals AB, Oskarshamns Kraftgrupp AB and Teollisuuden Voima Oyj (TVO).
The aim of THEMFE is to obtain experimental data to predict heat transfer. These
data are used to benchmark Computational Fluid Dynamic (CFD) calculations.
The aim of this master thesis is to make preparatory simulations for the experiment
using the open-source CFD code OpenFOAM®. The geometry in THEMFE is a
simplified control rod, top-tube and guide tube geometry with only two upper
and two lower by-pass inlets. The complex geometry is significantly simplified.
The geometry used in this thesis is further simplified, in order to mainly model the
mixing region and to study it more closely. All the simplifications are done in a way
to preserve the relevant physics of the thermal mixing. The goal of these simulations

1



2 CHAPTER 1. INTRODUCTION

is to verify that the proposed geometry will give rise to low frequent oscillations (of
the order of 0.1-1 Hz). These oscillations are considered to be responsible for the
control rod drive thermal fatigue and the results of this thesis work will be used for
deciding on the experimental setup and experimental conditions.

Previous CFD simulations done in Forsmark on the real control rod geometry
showed that the temperature is oscillating in the mixing region with a frequency
varying from 0.01 Hz to 1 Hz and that the fluctuations are triggered by eddies
coming from the upper warm water bypass flow inlets [2, 25].

During this thesis the following programs were used: SolidWorks for creating
geometries, ANSYS ICEM 14 for making the structured mesh, OpenFOAM for CFD
simulations, ParaView and MATLAB for post-processing and finally LATEXwith
TeXnicCenter for writing this thesis. Forsmarks Kraftgrupp AB’s computational
cluster was used for the OpenFOAM simulations. During the run of thesis cases
208 processor cores were used, total CPU time was 1.2 thousand hours.

This thesis will start with a review of the previous experiment performed at
Vattenfall Research & Development AB, followed by the Theoretical Background,
The Choice of Turbulence Model, Methodology, Results and Discussion and finally
Conclusions.

This work is carried out within the framework of DKC-TS, Distribuerat
Kompetenscentra - Termohydraulik och Strömning, Vattenfall’s initiative to
exchange knowledge and experiences between nuclear units within the area of
thermal hydraulics and fluid mechanics.



Chapter 2

Review of the Previous
Experiment

In the previous work, by Vattenfall Research & Development AB, an experiment was
carried out to study the thermal mixing in the annular gap between the guide tube
and the control rod stem. The experiment revealed a characteristic temperature
fluctuation in the mixing region that can be seen in Figure 2.1 [2].

Figure 2.1: Previous experimental results: Time series of the temperature 1 mm
from the control rod stem in the mixing region 210 mm vertically upstream of the
lower bypass inlets. [2]

In Figure 2.1 T ∗ denotes the non-dimensional temperature defined as:

T ∗ = T − Tcold

Thot − Tcold
, (2.1)

where Thot and Tcold are the temperatures of the hot and the cold inlets. In [2] the
thermal fluctuations were given the following characteristics:

• The maximum amplitude of the fluctuations is almost as large as the total
temperature difference between the cold and the hot inlet (In Figure 2.1 T ∗

is fluctuating almost between 0 and 1).

• The temperature fluctuations are characterized by low frequencies of the order
of 0.1-1 Hz.

3



4 CHAPTER 2. REVIEW OF THE PREVIOUS EXPERIMENT

• When the hot water penetrates the annular gap the temperature is increasing
rapidly and then gradually decreasing when mixed with the cold flow (Figure
2.1).

The characteristic shape of the temperature time traces (in Figure 2.1 between 28
and 32 s) was caused by "heat bullets" (the stipulative definition, used by the author
of this thesis, of a hot inlets jets penetrating into the colder flow). The hot jet,
after hitting the control rod stem wall, penetrates into the colder flow and pushes
it backwards creating a mixing region. The "heat bullet" is responsible for the local
instantaneous temperature change from Tcold to practically Thot at a fixed position
close to the control rod stem. After reaching nearly Thot the temperature gradually
decreases to its initial cold value. Additionally it was observed that the larger the
temperature difference between the hot and the cold inlet flows, the shorter the
length of the mixing region [2]. This is because of the larger density difference,
which makes it more difficult for the hot water to penetrate the cold.



Chapter 3

Theoretical Background

This chapter summarizes what is explained in more detailed in [3] and [9]. The aim
is to remind the reader of the equations for single-phase incompressible isothermal
flow, i.e. when density is considered to be constant. In addition a short overview
of the Boussinesq approximation and turbulence modeling is given.

3.1 Conservation of Mass

The continuity equation for single-phase, one component flows expressed on
differential form is:

∂ρ

∂t
+ ∇ · (ρv) = ∂ρ

∂t
+ ρ

∂vi

∂xi
= 0, (3.1)

where v is the velocity and ρ the density. By assuming constant density in time
and space the mass conservation equation simplifies to:

∇ · v = ∂vi

∂xi
= 0. (3.2)

3.2 Conservation of Momentum

The momentum conservation equation for single-phase flows expressed on
differential form:

ρ
∂vi

∂t
+ ρ

∂(vjvi)
∂xj

= − ∂p

∂xi
+ ∂τij

∂xj
+ ρfi, (3.3)

where p is the pressure, τ is the viscous stress tensor and f is the total body
acceleration. Here the left hand side of the equation represents acceleration and
advection and the first two terms on the right hand side are the gradient of pressure
and of shear stress tensor. The first two terms on the right right hand side are
surface forces and the third is volume force.

