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Abstract—We present a new iris segmentation algorithm
based on the Generalized Structure Tensor (GST). We com-
pare this approach with traditional iris segmentation systems
based on Hough transform and integro-differential oper-
ators. Results are given using the CASIA-IrisV3-Interval
database with respect to a segmentation made manually by
a human expert. The proposed algorithm outperforms the
baseline approaches, pointing out the validity of the GST as
an alternative to classic iris segmentation systems. We also
detect the cross positions between the eyelids and the outer
iris boundary. Verification results using a publicly available
iris recognition system based on 1D Log-Gabor wavelets are
also given, showing the benefits of the eyelids removal step.

I. I NTRODUCTION

Biometrics has been receiving considerable attention
over the last years due to the increasing demand for
automatic person recognition. It refers to automatic recog-
nition of an individual based on behavioral and/or physi-
ological characteristics (e.g., fingerprints, face, iris, voice,
etc.), which cannot be stolen, lost, or copied [1]. Among
all biometric techniques, iris has been traditionally re-
garded as one of the most reliable and accurate biometric
identification systems available [2], [3].

The iris is a ring around the pupil, surrounded by
a white region called sclera (Figure 1). The pupil is
generally darker than the iris and may have specular
reflections due to light sources used in commercial ac-
quisition systems. Iris analysis begins with the detec-
tion of the inner and outer iris boundaries. Early works
make use of integro-differential operators, proposed by
Daugman [4], and edge detection plus circular Hough
transform, proposed by Wyldes [5]. They assume that
iris boundaries can be modeled as circles. Much of the
subsequent research has tried to improve the Wildes idea,
such as the inherent computational burden of the Hough
transform or the lack of enough edge points to define
a circle [2]. Some works also deal with the problem
of detecting eyelids occlusion or specular reflections.
Current issues include the development of acquisition
systems that allow larger distances between the subject
and the sensor (typically meters), in which the apparent
size of the iris and pupil will show much more variability,
with an important presence of motion blur, inconsistent
illumination or variation in subject gaze angles [6].

In this paper, we present a iris segmentation algorithm
based on the Generalized Structure Tensor. By using
circular filters sequentially, we first detect the inner (pupil)
boundary and then, its center is used to refine the search

of the outer (sclera) boundary. Since the pupil is generally
darker than the iris, there will be a sharper transition
which in principle will be easier to detect than the softer
transition between the iris and the sclera. We compare our
algorithm with traditional iris segmentation systems based
on Hough transform and integro-differential operators. We
also implement an eyelid detection step. We have used
for our experiments the CASIA-IrisV3 Interval database,
with 2,639 iris images from 249 contributors acquired in
two sessions [7]. Reported results show the effectiveness
of the proposed algorithm, outperforming the baseline
systems. In addition, verification results of the proposed
system using 1D Log-Gabor wavelets are given, showing
the benefits of incorporating the eyelids detection step.

II. T HE 2D STRUCTURETENSOR

The Ordinary Structure Tensor (OST)
Given a gaussian smoothed imageI[p], the 2D Ordi-

nary Structure Tensor [8] at a given pixelp = [x, y] is
the 2×2 matrix Sw [p] =

∑
r

w [r]So[p− r], whereSo is

the matrixSo [p] =
[

(fx [p])2 fx [p] fy [p]
fx [p] fy [p] (fy [p])2

]
. Index

r ranges over coordinate pairs{−m...m} × {−m...m}
andw[r] is a weighting window centered atp (typically
gaussian). The valuesfx[p], fy[p] are the estimated partial
derivatives ofI[p] at pixel p, commonly implemented
via convolutions with sampled gaussian-derivative filters.
It can be shown that the following (complex) linear
combinations of the real momentsmp,q of the local power
spectrum, which are the matrix elements ofSw, directly
relate to the eigenvaluesλ1, λ2 (and their corresponding
eigenvectorse1, e2) of matrix Sw[p] [9]:

I20 = (m11 −m22) + i2m12 = (λ1 − λ2) ei2ϕe1

I11 = (m11 + m22) = λ1 + λ2
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Fig. 1. Iris image with typical elements labeled.
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Fig. 2. System model for iris segmentation using the Generalized Structure Tensor.

Here i is the complex
√−1. Hence,I20 (complex) and

I11 (real) are the second order complex-moments of
the power spectrum. They are also referred to as the
(complex representation of the) structure tensor because
they represent the ordinary structure tensor fully, with the
advantage that eigenvalues and eigenvectors ofSw can
be read out directly fromI20, I11. This representation
is increasingly preferred in fingerprint analysis as it
conveniently allows a generalization of the structure
tensor, offering efficient detection of singularities such
as core and delta [10], [11]. It can be also demonstrated
that |I20| ≤ I11 (Schwartz inequality).

The Generalized Structure Tensor (GST)
Assuming that the inner/outer boundaries of the iris

can be modeled as circles, they can be detected by
means of the Generalized Structure Tensor, [9], which is
essentially template matching in the tensor domain, and
can be conveniently expressed using complex version of
the structure tensor, i.e.

