<+
Q
o
@
o
aF
P,
>,
.
&0
P,
o
P
<
p—i
P,
(=
O
qw
an

UNIVERSITY
OF SKOVDE

FUNCTION BLOCK ENVIROMENT IN WISE
SHOPFLOOR

Graphical user interface

Bachelor Degree Project in Automation
30 ECTS
Spring Term Year

Mikel Anasagasti Alberdi

Supervisor: Bernard Schmidt
Examiner: Lihui Wang

HOGSKOLAN
1 SKOVDE GRAPHICAL USER INTERFACE Final Year Project

This project is submitted by Mikel Anasagasti Alberdi to the University of Skovde for the
Bachelor Degree in Automation Engineering, in the School of Technology and Society.
Date of Submission 14" of June, 2012

| hereby certify that all material in this dissertation which is not my own work has been
identified and that no work is included for which a degree has already been conferred on me.

Signature

Mikel Anasagasti Alberdi

@ \\E
v T
HOGSKOLAN

I SKOVDE GRAPHICAL USER INTERFACE Final Year Project

Executive summary

Nowadays, accomplishing real time information applications is one of the goals that customers
are looking for in the market. Furthermore, two essential features are required in this society
to ensure the success of these applications: reusability and interoperability. The new standard
of Function blocks [FB] is one efficient way to reach them. This new standard, whose use has
considerably increased, consists of a large number of functionalities divided into distributed
shorter codes. In fact, that is why function blocks are different from other programming
languages: it works with short distributed functionalities interconnected among them.
Therefore, for this reason function blocks are used in distributed automation systems. The
function block standard is formally specified in IEC 61499, for distributed Industrial Process
Measurement and Control Systems (IPMCS). It is worth of mentioning that function blocks
design is usually carried out graphically (interconnecting data and events within a FB network),
whose clarity and easiness are always significant requirements, as in any visual system.

On the other hand, web-based application development is getting more and more common
during the last years because of its efficiency, portability and flexibility. It also provides many
advantages to users, in real-time monitoring, real-time manufacturing, or even remote control.
These are what companies are looking for in the 21st century. Nevertheless, combining web-
based programming with function blocks can be the key to companies’ success.

This project consists of implementing a web-based function block environment for IEC 61499
compliant control systems development. It would be a proper way to meet the above
mentioned customer requirements (efficiency, portability, flexibility, reusability and
interoperability). The main objective of the five-month project is to develop a web-based
function block environment with a user-friendly graphical interface. The challenges include:

- Carrying out research on Function Blocks and its run-time environment.

- Implementing an easy-to-use graphical interface for creating, saving and editing
different types of function blocks (basic FB, composite FB and applications).

- Introducing iconic design and visual presentation of function blocks and connections
via drag-and-drop.

- Developing an application to generate eXtensible Markup Language (XML) files,
allowing the exchange of files between different tools and devices of different
vendors.

This web-based function block environment will be used at Volvo Cars and Sandvik AB as a part
of a big research program. It is anticipated that the function block environment will be
extended and applied to a real-time decision support system for walking workers where
important events or tasks will be distributed to the right person at the right time.

v T :
HOGSKOLAN

I SKOVDE GRAPHICAL USER INTERFACE Final Year Project
Table of Contents
EXECULIVE SUMMIAIY ittt e s e s e e e s e e eeeaeaeaesesenesenens 3
Table Of CONETENES ..ottt st sttt et b e sbe e sae e st e et e e b e nneennees 4
LI o] [A =0 T PRSP 6
Table Of abDreVIatioNS......coiiii e et sbe e sare e 7
O [01 oo [¥ o1 oo T T TP U TSRO PPTOUPTPPRTOTRINt 8
O] o Y=Yt 1Y PR 9
1.2 IMOTIVATION . 10
N oY [T ot f o] = oY o1 1 = PP 11
2. LItEratUre SUINVEY ..oiiiiiiiiiiiiiee ettt e e e e e ettt e e e e s s st e e e e e e s s s abbbaeeeeeesssssstbaaeeesssnssssenaaes 12
2.1 Why the use of standards in autOmMatioN..........cceeecviiiiicciie e e e 12
2.2 FUNCEION BIOCKS .ttt sttt et st st s b e esnees 14
2.2.1 Why are Function Blocks so used in automation?cccoecveeeeecieeeeccieee e, 14
2.2.2 TYPES OF FBS.uutiiiiiiiiieiciiie ettt e e s e e et ae e e e s ba e e e s bbe e e e s abaeeeenabeeeeenanees 14
2.2.3 External behavior of basic function blocks.........ccccoveeriiriiiiinneee, 16
2.2.4 Internal behavior of a basic function block...........cooeeriiiiiiiinieeeeee, 18
2.3 International Standard IEC 61499coeiiiiiiiiiieieete ettt st 21
2.3.1Function Block’s reference models...........ccoceeeiiiiinieniinecccee e 21
2.3.2 Event driven eXecution CONTIOl........cooveiiiriiieiieeeeee e 26
2.4 Web based ENVIFONMENTSoouiiiiiieieee ettt ettt st s sbeenreas 27
2.5 XML OCUMEBNTES. ... teeiiiie ittt ettt ettt e st e s re e e sse e e sabee e sar e e saneesamenesareeennneas 27
B V<Y i o Yo Yo o] [o =4V AU 29
3.1 Research on FUNCEION BIOCKS........cceeiiieiieniinieeieeeeieeree et 29
3.2 Programming laNGUAEES.cccccuueeeiriiieeeeiiieeeeeiteeeestteeeestteeessseeeesssteeeessssaeessssseeesssseesasanns 29
3.3 Saving and 0pening XIML fil@S.......ccuuiii ittt e etree e e 30
3.3.1 Generate XML file When SaVing..........coccviiiiiiii it e 30
3.3.2 Read and 0pen XML fill@Sccuviiiiiciiei ettt e e 32
3.4 Connections repreSeNTatioN. s 32
3.5 Composite FUNCtion BIOCK EAItOr.......cciccuiiiiiiiiiie ettt 33
3.6 Enhances within the configuration of the Interfacecccocovveiiecieiccciee e, 34
B gY 11T 0 T=T a1 = 4 (o o VSRR 29
AL RESEAICH ..ttt et r e ae e s 37
4.2 Chosen programming language: “Java”ccocccvieeeiiiee et e e e e 37
4. 2.1 NEEBEANS ..eeeeieieee ettt ettt e e st e e st e s e e e s e r e e s s e e e s e reeeesereneesaane 37
4.3 Implementation of XML dOCUMENT.......coii it rrree e e e e e e e e 38

v) T :
HOGSKOLAN

I SKOVDE GRAPHICAL USER INTERFACE Final Year Project
4.3.1 Implementation of the basic FB XML file generation.........ccccceveeeiieieeiiieeccciiee e, 38
4.3.2 Implementation of an application XML file generation........ccccceeeevveeeeicieeecccieec e, 39
4.3.3 Implementation of the basic FB XML file readingccccevveiiiiiiiiiiiiiiiieeeciee e 40
4.3.4 Implementation of the application XML file readingcccocvveeviviiiiiiiiiiiiiiieecceen 41
4.4 Connections repPreSeNTatioN. ..o s 42
4.5 File SEIECLION MENU .ottt ettt st b e saee e 43
4.6 Implementation of CoOmposite FB EdIitOr.......ccccvuiiiiiiiiiieeiieee et 44
4.7 Saved Function BIOCKS CIONINGccviiiiiiiiciiie ettt e e s saaee s 45
LT O 1 I (U Lo L PRSP 47
6. DISCUSSIONS ..ceiiiiiiiiitiie ettt e s e e s b e e s s mbe e e s s nre e e s snnees 55
7. CONCIUSIONS. .ttt ettt sttt e b e bt e s bt e s aeeeab e et e e sbeesbeesaeesasesabeenbeebeenbeas 57
8. ACKNOWIEAGMENTS ...ttt e e e e ee e e et e e e e eabee e e esabeeeeearees 58
L 211 o 1T =4 =T o] o1 PRSP SRR 59
O o oT=T o o 13 SRS 62

&

HOGSKOLAN

I SKOVDE GRAPHICAL USER INTERFACE Final Year Project
Table of figures
Figure 1: Scheme of the challenges (project definition, 2012)...........cccceeecvueeeeeciveeeeiieeeeeiieeeeenns 9
Figure 2: Closed loop, sensing-monitoring-planning-control (project definition, 2012)............. 10
Figure 3: Gant diagram of the thesis........cccuiiiiiiii e 11
Figure 4: Cyclic scan based execution CONTrol........ccccuiiiiiciiieciiieececeee e 13
Figure 5: Structure of a basic function block (Isagraf, u.d.) c..ccceceveeieiiiieeee e, 14
Figure 6: Basic and composite function blocks (Keshavarzmanesh, et al., 2010).............c......... 15
Figure 7: Event-data association (Christensen, U.d.)......cccccouviiieiiiiiecciiee e 17
Figure 8: Function Block Network example (Google, U.d.)cccoveeeeiiiiieciiieecceeeeciee e, 18
Figure 9: Execution Control Chart’s graphical representation (Lewis, 2001)c.cccccveeecveeennenn. 19
Figure 10: Algorithms” execution chart (Lewis, 2001)ccceeeeiieriieeriiee e e vee e 20
Figure 11: Model's RIerarChy. ...ttt e e s saae e e s e e e s snsaeee s 22
Figure 12: System model (Keshavarzmanesh, et al., 2010)ccceeevreeriieecieeccee e 22
Figure 13: Device model (Keshavarzmanesh, et al., 2010)ccceeerierieeeiieeccee e 23
Figure 14: Resource model (Keshavarzmanesh, et al., 2010)ccoeevieeecieenciee e 24
Figure 15: Application model (LeWis, 2001).......cccueeireeeiiieeiieeeieeeseeesieeesreeesreesreeesaeeesvaeesanes 24
Figure 16: Basic function block’s execution model (Martinez Lastra, et al., 2005) 25
Figure 17: Distribution model (1sagraf, U.d.)cccuieiiiriiieceecer e 26
Figure 18: XML file shape (Pai, 2002)ccccuiiieeiiieeeeiiieeeecree et e e e ctee e e esree e e esarae e e seasaeeeesnsaeeeas 28
Figure 19: Programming languages popularity (Langpop, 2011).....cccccveeeiirieeeiiiieeeeciieee e 30
Figure 20: XML eNneration SCHEME........ooiiiiii ettt e e e tae e e e eaaa e e e eeaaaeeean 31
Figure 21: Comparison between DOM and SAX ParSerS.......cccceccieeeeciireeeeiireeeeeireeeesssseeesssseeens 32
Figure 22: XML file 0peNiNg SCHEMEooiieiiiie ettt e aae e 32
Figure 23: Application figure (Keshavarzmanesh, et al., 2010)........ccccceeeeiiiiieeciieee e, 33
Figure 24: First option of the application desSigNcc.eoeeeciiiieeciiiieccee e 34
Figure 25: Second option of the application design...........ccceeieeciiiiecciiiieccee e 34
Figure 26: "Name" and "Type" differentiation..........ccceeeeeciiiiicciiieeccee e 35
Figure 27: Connection’s drag and drop application.........cccceeieeciiiieeciieee e 36
Figure 28: XML generation when saving @ BasiC FBccccveiiviiiieeiiiiie e 39
Figure 29: XML generation when saving a FB applicationc.ccceeveviieiiiiiee e, 40
Figure 30: XML reading and drawing when opening a Basic FB.........ccccccevviveeeiiiveee e, 41
Figure 31: XML reading and drawing when opening a FB application........cccccceeevveveeicieeeiinnnenn, 42
Figure 32: Coordinate system of a FB Network (International Electrotechnical Commission,
1001 PR USRP 43
Figure 33: File SeIeCtiON MENUooiiiiiiii ettt e e e aae e e e saaa e e e e saaaeee s 44
Figure 34: Result of InterfaceFigUre.Class ... iiciiee et 45
Figure 35: Example of a FB application within the web based environmentccccceeeuneeee. 45
Figure 36: FBs cloning and iCONS Creationcccuveiieciieeiiiiiie ettt e e 46
Figure 37: Sizes, configurations and the region of space the robot can reach for each
configuration (ABB, 2012)coii ittt e ettt e e et e e e et e e e e e abe e e e e b ee e e eabeeeeenareeeeearaeaeenrees 47
Figure 38: Robot working during the assembling Processcccccvvvvieeeeiieccciiiieee e, 48
Figure 39: Flow Chart of the simulated assembly liN€..........cccociiiieiiiiii e, 49
Figure 40: 3D model mini-cell robot assembly stationcccccooeeciiiiiiii e, 50
Figure 41: Assembly ProCess FUNNINEG........coccuiiiiiiie e e ettt e e e e e eeerrere e e e e e esenrrreeeeeeseesnsraeeeaaaneas 50
Figure 42: Final shape of assembly process FB NetWOrkKccccccviiieeeiiiiccciiiiieeeeececireeeee e 52

file:///E:/FYP/FINAL%20YEAR%20PROJECT(Mikel_Anasagasti_Alberdi).docx%23_Toc327437366

o
H(I)S?KS(I)‘(‘?%J%N GRAPHICAL USER INTERFACE
Table of abbreviations

4DIAC: Framework for Distributed Industrial Automation and Control
ADM: Adaption Decision Making

API: Application Programming Interface

DOM: Document Object Model

DTD: Document Type Definition

ECC: Execution Control Chart

FB: Function Blocks

FBD: Function Block Diagram

FBDK: Function Block Development Kit

HTML: Hypertext Markup Language

IDE: Integrated Development Environment

IEC: International Electrotechnical Commission

IL: Instruction List

1/0: Input/Outputs

LD: Ladder Diagram

IPMCS: Industrial Process Measurement and Control Systems
00: Object Oriented

PLC: Programmable Logic Controller

SAX: Simple API for Xml

SFC: Sequential Function Chart

SGML: Standard Generalized Markup Language

ST: Structured Text

URL: Uniform Resource Locator

XML: Extensible Markup Language

XtAX: Streaming API for XML

Final Year Project

@ \\E
v T
HOGSKOLAN

I SKOVDE GRAPHICAL USER INTERFACE Final Year Project
1. Introduction

In the following pages, a web based function block environment for development of IEC 61499
compliant control systems (function block programs) implementation will be explained. It is an
automation degree final-year project, which will mostly be focused on the graphical interface
as well as files saving and editing operations of the above-mentioned function block
environment.