5



6 CHAPTER 3. THEORETICAL BACKGROUND

For a Newtonian fluid the viscous stress is given by:

τij = µ( ∂vi

∂xj
− ∂vj

∂xi
) − 1

3
µ

∂vk

∂xk
δij , (3.4)

where µ is the dynamic viscosity and δij is the Kronecker delta. For incompressible
flows the last term in equation (3.4) is zero. By combining equations (3.2) - (3.4)
the Navier-Stokes momentum equation for incompressible flows is obtained:

ρ
∂vi

∂t
+ ρvj

∂vi

∂xj
= − ∂p

∂xi
+ ∂

∂xj
[µ( ∂vi

∂xj
− ∂vj

∂xi
)] + ρfi. (3.5)

3.3 Conservation of Energy

The transport equation for the specific kinetic energy k (k = vivi/2) is obtained by
multiplying equation (3.3) with vi:

viρ
Dvi

Dt
= viρ

∂vi

∂t
+ viρ

∂(vjvi)
∂xj

= −vi
∂p

∂xi
+ vi

∂τij

∂xj
+ viρfi. (3.6)

The left hand side can be re-written as:

viρ
Dvi

Dt
= ρ

2
D(vivi)

Dt
= ρ

Dk

Dt
(3.7)

and the transport equation for the specific kinetic energy can be written as:

ρ
Dk

Dt
= −vi

∂p

∂xi
+ vi

∂τij

∂xj
+ viρfi. (3.8)

Now the transport equation for the specific internal energy u is used:

ρ
Du

Dt
= −p

∂vi

∂xi
+ τij

∂vi

∂xj
− ∂q

′′

i

∂xi
+ q

′′′
, (3.9)

where q
′′ is the conductive heat flux and q

′′′ is the volumetric heat source. By
adding equations (3.8) and (3.9) the transport equation for the specific total energy
e = k + u is formed:

ρ
De

Dt
= ρ

D(k + u)
Dt

= ∂(viσij)
∂xj

− ∂q
′′

i

∂xi
+ q

′′′
+ viρfi, (3.10)

σij = −pδij + τij , (3.11)

where σ is the stress tensor. Next it is possible to get the temperature equation.
Using Fourier’s law:

q
′′

i = −λ
∂T

∂xi
, (3.12)
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where λ is the thermal conductivity and T the temperature, in combination with
the conservation of mass equation (3.2) and the relationship [3]:

Du

Dt
= D(cpT )

Dt
− αρT

ρ

Dp

Dt
− p

ρ

∂vi

∂xi
, (3.13)

where cp is the specific heat capacity and αρ is the coefficient of thermal expansion,
and equation (3.9) the following is obtained:

ρ
D(cpT )

Dt
= τij

∂vi

∂xj
+ αρT

Dp

Dt
− ∂

∂xi
(−λ

∂T

∂xi
) + q

′′′
. (3.14)

Assuming that there is no heat source and that the specific heat capacity and the
thermal conductivity are constant equation (3.14) simplifies to:

ρcp
DT

Dt
= τij

∂vi

∂xj
+ αρT

Dp

Dt
+ λ

∂2T

∂xi∂xi
. (3.15)

The first two terms on the right hand side of the equation can be neglected for
an incompressible and Newtonian fluid [9]. Finally the temperature equation is
expressed as:

DT

Dt
= ν

Pr

∂2T

∂xi∂xi
, (3.16)

since the Prandtl number is defined as:

Pr = ν

α
, (3.17)

where α is the thermal diffusivity:

α = λ

ρcp
. (3.18)

3.4 The Boussinesq Approximation

In 1903 Joseph Valentin Buossinesq (13 March 1842 - 19 February 1929) wrote:

”One still had to observe that in most heat-induced motions of our
heavy fluids, the volumes or densities are approximately conserved,
although the corresponding variation of the weight of the unit of volume
is actually the cause of the phenomena we are studying. One possibility
stems from there: neglecting the variations of the density where they
are not multiplied by the gravity g, while conserving its product by the
gravity in the calculations.” [5]

and
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”The weight ρg of the unit of volume [. . .] will have approximately
decreased of the quantity ρgαθ, as if a small antagonistic [i.e.
ascensional] force proportional to the temperature difference θ, but in
the upward direction, had added itself to the initial or normal weight of
the unit of volume.” [5]

These sentences formulated the Buossinesq approximation that is commonly
understood to consist of the following [15]:

• Density is assumed constant except when it directly causes buoyancy forces;

• All other fluid properties are assumed constant;

• Viscous dissipation is assumed negligible.

The density multiplied with the gravitational acceleration g is approximated with
[15]:

ρgi = ρ0[1 − αρ,0(T − T0) + βρ,0(p − p0)]gi, (3.19)

where

αρ = −1
ρ

δρ

δT
, (3.20)

βρ = −1
ρ

δρ

δp
, (3.21)

where αρ is the coefficient of thermal expansion and βρ is the isothermal
compressibility. αρ,0 and βρ,0 means that αρ and βρ are calculated at reference
state (T0, p0). T0, p0, ρ0 are reference temperature, pressure and density. In
equation (3.19) the third term on the right hand side can be neglected, because
of the estimation αρ,0(T −T0)

βρ,0(p−p0) > 104. The buoyancy effect can be taken into account
by using the Boussinesq approximation with equations (3.3) and (3.10). At first all
equations are divided with ρ0 and then density differences are neglected in all terms
except in the body force term where approximation (3.19) is used. The following
equations are obtained after these manipulations:

∂vi

∂t
+ ∂(vjvi)

∂xj
= − 1

ρ0

∂p

∂xi
+ 1

ρ0

∂τij

∂xj
+ [1 − αρ,0(T − T0)]gi, (3.22)

de

dt
= 1

ρ0

∂(viσij)
∂xj

− 1
ρ0

∂q
′′

i

∂xi
+ q

′′′

ρ0
+ vi[1 − αρ,0(T − T0)]gi, (3.23)

where we have made the assumption that the only active volume force is buoyancy,
hence fi = gi.
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3.5 Turbulence Modeling

In turbulence modeling the dependent variables are decomposed into two parts, one
averaged or filtered (Φ), one fluctuating or sub-grid-scale (Φ′) [9]:

Φ = Φ + Φ′. (3.24)

The second term on the right hand side can represent either time averaging or
spatial filtering. The time average of a variable Φ can be found by evaluating the
following integral:

Φ(x) = lim
Tt→∞

1
Tt

∫ Tt

0
Φ(x, t)dt, (3.25)

here Tt is the time interval. The time averaging has following properties [14]:

Φ′ = 0, (3.26)

Φ = Φ, (3.27)

∂

∂t
Φ = ∂Φ

∂t
= 0. (3.28)

The Reynolds-Averaged Navier-Stokes (RANS) equations are obtained by applying
(3.25) on incompressible Navier-Stokes equations and averaging the entire
equations:

∂vi

∂xi
= 0, (3.29)