I20 = (λ1 − λ2) ei2ϕe1 =
∑
p

c (p) (fx (p) + ify (p))2

I11 = λ1 + λ2 =
∑
p
|c (p)|

∣∣∣(fx (p) + ify (p))2
∣∣∣

where c(p) is defined as the complex version of the
structure tensor response of a circle1:

c (p) = e−i2ϕe1
(
x2 + y2

)γ
e−(x2+y2)/(2σ2

2)

Here γ and σ2 determine the radius of the circle and
the precision of the filter (width of the circular boundary
region). It can be shown that a high response in|I20| and
zero argument ofI20 is obtained at a point, if there are
edges at the prescribed (same) distance from that point
and there is an agreement in terms of local orientations
(structure tensors) with those of a circle. It can also be
shown that when this happens, the Schwartz inequality
holds with equality, i.e.|I20| = I11.

III. PROPOSEDSYSTEM

We propose the use of the GST for iris segmentation
following the process described next (summarized in
Figure 2).

We first search for the pupil boundary with a circular
filter of variable radius. The range of radius values is set

1In the ordinary structure tensorc(p) is a Gaussian defining the extent
of the local neighborhood.
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Fig. 3. Pupil and sclera segmentation accuracy (test set).

manually, depending on the database (15-70 pixels for the
CASIA-IrisV3 Interval). A peak in the response of|I20|
will be obtained when the radius of the circular filter fits
that of the pupil boundary, as can be seen in Figure 2,
left. To improve detection, and to discard spurious peaks,
a threshold to the argument ofI20 is also imposed (+/-3
degrees in this work), so peaks with argument higher than
the threshold are discarded.

After detecting the pupil boundary, another circular
filter is used to search for the sclera boundary. The
minimum radius of this filter is dynamically adjusted
depending on the pupil radius, and the maximum radius
is set to 140. For better accuracy, we search for the
maximum value of|I20| only within a small region around
the center of the pupil, since the two circles are assumed
as being concentric to a certain extent [4]. In addition,
to avoid possible occlusion by eyelids and eyelashes, we



use a circular filter in which top and bottom quarters are
removed, as depicted in Figure 2. As before, the highest
response of|I20| is obtained when the radius of the filter
fits that of the sclera boundary, as seen in Figure 2. A
threshold to the argument ofI20 is also imposed here.

Finally, to detect the cross points between the eyelids
and the sclera boundary, we sample the (complex) values
of I20/I11 across the sclera boundary with angle incre-
ments of 3 degrees, thus obtaining 120 samples in the
0-360 range. Given the vectorp = (p1, ..., pi, ..., p120),
we then compute for each samplepi the (real) value
p′i = 〈pi − p, pi − p〉, with p being the mean ofp. The
resulting vectorp′ = (p′1, ..., p

′
i, ..., p

′
120) can be seen in

Figure 2, third plot. As can be observed, regions with no
eyelids occlusion exhibit small variance. The transition
to regions of high variance is used to detect the position
of the four cross points between the eyelids and the
sclera (in case of low variance in an entire quadrant, we
determine that there is no occlusion in it). This is because
we expect that in regions of the sclera without occlusion,
the Schwartz inequality between|I20| and I11 will tend
to equality (i.e. agreement in terms of local orientations
with those of a circle, as mentioned above). Therefore,
the ratio |I20| /I11 will tend to one. On the other hand,
in occluded regions of the sclera, the Schwartz inequality
will not hold, and the ratio|I20| /I11 will exhibit an erratic
behavior, with high variance.

After the segmentation process, we obtain the cen-
tre/radius of the two circles that model the boundaries
of the iris region, and the coordinates of the four cross
points (if exist) between the eyelids and the sclera. We
also compute the straight line that crosses the upper/lower
pair of cross points, and the iris region above/below the
line is discarded.

IV. EXPERIMENTAL FRAMEWORK

A. Database and Baseline Systems

We use the “Interval” set of the CASIA-IrisV3 database
[7], with 2,639 images of 280×320 pixels (height×width)
from 249 contributors acquired in 2 sessions with a close-
up iris camera. The number of images per contributor and
per session is not constant and not all the individuals have
images of the two eyes. The number of different eyes is
396. The 249 subjects are further divided into a develop-
ment set of 50 subjects (comprising 489 images) and a test
set of 199 subjects (2166 images). The development set is
used to find the optimal configuration of our segmentation
system described in Section III, whereas the test set is
used for validation.

As baseline segmentators, we use two freely available
systems, one based on circular Hough transform, devel-
oped by Libor Masek [12], [13] and a second which is
an implementation of the Daugman integro-differential
operator2. The baseline matcher is also included in the
Libor Masek source code. It is based on normalization of
the iris region to polar coordinates using the Daugman’s
rubber sheet model [4], followed by a convolution with

2http://www.mathworks.com/matlabcentral/fileexchange/15652

a 1D Log-Gabor wavelet plus phase binary quantization
to four levels. Matching is done using the normalized
Hamming distance, which incorporates noise masking,
so that only significant (non-noisy) bits are used in
calculating the distance between two iris templates.