First of all, it is worth of mentioning that the implementation of the web based environment
was already started (an existing Wise ShopFloor framework) at an earlier stage. This thesis
work is an extension of the work implemented in Canada (Wang, et al., 2003). The most
important improvements applied to the already implemented web based environment, are
changes in: the user graphical interface and the capacity of generating XML files when saving a
program and also the possibility of opening and editing them. Besides, the implemented
program has been created according to the international standard IEC 61499. So, this means
that some more enhancements have been applied in the thesis; because, previously, it was not
developed according to the international standard IEC 61499.

In addition, note that this automation final year bachelor project titled “Function Block
environment in Wise-ShopFloor: graphical user interface” has a direct connection with another
parallel automation project (Arrieta, 2012) and two design projects (Transpaderne & Vidal,
2012) (Cervera, 2012). They are small projects of a major research program (developed by
Wise-ShopFloor research group) that will be presented at “Volvo Cars” and “Sandvik AB” in the
near future. As explained in the executive summary, the research consists of an interface
design and development for an information presentation device in order to establish a direct
connection between the company and its workers.

As far as this particular thesis is concerned creating a graphical user interface, it has been
implemented simultaneously with the other automation bachelor thesis project just
mentioned. Its objective is also to apply some other improvements to the already extended
thesis; such as, java code generation, algorithms representation or ECC scheme
representation. Most of the time during the project development has been shared with the
other automation project member, Aitor Arrieta Marcos. Taking into account all the significant
similarities between the projects, many ideas and information have been shared and
exchanged. Additionally, it is supposed that another different automation thesis (Diaz, 2012) as
well, will be joined to this one.

On the other hand and focusing on the implementation of this project, “Java” has been the
selected programming language in order to achieve the objectives. Java is an object oriented
language which is becoming more and more popular because of its open usability, as it will be
explained later. All the generated code has been implemented in NetBeans.

Furthermore, a great deal of research and investigation about Function Blocks and topics
related to them (International Standard, FB diagram language, XML, functionalities...) has been
performed during the first months of the project.

HOGSKOLAN
I SKOVDE GRAPHICAL USER INTERFACE Final Year Project

1.1 Objectives

A web-based Function Block environment for IEC 61499 compliant control systems
development should be implemented in this project. The main objective of the five-month
thesis work is developing an integrated graphical user interface for the function block
environment. The interface must be user friendly and easy to use. Furthermore, XML
documents generation, reading and editing must be implemented as well.

Working with function blocks in web based environment can be a proper way to meet
nowadays customer’s requirements, which are highlighted with some specific features, such
as, efficiency, portability, flexibility, reusability or interoperability. Obviously, real time
applications are related to web based environments. They provide immediate information and
that is the main objective of the information presentation device that will contain the
developed program: providing real time information. On the other hand, function blocks
provide reusability and interoperability, important characteristics for an easy programming
and use of the device. Different challenges are included within this particular project:

- Carrying out research on Function Blocks, which is considered the base of the project,
and its run-time environment.

- Implementing an easy-to-use graphical interface for creating, saving and editing
different types of function blocks (basic FB, composite FB and applications). Easy
menus and toolbars must appear in the user interface.

- Introducing iconic design and visual presentation of function blocks and connections
via drag-and-drop. It provides an easier use to the operator when manipulating figures
in the program.

- Developing an application to generate and read from Extensible Markup Language
(XML) files, allowing the exchange of files between different tools and devices of
different vendors. Figure 1 shows graphically what ought to be reached.

FB Editor

@ Composite FB Editor

FB Algorithm Editor

&

Basic FB Editor éE%
ﬁ 3 FB FB FB i
Composite FB Editor

FB Network Editor

q’b@ <.> 0‘,30"'

| =

Figure 1: Scheme of the challenges (project definition, 2012)

HOGSKOLAN
I SKOVDE GRAPHICAL USER INTERFACE Final Year Project

1.2 Motivation

Nowadays speed has become a determining factor in business world. This society asks for fast
answers to customer’s petitions, such as, fast transports, fast deliveries, fast manufacturing
processes, fast run-time programs... The faster these operations are performed, the more
successful the company will become. So, obviously, real time working applications, the fastest
control system at the moment, are becoming common in today’s enterprises.

On the other hand, adaptive decision making, is also introduced into firms with a special aim:
decreasing the degree of uncertainty (operator’s sick-leave, emergencies, missing tools,
machines” unavailability...). Adaptive Decision Making (ADM) is based on real time information
availability. This means, a closed loop must be formed among sensors, monitors, plans and the
control to accomplish an efficient Adaptive Decision Making. Figure 2 shows how an ADM
would close the loop. The rest of the thesis is focused on the execution control section (green
colored in figure 2) developing a web based Function Block environment for IEC 61499
compliant control systems.

Tnit process modelling
Process-feature mapping

Adaptive machining process planning
Reconfigurable assembly planning
Intelligent al gorithm embedding

Process Wise-Factory ¢
Planning

v

= Featurefunction

¥
LI I]

= Status monitering

=
= Machine availability g ? Adaptive 9 E block (FB) mapping
checking =g Decision 22 = FE library design
= Abnormal event E_ E Maldng g E and devel opment
detection o o = = FB-enabled control

A

® Wi
' Wireless Shop Floor Sensor Network

4
= Establishing a wireless sensor network
for system testing and vali dation X

Distributed and Dynarri c WManufacturing Pr

Figure 2: Closed loop, sensing-monitoring-planning-control (project definition, 2012)

:. i: ‘
HOGSKOLAN
I SKOVDE GRAPHICAL USER INTERFACE Final Year Project

1.3 Project planning

In this section how the thesis has been structured and planed will be explained. The project
was planned to be able to end in five months: From the middle of January till the middle of
June in 2012. As it can be seen in figure 3, which shows the Gant diagram of the project, the
thesis was fragmented into shorter different tasks. Moreover, each task has been assigned
with its own, more or less, beginning and ending dateline.

Name - [Feb 12 [Mar 12 Jopr 12 May 12 [lun 12
15 b2 bo s lo Tis Ts Ts I g s for s fs To e be B3 b Iw s o [
1 java, standard and function blocks information 25 days
1 eaming how to work with java Bdays
3 desiqn of the interface 12 days
4 mplementation of connection enviranment 10 days
5 testing of the connection environment 3days
8 research on ¥ML documents 4days
7 design and implementation of Basic P& ¥ML fle generation 17 days
8 design and implementation of application ML file generation 14 days
3 testing of XML generation 2days

design and implementation of Basic FB XML fl reading and opening 21 days
desiqn and implementation of application XML fie reading and apening 15 days
testing of the ¥ML fl's reading 3days
Composite 7B editor- desin and development of [0 A days

Subappication editor- design and development of 10 14 days

aystem editor implementation 10 days

TEVIEN 41days

|l o | Fa | Fa PO P o P Fal PO Fa POl o PO Fol ol 69

documentation T2 days

Figure 3: Gant diagram of the thesis

On the other hand, most of the working days during the thesis work were structured similarly.
Five working days a week divided in two parts: in the morning, all the work was focused on the
implementation of the function block environment (development of the functionality); during
the afternoon, apart from the implementation, the written documentation of the thesis was
carried out.

@ \\E
v T
HOGSKOLAN

[SKOVDE GRAPHICAL USER INTERFACE Final Year Project
2. Literature survey

This literature review contains important information about the needed knowledge to manage
to understand the thesis work. This section is divided into different parts. On the one hand,
standards necessary for utilization in automation will be explained and, it will focus on the
latest international standard: IEC 61499. On the other hand, global information about function
blocks and their environment will be provided. Moreover, there will be two more sections
where generic information about web based environments and XML documents will be
provided.

2.1 Why the use of standards in automation

In the early 80’s, the revolution of automation changed the way industrial production used to
work. Most of the enterprises decided to work with automated machines because of its
significant advantages: productivity and efficiency, for instance. Nevertheless, a major problem
was generated because each firm owned its automated machines rules, languages, laws,
standards... A global standard was necessary for industrial automation in order to solve this
really important problem. It would enable connections among different firms making possible
the interaction among them. So, that is why the international standard 61131 for
Programmable Logic Controllers (PLC) was published in 1993 (called IEC 1131 at the
beginning). The international standard was divided into three parts (Siemmens, u.d.):

- 61131-1: General information
- 61131-2: Operation equipment requirements and tests
- 61131-3: Programming languages

One of the most important novelties of this first automation focused standard was the 61131-
3 part. Five programming languages were allowed to be used for PLC programming: Ladder
Diagram (LD), Sequential Function Charts (SFC), Function Block Diagram (FBD), Structured Text
(ST) and Instruction List (IL) (Tisserant, et al., 2007). The first three languages are graphical
languages while ST and IL are commands using test languages. LD is a widely used relay based
language which has a ladder shape. The figures created are similar to a hard-wired relay
sequence. The SFC is a graphical language based on the French language GRAFCET. This
language uses a simply execution order: it always executes from the top to bottom; so, usually,
the program is quite simple to understand. Function Block Diagram, instead, is a graphic
language where functionalities are distributed and encapsulated within blocks. Blocks appear
interconnected among each other containing its own outputs and inputs providing reusability
and interoperability. A deeper analysis about function blocks will be performer later on. On the
other hand, IL is a written programming language based on test using commands; and, finally,
ST is a high level language based on block structure, similar to the Pascal code.

According to the mentioned international standard, all this programming languages kept a
cyclic scan execution control specified in the international standard 61131. This means that the
controller is continuously running the program each cycle; e.g. each millisecond. It facilitates
quick data storage apart from internal variables and outputs refresh according to the inputs
values.

@

qu
HOGSKOLAN
1SKOVDE GRAPHICAL USER INTERFACE Final Year Project

Read inputs

Cyclic scan
Process data &

execute program

Send outputs

Figure 4: Cyclic scan based execution control

The International Standard IEC 61499, which will be explained in a separated section, was
published as an improvement of the IEC 61131 by the Industrial Electrotechnical Commission
(IEC). This is a function block oriented standard, where the execution control system is
considerably improved: a real-time control application is possible.

. \:. ’: ‘
HOGSKOLAN
I SKOVDE GRAPHICAL USER INTERFACE Final Year Project

2.2 Function Blocks

Within the following section information about function blocks and their environment will be
provided. As known, the international standard IEC 61499 is based on function blocks. This
means that before entering within the international standard, it would be interesting to
understand what function blocks are.

2.2.1 Why are Function Blocks so used in automation?

Nowadays, function blocks utilization is getting more and more usual in real-time control
applications. There are many reasons that support this idea. Function Blocks is an object
oriented (0O0) software model that works as in an electronic circuit when treating the
encapsulated behavior (Lewis, 2001). They are used to program applications and its major
advantage is that, instead of being only focused on one large and long functionality (as with
most of the programming languages happen), it is divided in many small codes. Each function
block contains a part of the functionality. This provides to the user adaptability, reusability,
portability, independence... Rewriting whole new functionality in order to create some other
similar functionality does not occur with this standard.

The new standard of Function Blocks is based on function block diagrams, which is a
programming language (according to the IEC 61131, IEC 61499 does not recognize it as a
language) that consists of blocks interconnections. These boxes contain information stored as
inputs and outputs, apart from the internal variables. Besides, inside each block there is a state
machine (Execution Control Chart) and one or more algorithms that process all data
(information). In Function Block standard there is no global variables available: all variables are
encapsulated in blocks.

Event inputs Event outputs
Instance name 1

Event flow — ST Event flow
—p:] Control —
(hidden)

Type name
Data flow e Algorithms Data flow
=) — (hidden) —_—

T | Internal data

(hidden)

1

Datainputs

t

Data outputs

Resource capabillities
(Scheduling, communication mapping, process mapping)

Figure 5: Structure of a basic function block (Isagraf, u.d.)

2.2.2 Types of FBs

There are different types of Function Blocks (International Electrotechnical Commission, 2005):
Basic function blocks, composite function blocks and subapplications. The basic function block
is the simplest Function Block while the composite function block and the subsystem contain a
FB network comprised of more function blocks. It also exists a fourth one, with a different

goal: the Service Interface function block.

HOGSKOLAN
I SKOVDE GRAPHICAL USER INTERFACE Final Year Project

Basic function block

This is the simplest and easiest structured Function Block type. As it is shown in figure 6, it is
composed of different kind of inputs and outputs (data and event), an Execution Control Chart,
algorithms and internal variables or data. All the other function block types contain basic
function blocks.

Composite function block

This second type of function block has an internal function block network which is composed
of basic and also other composite function blocks as image 6 shows. All Function Blocks within
the network are interconnected among them. There is no internal variable required in
Composite Function Blocks because sampling and storage is defined for all possible sources of
data (Lewis, 2001).

Subapplication

The structure and behavior of a subapplication is quite similar to the Composite Function
Block’s one. This type of function block has also an internal network composed of basic and
composite function blocks. Nevertheless, apart from the basic and composite function blocks
other subsystems can also be part of the internal function block network. This is the difference
between Composite FB and subsystems.