ρvj
∂(vi)
∂xj

= − ∂p

∂xi
+ ∂τij

∂xj
− ρ

∂τR
ij

∂xj
+ ρfi, (3.30)

where the following was used [14]:

vivj = v̄iv̄j + v′
iv

′
j = v̄iv̄j − τR

ij , (3.31)

where τR
ij is the Reynolds stress tensor. τR

ij can be evaluated by using the Boussinesq
assumption that the stress tensor is linear to the mean strain rate tensor [14]:

τR
ij = −νt(

∂vi

∂xj
− ∂vj

∂xi
) + 2

3
ktδij , (3.32)

where νt is the turbulence kinematic viscosity or eddy viscosity, kt = vivi/2 is the
specific turbulent kinetic energy. For incompressible flows last term in equation
(3.32) is zero. There are many different models to calculate νt used in RANS. One
possibility is to use the standard k-ϵ model, where νt is expressed as [9]:

νt = Cµ
k2

t

ϵ
, (3.33)
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and to close unknowns variables kt and ϵ [14]:

∂kt

∂t
+ vj

∂kt

∂xj
= ∂

∂xi
((ν + νt)

∂kt

∂xi
) + νtS

2 − ϵ, (3.34)

∂ϵ

∂t
+ vj

∂ϵ

∂xj
= ∂

∂xi
((ν + νt)

∂ϵ

∂xi
) + Cϵ1νtS

2
ϵ

kt
− Cϵ2ϵ2

kt
, (3.35)

here ϵ denotes the kinetic energy dissipation rate, Cµ=0.09, Cϵ1 = 1.44, Cϵ2 = 1.92
and S =

√
2SijSij is the modulus of the mean rate-of-strain stress:

Sij = 1
2

( ∂vi

∂xj
− ∂vj

∂xi
). (3.36)

In spatial filtering Φ is defined as:

Φ(x0, t) =
∫

Ω
Φ(x, t)G(x0, x, ∆)dx, (3.37)

where G(x0, x, ∆) is the spatial filter, ∆ the filter size and Ω the entire space.
Generally OpenFOAM uses tophat spatial filter:

G(x0, x, ∆) =
{

1/∆3 |x0 − x| ≤ ∆/2
0 otherwise

(3.38)

In spatial filtering we have the following properties [14]:

Φ′ ̸= 0, (3.39)

Φ ̸= Φ. (3.40)

The Large Eddy Simulation (LES) equations are obtained by applying (3.37) on
incompressible Navier-Stokes equations and filtering the entire equations:

∂vi

∂xi
= 0, (3.41)

ρ
∂vi

∂t
+ ρvj

∂(vi)
∂xj

= − ∂p

∂xi
+ ∂τij

∂xj
− ρ

∂τSGS
ij

∂xj
+ ρfi, (3.42)

where following was used[14]:

vivj = v̄iv̄j + viv′
j + v′

ivj + v′
iv

′
j = v̄iv̄j − τSGS

ij . (3.43)

Equations (3.41) and (3.42) are similar to (3.29) and (3.30), except for τR
ij is

switched with τSGS
ij and ∂vi

∂t = 0 in RANS. Equation (3.41) is valid when the
filter size (∆) and the filtering volume (Ω) are constants [9]. If they are dependent
on xi then an error of the second order is made [9]. The CFD simulations in this
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work use second order numerical schemes and therefore a second order error can
be accepted if the mesh quality is sufficiently fine. τSGS

ij is called the sub-grid-scale
stress tensor and the Boussinesq assumption of SGS stress tensor is given by [14]:

τSGS
ij = 2

3
kSGSδij − 2νSGSS̄ij + 2

3
νSGSS̄kkδij , (3.44)

νSGS = Ck∆̄
√

kSGS , (3.45)

when the One Equation Eddy model is used, where νSGS is the SGS kinematic
viscosity, kSGS = (vivi − v̄iv̄i)/2 is the specific SGS kinetic energy and Ck ≈ 0.07.
When Smagorinsky model is used the sub-grid-scale stress tensor is approximated
as [14]:

τSGS
ij = −2νSGSS̄ij + 2

3
νSGSS̄kkδij , (3.46)

νSGS = (CS∆̄)2S̄, (3.47)

here CS ≈ 0.16. For incompressible flows last term in equations (3.44) and (3.46)
is zero.

The same procedure as used for the momentum equation is used for the temperature
equation to obtain the averaged equation. Equation (3.16) can be re-written as:

∂T

∂t
+ ∂(vjT )

∂xj
= ν

Pr

∂2T

∂xi∂xi
. (3.48)

After substitutions T = T + T
′ , vj = vj + v

′

j and time averaging a new term
appears:

∂T

∂t
+ ∂(vjT )

∂xj
= ν

Pr

∂2T

∂xi∂xi
− ∂(v′

iT
′)

∂xi
, (3.49)

where ρ cpv
′
iT

′ is called the eddy heat flux [24]:

v
′
iT

′ = − λt

ρcp

∂T

∂xi
, (3.50)

where λt is the turbulent thermal conductivity. Combining equations (3.49) and
(3.50) Reynold-averaged temperature equation is obtained:

∂T

∂t
+ ∂(vjT )

∂xj
= ν

Pr

∂2T

∂xi∂xi
+ λt

ρcp

∂2T

∂xi∂xi
. (3.51)

Last equation can be re-written as:

∂T

∂t
+ ∂(vjT )

∂xj
= αeff

∂2T

∂xi∂xi
, (3.52)
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where αeff is the effective thermal diffusivity and it is defined as:

αeff = ν

Pr
+ νt

Prt
, (3.53)

where νt and Prt are the turbulent kinematic viscosity and the turbulent Prandtl
number.

LES temperature equation is obtained in the similar way. After substitutions
T = T + T

′ , vj = vj + v
′

j into equation (3.48) and spacial filtering following
equation is obtained [6]:

∂T

∂t
+ ∂(vjT )

∂xj
= ν

Pr

∂2T

∂xi∂xi
+ ∂Θi

∂xi
. (3.54)

Θi is the SGS heat flux [6]:

Θi = νSGS

PrSGS

∂T

∂xi
, (3.55)

where PrSGS is the SGS Prandtl number. LES temperature equation is obtained
by combining equations (3.54) and (3.55):

∂T

∂t
+ ∂(vjT )

∂xj
= αeff

∂2T

∂xi∂xi
. (3.56)

Here the effective thermal diffusivity is defined as:

αeff = ν

Pr
+ νSGS

PrSGS
. (3.57)



Chapter 4

The Choice of Turbulence Model

Three turbulence models, one RANS and two LES models, were considered and
comparative simulations were carried out for the choice of model. The standard k-ϵ
approach was used in RANS and in LES the One Equation Eddy model and the
Smagorinski models were tested. All models were discussed in the previous chapter.