B. Results

In Figure 3, we give the performance of our segmen-
tation algorithm, as well as of the baseline segmentation
systems. We have manually segmented all the images of
the database with an script that allows the selection of
three points in the pupil boundary and three points in the
sclera boundary. With these two sets of points, we are able
to compute the radius and the center of the iris and sclera
circles. The performance of the automatic segmentation
systems is then assessed by computing the difference
between the automatic and the manually extracted radii
of the circles (left plot of Figure 3) and the distance
between the automatic and the manually extracted centers
of the circles (right plot of Figure 3). Difference in radius
and center distance are normalized by the pupil/sclera
radius for size and dilation invariance. We observe that
the proposed segmentation algorithm works better than
the two baseline systems. Detected pupil and sclera circles
using the GST algorithm are closer to the circles obtained
with the manual segmentation. We also observe that sclera
detection gives worse performance than pupil detection,
pointing out our assumption that the iris/sclera transition
is more difficult to detect.

To measure accuracy in eyelids cross-points detection,
we have manually marked the cross-points of a group of
images of the development set (one image per subject and
per eye, resulting in 68 images). Performance is assessed
by computing the difference between the angles along
the sclera circle of the automatic and manually extracted
cross-points. Results are depicted in Figure 4(a). We also
report in Table I the percentage of False Positives (FP)
and Negatives (FN). From Figure 4(a), we observe that
accurate detection is more difficult in quadrants 1/2 (e.g.
50% or more of the images have an accuracy of 4 degrees
in quadrants 3/4, but in quadrants 1/2 the percentage is
below 30%). As observed in Figure 1, images in our
database may have eyelashes in the upper quadrants, thus
making more difficult the detection, which is not the case
in the lower quadrants. On the other hand, according to
results from Figure 4(a) and Table I, we cannot generalize
if one quadrant is better that other (e.g. quadrant 1 has
lower FP and FN). We speculate that it can be due to
the presence of images from both left and right eyes.
Adjusting our algorithm separately for each quadrant
depending on the type of eye (right or left) could be a
source of improvement.

Finally, in Figure 4(b), we give recognition results
using the matcher described in Section IV-A. It can be
observed that including the eyelid removal step results
in a FRR decrease for any given value of the Hamming
distance, and that the inter-class distance distribution is
shifted towards smaller values, thus pointing out the utility
of removing noisy regions of iris images.
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Q1 Q2 Q3 Q4
False Positive 3.39 8.48 6.78 1.79
False Negative 5.09 10.17 13.56 8.48

TABLE I
ACCURACY OF EYELIDS CROSS-POINTS DETECTION

(Q1/Q2/Q3/Q4=QUADRANT 1/2/3/4).

V. CONCLUSIONS

A segmentation algorithm for iris images using the
Generalized Structure Tensor has been proposed. We first
search for the pupil boundary using a circular filter of
variable radius and then, the center of the detected circle
is used to refine the search of the sclera boundary with a
second circular filter. We employ this sequential procedure
since the pupil/iris transition is generally sharper than the
iris/sclera transition, thus being easier to detect. Eyelid
area is also computed by finding the cross position be-
tween the eyelids and the outer boundary of the iris. Using
manual segmentation from a human expert as benchmark
for our experiments, we have observed that pupil detection
is correctly done in most of the database, but segmentation
of the sclera results in worse performance. Apart from the
softer transition between the iris and the sclera, another
reason could be the occlusion of eyelids and eyelashes,

since the database used in our experiments is composed
mostly of oriental people. We also compare our system
with popular segmentation algorithms based on circular
Hough transform and integro-differential operators. Con-
trary to these baseline systems, our system exploits both
the magnitude and the argument of filter responses. By us-
ing a complex filter (with local orientations), its response
is penalized if there is disagreement of local orientations
of the image with those of the filter (i.e. edges not forming
a circle). As a result, our system outperforms the baseline
systems tested here. In addition, verification results of
the proposed system using 1D Log-Gabor wavelets are
given. A performance improvement is observed when
including the eyelid removal step. These results show the
validity of our proposed approach and demonstrate that
the Generalized Structure Tensor constitutes an alternative
to classic iris segmentation approaches.

Future work includes improving the localization of eye-
lids and including detection of eyelashes. Eyelids can be
modeled as circles, and therefore the algorithm presented
in this paper can also be used for accurately finding
their position. We will also evaluate the use of images
acquired in less cooperative environments, e.g. the “Iris
on the Move” project [14]. Currently this is one of the
research hottest topics within the international biometric
community [15], which drastically reduces the need of
user’s cooperation, and it will be another important source
of future work.
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