Evant Inputs Ewveant Outputs Ewvant Inputs Event Outputs
Execution
L“Eu |_II'I1.IIi|
1 [
Type identifier Type identifier
Algorithms ;EEEI;
Tl
Internal
variables
Data Inputs Data Outputs Data Inputs Data Qutputs
Basic Function Block Compaosite Function Block

Figure 6: Basic and composite function blocks (Keshavarzmanesh, et al., 2010)
Difference between Composite FB and Subapplication

Composite Function Blocks could have internal variables. It has guarantees for the sampling of
I/0 data when they are associated with the events. That is why it is not distributable, internal
connections cannot be broken running them on different processing resources. However, “to
achieve the same effect this can be done by converting the composite block type into a
subapplication type” (Lewis, 2001).

HOGSKOLAN
I SKOVDE GRAPHICAL USER INTERFACE Final Year Project

Service Interface Function Block

Apart from the three already explained types of function blocks, there is another different kind
of function block which is not used in the same way as the others; it is called service interface
function block.

Its goal is to provide an interface between some other function blocks that are running in the
resource and some services outside the resource. It defines the interface into the service and
the answer that it provides (Lewis, 2001). Normally, this type of function blocks functionality
use to be:

- Read and write inputs and outputs from the device’s I/0 subsystem.
- Request or respond data to external resources.
- Manage the execution and creation of function blocks in the resource.

In addition to the functionality of this function block, it has to be mentioned that it always
keeps a determined standard set of inputs and outputs.

2.2.3 External behavior of basic function blocks

Referring to the external behavior of basic function blocks, input/outputs and connections
among I/O are found. There are some different types of I/O and connections that are
explained in the following.

Kinds of inputs and outputs

All types of function blocks have two kinds of inputs and outputs: data and event. As can be
seen in figure 7, event inputs and outputs are situated on the top side of the function block.
On the contrary, data information always appears at the bottom side of the box. Moreover,
the figure that represents function blocks have a narrower part between the two types of
information flow in order to be able to differentiate between them (Christensen, u.d.).

Data input/output

Data information comes from an external source into the function block and it is also delivered
from the function block. These external sources can be some other function block’s inputs or
outputs, constants, application’s input or output... Data input is in charge of activating the
event inputs. Data information is essential for function blocks to work. If data input value does
not raise or fall, event inputs and, hence, events will not be activated; as a result, algorithms
will not be executed.

Event input/output

Event inputs are always activated when a data input Boolean variable of the same function
block is changed (falling or raising the value) or when an event output of another different
function block commands it. The corresponding event is enabled, and when event containing
algorithm execution has ended, event outputs are triggered. This execution order will be
studied in depth in the execution model section.

=
HOGSKOLAN
I SKOVDE GRAPHICAL USER INTERFACE Final Year Project

Kinds of connections

On the other hand, there are also two kinds of connections: first, connection between event
and data in the same function block; and connections in order to join two different function
blocks, between data outputs and data inputs or event outputs and events inputs
(International Electrotechnical Commission, 2005).

Event-data associations in a Function Block

The connection between event and data information in a function block is illustrated vertically
in figure 7. These connections associate data values with event data of the same function
block, but always between inputs or between outputs. If an event-data association is
performed in a function block entrance, the same association should be performed in the
output of the previous function block.

These associations aim the activation of an event when its corresponding data entrance
requires it. When a data input changes its value, the connected event input will be activated
ordering an event execution. The main objective of these connections is to work with a real
time control and, in addition, to only execute the necessary events or tasks with valid data and
only when it is needed. This will be better explained in the section that the international
standard IEC 61499 is explained.

Event Event
inputs outputs
Event flow Event flow
| .
Data flow Data flow
S . —
+
pEeontDete ™ e
inputs outputs

Figure 7: Event-data association (Christensen, u.d.)

Connections between different Function Blocks

As far as connection among function blocks is concerned, its aim is interconnecting function
blocks in order to create function block networks. These function block networks are called
systems (or applications) and even subapplications (a previously explained smaller system,
within another general function block system). A function block system represents the global
function block network with all the connections among all function blocks. In short, all the
created function blocks in the program must appear within the system. Apart from
subapplications and systems, connection between function blocks also appear inside
composite function blocks to join its internal function blocks.

HOGSKOLAN
I SKOVDE GRAPHICAL USER INTERFACE Final Year Project

bam_iml_u 13

Figure 8: Function Block Network example (Google, u.d.)

Obviously, this type of connection is performed between data connectors or between event
connectors, but never mixing them. A good example of a function block system and its
communicating connections is illustrated in figure 8. Within the eight function blocks seen in
the figure, there might be more function block networks. That depends on the type of function
block they are.

2.2.4 Internal behavior of a basic function block

When describing the internal behavior of a basic function block, two important aspects have to
be differentiated: the Execution Control Chart and the internal algorithms (Lewis, 2001).
Internal variables are also part of the internal behavior of basic function blocks.

Execution Control Chart

Function blocks are controlled internally by a state machine, which is represented by an
Execution Control Chart (Wang, et al., 2009). The Execution Control Chart is the function that
relates events to the execution of the function block’s internal algorithms; It is dependent on
some internal states. This special state transition notation expresses the mapping of the events
on to the algorithms within the function block. It is defined in the international standard IEC
61499 as a precise and formal way that shows how events are able to trigger the execution of
internal algorithms. This chart is normally represented graphically; however, it can also be
shown textually. The SFC programming language representation, defined in the international
standard IEC 61131, is very similar to the way of representing an ECC. Figure 9 shows a simple
example of the common graphical representation of an ECC.

Three states can be appreciated in the figure: START, the initial state, when one of the event
inputs (E_Run or E_lInit) is enabled, this state will switch automatically to the next one; INIT,
the following state, activates an event (ALG_INIT) triggering an event output (E_Rdy); finally,
RAMP, the third state, activates another event (ALG_RAMP) triggering its corresponding event
output (E_ExO0).

HOGSKOLAN
I SKOVDE GRAPHICAL USER INTERFACE Final Year Project

START — EC Initial State

EC Sfate

RAMP ALG RAMP | E Ex0

INIT ALG_INIT E_Rdy

Figure 9: Execution Control Chart’s graphical representation (Lewis, 2001)

The ECC of a basic function block shows: the main internal states; how the function block
responds to each type of event input; which algorithm is activated as an answer to event
inputs; and, which event output is triggered when algorithm’s execution has finished. Hence,
execution control states, transitions and actions are fundamental for the representation of a
function block state machine (EEC).

Algorithms

The basic function block almost always contains one or more internal algorithm. These
algorithms are invoked by the resource scheduling function answering to an external data
input. Algorithm execution means that inputs and internal variables are processed producing
new output data and changing internal values. When the execution of algorithms ends, an
event output is usually triggered notifying all the other components that the execution has
finished. With this notifying signal, some other external function blocks are alerted when the
needed output data is ready to be used by them. In the next scheme (“Figure 10”), how an
algorithm execution occurs can be visualized with its transitions and states.

,_
HOGSKOLAN
I SKOVDE

GRAPHICAL USER INTERFACE Final Year Project

transition
50 to &1

transition
s1 to s0

__ Scheduling
algorithms

transition
51 to 52

transition
&2 sl

- - Waiting for
algorithms to
complefe

Figure 10: Algorithms” execution chart (Lewis, 2001)

Figure 10 shows three states (sO, s1, s2). When an event input is activated a transition will
switch the control to another state. Then, if an algorithm must be executed, it will be checked;
if not, it will return to the previous state.

Regarding the algorithm’s defining language, it has to be added that the IEC 61499 does not
specify any determined language. Nevertheless, “JAVA” and “Structured Text” are the most
widely used programming languages in order to define algorithms. But some other languages
can also be used to define algorithms (Gerber, et al., 2008), such as ladder diagram, instruction

list, C language, C++...

=
HOGSKOLAN
I SKOVDE GRAPHICAL USER INTERFACE Final Year Project

2.3 International Standard IEC 61499

The international standard IEC 61499 is a standard related to automation published in 2005.
Indeed, another edition of the standard was published in the year 2000, called IEC/PAS 61499-
1, but many technical changes have been effected in the IEC 61499; So, it cancels and replaces
completely the IEC/PAS 61499 (International Electrotechnical Commission, 2005).

It has to be said that it is not the first standard published that is related to automation as it has
been seen before; in fact, it could be said that this standard is the continuation of the IEC
61131. The IEC 61499 standard proposes an open architecture for distributed Industrial
Process Measurement and Control Systems (IPMCS). It defines how function blocks must be
used in distributed industrial processes, measurement and controlling systems (M., et al.,,
2008). This international standard creation has been a very significant step for the embedded
systems sector due to the necessary real time control.

Three main features stand out in the standard: portability, interoperability, and configurability
(Christensen, u.d.). Portability is accomplished because, software components and system
configurations produced by any software tool, are read and accepted by any other software
tool; interoperability is reached because embedded devices have the possibility of operating
together to perform needed functions for distributed applications; and, finally, configurability,
means that configuration is free , so all the software devices and components have the ability
of being configured dynamically by software tools from any vendor. The international standard
is divided into 4 different parts (International Electrotechnical Commission, 2005); however,
this literature review will only be focused on the first and second parts.

- IEC 61499-1: Architecture

- IEC 61499-2: Software tool requirements
- |IEC 61499-3: Application rules

- IEC 61499-4: Rules for compliance profiles

As explained above, function blocks are the basic functional software unit of this standard. It
encapsulates its own data structure and a set of internal algorithms (Martinez Lastra, et al.,
2005). The IEC 61499 helps reaching the requirements asked in nowadays society:
manufacturing world using decentralization and a hard real time design philosophy.

2.3.1Function Block’s reference models

One section of the international standard is focused on how to structure a function block
program. There is a model hierarchy set up in order to accomplish a structured and ordered
program (International Electrotechnical Commission, 2005). This hierarchy scheme is found in
figure 11. The system model is the major one as can be seen in figure 11, and the rest of the
models, explained in the following lines, are smaller models within it.

@

ﬁ?wf
HOGSKOLAN
1SKOVDE GRAPHICAL USER INTERFACE Final Year Project

SYSTEM

DEVICE

RESOURCE

APPLICATION

FUNCTION BLOCK

Figure 11: Model's hierarchy
System model

An Industrial Process Measurement and Control System (IPMCS) model is used in order to
respond to this specification. This model is in charge of defining the relation between different
applications. The system model is comprised of a communication network, a controlled
process and machines and devices. These devices are interconnected by means of the
communication network which is composed of links and segments (International
Electrotechnical Commission, 2005).

As can be observed in the figure 12, applications can be distributed in more than one device if
the user desires. Operating distributed means that each device loop performs a different task:
input sampling, control processing... However, each application can also be performed within
only one device.

Communication network
| _|_|_
|]

Device 1| |Device2| |Device 3| |Device 4

| Application A |

| Application B | |Applicau'nnc|

| Controlled process |

Figure 12: System model (Keshavarzmanesh, et al., 2010)

Device model

According to the device model, it has to be said that it is able to support more than one
resource. Nevertheless, it can also contain no resources (Lewis, 2001); it depends on the user.
Its composition always supports, at least, one interface. However, one device can also hold up

Do
HOGSKOLAN

1 SKOVDE GRAPHICAL USER INTERFACE Final Year Project
to two interfaces: communication interface and process interface. On the one hand, the
process interface is responsible for the performance of the mapping between physical
variables, analog input/outputs, discrete inputs/outputs, measurements..., and resources. On
the other hand, the communication interface is in charge of the mapping between resources
and the information which flows through the communication network (data, events,
configuration information...) (International Electrotechnical Commission, 2005). Figure 13
shows an easy and clear device structure.

Communication link

Communication interface

Resource X Resource Y Resource Z

L Application A

| Application C |

I I N A

Process interface

l

Controlled process

Figure 13: Device model (Keshavarzmanesh, et al., 2010)
Resource model

Resources, functional units that belong to devices, supply an independent execution and
control of the applications (Lewis, 2001). A resource is totally independent, as mentioned, and
whatever occurs in a resource (configuring, creating, deleting...) does not have an impact on
any other resource; i.e. resource execution does not affect other components within the
system. The resource model is comprised of process and communication mapping, a
scheduling function and one or more applications. Indeed, as shown in Figure 13, it can be
observed that resource X contains A and C applications while resource Y and Z only contain
one application, C application.

While a resource is working, the mapping function occurs. This means, the resource receives
data and event information from the interfaces that the devices contain (communication
interface and process interface). After having processed them, resources return the obtained
processed information to the same interface. The mentioned scheduling function, apart from
transferring data, performs the function blocks execution in the local application.

HOGSKOLAN i i
1 SKOVDE GRAPHICAL USER INTERFACE Final Year Project
Communication Interface
Communication
mapplng Local application
A |_

1 1 ¥

Service Service

Interface Algorithms Interface

Function danz Function

Block Block

[73
ﬁnms mapping
Process Interface

Figure 14: Resource model (Keshavarzmanesh, et al., 2010)
Application model

The application model is where the function block network can be found. In other words, in
this section different kinds of function blocks (basic FB, composite FB or applications) appear
interconnected by means of event and data connections. The IEC 61499 base is focused on this
model: the model referred to Function Blocks Networks. In fact, it can also be called a
“function block model”. It is not possible for an application to interface with other applications
(Lewis, 2001). An application is usually fragmented into many resources, as it has been
explained in regards to the device model. In addition to this distribution, a further
decomposition is generally performed by means of subapplications. In Figure 15, it is
illustrated what simple application model would look like.