The geometry created for the choice of turbulence model was similar to that seen
in Appendix B however it was 200 mm shorter (700 instead of 900 in Figure B.2).
The mesh had 475 376 hexahedral cells and was created similarly as discussed in
chapter 5.

With RANS at first the SIMPLE algorithm (Table 5.3) was used in order to get
fully developed flow at the inlets. Steady-state simulations were done on pipe
geometries, that represented only the inlets, having a length of 20 diameters. The
obtained results were used as the initial conditions for the inlets in a full geometry,
where the inlets were shortened to the length of two diameters. The results were
mapped onto the full geometry before the PIMPLE algorithm was used (i.e. a
mixture of SIMPLE and PISO, Table 5.3) for the transient simulation. The RANS
transient simulation was carried out on 16 processor cores and 10.97 s of simulation
time was achieved within 7 days.

With LES the PISO algorithm (Table 5.3) was used and two cases were constructed
which differed in respect of the LES-models used: the One Equation Eddy model
and the Smagorinski model. Flat inlet flow conditions were applied because the
steady-state algorithm cannot be used with LES. The Smagorinski LES-model
reached 42.6 s simulation time within 19 days while using 32 processor cores, while
the One Equation Eddy model reached only 30.2 s.

After the results were analyzed, LES was picked to be used in master thesis case.
There were mainly two reasons for that: the RANS averaged out unsteady turbulent

13
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fluctuations and no temperature fluctuations in a short time scale could be observed;
both LES versions showed similar behaviors. Although the One Equation Eddy
and the Samgorinski gave similar results the Smagorisnki was preferred, because
the One Equation Eddy model was 1.5 times slower. That can be explained by the
fact that One Equation Eddy model has one more equation to solve. In conclusion
the Smagorinski model was chosen.



Chapter 5

Methodology

5.1 Geometry

Figure 5.1: Quarter geometry.
The simulations were done on
full geometry.

The design of the geometries used in this thesis was
based on the configuration that was proposed on
THEMFE project meeting. The current simulation
geometries covers the part of the total test section
where the temperature fluctuations were to be
expected.

In this thesis two separate geometries were
considered. The detailed dimensions can be found
in Appendices B and C. The difference between
the first and the second case geometry can be seen
in Figures B.1 and C.1. The positions of the cold
flow (60◦C) inlets are different. In the first case
water was coming in through the annulus located
at the bottom of the geometry, see cold inlet v1
marked in Figure 5.1. There were no inlets at the
sides. In the second case there were inlets on the
sides, but no inlet at the bottom annulus, see cold
inlet v2 marked in Figure 5.1. The second case
geometry is similar to the geometry that will be
used in the THEMFE experiment. The purpose of
having two different geometries was to see the effect
of the cold flow on the flow in the mixing region.
It was suspected to see cold jets in the mixing zone
while using the second case geometry. In both cases
the mass flow through the hot inlets was 0.8 kg/s
and through the cold inlet(s) was 0.07 kg/s.

15
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5.2 Mesh

Two multi-block hexahedral grids were constructed. The advantage of using
hexahedral cells over tetrahedral cells is that for the same cell count, hexahedral
meshes will give a less diffusive solution compared to the one with tetrahedral cells,
especially if the grid lines are aligned with the flow. Furthermore, hexahedral cells
need more than two times less nodes to provide same physical resolution as in the
case of tetrahedral mesh [4].

In multi-block grid generation, the geometry is first divided into smaller blocks
which are thereafter separately meshed using structured mesh generation. A
structured mesh is commonly built from hexahedrals by repeating its geometrical
and topological structure [1].

In this thesis two different grids were constructed - one mesh per geometry. In
both cases one quadrant of full geometry (Figures B.1 and C.1) was meshed and
thereafter the mesh was mirrored twice to obtain the full mesh. The mirroring was
first done in the plane x-y, then in the plane x-z. This approach was used to ensure
that the mesh would be symmetric. Both grids contained only hexahedral cells and
the total number of cells is presented in Table 5.1. The number of cells was picked
to have enough refinement to ensure accurate results while being coarse enough to
limit the required computing time. Courant-Friedrichs-Lewy condition [8][10]:

Co = v∆t

∆x
≤ 0.5, (5.1)

was used for optimizing the cell sizes ∆x by knowing velocities v and by fixing time
step value ∆t. When Co ≤ 1 then the necessary condition for the solution stability
is fulfilled [10].

Table 5.1: Mesh information

Mesh 1 Mesh 2

Points 1096456 1146256
Faces 3155570 3298796

Internal faces 3022246 3159364
Cells 1029636 1076360

Boundary patches 6 7
Hexahedra 1029636 1076360

Max volume of cell (mm3) 8 8
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When generating a mesh one has to specify the meshing parameters for different
parts/surfaces. In both cases the maximum element size was defined to be 2 mm.
The minimum element size was chosen globally to be 1 mm except for near the
control rod stem wall (0.2 mm) and the expansion ratio was adjusted to 1.5.
Refinement at the control rod stem wall (Figure D.2) was done in order to get more
accurate results in the most interesting area - near the control rod stem. Additional
refinement had to be done near the inlets (Figures D.4 and D.5) because otherwise
the inlet flow would not have been accurate. Three factors were considered during
meshing of the inlets: to have enough grid points on the grid surfaces perpendicular
to flow direction (for having enough points to represent the velocity profile), to have
the same cell size along the flow from the inlet to the stem wall, except near the stem
wall where there is additional refinement described previously (to avoid sudden cell
size changes in the flow direction) and to keep the mesh quality as high as possible.

Meshing had to be done in a way to reduce inaccuracies that might originate from
the effect of local refinement: the flow can have an unphysical non-equilibrium state
when it moves between regions with different cell sizes [10]. In other words we could
expect to see abrupt changes in the LES solutions at the borders of the refinement
regions. The meshing quality was improved by using O-Grid blocking to reduce the
skewness where a block corner lies on a continuous curve or surface (Outer wall,
Stem wall and outer walls of the inlets in Figure 5.1). It arranges the grid lines
into an "O" shape. The most descriptive views of the resulting meshes can be seen
in Appendix D.