Data and events passed
between applications via

Event flows Senvice Interface blocks
i
Resource 1 ; Resource 2
'l |
1 C C C
Service Sarvice Sub-
] e || | e [oot
AL |] 1
/7 / 1 .-k -

i
Data flows

Application — distributed over resources

Figure 15: Application model (Lewis, 2001)

Function Blocks model

In this model, the normative applied to basic function blocks (point 2.2) is explained:
measures, execution orders the size of interface figures, visualization forms, the shape of
figures... This is the most important model when referring to function blocks. The base of the
programming is located within function blocks, where algorithms, internal data, the execution
control and resource capabilities come into action receiving, processing and providing data.

HOGSKOLAN . .

1 SKOVDE GRAPHICAL USER INTERFACE Final Year Project
In fact, in the following section how the execution process is performed is explained step by
step. In order to reach this sequence, event and data inputs and outputs are necessary as it

has been explained in their corresponding sections.
Basic Function Block’s execution model

Basic function blocks, which are the elemental components of all function blocks, always have
a determined execution model. The execution always happens in the same way with a
specified order as illustrated in Figure 16. Moreover, depending on the priority of the events,
the execution order could be different. On the following paragraph, a written explanation of
the function block’s execution model is provided.

First of all, data input variable value (step 1) orders the activation of the corresponding event
input (step 2), so that the event occurs. The execution control notifies the resource scheduling
function to run the event’s corresponding algorithm (step 3). The resource scheduling function
is in charge of ordaining commands and priorities to events and tasks. After the algorithm’s
execution is completed (step 4), a new data output value is returned (step 5) which means that
any other external function block can operate with it. In consequence, the resource scheduling
function is notified that the algorithm’s execution has ended (step 6). Finally, as a result of the
notification, it sends the information back to the execution control (step 7) so that an event
output will be triggered (step 8) (Martinez Lastra, et al., 2005).

2 8
- Execution > a
—l + >
> Control
i !
- ;] -
Type name|

B Resource Scheduling Function 1

Figure 16: Basic function block’s execution model (Martinez Lastra, et al., 2005)
Distribution model

The distribution model deals with the requirements needed when applications and
subapplications are distributed among different devices and resources. Figure 17 shows
clearly how applications and subapplications can belong to more than one device and/or
resource. A deeper analysis of this model can be found in the international standard IEC 61499.

HOGSKOLAN . ,
1 SKOVDE GRAPHICAL USER INTERFACE Final Year Project
«—
—
| Event flow |
—, { ‘ {l ‘ Application
Data flow
-
Comyhunication network
System
Device Device2 Device3 Deviced
| | | |
‘ Controlled process/machines’
Figure 17: Distribution model (Isagraf, u.d.)
Management model

The management model consists of managing resources and devices, as it can be deduced
from its name. It can be divided into two groups of models: the shared management model
and the distributed management model. These types of applications can be modeled using
service interface function blocks and communication function blocks.

2.3.2 Event driven execution control

This is one of the most significant innovations of the international standard IEC 61499, apart
from the reference models. It consists of a real time execution control application which
provides an important flexibility and descriptive power (Lewis, 2001). As it has been explained
before in 2.1, execution control in the IEC 61131 consisted of a cyclic scan based execution
model; this means that the controller was continuously reading the program from the top to
the bottom. For instance, every microsecond the whole program should be read looking for
input value changes. However, the important default of this system was that it executes the
whole program serially. This would mean that if a long task had to be executed, the program
would not be able to run the following events until the long task had ended.

In other words, this controlling system was not so effective for real time applications. Besides,
it is not a suitable control for event driven distributed systems. Solving this problem has been
one of the goals of automation research during the last decade: trying to implement a real
time control application. The result has been the event driven execution control. This is the
model that provides a real time control, an essential control in many machines and devices
nowadays. Changes are achieved instantaneously. Furthermore, the event driven execution
control reduces the computing power considerably (Gerber, et al., 2008) and offers to a
numerical control (NC) machine intelligence and autonomy (Wang, et al., 2009).

This new execution controlling model published in the international standard IEC 61499 is
designed to work by means of an event communication. Tasks are divided into different events
within the function block. So, depending on the value of a Boolean data input (could be when
rising or falling), one event or another would be executed. That is why each event has its own
input and output connected to a data input and output (Keshavarzmanesh, et al., 2010).

@ \\E
v T
HOGSKOLAN

I SKOVDE GRAPHICAL USER INTERFACE Final Year Project
Additionally, this new execution model also provides the chance of giving more importance to
some events than to others (Martinez Lastra, et al., 2005). This is not an innovative application
but, as discussed previously, it maintains efficient functions of the cyclic scan control. Priorities
are instructions given in order to execute some events before others, depending on the
event’s importance; particularly, when two or more executing commands are ordered at the
same time.

2.4 Web based environments

In the next section, web based environments will not be analyzed very thoroughly, but most of
the important characteristics will be shown. Regarding the project, creating an IEC 61499
standard compliant function block environment is not so innovative. Indeed, there are some
existing programs able to translate function block languages into java, such as, FBDK (Function
Block Development Kit) or 4DIAC (Framework for Distributed Industrial Automation and
Control). However, the really innovative part of the thesis is creating this program in a web
based environment, reaching a real time data process (Wang, et al., 2009). Developing
programs in web based applications has a wide range of advantages (Campbell, 2007):

- Cross-platform compatibility: It works with any operating system (UNIX, Linux, Mac and
Windows).

- Updates: All users benefit from the updates immediately.
- Immediate availability: Installations and configurations must not be performed.
- Real time data availability: New input information is available immediately for other users.

- Data availability across locations: Data can be used and seen immediately from anywhere all
over the world.

-Data is safer: Hardware sometimes fails. Server uses redundant storage and regularly
scheduled backup; so, a hardware error does not mean that data has been lost.

2.5 XML documents

Extensible Markup Language (XML) file is derived as a subset of the generic ISO Standard
Generalized Markup Language (SGML). The development of XML has generated a new stage
that will replace HTML (Hypertext Markup Language). HTML is the current used format
document content on the Internet World Wide Web (Lewis, 2001).

XML is a human and machine readable language. This format is becoming more and more
usual because of its simply structure, easy understanding and variety of advantages. XML is a
vendor with its own independent format with a very similar structure of HTML. The most
important feature of this kind of files is that it allows the exchange of files between different
tools and devices of different vendors. Computer programs use to be converted into XML files
when they are saved so they are able to port it in a format which any operative system and
program accept. One advantage of XML documents comparing with HTML files is the DTD
creation method. XML documents are marked up by tags to have an ordered tree structure.
The set of tags are defined by a Document Type Definition (DTD). In HTML files a single
document type, which defines all the HTML tags, is created. The problem is that HTML cannot

HOGSKOLAN
I SKOVDE GRAPHICAL USER INTERFACE Final Year Project

provide enough hosts of tags and functionalities needed in web content. XML language,
instead, has a standard mechanism to define new tags for any document builder. So,
Extensible Markup Language can also be used to define new DTDs (Lewis, 2001). Another
advantage of the XML is that it is extremely flexible in diverse information storage. XML is
believed to be the new effective way for Internet transferring information. Additionally, it will
probably replace the HTML language from Web pages in few years time.

XML documents must have start, end or empty-element tags as we can see in Figure 18. In
addition, within tags use to appear child elements (more tags inside global tags), and this child
elements use to have attributes in order to define which child or element they belong to.

<book>

<PEFSOM=
<first=Kiran<sfirsts
<last=Fai«</last>
Cagexzz«</ages

< PErs O

<PErS 0=
cfirst=eill</ Tirsts
<last=Gates</1as =
cager4a«</ages

< Spersans

<PEFE O
cfirst=steves Tirsts
<last=1obs</Tasts
wage>40</age

< SpErsans

</book=

Figure 18: XML file shape (Pai, 2002)

As can be observed in the figure, within “book” element, three different children (“person”)
are defined. These children’s information is defined by means of the attributes: “first”, “last”
and “age”. The international standard IEC 61499 also defines a determined normative for XML
files that are created from function blocks’ programs (International Electrotechnical
Commission, 2005): what information should appear in the file, elements’ names, order,
structure...

HOGSKOLAN
I SKOVDE GRAPHICAL USER INTERFACE Final Year Project

3. Methodology

During methodology section, diverse ways to reach the objective of the thesis will be analyzed,
checked and compared. On the next pages, how these challenges could be accomplished will
be explained. In implementation (point 4), instead, one determined way will be chosen and
specifically explained; in few words, what has been performed will be explained. The main
challenges of this project are implementing a function block serialization for saving and editing
XML files; developing an integrated user interface (focused on implementing connections
among function blocks according to the international standard IEC 61499 and adding some
more little enhances to the graphical user interface: buttons, menus...); and preparing library
of exemplary basic function blocks.

3.1 Research on Function Blocks

First of all, performing deep research in function blocks is the base of the project. It is the first
step to effect during the project because, if a high quality thesis is desired, having a strong
base is essential. Research can be performed looking for information in several safe sources
like articles, journals, internet, books, encyclopedias... Afterwards, all that information must be
mixed and understood. Carrying out deep research on the topic always helps to solve a variety
of problems and errors that appear during the implementation stage. It must be added that
research on Function Blocks and its run-time environment has taken a long time of the thesis’
initial months.

3.2 Programming languages

The current project is the extension of an existing thesis, the main part of which had been
developed before release of IEC 61499 International Standard. In order to continue with the
implementation of the thesis, a programming language is needed. Nowadays, there is a great
deal of programming languages in the market. Nevertheless, only some of them have a
significant usability all over the world. “C” language, “C++” (an extension of C language), “Java”
(this project’s previous stage was implemented in java) and “PHP” are the most used
programming languages as shown in Figure 19. So, it would be an intelligent decision selecting
one of these four languages. From the beginning, “Java” language was chosen for the
programming as it will be shown during the implementation part. There are many compelling
reasons to support this decision.

HOGSKOLAN
I SKOVDE GRAPHICAL USER INTERFACE Final Year Project

[
Java
C++

PHP

JavasScript
Python

C#

Perl

S0l

Ruby |

shell

wWisual Basic
Assembly

Actionscript
Objective C
Lisp

Delphi 1
Pascal|[]
Schemel |

Haskell

Telf |

Fartran

Ada

Lua

ColdFusion|]

Cobal

Erlangl]

D

Scala

Smalltalk

ocaml

Forth|

Rexx

020 0.40 0.60 0.80 1.00

Figure 19: Programming languages popularity (Langpop, 2011)
3.3 Saving and opening XML files

The following subsection will be focused on one of the objectives of this thesis: generating and
reading XML documents. These two actions should be achieved with basic function blocks,
composite function blocks, subapplications and systems. XML files are the documents that
must show data from the created program in a specific textual way. The structure of the XML
file must be different when referring to basic function blocks or the rest (applications).
Applications, that is, composite FB, subapplications and systems have a similar structure as
explained in the literature survey. They are based on a function block network. So, information
about connections, connectors, source and destination function blocks and position
coordinates of all figures within the FB network must be provided. Moreover, information
about each function block within the network must be provided. On the other hand, within
XML files of basic function blocks, data input/outputs and event input/outputs information
must be provided. Associations between data and event connections should be shown too.
Furthermore, all data of the ECC should also be a part of basic FB’s XML documents.

3.3.1 Generate XML file when saving

In the next figure (Figure 20), it can be graphically observed what the next lines will consist of:
the XML file generation. In other words, data will be retrieved from data storages and shown
in another different way: in an XML document.

HOGSKOLAN
I SKOVDE GRAPHICAL USER INTERFACE Final Year Project
| name | Type | Araysize | InitialValue | Comment
DI boolean something
FE_EXAMPL gy Q1 DI double
il DI3 long Iﬁ
| C DO1 int
i DO2 vector
I DO3 Time
Name \ Type Comment WITH
En |Time 605 DI
EI2 float important DI3
EO1 boolean D02 D03
EC2 String Do2
EO3 oyte

Get
data

TSt R R «
ot gr s Aee o -

Figure 20: XML generation scheme

The most common ways to generate a XML document from a function block graphic are DOM
parser and SAX parser methods (Yandell, 2002). Both are specified in APl (Application
Programming Interface), a source-code based specification intended to be used as an interface
by software components for communication (Anon., 2012). However, these two are not the
only method to decipher a XML file: StAX, StringBuffer class, XMLWritter class, XSLT... could
also be used. Parsers are fundamental components because they provide a bridge between
XML documents and the application that processes that XML file (Fyicenter, u.d.). DOM and
SAX parsers analyze the document’s contain, recognize data and get the required information
that has been asked in the functionality.

On the one hand, Dom Parser (Document Object Model) is a simple java programming way
focused on working with an object. The DOM method is a tree structure document which fits
very well the XML file’s structure (Ziesemer, 2007). The document can be created in segments,
reordered, edited whenever it pleases the user before being serialized. Some other classes and
a transformer must to be added to the document in order to accomplish a valid xml file. The
object, which is created by default, is in charge of writing (“”), (< >) or tabulators in its
corresponding moment. The user does not have to take care of those symbols. This is one of
the reasons that DOM is said to be the easiest and cleanest method to generate an XML file
(Yandell, 2002). Nevertheless, its only problem is related with memory space. It is not
recommended to use this method when generating large xml files because a storage problem
can occur.

On the other hand, SAX Parser (Simple APl for Xml), which is a less known method, is another
way to generate xml files. SAX works generating events and it can only read XML documents
(Vogel, 2008). It is true, that sometimes this model does not create valid XML files due to some
disadvantages, such as forgetting elements or ending tags. However, it has no problem, as
DOM method does, with the memory space (Yandell, 2002). Moreover, having a XML output
system around SAX events has a wide range of advantages, but is not a fast way to output
results. In the following table the most significant features of both parsers are compared.

HOGSKOLAN
1 SKOVDE GRAPHICAL USER INTERFACE Final Year Project
DOM SAX
Tree of nodes Sequence of events
Occupies more memory Does not use much memory

Slower at runtime Faster at runtime

Stored as objects Objects not created

Easy programming Need to write code to create objects

Ease of navigation Backward navigation impossible

Figure 21: Comparison between DOM and SAX parsers
3.3.2 Read and open XML files

Another challenge of the project, as mentioned earlier, consists of implementing an
application for reading information from XML files. The obtained data should be saved and
displayed in two different forms (see Figure 22): represented in a table and graphically
showing function blocks and connections by means of figures and icons. In other words, this
function should perform the way back to point 3.3.1.

| wame | Type | Araysize | Inifialvalue | Comment
oN hoolean something
FB_EXQMPLii EQ1 D|2 double
L Ll DI3 long lﬁ
| C |DO1 int
e D02 Vector
L nos D03 Time
Name | Type] Comment WITH
B Jrime 60s on
El2 float important DI3
EO1 boolean 002,003
EO2 String DO2
E03 byte I

Get
data

|
|
m —-—-\

b e et

Eo st sE s S

Figure 22: XML file opening scheme

This application will ease the edition of previously created Function Block programs. API’s
DOM and SAX parsers are also the most famous and usual ways to reach this application.
When reading from XML files each parser has its own execution pattern. In DOM parser case,
before reading the java functionality, the entire document is read by the parser. When the
document reading is ended, the file is loaded into the memory in the application creating an
object model (Rosen, 2002). After the parser has finished reading and loading, begins the real
code deciphering. On the other hand, SAX parser model consists of a document instantaneous
step by step reading. Instead of reading it twice as DOM parser model does, it performs the
reading of the document in detail.

3.4 Connections representation

It is true that connections were already implemented in the previous thesis. However, these
connections did not fit requirements within the international standard IEC 61499.This project
aims to implement an application for IEC 61499 compliant systems development. So,

HOGSKOLAN
1 SKOVDE GRAPHICAL USER INTERFACE Final Year Project
connections” shape has been enhanced. In implementation section is explained the followed

steps. More details are found in appendices.

3.5 Composite Function Block Editor

Application’s editor implementation has been an important part of the project. Not many
functions about it were implemented prior to this thesis and considerable improvements had
to be developed. As explained in the literature review, FB applications contain FB Networks. So
as seen in Figure 23, apart from having input and output connectors within the FB network, an
application should also have external I/O connectors. When application word is used in this
section, it includes all types of applications except systems, which do not need external I/O
connectors. The next implementation has been focused on external I/Os creation in order to
edit, connect and delete them.

Event Inputs Event Outputs

Type identifier

LEESES
=6

T !

Data Inputs Data Qutputs

A7
[T

| | |

Figure 23: Application figure (Keshavarzmanesh, et al., 2010)

Obviously, there is quite a great deal of ways to reach this aim. A great research of different
possible options has been performed; then most possibilities have been discarded in order to
reach the best solution. After these steps, only two of the solutions looked efficient, so, both
options have been deeply analyzed.

The first option consisted of creating a big box, as shown in Figure 24, which would represent
the FB Application. This box should always stay in the background of the screen while the user
designs the Composite function block. Of course, the FB Network ought to be designed within
the big box. External 1/Os would be at the left and right side outside the box. A significant
disadvantage of this first option is that the number of I/O connectors of the FB Application
determines the length of the Composite FB box. This means that a long number of inputs or
outputs would make the box larger and another application should be implemented. Besides,
using this method would reduce drawing space in the panel.

HOGSKOLAN
I SKOVDE GRAPHICAL USER INTERFACE Final Year Project

FB Network

Figure 24: First option of the application design

On the other hand, the second option is focused on using small figures in order to represent
external I/O connectors. Each input or output would be represented by means of an arrow
shape as shown in Figure 25. These interface figures could be inserted anywhere in the panel.
This means that they do not have to be represented as a vertical row. Nevertheless, normally
they would be located at the left and right side of the function block network. This solves the
problem that occurred within the other main option just discussed. This last reason has been
determinant when deciding the final Composite FB editor’s shape. Later on, in implementation
part, how the Composite FB editor’s implementation has been developed will be explained in
detail.

—_ -
— = =
— =
FB Network

e -
— as—|

as—|

i

Figure 25: Second option of the application design

In addition to the Composite FB editor design, an application to connect the external I/Os with
internal I/Os (I/Os within the FB Network) has been developed. These connections join inputs
with inputs and outputs with outputs. The chosen methodology has been inserting a connector
point within each 1/0 interface figure so that they can be threatened as connectors within the
FB Network. It will be specified in the implementation section.

3.6 Enhances within the configuration of the Interface

In the following section, minor improvements applied to the web based environment will be
presented. Indeed, many used functions were previously implemented for other purposes. So,
taking advantage of them, some other tasks have been improved.

=
HOGSKOLAN
I SKOVDE GRAPHICAL USER INTERFACE Final Year Project

At first, function blocks were graphically identified by means of the type. Besides, when
representing them, the type of function block was shown within the box. However, the
problem appeared when more than one function block from the same type were within a FB
network. Function Blocks with the same type contain the same number and name of I/Os and
that was quite confusing. Hence, in this project separating “name” and “type” has been
decided. Two functions have been differentiated in order to get and set the type and, even the
name. A third function called “getID” is responsible of numbering each function block while
maintaining the order that blocks are generated. Then, this ID is attached to the type of the
generated function block creating the name. The result is a representation of a FB Network
where each function block has its own name (type + number of FB (ID)) and type. The name of
the function block can be changed when double clicking on the function block. Its name is
represented at the top of the box. The type of the function block is found just below the name.
The difference between the old and new version can be observed in Figure 26.

El1 Step
El1 face EQ1 El2 (=
Elz | | EQZ
| C
| C o | |-Da1
iz | oo
=N
Step EQ1
Elz | Bz
E face EQ | C
o [oo
| C ooz
Lz | iluy
El1 Step-12
E face-12 EQ1 ElZ [EQ2
Elz | [EQZ
1 osep [
1 face [o1 ISk}
iz | (alvk]
s |
Step-15 EQ41
Elz | [EQZ
Ell face-14 EQ T
it oo
1 face [T ooz
] ooz

Figure 26: "Name" and "Type" differentiation

On the other hand, previously implemented “drag and drop” application has been exploited. It
was just applied in order to move function block’s boxes within the screen. Nevertheless, the
possibility of connections to be dragged was not developed. Connection’s drawing uses the
same function to interconnect all function blocks and connections usually get overlapped. This
“drag and drop” application has been reused for connections dragging. Consequently,
connections overlapping problem has disappeared; furthermore, a much better FB Network
visualization has been achieved. Figure 27 presents connections at both stages: before and
after the problem was solved.

HOGSKOLAN i i
1 SKOVDE GRAPHICAL USER INTERFACE Final Year Project
El_IN| 4-Side EQ_IH|
El1 face-12 ED1 EI_RUN Packst-13 EQ_RUNEDY
Elz EQ: _EI_UPD EDQ_FEE
EL_FEER 4-Side
1 face C FPocket
DIz Inuk} | C
o Do EMT | e EMT |
MT MT
MAC_ID FE_EXE
El1 Step-1d EQ1 OPER
Elz EQ: CC_UPD
| Step C
D1 Dot
Y Do
EI_INI a-Side EQ_INI
El1 Tace 12 EI_RUN Packst-13 EQ_RUNROY
_El2 | _EI_UPD) EDQ_FEE
T tae L EI_FRER Foiet
oz | Do 1 C
Dl ilw; _EMT L4l EmT
MT MT
MAC_ID FE_EXE
Step-14 EQ1 _QFER
EQ: CC_UPD
Step C
D1 | nod
Y Do

Figure 27: Connection’s drag and drop application

=
HOGSKOLAN
I SKOVDE GRAPHICAL USER INTERFACE Final Year Project

4. Implementation

In the following section, how the project implementation has been carried out will be
explained. The whole implemented functionality has been programmed by means of Java.
Therefore, at least, a basic Java programming knowledge is essential for understanding the
implementation. In the previous chapter, how the development could be performed and
different methods to reach it have been discussed. Now, how the development of the
application has been really performed and the chosen ways to performing this implementation
will be analyzed.

4.1 Research

Most of the main research on Function Blocks has been performed through internet, books
and articles. No information has been found in journals or encyclopedias for instance. The
result of such great research is found in the literature survey. There can be found any kind of
information about Function Blocks and its environment, the International Standard IEC 61499,
web-based environments or, even, XML files.

4.2 Chosen programming language: “Java”

For the implementation of the added improvements to the thesis, as mentioned, java
programming language has been selected. It has been the key during the implementation of
the functionality. Java, originally called OAK, is an object-oriented programming language and
computing platform developed by Sun Microsystems in the early 90’s (Java, u.d.). It is a
programming language which can be used in any operating system. Besides, java technology’s
versatility, platform portability, security and efficiency make it an excellent technology in
network computing world (Java, u.d.). These are one of the reasons of its big utilization all over
the word and that is why it has been the chosen programming language for the interface
development. In spite of the fact that its syntax is very similar to the C or C++ (well-known
languages), its object model and fewer low-level facilities make Java being a simpler
programming language (Schneider, u.d.). The first version of java was published in 1995, but
many newer versions have been published till then.

For the development of a web-based function block environment, java is an adequate
programming language because of all its advantages just mentioned. Besides, the
implemented functionality was already begun in Java, so there was no reason to select another
different programming language. Learning how to use Java language can be found in tutorials,
through internet, examples, forums... So, the second step in the project after performing the
research on Function Blocks and its run-time environment was learning how to program in
Java. Nevertheless, in order to develop the functionality, compile and debug it, a compiler
program is necessary: “NetBeans” has been selected.

4.2.1 NetBeans

“The NetBeans IDE is a modular, standard-based, Integrated Development Environment (IDE)
written in Java programming language. The NetBeans project consists of an open source IDE
and an application platform, which can be used as a generic framework to build any kind of
application (Netbeans, u.d.)”.

The applications programmed in NetBeans, available for Windows, Mac, Linux and Solaris, can
be programmed in different languages: Ruby, Groovy, C/C++, PHP, java platform... This thesis

‘ ‘
HOGSKOLAN

1 SKOVDE GRAPHICAL USER INTERFACE Final Year Project
has been developed in NetBeans 7.1, last version, by means of Java platform. The developed

functionality can be found in appendices section.

4.3 Implementation of XML document

In methodology section two different ways of translating information into a XML file have been
discussed. After a deep analysis, using the DOM parser method has been selected in order to
transfer data between the program and the XML file. It will be used, well for the XML
document generation, and well for the XML document reading. The fact that with DOM parser
objects are created by default makes programming easier comparing to the SAX parser.
Furthermore, it is a simpler (Harold, 2012) and more used method; so, much more information
can be found comparing to the SAX parser. Regarding to memory space, XML files that will be
generated from the program are not so large. Thus, there should not be any problem to use
DOM parser method.

On the other hand, a security application has been inserted when creating a new project or
opening a saved one. After pressing “new” or “open” buttons and before erasing the drawn
panel, a menu appears asking if the user wants to save the last project.

4.3.1 Implementation of the basic FB XML file generation

First of all, basic function block’s XML file generation has been implemented. A new button has
been added to the interface (“generate XML”) within basic function block tab. A new function
(“saveAsXML_basic”) has been set up in “BasicFBEditor.java” class. Then this class calls to
another function in a new class, FunctionBlock.java (extended from FeatureData.java). The
name of this function is “SaveinXML_BasicFB” and it generates data into XML format. Within
this function, DOM parser functionality and a transformer can be found.

DOM parser is in charge of the establishment of elements and their attributes in the XML
document that is going to be generated. The structure of the document is generated according
to the international standard IEC 61499. This means that normative information (required
elements, structure, attributes...) has been collected from the IEC 61499 standard
(International Electrotechnical Commission, 2005). Event-data 1I/O information and ECC
information are recollected. On the other hand, the second part of “saveAsXML” function
consists of a transformer which provides the tree shape to the created XML document. An
instance of this abstract class can transform a source tree into a result tree. Figure 28 shows
how the result of this implementation looks like. For more information about the functionality
of XML generation, the implemented java code in NetBeans is attached in appendices.

HOGSKOLAN . .
I SKOVDE GRAPHICAL USER INTERFACE Final Year Project
T)
EINL Tb_basic] EQ_IN e .;".'.'\.“.f.'.-wnm»ﬂ‘..'.‘?-é.':' e
_ELRUN EQ_RUNRDY ’
_ELUPD EQ_FEES .]
M :5;‘;. e TN Tyses ANY
= C mases L RUN Type ANY
EMI EMT e
e = e Comacts” e 1RO e ANY
MAC_ID EE_EXE —_—_—
LC_UPD s arte™ Mames EO_INE T o0e" ANY
Translation e - EO_RUNRDY 50 ANY
FB graphic functionality o =
representation TWOn Vore 7E_OE
NI e ANY
nr e
WAC_TO" Troee A
orx e
< uro .
T —— oar

XML file

Figure 28: XML generation when saving a Basic FB
4.3.2 Implementation of an application XML file generation

This section is related to the previous section. This application is divided in two steps. First of
all, all created data is saved into vectors. Then, an XML document is generated by means of
another function. A similar method as for basic Function Blocks has been utilized for
application’s XML generation. In fact, in order to provide Basic FB data within the network, the
same function as in point 4.3.2 is called: “SaveinXML_BasicFB”. This function is called from
“generate_connection_XML” method, where a DOM parser and a transformer are found. This
last method has been set up for the XML writing. However, this XML functionality is filled in
another way because elements and XML structure for FB Networks is different comparing with
basic function blocks. Different information is required according to the IEC 61499. As
mentioned, composite FB XML also includes data containing basic FBs.