One of the parameters that describe quality of the mesh is skewness. For hexahedral
elements, skewness is defined as the normalized worst angle between each of the
six faces normals and the vector defined by the centroid of the hexahedron and
the center of the face, see Figure D.6 [16]. The skewness is normalized so that "1"
denotes the ideal case and "0" the worst possible case. Both cases had skewness
above 0.75 and most of the cells above 0.95 (Table 5.2).

Table 5.2: Mesh quality (skewness)

Mesh 1 Mesh 2

0.95 → 1 99.303% 98.863%
0.9 → 0.95 0.462% 0.692%
0.85 → 0.9 0.160% 0.285%
0.8 → 0.85 0.055% 0.117%
0.75 → 0.8 0.021% 0.043%
0 → 0.75 0% 0%
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5.3 CFD Simulation

In this thesis all CFD simulations were carried out by using the free, open
source (GNU General Public License) CFD toolbox called OpenFOAM (Open
Field Operation and Manipulation) version 2.0.x. OpenFOAM is written in C++
programming language which is object-oriented and its overall structure can be see
in Figure 5.2. Its existing solvers can be modified or new ones can be created [13].

Figure 5.2: Overview of OpenFOAM structure [13]

The current work needs a transient solver that takes into account buoyancy effect,
heat transfer, single-phase incompressible flow and uses an LES model. The
solver that was used is called buoyantBoussinesqGenPisoFoam and it is based
on OpenFOAM’s standard solver buoyantBoussinesqPisoFoam. The reason for
modifications was to add the LES capability. BuoyantBoussinesqGenPisoFoam
was implemented by Nicolas Forsberg and Henrik Bergegrsen (both at Forsmark
Kraftgrupp AB). Similar modifications are presented in [21].

For the RANS simulations the SIMPLE (Semi-Implicit Method for Pressure-
Linked Equations) algorithm was used to create initial data for the transient
simulation. For all transient simulations the PISO (Pressure Implicit with Splitting
of Operators) algorithm was used. Both algorithms are explained in Table 5.3.
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Table 5.3: SIMPLE and PISO algorithm [20, 22]

SIMPLE algorithm PISO algorithm

1.Set the boundary conditions. 1.Set the boundary conditions.
2.Solve the discretized
momentum equation to compute the
intermediate velocity field.

2.Solve the discretized
momentum equation to compute an
intermediate velocity field.

3.Compute the mass fluxes at the
cells faces.

3.Compute the mass fluxes at the
cells faces.

4.Solve the pressure equation and
apply under-relaxation.

4.Solve the pressure equation.

5.Correct the mass fluxes at the cell
faces.

5.Correct the mass fluxes at the cell
faces.

6.Correct the velocities on the basis
of the new pressure field.

6.Correct the velocities on the basis
of the new pressure field.

7.Update the boundary conditions. 7.Update the boundary conditions.
8.Repeat till convergence. 8.Repeat from 3 for a prescribed

number of times.
9.Increase the time step and repeat
from 1.

Figure 5.3: OpenFOAM case
directories [13]

The problem to solve is specified in the case folder
(boundary conditions, mesh, etc). The minimum
set of required files needed for a case are shown in
Figure 5.3 [13]. The case folder consists of three
subfolders: system, constant and time directories
(at the beginning there is only time directory "0").

During this thesis five different files were
contained in the system folder: controlDict,
fvSchemes, fvSolution, decomposeParDict and
probesDescription. The file controlDict is used for
setting up run control parameters (start/end time,
time step) and parameters for data output. Usually
probe description is included into controlDict, but
in this thesis case separate file for probing locations
was created. File fvSolution is used to set up
equation solvers, tolerances and other algorithm
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controls and in file fvShemes discretization schemes are selected.

In constant folder one can find subfolder polyMesh that contains mesh and
files: transportProperties, LESProperties, turbulenceProperties and g. File
transportProperties contains specific physical properties, in turbulenceProperties
turbulence model is selected, in g gravity direction is defined and in
turbulenceProperties turbulence model and associated constants are defined.

Time directory folder "0" contains initial and boundary conditions for particular
field that is demanded by solver. Thesis case "0" contains following files: k, nuSgs,
p, T and U. The boundary conditions used are presented in Table 5.4.

Table 5.4: Boundary conditions

Wall Inlet Outlet

kSGS kqRWallFunction fixedValue inletOutlet
νSGS nuSgsUSpaldingWallFunction calculated calculated

p zeroGradient zeroGradient fixedValue
T zeroGradient fixedValue inletOutlet
v fixedValue radialProfile, fixedValue inletOutlet

• fixedValue- The fixed value boundary condition defines Φ to have a value Φb

at the boundary b [17],

• zeroGradient- The normal gradient of Φ at the boundary b is zero [10],

• inletOutlet- zeroGradient is applied to all faces on the boundary b, except for
those where there is inflow, in which case fixedValue is used [13],

• calculated- Boundary field Φ is calculated by using other fields [13],

• WallFunction- Empirical function for obtaining suitable conditions near the
wall without having extremely refined grid,

• radialProfile- Radial profile boundary condition defines Φ to have user
specified radially symmetric profile at boundary b.

Boundary condition radialProfile was implemented by Nicolas Forsberg [12] and it
was needed to define a radially symmetric velocity profile (Figures E.1 and E.2) for
the inlets except for the annular cold inlet in the first geometry case, where fixed
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value boundary condition was used. Velocity profiles were obtained by rescaling
earlier measurement results done with different conditions [26]. Rescaling was done
in a way to fit the velocity profile to the current geometry and to have the right
mass flow. The obtained flow is not perfect but it simulated real conditions in
a best possible way compared to a "flat" inlet velocity profile. The advantage of
using a radial velocity profile boundary condition is that shorter inlets (15 mm,
each containing 1314 cells) can be used to save mesh and computational time.

During the simulations second order discretization schemes and interpolations were
used with different operators that can be seen in Table 5.5. Time derivative used
implicit backward scheme. Other discretized operators used either Gauss or cell
limited Gauss schemes. Interpolation was done by using a linear scheme with
modifications that can be found in User Guide [13].