Before generating the document, some parameters must be identified. On the one hand,
information related to function blocks should be identified, such as, function blocks name,
type, event-data input/output information... On the other hand, representing data about
connections within the FB Network is essential, such us, connection begin output and end
input, data or event 1/O, which function block do I/Os belong to... Therefore, three more
classes have been created: “Connections.java”, “FunctionBlock.java” and “Network.java”.
Within “Connections.java”, connections’ coordinates and their begin and ending connectors
and Function Blocks are captured; in “FunctionBlock.java”, instead, all functions from
“FeautureData.java” (a class where methods related to I/O are established) are acquired, such
as, getting event and data I/O, updating them, adding them to the FB...; the third new class,
“Network.java” contains two important functions. One of the functions is the just mentioned
translating functionality “generate_connection_XML”. The objective of the other function
(“createNetwork”) is inserting and saving all the required data (all data-event 1/Os,
coordinates, number of Function blocks...) into two vectors. In it, instances of the other two
classes are generated. This saved information will be collected from the
“generate_connection_XML” function in order to write it in the XML document. The three java
classes are called from “CompositeFBEditor.java” when a saving button is clicked. At the same
time, data is saved and the Extensible Markup Language file is generated. An example of how
the created file would look like can be observed in Figure 29. The whole implemented

functionality can be found in appendices.

HOGSKOLAN
1 SKOVDE GRAPHICAL USER INTERFACE Final Year Project

El tace EQ El tace EQ
EL | [EQ2 ER | [E02

| 001 | poat

face

il
EE

- <ResourceType Comment=""Name="">
<Compilerinfo header="package wise_shopfloor.fb.fbclient.gui.FBDgui" />
<FBTypeliame Name=" f

kS
001 e <FBTypeliame Name="Step" /=
ooz | C <FBTypeName Name="4-Side Pocket' />
o | L oo c;g?pe:ame xame: Stce“‘l r”>
<FBTypeName Name="Step" />
iy 00z
<FBTypelame Name="face" />
LE2 |
Lo
-

EE

- <FBNetwork
<FB Name="face12" Type="face" x="36.0" y="100.0" />
<FB Name="Step13" Type="Step" x="490.0" y= "
<FB Name="4-Side Pocket14" Type="4-Side Pucket ¥="188.0" y="272.0" />
<FB Name="face15" Type="face" x="490.0" y="19.0" /

ELIN 4-Side EQ_IH

EE:
Pocket i

Bk

v
E|UPD [|lgEQ_FBES <FB Name="Step16' Type="Step" x="675.0 20" /=

a C <FB Name="face17" Type="face" x="258.0'
(Lot - <EventConnections>

Wil «<Connection Destination="face17.E11" Source="face12,E01" dx1:
EMT EMT «Connection Destination="face15.E11" Source="face17,E01" dx1:
MT ML =Connection Destination="5tep16.E12" Source="face15.E01" dx1
MAC_ID FB_EE «<Connection Destination="Step16,E11" Source="Step13.E01" dx1="51.0
OFER <Connection Destination="5tep13.EI1" Source="4-Side Pocket14.E0_INI' dx1
o UED <Connection Destination="Step13.E12" Source="4-Side Pocket14.E0_RUNRDY" dxl '51.0" de 130 d« 1350 />

</EventConnections»
- <DataCunnemun=>

B Network raphical represertation <Connection Dettmatmn facel? DI3" Suurce "facel?. DDl dx1=" 47 0 dx2
<Connction Destination="face15.DI3" Source="face17.001" dx1="52.0" d2="52.0"
<Connection Destination="5tep13.DI2" Source="4-Side Pocket14.EMT" dx1="60.0" 4 .
<Connection Destination="4-Side Pocket14.MAC_ID" Source="face12.001" dx1="16.0" dx2="8.0
<Connection Destination="5tep16.DI12" Source="Step13.002" dx1
<Connection Destination="5tep16.DI1" Source="face15.001" dx1 [
=Connection Destination="5tep13.DI12" Source="face17.001" dx1="52.0" dx2="52.0" dy="134.0" />

</DataConnections=>
</FBNetworks
<[ResourceType=

Translation functionafty

L fle

Figure 29: XML generation when saving a FB application

4.3.3 Implementation of the basic FB XML file reading

As explained in the chapter of Methodology, this application aims to open XML documents so
that the user can edit them. It is just the reverse way of Section 4.3.1. For this, a function
called “basicfunction_xml_read_and_draw” has been set up in BasicFBEditor.java class. Within
this function, DOM parser functionality has been redacted. A function within
FunctionBlock.java class, “ReadfromXML_BasicFB” is called to read the XML document.
Furthermore, data-event 1/O tables are also created while capturing data from the XML file.
For this, new rows filled with information are added to the corresponding table. The
transferred information about 1/Os is the following: name, type, comments and data-event
associations, if exists any. Data of algorithms and ECC (states, actions, transitions, events...) is
also captured. With this information the Execution Control Chart of the corresponding basic
function block is created and represented.

When the user desires to open a saved XML file, it must only click on “open XML file” button
situated on the top of the screen menu. That button calls its own method
(“jButton18ActionPerformed”) located in “BasicFBEditor” class, which has two purposes. On
the one hand, function “ReadfromXML_BasicFB” is called, which reads the file. Then, 1/Os
tables get new rows and values by means of “basicfunction_xml_read_and_draw”. On the
other hand, “jButton18ActionPerformed”, also updates all 1/0Os tables showing the new data
visualization. Apart from providing this information in the table, a graphical representation of
the function block is performed as well. This is obtained automatically by means of another
drawing function which gets the information from 1/Os tables. It must be noted that this
drawing function was already developed during the previous stage of the research. Figure 30
shows how the FB drawing of its corresponding XML document would look like.

HOGSKOLAN
I SKOVDE GRAPHICAL USER INTERFACE Final Year Project
=FEType Comment="" MName="4-Side_Pocket"=
=ldertification Description="" Standard="IEC 51499"
=Wersioninfo Author="-" Date="2012-04-01" Organization="[EC TCESAMGE" Version="0 0"
=Compilerinfo header="package wise_shopfloor fb fbclient gui FEDgui"s
=Compiler Language="java" Product="7_" Vendor="Sun" “ersion="_7 "f>
El_INI 4 Side_Fooket EQ_inl =fCompilerinfo=
El_EUN EQ_RUNEDY sinterfacelist=
=evertinputs=
:: E;EDR EQ_FEE =event Comment="" Name="EI_IN" Type="ar¥"=
=Aith Yar="El "i=
| (- =Aith Var="OPER"/=
EMT EMT =levent=
T T =event Comment="" MName="EI_RUN" Type="aR"=
mMac_in EE_EXE Translation SR ar =TT
OFEER functionality =fevent=
=event Comment="" Mame="EI_LUPD" Type="aRY"=
CC_UPD itk W ar="t A _ID"
=it Yar="CC_UPD"=
=fevent=
Basic FB graphic =event Commert="" Name="El_FEER" Typa="ANY"i>
representation =feventinputs:=
=evertoutputs=

=event Comment="" Name="EC_INI" Type="ARNY">
=With War="EmT" /=
=levent=
=event Comment="" Name="ECQ_RUMNRDY" Type="ANY"=
=it War="hT" =
=levent=
=event Comment="" Mame="EQ_FBES" Type="AK""=
=Nt War="FB_EXE"f=
=ievent=
=feventaLtputss
=datainputs=
=warDeclaration Commert="" Mame="EMT" Type="ARNY"i=
=WarDeclaration Commert="" Mame="MT" Type="aMN""/=
=WarDeclaration Comme ame="tAC_ID" Type="aANY"i=
=WarDeclaration Commert="" Mame="0FER" Tyvpe="aN""/=
=NarDeclaration Comment="" Mame="CC_UPD" Type="ANY"i=
=idatainputss
=dataoutputs=
=%arDeclaration Comment="Estimated" Name="EMT" Type="FLOAT"/=
=%arDeclaration Comment="mMachining" Name="MT" Type="FLOAT"/>
=“arDeclaration Comment="FB" Name="FB_EXE" Type="ECTOR"/=
=/dataoutputs=
=interfacelist=
=BasicFB=
=ECCi=
=Algorithmss

c ML file
=BaszicFB=

=FEType=

Figure 30: XML reading and drawing when opening a Basic FB
4.3.4 Implementation of the application XML file reading

In 4.3, it has shown the implementation of the application that relates to the function block
program and XML documents. In what follows, the reading of application’s (composite FB,
subsystems and systems) XML files in order to open and edit them will be discussed.
Obviously, applications contain diverse information as previously explained in Section 4.3.2.
Information about function blocks within the network as well as data about connections in the
FB network. An application has been implemented for reading XML documents that contain
mentioned data according to the standard. The result is visualized in Figure 31; nevertheless,
as explained, data about each function block within the network should also appear.

Used functions, “ReadfromXML_compositeFB” and “updateDrawing”, are developed in
“Network.java” class. On the one hand, DOM parser, which provides the reading of the
parameters from these kinds of documents, is located in “ReadfromXML_compositeFB”. An
instance of “FunctionBloc.java” class (called “fblock”) has been created to set all FB values in
the document to a function block. Other two instances (“event_conn” and “data_conn”) of
“Connections.java” class have been created to set connections data from the XML file on them.
Then, “fblock”, “event_conn” and “data_conn” have been added to the two vectors created in
“Network”: “FBs_vector” and “Connections_vector”. It has to be mentioned that
“ReadfromXML_compositeFB” calls to “ReadfromXML_BasicFB” in FunctionBlock.java in order
to get Basic FB data. When all data and values of the FB network are set, drawing is the only
action left to be performed. That is just “updateDrawing” method’s purpose. It accomplishes
the drawing of all connections and function blocks within the network in the web based
environment. This function calls a “Drawing” class which performs the real drawing action.

HOGSKOLAN

I SKOVDE GRAPHICAL USER INTERFACE Final Year Project
El face EQ1 El1 faze
£ | [Q2 vl
Jd C
001
O ooz
Ed{ fae | EO1]
B2 | EQ2 - <ResourceType Comment="Name="">
=Compilerinfo header="package wise_shopfloor.fb.fbclient.gui.FBDgui’ />
i g <FBTypeName Name="face" />
e [0 <FBTypeName Name="Step’ />
o oo <FETypeName Name="4-Side Pocket" />
<FBTypeName Name="face" />
<FBTypeName Name="Step" /=
<FBTypelame Name="face" />
- <FBMetwarks
<FB Name="face12" Type="face" 0.0/
<FB Name="Step13" Type="Step 137.0' />
ELIN 4Side <FB Name="4-Side Pocket14' T ket' x="188.0" y="272.0" />
Focket <FB Name="face15" Type="face’ 19.0' />
ELUPD <FB Name="Step16" Type="Step' 2720 [+
E_FBER <FB Name="face17" Type="face" x="258. 18.0" />
- <EventConnections=
d <Connection Destination="face17.E11" Source="face12.E01" dx1="14.0" dx2="80.0" dy='
EMT <Connection Destination="face15.E11" Source="face17.E01" dx1="52.0" dx2="52.0" dy
MT <Connection Destination="Step16.E12" Source="face15.E0!
AT 1D <Connection Destination="Step16.E11" Source="Step13.E01" dxi="51.0
GFER <Connection Destination="Step13.E11" Source="4-Side Pocket14.E0_INI" dx1= -135.0" /=
C UPD <Connection Destination="Step13.E12" Source="4-Side Pocket14.EO_RUNRDY" dx
</EventConnections=
- «DataConnections>
<Connection Destination="4-Side Pocket14.0PER" Source="face12.002" dxl '6.0" de 18.0" dJ "232.0" /=
FB Netwark oraphical regresentain <Connection Destination="face17,DI3" Source="face12.D01" dx1="

«Cannection Destination="face15.DI3" Source="face17.D01" dx1=" SZI] de '52.0
«Connection Destination="Step13.012" Source="4-Side Pocket14.EMT" dx1="60.0" e
«<Connection Destination="4-Side Pocket14.MAC_ID" Source= facell D01" dx1="16.0" dxz
<Connection Destination="Step16.D12" Source="Step13.D0:
«<Connection Destination="Step16.DI1" Source="face15.D0! A 53.0" />
<Connection Destination="Step13.D12" Source="face17.001" dx1=" 520 dx2="52.0" dy="134.0" />
<[DataConnections>
</FBNetwork>
<[ResourceType>

Translation functionaity

L file:

Figure 31: XML reading and drawing when opening a FB application
4.4 Connections representation

This section presents how the implementation is compliant with the international standard IEC
61499. Connections representation within FB Networks has been implemented again, but this
time, according to the international standard IEC 61499. For this, a new java class has been
created: “StandarizedConnection”. Within this java class a simple functionality is implemented.
There are two types of connections: three lines containing connections and five lines
containing connections, as shown in Figure 32. Detecting if the beginning connection is at the
left or right side of the ending connector classifies connections into one or another connection
type. Some coordinates, points in the drawing area, must be set up in the interface: dx1, dx2
and dy. They provide information about beginning and ending connector’s location. By means
of this coordinate system, some lines are created in order to establish the connection between
two function blocks. Indeed, these points are the same coordinates represented in
application’s XML documents. In the figure below, it can be observed which point represents
each parameter (dx1, dx2, dy).

@

W
HOGSKOLAN
I SKOVDE GRAPHICAL USER INTERFACE Final Year Project

Figure 32: Coordinate system of a FB Network (International Electrotechnical Commission, 2005)

As it can be observed in Figure 32, a connection will be three lines connection type if the
beginning output is situated at the left side of the ending output. Nevertheless, if the
beginning output is located at the right side of the ending input, five lines will be necessary to
be compliant with the standard’s requirements.

4.5 File selection menu

The next part is focused on opening previously created function block programs within the
web based application. In this particular case, XML documents are the only documents which
can be opened, either basic FB or applications. When clicking opening button, in any kind of
program, usually a menu appears. This menu is use to display the entire desired library (all
available XML documents in this case). So, the user has the chance to choose which file to
open. This is the real aim of the following implemented application: to show a file selection
menu, before opening any document. Figure 33 shows how the result looks like.

HOGSKOLAN
I SKOVDE GRAPHICAL USER INTERFACE Final Year Project

Applat

Function Block Designer
@ Mew Open XML file Save save XML file Generate Java Class

FB Algorithm Editar ‘ Name | Type | Arraysize Initial ‘alue Comment Name of FunctionBlock : I:l

Basic FB Editor

2

Compasite FB Editar E
il

FEB Metwark Editor

Basic FB on Server 3]
4-Side_Pocket
4-Side_Pocketo

ar
fh_1_example
fh_basict
th_basic2

frt o M
functionblock
af

kifih

C g) peetenr)

LData Imput) Data Output | Event Input | Event Output | Algorithm J

Appleten har startat

Figure 33: File selection menu

In order to implement this particular application another java project has been necessary. Its
name is “FBweb” and it establishes the connection between the program and the server. It
provides performing work through the net and even programming into the web based
environment. So, this second project’s use is essential in order to save a program within the
web. Obviously, exactly the same happens when a program saved in the server ought to be
opened. This last action requires the representation of all XML documents within the server.
That is why these two interconnected projects have been used. An opening button calls to a
function within “BasicFBEditor.java” class named “action_Open”. Apart from creating the new
menu window, this function also enables “RerieveDirectory” method. This function is
responsible for sending request to the server and retrieves answer as a list of files in the
specified directory. On the server side, class FBServlet FBO2 from FBweb application is in
charge of receiving this request, getting a list of files and sending it back.

4.6 Implementation of Composite FB Editor

In the methodology part, it has been discussed about the two possible options to be carried
out in the Composite FB editor. Using arrow shaped figures (second option) has been the final
solution in order to obtain an easier representation. User’s I/Os desired location is available by
this way. For this, a java class called “InterfaceFigure.java” has been used. This java class
contains all the features the interface figure needs: functions defining the drawing, type (data
or event 1/0s), name, measures.... The appearance of interface 1/Os is shown in Figure 34. It
can be visualized how 1/Os arrows always point to the FB Network.

=
HOGSKOLAN
I SKOVDE GRAPHICAL USER INTERFACE Final Year Project

Output

Figure 34: Result of InterfaceFigure.class

Interface figures are divided into four categories: data inputs or outputs and event inputs or
outputs. As discussed, figures should be located anywhere, so a drag and drop application has
been added to the figure so that the user can choose where to position it. After having created
the figure, a connector had to be set up within it in order to establish connections with FB
Network connectors. Connector.java is the class that creates a connector inside the figure. In
this class begin and end connectors are set up.

An instance of the final shape of a FB application can be observed in Figure 35. It can be seen
external 1/Os at both sides of the FB Network and, even connections between FB network
connectors and external connectors of the application.

Step-12 EQ9 r svent_sutputl |
B2 | EQ:
EM [facedz LEQt | svent_sutputl |
:l Step |: El | Eqz
ol 001
oz | iy 1 faee [
D | |00
1]k} ooz
El_IHI 4-Side EQ_IHI|
EI_RUN Focket-14 EQ_RUNRDY
El1 face-16 EQ
ELUPD . EQ_FBE Eq data outputl |
EI_FBER £5ide R
. C 1 faee O | data_sutput? |
i) o9
EMT EMT | ooz data sutputd |
data inputl BT AT I_Dﬁ_ —
MAC_ID FE_EXE
QPER
CC_UPD

Figure 35: Example of a FB application within the web based environment

4.7 Saved Function Blocks cloning

All saved Basic and Composite function blocks are cloned in order to be reused in the FB
Network. For Basic FBs cloning, a function named “createToollcons” in CompositeFBEditor.java
clones all saved FBs in the server and then calls to another function in the same class,
“addToollcon”, to add an icon at the left panel of FB Network Editor. For Composite FBs,
instead, the cloning function is called “createToollcons_CompositeFB” and the name of the
function that creates icons is “addToollcon_Composite”.

HOGSKOLAN

I SKOVDE GRAPHICAL USER INTERFACE Final Year Project
Automatically, when initializing the program all saved FBs icons appear at left panel of FB
Network Editor as it can be seen in Figure 36. This panel is divided into two tabs in order to
differentiate between Composite (CF Blocks) and Basic (BF Blocks) saved Function Blocks.

Moving the mouse arrow over the FB icons, their names appear at the bottom of the panel.

Function Block Designer |
[
(&
Basic FB Editor ,u Opén Save
ﬁ ~ New Open.. Save OpenXML. START Refresh
FB Network View |
—
ECC Editor Name : General
[
i
FB Simulation View
V/
24 o
V¥
'_'1 \,]
WV
nx o
\'1 \11
vV
rie) o
BF Blocks | CF Blocks | Lbrt
Appleten har startat

Figure 36: FBs cloning and icons creation

Apart from being initialized all icons when opening the program, a new button called “Refresh”
has been integrated which aim is to initialize and recreate all the saved FBs cloning. This
button is useful when a new FB has been created and the user wants to use it within the FB
Network.

@ \\E
el

HOGSKOLAN
1 SKOVDE GRAPHICAL USER INTERFACE Final Year Project

5. Case Study

This part was implemented together with Aitor Arrieta Marcos (Arrieta, 2012).

After finishing any kind of work, a thesis in this case, it is always essential to perform some
tests in order to know if everything works properly. In this specific case, an additional part has
been joined to the project, apart from the completed challenges. This part is the run-time of
the program implemented by Bernard Schmidt, supervisor of this thesis work. The simulation,
which is found in simulation tab, will be used as a proofing tool in order to verify the positive
results of the thesis work. Using the simulation tool, created and saved FB applications or
systems can be run. The entire system is represented, as in Composite FB Editor, indicating
with a red light which function block is running at each moment.

So, once the FB platform was implemented and ready to be used, an application has been
thought to test using the run-time tool and present how the implemented environment should
work. An assembly process has been decided to be implemented by means of Function Blocks,
using an ABB IRB 140 robot (Figure 37) already integrated in Wise-ShopFloor. It is being
researched so that the FB environment could enable “approach to achieving adaptability and
flexibility in assembly planning and control” (Wang, et al., 2010). In this article just mentioned,
some new developments are presented using the ABB IRB 140 “robot mini-cell for testing and
validation of a FB enabled assembly planning”.

380 65

1092
670

2
¥

38

810

151

486

670 810 B2

712

1092

Figure 37: Sizes, configurations and the region of space the robot can reach for each configuration (ABB, 2012)

In (Wang, et al.,, 2010), a case study is implemented in which the simulink blocks of a
simulation in Matlab Simulink replace the FBs to control an ABB robot. The outputs of this
simulink blocks generate commands of Rapid programming language, language that is
understood by the controller of the ABB robot. The goal of the case study of this project has
been to simulate the pick and place movements of an assembly process using the ABB IRB 140.
Different options have been studied taking into account the time to finish the project.

The assembly operation process simulation will be to pick shafts from their magazines and
place them into the measure station; secondly, the robot will pick the washers and place it into
the shafts. In this station, shaft’s measurement will be known and depending on the detected
measurement, the robot will perform 3 different paths. So, the measurement inspection
station will detect if the piece is alright, wrong (in this case the piece is removed from the
assembling station) or it has to be fixed (it will be transported to a particular magazine). If the
shaft has the correct measures, before leaving it in the corresponding magazine, the robot will

@

ﬁ?wf
HOGSKOLAN
1SKOVDE GRAPHICAL USER INTERFACE Final Year Project

transport the shaft and washer (at the same time) to a press station in order to be pressed.
Figure 38 shows the robot working during the assembling process.

Figure 38: Robot working during the assembling process

This process will be performed one by one in 6 occasions (total number of shafts and washers).
On the other hand, Figure 39 represents the flow chart of the assembly process whereas
Figure 40 shows the entire mini-cell 3D model.

Ko
HOGSKOLAN
1 SKOVDE GRAPHICAL USER INTERFACE Final Year Project

Insert washor

Ready o
aBsamhhy?

Mo

Trash

Figure 39: Flow Chart of the simulated assembly line

As mentioned before, different options have been studied in order to carry out the
implementation of the case study. One of the options was to implement some function blocks
that generate Rapid programming language commands, something similar as explained in
(Wang, et al.,, 2010), in which some simulink blocks actuate as FBs and generate Rapid
commands. After that, the next step would be to send these commands to the robotic mini-
cell in Wise-Shop floor, to ensure that it is working in a correct way. However, this could not be
possible to be performed due to two reasons: the lack of time for this project and the
availability of the robot being used in (Cana & Gil, 2012).

@

HOGSKOLAN

I SKOVDE

GRAPHICAL USER INTERFACE Final Year Project

Figure 40: 3D model mini-cell robot assembly station

Another option was to use some specific FBs explained in (Wang, et al., 2010) and (Wang, et
al., 2012), where the MH-FB will open and close the fixture, the SI-FB will check the position of
the TCP reading the 1/Os of the robot’s PLC and the M-FB will “send the confirmation event to
the right composite FB to start its operation”.

Focusing on the generated project, it consists of ten basic function blocks as it can be seen in
Figure 41. Each function block within the created FB Network has a different objective. It
cannot be appreciated in the figure but this FB Network simulation is reached visualizing every
time which FB is running. As it can be seen, a serial application is effected until the measuring
station where three parallel ways appear, depending on the sensors” signal. Each function
blocks” goal is briefly explained just after the Figure 42.

MFE EQ_IHI EI_IN| [path1 |e—E0lNL
EL_BUN MER EQ BUN BDY, FE|_RUM | . eopun_sny
ELROY \’:l SHAFT_ZH‘
0_DAT, 00_DAT
JlI_ELDML# 00 FLOWY
EI_IN| Path_2 EQ_INI ELINI Path_press—sE2-li ELINI Pressing eol i EI NI Path_OK EQ_INI ‘
EIR | [eo_runJrov run | E0_BUN ROV ELRUN | | Tlecleun rov e]| EQ_RUN_EDY
\’:I WﬂSHEE \’:I T(LPRESS‘ \’:lTOJJRESSIlJ‘I-" \’:IT070K7M
DI_DAT 00_DAT, 0I_DAT DO_DAT: 0I_DAT, 0ol paT; DI_DAT: 00_DAT,
0IEL | oo eo D_ELOW oo fe OI_ELD | ol eve DI_ELOWY 00_ELOW
| I |
]

CErm
EI_EUN

Path_Ryvid-4—=0- ‘
EQ_RUN_EDY

i
}j TO_REWO
DI_DAT; 00_DAT,
| Moo mo
L T
=
measure —E0-0K
EQ_RWE ELINL Path Scrap—s—EQ-Hl
craj
|, measure_final. " oo £l RUN |] EQ_RUN_RDY
\’:l TO_SCRE
o Ij—oj B 01_DAT 00_DAT:
Di_ELow)| oo e
L

Figure 41: Assembly process running

HOGSKOLAN

1 SKOVDE GRAPHICAL USER INTERFACE Final Year Project
On the one hand, Figure 41 shows the created FB Network while it is being executed. The red
line is the indicator of what part of the network is simulating in each moment. Algorithms in
measure FB decides which of the three paths to follow. On the other hand, Figure 42
represents how the real FB Network should look like. On it, all needed data information is

updated within function blocks; however, it has been impossible to run it on our program’s run
time environment.

HOGSKOLAN

I SKi

START_BUTTOH

MFB | EQIW
_ elRm EQ_RUN_ROY EQ_RUN

ELRDY MFB_test

1 C 00_GEN
DI_GEN D0_GEN
DI_OK Do_Ok
DI_Rk; DO_Rwk
Dl_SCRP 00_SCRE

Path_press —=H-Ltl £l Pressing Path ok oMl
ELR E0_RUN_RDY ELR EO_RUN_ROY ELR E0_RUN_RDY
PRSS PRESS OK_MAGAT
DO | J D0_OK DI_OK | J 00_OK DI_OK | J D0_OK
- .y L 1 L 1 | I
Measuring
|-EQ_Fwils
measure | - ".-on Path_rwk e
EQ_RUN_RDY
RWK_MAG
OI_Bk | J 00_RE
| I
Path_scrap|—E9-l——
ELE E0_RUN_ROY
SCRAP_MAG
OI_SCRP | J 00_SCRE
L 1

Figure 42: Final shape of assembly process FB Network

@ \\E
v T
HOGSKOLAN

I SKOVDE GRAPHICAL USER INTERFACE Final Year Project

This is the list of the created basic function blocks followed by their duties:

- Start: This FB receives the “START” button at the top of the panel as an input providing the
beginning of the simulation.

- MFB: As told, this type of FB is in charge of sending the confirmation event to the correct FB
in order to enable its operations execution.

- Shaft: This FB is responsible of picking the corresponding shaft from the shaft magazine and
placing it at the inspection station. The movement of the robot is created by Rapid language
output orders. After this algorithm is executed, an offset is added. This offset reaches the
robot to pick the corresponding shaft.

- Washer: This FB works as “SHAFT” function block, however, in this case, the picked and
placed object is a washer. This is placed into the shaft at the measure station.

- Measuring: It is the FB that decides which way should get the process. It measures the shaft
by means of three sensors. Depending on which of the internal signal is at Boolean “true”, the
process will continue a different way.

- To press station: Shaft and washers are picked and placed at the press station. This is the first
step of the mentioned first way.