Table 5.5: Discretization and interpolation schemes

Discretization scheme Interpolation scheme
∂
∂t backward

Gradient ∇ cellLimited Gauss linear
Divergence ∇· Gauss filteredLinear2V

limitedLinear
linear

Laplacian ∆ Gauss linear limited

Both simulation cases were set in a way to ensure that the maximum Courant
number would stay in the range of 0.5. In that way the necessary condition for
convergence was fulfilled. It was achieved by having a constant time step of 15
µs. A constant time interval is important when Fourier Transformation is used
on the results (discussed in the next subsection). Temperature and velocity data
was sampled every 100 time steps. Probes were located on four vertical lines 1
mm outside the control rod stem shown in Figure 5.4. Positions "N" and "S" were
aligned along the cold inlets and positions "W" and "E" were aligned along the hot
inlets. Each probing line contained 225 probes that were equally spread along the
line which passed the entire geometry.
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Figure 5.4: Probe locations (mesh viewed from above). The positions "W" and "E"
were aligned along the hot inlets.

5.4 Analysis of probed data

The data was analyzed using probes that extracted data at a set of points in
space and time. The extracted probing data contained temperature T (x, tn). Here
"n" denotes the number of the time step. For analyzing probe data the following
parameters were calculated:

Mean temperature:

T (x) = 1
N

N∑
n=1

T (x, tn). (5.2)

Standard deviation of temperature (σT ) is defined as:

σT (x) =

√√√√ 1
N

N∑
n=1

(T (x, tn) − T (x))2. (5.3)
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Discrete Fourier Transformation (FT ) of the temperature data:

FT (x, fm) = Tt

N

N∑
n=1

(T (x, tn) − T (x))e−2πim(n−1)/N , (5.4)

where m = 0, 1...N −1, i =
√

−1, Tt is total measurement time. Mean temperature
subtraction is done in order eliminate the zero frequency in the Fourier spectrum
which represents the mean value. In (5.4) following relationship holds:

fm = mfS , (5.5)

where fS is the sampling frequency. The temperature standard deviation in
combination with the mean temperature can be used for determining the length of
the mixing region. The largest temperature fluctuations is expected in the position
where the standard deviation has its maximum value.

One of the main objectives of this master thesis, except from verifying that the
proposed geometry would give rise to low frequent temperature oscillation, was to
determine the frequency of these oscillations. Since low frequencies of the order
of 0.1-1 Hz were expected, a relatively long simulation time was needed. 75 s of
simulation data was obtained. It took approximately 2 months wall clock time
while using 104 cores. In temperature Fourier spectrum "peaks" near 0.1 Hz were
expected although 75 s only equals 7.5 full oscillations in that frequency range.

Statistical convergence
The first five seconds of the data was not used to eliminate influence from initial
conditions. Statistical convergence was estimated by studying relative mean
temperature change:

∆T (x, tn) =
T (x)tn − T (x)tn−1

T (x)tn

. (5.6)

Here subindex shows time steps that were included while calculating mean
temperature. In equation (5.6) the mean temperature after every iteration
was calculated and the relative change between two subsequent iterations was
investigated. The data was considered to be statistically converged when
|∆T (x, tn)| was less than 0.01%. The statistical convergence was obtained after
simulating the first 7 s (Figure 5.5) in the first case and 6.5 s (Figure 5.6) in
the second case. Corresponding times in the most dangerous region, where the
dominant high amplitude temperature oscillations have a frequency of the order of
0.1 Hz, were 6.2 s and 5.7 s.
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Figure 5.5: First case time series of the relative mean temperature change at the
vertical position y= 0.45848 m at the different probing locations.
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Figure 5.6: Second case time series of the relative mean temperature change at the
vertical position y= 0.45848 m at the different probing locations.
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Grid dependence
For studying the mesh size influence on the results two additional grids were
constructed in the similar way as described before. The aim was to create meshes
where the number of cells would be increased/decreased by two times compared
to the mesh used in the first simulation case. Therefore factor 3

√
2 was used for

obtaining the maximum and the minimum element lengths. The constructed grids
were called "0.5 M" and "2 M" and the parameters compared with the grid used in
the first case can be seen in Table 5.6. The grid "2 M" is prohibitively "expensive"
to be used in the simulation even though it would give the most accurate results.

Table 5.6: Grid dependence study meshes

Hex. cells Max el. size (mm) Min el. size (mm) Exp. ratio

0.5 M 533368 2.52 1.26 (0.25) 1.89
First thesis case 1029635 2 1 (0.2) 1.5

2 M 2139184 1.59 0.8 (0.16) 1.3

The data from the first thesis case at the time step 30 s was mapped over new
grids and 8.5 s of the simulation results were obtained. For the comparison mean
temperatures 1 mm from the stem were calculated while using probe data from all
four locations. The results can be seen in Figure 5.7.
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Figure 5.7: Mean temperature for different grids 1 mm from the stem wall.

One can observe that the mean temperatures differ mainly in the mixing region. It
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appears that the coarser mesh "0.5 M" and the thesis case are over predicting the
length of the mixing region. The difference when changing the grid size two times is
below 32 K, see Figure 5.8. The usage of the first case grid is motivated by the fact
that there is mean temperature difference below ten degrees in the region where
the low frequent temperature oscillations occur (y ≈ 0.39 m), but most important,
the "2 M" case would take 5 months of computing time and could not be afforded
within this work.
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Figure 5.8: Over/under prediction compared with the thesis case.

Figure 5.9 shows that by improving mesh the mixing region length slightly
decreases, the region moves vertically upwards and has a sharper "peak".
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Figure 5.9: Temperature standard deviation for different grids 1 mm from the stem
wall.
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5.5 Flow through time

A rule of thumb usually used with LES is to start sampling after a time
corresponding to 5-10 flow throughs. By assuming only the cold flow the residence
time for the thesis case would be 51.5 s. Therefore to fulfill the rule of thumb,
257.5-515 s of the simulation time should be neglected. This would be prohibitively
expensive. Therefore another approach would have to be used.

The time it takes for the hot flow to reach the vertically lower border of the mixing
region was calculated. That time was doubled and the first 5 s in the data was
neglected. That was the compromise used in order to get enough data for the
thesis.