- Pressing: The shaft and washer are pressed by means of two internal variables in the press
station: “press down” and “press up”.

- To ok magazine: The robot is ordered to transport the shaft with the washer to the okay
magazine.

- To rework magazine: This is the only FB in the second way; it is in charge of picking the shaft
with its washer and placing it at the rework magazine.

- Scrap: This FB is also the only component of the third way to chose. It consists of picking bad
shafts (with its washer) and leaving then into the scrap.

One of the advantages of using FB technology is that it is object oriented, and this brings lots of
advantages to devices to the easy programmed: Objects reflect the real world, that is why the
operations of the robot (measure, press, gripper oppen-close, transport...) are represented as
objects. This objects are stable, and this allows to program other robots reusing the same
objects without changing anything. This is very comfortable if the used robot is broken or has
to be used in another part of the factory, because the operator does not have to program
again the new robot. Objects reduce complexities, so once the object is created, the user does
not have to know how it works internarlly. Furthermore, the application is created joining
different objects. Apart of the system reusability, another interesting part of using FBs for this
process, is that if the user needs to program any other machine, he/she can get simple
function blocks from the system or application. This means that it is possible to get only small
parts of the system instead of getting all the program, as explained at the paragraph above.
For instance, if a machine needs to be programmed for measuring, only the measuring FB
would be got and placed in the new program.

Programming by means of FBs also ensures the possibility of interoperating between
embedded devices to perform needed methods and functions for distributed applications.

_ ‘
HOGSKOLAN

1 SKOVDE GRAPHICAL USER INTERFACE Final Year Project
Besides, if the user desires to run the created program by means of another different
simulation program, configurations are possible to be saved in XML file (according to the
standard IEC 61499). This saving application reaches that the user can afford a large range of

portability, simulating the generated project in any other run time environment.

As it has been shown, the use of FBs in order to program this assembly process provides to the
user adaptability, reusability, portability, interoperability and a great degree of independence.
On the other hand, talking about the execution model, Function Blocks use the efficient
method explained during the thesis: the event-driven model. This would provide a real time
control because this model does not need to wait for other tasks to be ended. When the input
enables an event, its execution inmediately begins. Finally, as a future improvement of this
case study, it would be interesting to put the inplemented FB Network (Figure 42, filled by all
needed data) into practice within the run time environment and the real robotic mini-cell. This
is possible thanks to the advantage provided by the IEC 61499: configurability. It allows two
different programming environments to configure the same device. In this case, the robot
could be configured from the developed Function Block platform and Robotstudio
programming environment.

@ \\E
v T
HOGSKOLAN

I SKOVDE GRAPHICAL USER INTERFACE Final Year Project
6. Discussions

It must be said that good visualization is essential in computer programs. An easy and clear
program is always much more understandable for a novice user. Even if it is any kind of user,
working on simple programs always is more tolerable than working on difficult and
complicated ones. For this reason, the visualization of the user interface is critical when
referring to program’s difficulty level. This goal has been unquestionably achieved in this
project: A simple program has been implemented.

Nevertheless, from my point of view, the project still could be improved in some aspects. Due
to the lack of time in the project, all these applications that will be explained now could not be
implemented. Its extension should continue adding some new actions, to enhance an easier
visualization and usability. For instance, a recommendable application for the user interface
would be the implementation of a function that zooms in and out the FB Network’s size. The
wheel in the middle of a computer mouse is usually used for this purpose. Another improving
suggestion would be to apply the drag and drop function to Basic Function Block’s data-event
connections; since at the moment, it is only possible to join those connectors by means of the
text I/Os table. Besides, within Basic Function Block Editor, when opening a saved program,
data-event associations appear only at I/Os table; not in the drawing. “Enter” button must be
pressed at the table in order to create these connections in the FB image. This should be
changed: connections should appear immediately when opening the project. On the other
hand, generated XML files have all its elements ordered alphabetically. This should be
removed and generated in the same order as in the International Standard IEC 61499.

In the same way, it would also be interesting carrying out an application to be able to change
Function Blocks information (name, type, 1/0 names...) within the graphics panel apart from in
data tables. This would help, for example, when a wide range of function blocks are
interconnected in a FB Network. Moreover, it would also be nice if within Network Editor the
user had the chance of double clicking on a Composite FB and opening its inside network.

Apart from these enhancements, developing automatic routines would be a significant step
forward for the program, since all implemented functions are manually performed. These
improvements would ease the usability of the program to the human user.

Referring to problems that have appeared during the project, it must be recognized that most
of the problems have appeared while programming in Java. First of all, trying to decipher the
functionality before implemented, some inconsistencies and many misunderstandings were
found. Later on, during the thesis development, problems and errors became the daily bread.
Particularly, while compiling the developed program, errors appeared continuously. For
instance, a considerable amount of time has been spent during the application’s XML reading
and drawing because of the wide range of errors that appeared. But all these challenges, that
sometimes looked impossible to resolve, have been overcome with patience and large
research.

As regards to the case study, it has provided a clear visualization of this projects result,
enabling configuration and simulation. Due to the lack of time, the generated program during
the case study has not been downloaded to the robot. But this would also show the
connection between the FBs programming web based environment and real machine and
devices (robots, PLCs...). So, we have to comply with the simulation.

Finally, it has to be also mentioned, that an informatics engineer would have worked easier
and would have had more fun during the development of this project. The fact that | have

HOGSKOLAN

1 SKOVDE GRAPHICAL USER INTERFACE Final Year Project
never worked in java before has complicated the implementation of the thesis. From my
honest point of view, the time provided for the development of the final year project (exactly
five months) has been quite short. Taking into account the dimension of the thesis and the lack
of knowledge in java, a great deal of work has been accumulated in the last months of the

project. Perhaps, in order to avoid this issue, some Java courses should be provided to the
future final year thesis students.

HOGSKOLAN
I SKOVDE GRAPHICAL USER INTERFACE Final Year Project

7. Conclusions

The final year project has been a long and hard programming work that has taught me a great
deal of java language apart from learning how to create written documents in English.
Honestly, | have reached to develop some programming applications that | could never have
thought before | would be able to implement. One of the challenges of this project was
learning about Function Blocks, and | have reached this objective. At the beginning of this
thesis, | did not really know much about FBs. On the contrary, at the end of the thesis, apart
from learning about FBs theory, | have even managed to create a FB application. It explains the
progress in FBs. Moreover, | have also learned how to work as a team (do not forget that this
project has been developed simultaneously with another automation project) sharing
information and knowledge.

Finally, | sincerely hope that the performed work will profitably help in the following years to
Wise-ShopFloor research and, hence, to the aimed real-time decision support system.

It must be specified that the created web-based environment can be found in the next URL:
wise-shopfloor.his.se/WebFB/

HOGSKOLAN
I SKOVDE GRAPHICAL USER INTERFACE Final Year Project

8. Acknowledgments

On the one hand, a special mention has to be awarded to the supervisor of this project,
Bernard Schmidt. Without his help it would have been impossible to carry out this project. On
the other hand, Lihui Wang, an expert on the topic, has to be also mentioned. He has provided
some courses during the thesis to teach students how a bachelor final year project should be
realized.

Furthermore, | am grateful to have worked with Aitor Arrieta, who has always collaborated
and worked as a team. Finally, this document could not be ended without rendering thanks to
Markel Garzia Gomez (informatics engineer), for helping me with java programming; and
Ainhoa Goienetxea, who has made possible that | could stay during the final year thesis in
Skovde. Besides, she has always helped out to me during this period advising and collaborating
in relations with the home university.

=
HOGSKOLAN
I SKOVDE GRAPHICAL USER INTERFACE Final Year Project

9. Bibliography
ABB, 2012. Datasheet robot ABB IRB 140, s.|.: ABB.

Anon., 2012. Wikipedia. [Online]
Available at: http://en.wikipedia.org/wiki/Application programming interface
[Accessed 03 04 2012].

Arrieta, A., 2012. Function block environment in Wise Shopfloor: algorithm parser and code
generation, Skovde: s.n.

Campbell, A. D., 2007. Benefits of web based. Blue Dog.
Cervera, A., 2012. Design of an information carrier device for Decision Support System, s.l.: s.n.

Christensen, J. H., n.d. holobloc.com. [Online]
Available at: http://www.holobloc.com/papers/iec61499/overview.htm
[Accessed 26 02 2012].

Diaz, R. & Palomeque, J. E., 2012. Robot & CNC Machine Function Blocks, Skévde: s.n.

Fyicenter, n.d. fyicenter. [Online]

Available at: http://dev.fyicenter.com/Interview-Questions/Java-
1/Parsers DOM vs SAX parser.html

[Accessed 27 03 2012].

Gerber, C., Hanisch, H.-M. & Ebbinghaus, S., 2008. From IEC 61131 to IEC 61499 for Distributed
Systems: A Case Study. EURASIP Journal on Embedded Systems, p. 8.

Google, n.d. google.com/images. [Online]

Available at:
http://www.google.se/imgres?um=18&hl=en&biw=13448&bih=767&tbm=isch&tbnid=C-
LKPdPvDv4dzM:&imgrefurl=http://seg.ee.upatras.gr/seg/dev/RoboticArm.htm&docid=-
jbl7ZEEep9 4GM&imgurl=http://seg.ee.upatras.gr/seg/dev/media/corfu app basic.png&w=10
39&h=490&ei=kOyET7V

[Accessed 29 03 2012].

Harold, E. R., 2012. Document Object Model, Chapter 9: Choosing between SAX and DOM.
s.l.:s.n.

International Electrotechnical Commission, 2005. International Standard IEC 614989. First ed.
Geneva, Switzerland: IEC.

Isagraf, n.d. isagraf.com. [Online]
Available at: http://www.isagraf.com/pages/newsletter/apr2007.htm
[Accessed 11 02 2012].

Isagraf, n.d. isagraf.com. [Online]
Available at: http://www.isagraf.com/pages/newsletter/apr2008.htm
[Accessed 05 04 2012].

@ \\E
v T
HOGSKOLAN

I SKOVDE GRAPHICAL USER INTERFACE Final Year Project
Java, n.d. java.com. [Online]
Available at: http://www.java.com/en/download/fag/whatis java.xml
[Accessed 11 02 2012].

Java, n.d. java.com. [Online]
Available at: http://www.java.com/en/about/
[Accessed 11 02 2012].

Keshavarzmanesh, S., Wang, L. & Feng, H.-Y., 2010. Adaptive Assembly Process Planning and
Control Using Function Blocks, Ontario, Canada: s.n.

Langpop, 2011. langpop.com. [Online]
Available at: www.langpop.com
[Accessed 07 04 2012].

Lewis, R. W., 2001. Modelling Control Systems Using IEC 61499. First ed. London, United
Kingdom: Institution of Engeineering and Technology(IET).

M., M., V., V., Xua X., W.S. & Z., A.-B., 2008. A novel open CNC architecture based on STEP-NC
data model and IEC 61499. Robotics and Computer-Integrated Manufacturing, pp. 560-569.

Martinez Lastra, J. L., Godinho, L., Lobov, A. & Tuokko, R., 2005. An IEC 61499 Application
Generator for Scan-Based Industrial Controllers. IEEE International Conference on Industrial
Informatics, p. 6.

Netbeans, n.d. netbeans.org. [Online]
Available at: http://netbeans.org/community/releases/60/
[Accessed 14 03 2012].

Pai, K., 2002. A simple way to read an XML file in Java. [Online]

Available at: http://www.developerfusion.com/code/2064/a-simple-way-to-read-an-xml-file-
in-java/

[Accessed 25 02 2012].

Rosen, 2002. XML Reading Using DOM and SAX. [Online]
Available at: http://www.codeproject.com/Articles/2741/XML-Reading-Using-DOM-and-SAX
[Accessed 15 03 2012].

Schneider, L., n.d. Java Programming Language Information.

Siemmens, n.d. automation-course.com. [Online]
Available at: www.automation-course.com
[Accessed 14 03 2012].

Tisserant, E., Bessard, L. & Sousa, M. J. R. d., 2007. An Open Source IEC 61131-3 Integrated
Development Environment. International Conference Proceedings, pp. 183-187.

Transpaderne, T. & Vidal, E., 2012. Wise ShopFloor decision support system, Skévde: s.n.

Wang, L., Feng, H.-Y. & Cai, N., 2003. Architecture Design for Distributed Process Planning.
Journal of Manufacturing Systems, XXII(2), pp. 99-115..

Wang, L., Givehchi, M., Schmidt, B. & Adamson, G., 2012. A Function Block Enabled Robotic
Assembly Planning and Control System with Enhanced Adaptability.

HOGSKOLAN
I SKOVDE GRAPHICAL USER INTERFACE Final Year Project

Wang, L., Keshavarzmanesh, S. & Feng, H.-Y., 2010. A function block based approach for
increasing adaptability of assembly planning and control, Skévde: s.n.

Wang, L., Song, Y. & Gao, Q., 2009. Designing function blocks for distributed process planning
and adaptive control. Engineering Applications of Artificial Intelligence, p. 1127-1138.

Vogel, L., 2008. Java and XML — Tutorial. Volume 1.3.

Yandell, H., 2002. Generating XML via java. [Online]

Available at: http://www.techrepublic.com/article/generating-xml-via-java/1044810
[Accessed 21 02 2012].

Ziesemer, M. A., 2007. XML generation in java. [Online]
Available at: http://blogger.ziesemer.com/2007 06 01 archive.html
[Accessed 21 02 2012].

HOGSKOLAN . .
1 SKOVDE GRAPHICAL USER INTERFACE Final Year Project

10. Appendix

All codes (Java functionality) about the bachelor final year project are available in the research
computers of the Automation Group at University of Skévde.