Chapter 6

Results and Discussion

In this part of the thesis, the results from the both cases are presented. In addition
a short discussion concerning possible errors is given.

6.1 First case, with the cold flow coming from below

In Figure 6.1 the time series of the temperature 1 mm from the control rod stem at
different vertical positions at the probing location "N" are shown. To get a better
understanding of the vertical positions it should be noted that the position of the
hot inlets is at y= 0.6 m. The non-dimensional temperature, see equation (2.1),
was used for displaying the results. One can observe a similar temperature behavior
that was seen in the experiment carried out at Vattenfall Research & Development
AB [2]. The overall mean temperature increases gradually upwards in the annular
gap [2]. The maximum amplitude of the fluctuation, coresponds to T ∗ varying from
0 to 0.8, and it was observed at the vertical position y= 0.45848 m. The position
corresponds to the location where the standard deviation of T ∗ has its maximum
value, see Figure 6.4. The low frequent temperature oscillation of the order of
0.1 Hz can be most clearly observed at the position y= 0.39018 m. Low frequent
oscillations of large amplitude are especially dangerous when it comes to thermal
loads [2].

In Figure 6.2 the time series of temperature at different probing locations at the
same vertical level are shown. It can be observed that the instaneous flow is
asymmetric. It should be noted that "heat bullets" can mainly be found at the
positions "N" and "S". Applying a Fourier Transformation on the data from Figure
6.2, the temperature Fourier spectrum is obtained, see Figure 6.5. One can see
that the Fourier spectrum has its high amplitude "peaks" below 0.6 Hz. Distinctive
"peaks" can be found at positions "N" and "S" and the most dominant are around
0.1 Hz. The "peak" near 0.01 Hz can be excluded because simulation time was less
than one full oscillation with that frequency.
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In Figures 6.3 and 6.4 the mean temperature and its standard deviation can be
seen at different probing locations as a function of the vertical position. In both
figures the cold and the hot inlet locations are denoted as "CI" and "HI". The length
of the mixing region can be estimated as ymix1 = [0.350; 0.550] m. The estimation
is done by studying the temperature standard deviation. In the mixing region the
positions "N" and "S" have slightly higher mean temperature and lower standard
deviation compared to the positions "W" and "E". The mean temperature peak at
"HI" for the positions "N" and "S" can be explained by the hot inlet jets hitting the
stem wall at that position. The standard deviation stays below 50 K and it is 23%
of the temperature difference between the hot and the cold inlet. The increase in
temperature is most rapid in the first 15 cm of the mixing region, see Figure 6.13.

In the mixing region a flow in the circumferential direction was observed, see Figure
6.7. As a "heat bullet" penetrates into the colder flow with opposite direction it
starts to rotate with an angular velocity of the order of π

2
rad

s .
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Figure 6.1: First case time series of the temperature 1 mm from the control rod
stem at the different vertical positions at the probing location "N". The hot inlets
are located at y= 0.6 m.
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Figure 6.2: First case time series of the temperature at the vertical position y=
0.39018 m at the different probing locations.
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Figure 6.3: First case mean temperature at the different probing locations.
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Figure 6.4: First case normalized temperature standard deviation at the different
probing locations (∆T = 216 ◦C).
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Figure 6.5: First case temperature Fourier spectrum at the vertical position y=
0.39018 m at the different probing locations.

Figure 6.6: "Heat bullet" at the vertical positions y= 0.39018 m at the simulation
time t= 34.8 s. First case geometry is shown at the interval y= [0.39018;0.8]
m. "Heat bullet" is visualized by making wrapped slice of velocity at the vertical
position y= 0.39018 m, which is colored by the temperature.
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Figure 6.7: The time series of the flow movement in the annulus at the vertical
positions y= 0.39018 m. "Heat bullet" counterclockwise movement seen from below.
The pictures are showing wrapped slices of velocity colored by the temperature.
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6.2 Second case, with the cold inlets from the sides

The second geometry used differs only by the location of the cold inlet(s), see Figure
6.13. The aim was to see if the cold inlets from the sides would influence the results.
It was suspected to see cold jets in the mixing zone while using second geometry
(Figure C.1). If cold jets were to be seen then one of the possible solutions to
eliminate their effect in the experiment would be to use a perforated plate to even
out the flow from the jets in the annular gap.

By comparing Figures 6.2 and 6.8 one can notice that there are considerably more
"peaks" from the probe locations "W" and "E" when using the second geometry.
These extra "peaks" are indirectly caused by the cold jets. While "heat bullets"
are penetrating vertically downwards at the positions "N" and "S", cold jets are
moving vertically upwards at the positions "W" and "E". Due to these movements
flow rotation perpendicular to vertical direction increases. Rotation of the "heat
bullets" causes temperature "peaks" at the positions "W" and "E".

Figures 6.4, 6.10, 6.12 and 6.13 show that the mixing region ymix2 = [0.325; 0.550]
m is 2.5 cm longer compared to the first case. The same tendency can be seen by
comparing the mean temperatures, see Figures 6.3 and 6.9.

In Figure 6.11 one can see that Fourier spectrum has its high amplitude "peaks"
again below 0.6 Hz, but this time most dominant "peaks" are located at the positions
"W" and "E".
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Figure 6.8: Second case time series of the temperature at the vertical position y=
0.39018 m at the different probing locations.
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Figure 6.9: Second case mean temperature at the different probing locations.
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Figure 6.10: Second case normalized temperature standard deviation at the
different probing locations (∆T = 216 ◦C).
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Figure 6.11: Second case temperature Fourier spectrum at the vertical position y=
0.39018 m at the different probing locations.

−0.1 0 0.1 0.2 0.3 0.4 0.5 HI 0.7 0.8
0

0.05

0.1

0.15

0.2

0.25

y [m]

T
/
∆

T

 

 

First thesis case
Second thesis case

Figure 6.12: Normalized temperature standard deviation comparison at the probing
location "N" (∆T = 216 ◦C).
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Figure 6.13: Visualization of the region where the temperature increases rapidly
from 333 to 520 K. (Cut view from symmetry plane).



6.3. THE MOST DANGEROUS REGION 41

6.3 The most dangerous region

The length of the mixing region where the most dominant "peaks" in the
temperature Fourier spectrum lie near the 0.1 Hz had to be estimated, because the
low frequent oscillations of large amplitude are especially dangerous when it comes
to thermal loads [2]. The estimation was done by investigating the temperature
oscillation amplitude and its Fourier spectrum. The purpose was to find the region
where the scaled Fourier spectrum has a value over 0.007 near the frequency of 0.1
Hz and the amplitude is larger than 50 K.

The most dangerous region for the first case was yd1 = [0.374; 0.406] m and for
the second case yd2 = [0.370; 0.402] m. These regions have the same length and are
shifted by 4 mm. The most dangerous region is less than 4 cm long and it would
be advisable to use this information when planning the locations of the sensors for
the experiment.

6.4 Constant transport properties

The model that was used in the simulations assumes that the transport properties
are constant. The transport properties are density (ρ), molecular kinematic
viscosity (ν), thermal conductivity (λ) and specific heat capacity (cp). This
assumption might be a source of error that is estimated in the following section.
The constant transport properties are compared with the conditions of T = 60 ◦C
and T = 276 ◦C. The pressure change is small within the test section, hence their
dependence of local pressure changes are neglected.

The constant values used in the simulations were obtained from the IAPWS IF-97
steam tables with conditions of p = 70 bar and T = 200 ◦C. The physical properties
at different temperatures can be seen in Table 6.1. The largest difference is observed
with the molecular kinematic viscosities, where the ratio of the viscosity at 60 ◦C
and 200 ◦C is ≈200 %. The ratio of other properties is below 16 %.

In eddy viscosity models the effective kinematic viscosity, νeff = ν + νt/SGS , is
used. If the νt/SGS is at least an order of magnitude larger than the ν, then the
first is dominating in the effective kinematic viscosity and the exact value of the ν
can be approximated by constant value over the whole temperature interval.

Above the mixing region νSGS had values above 1.3·10−6 m2/s, except for a few
spots near the the walls. The effective kinematic viscosity is dominantly dependent
on νSGS in this region and the effective kinematic viscosity is overestimated by 2
% of its value at the most.

Below the mixing region νSGS had values above 0.4·10−6 m2/s. In this region the
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effective kinematic viscosity is underestimated by 1
3 of its value at the most. The

under/overestimation in the mixing region lies between these two cases discussed
and depends on the temperature.

The Reynolds and Richardson numbers for the cold flow in the annulus are
Re = 1655 and Ri = 740. A physical interpretation of the Re is the ratio of
the inertial versus the viscous forces. The Ri is the ratio of the the potential to the
kinetic energy. Since Ri ≫ 7, buoyancy effects are greater than inertial effects, at
least far away from the jets. Since gravitational effects are more important than
inertial effects and inertial effects are more important than viscous ones, errors due
to wrong physical viscosity should be small. However this might not be true in the
near wall region. Hence for future CFD validation work, it is recommended that
the models with non constant viscosity are used.

The results presented in this work could have been improved by using models that
use the steam tables. However steam tables are computationally very expensive.
Hence a model that uses polynomial expression for ν = ν(T ) is recommended.

Table 6.1: Water properties

70 bar, 200◦C 70 bar, 60◦C 70 bar, 276◦C

ρ [kg/m3] 867 986 759
ν [m2/s] 1.56·10−7 4.75·10−7 1.28·10−7

λ [J/(m · s · K)] 0.668 0.654 0.585
cp [J/(kg · K)] 4463 4168 5191



Chapter 7

Conclusions

The most important conclusions of this thesis are the following:

• It was verified that the proposed geometry and flow conditions for
the THEMFE experiment give rise to the expected flow field. The
simulations revealed that both considered geometries will generate low
frequent temperature oscillations of the order of 0.1-1 Hz in the mixing region.
Enough data has been obtained to conclude that the patterns exist.

• The results of this thesis indicate that the length of the mixing region is 23
cm. This is similar to the earlier experiment [2] and is large enough to be
resolved in the THEMFE experiment.

• It was also found that the most dangerous region, where the dominant high
amplitude temperature oscillations have a frequency of the order of 0.1 Hz, is
4 cm long. It would be advisable to use this information when planning the
locations of the sensors for the experiment.

• It would be best to use a perforated plate in the THEMFE experiment to even
out the cold flow. In that case results similar to the first CFD case will be
expected, which show more clearly low frequent nature of the mixing region.

• It can be observed that the instantaneous flow is asymmetric. Therefore it is
not recommended to use only a quarter of the geometry, neither in CFD nor
in the experiments, because with a quarter geometry the effect of rotating
flow in the circumferential direction cannot be captured.

• The results of this thesis support the idea that the cold inlets cannot be
approximated as "flat" inlet, based on the differences observed between the
two thesis cases.
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• This study could be improved by using models that make use of steam tables,
in order to take the variation of the density and viscosity with temperature
into account. The effect is believed to be rather small to affect the overall
conclusions in the thesis.

• A notable difference between the finer 2 M cell case and the presented case
was observed. It is therefore recommended that smaller cell sizes are used
for future CFD validation work. A grid size convergence test is highly
recommended.
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Appendix A

Control rod

Figure A.1: Control rod with welded connection between blades and stem [25]
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Appendix B

Geometry of the first case

Figure B.1: Isometric view of the first case geometry
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Figure B.2: Dimensions of the first case geometry



Appendix C

Geometry of the second case

Figure C.1: Isometric view of the second case geometry
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54 APPENDIX C. GEOMETRY OF THE SECOND CASE

Figure C.2: Dimensions of the second case geometry



Appendix D

Mesh

Figure D.1: Top view of the mesh
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Figure D.2: Zoomed top view of the mesh (Mesh is refined near the stem wall to
get more accurate results in the most interesting area)
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Figure D.3: Side view of the mesh
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Figure D.4: Cut view of the inlets from above
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Figure D.5: Cut view of the inlet from symmetry plane (To the right inner part of
the stem mesh is shown)
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Figure D.6: Hexahedron skewness. The star represents the centroid of the hexahe-
dron. Blue arrow is the vector from the centroid to the center of the face and gray
arrow is the normal vector of the face. The red arc shows the worst possible angle
between those two vectors and it has the lowest skewness.



Appendix E

Inlet velocity profiles

Figure E.1: Radial velocity profile for hot inlet
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Figure E.2: Radial velocity profile for cold inlet
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