
Audio Video Streaming
Solution for Bambuser

Syed Usman Ahmad mcs10usd@cs.umu.se
Qasim Afzaal mcs08qml@cs.umu.se

June 25, 2012
Master’s Thesis in Computing Science, 2*15 credits

Supervisor at CS-UmU: Jan Erik Moström jem@cs.umu.se
Examiner: Jerry Eriksson jerry@cs.umu.se

Ume̊a University
Department of Computing Science

SE-901 87 UMEÅ
SWEDEN

Abstract

Audio/Video streaming has widely been used in different applications but the social com-
munication applications have especially raised its usage. The aim of this thesis is to design
and develop an improved Audio/Video streaming solution for a Swedish company Bambuser
and can easily be extended with new features where necessary.
Currently Bambuser is using the Flash Media Server (FMS) for streaming the media, but it
is license based and adds the extra cost to the company’s budget. It does not support a wide
range of platforms (e.g. OpenBSD and various Linux distributions) and also has limited
options for the streaming. There is no real time monitoring and controlling functionality,
which can show the status of essential services to the user, needed for the streaming (for
example if the camera is working, microphone is turned on, battery power status. etc.).

In order to solve these issues the GStreamer is used, which is an Open source multimedia
streaming framework. The GStreamer environment was tested on different Linux distribu-
tions. The research and implementation includes the creation of the streaming pipeline and
analyzing which options (i.e. GStreamer elements and plugins) are required to stream the
media. It also includes the testing of different pipeline parameters (for example video rate,
audio rate etc.) and noting their effects in a real working environment. Python binding
with GStreamer is used to have better control over the pipeline.
Another requirement of this project was to add the functionality of monitoring and control
that shows the status of essential services to the user. Implementation of this part is done
by using server and client side coding.
Further improvements and suggestions are also proposed in this report.

ii

Contents

1 Introduction 1

1.1 Background . 1

1.1.1 Video Streaming . 1

1.1.2 Video4Linux . 6

1.1.3 Linux Audio . 6

1.1.4 GStreamer . 7

1.1.5 Monitoring and Control . 9

2 Problem Description 11

2.1 Goals . 11

2.2 Purpose . 12

3 Comparison of Framework/Technique 13

3.1 Background . 13

3.2 General Principle . 13

3.2.1 User Factors . 13

3.2.2 Technical Factors . 14

3.3 Possible Solution . 14

3.3.1 FFmpeg . 14

3.3.2 VLC . 15

3.3.3 GStreamer . 16

3.4 Summary . 17

4 Design 19

4.1 System Design Overview . 19

4.2 Tools and Environment Setup . 20

4.2.1 Method 1 . 20

4.2.2 Method 2 . 21

5 Implementation 23

5.1 GStreamer pipeline using FFmpeg . 23

5.2 GStreamer pipeline using rtmpsink . 24

iii

iv CONTENTS

5.2.1 Pipeline Overview . 24

5.2.2 Pipeline Elements . 25

5.3 Monitoring and Controlling . 28

5.3.1 Battery . 28

5.3.2 Microphone . 28

5.3.3 Server . 28

5.3.4 Camera . 29

5.4 The Web Interface . 30

6 Evaluation 33

6.1 Test Results . 33

6.2 Bugs and other Problems . 34

7 Conclusion 35

7.1 Limitations . 35

7.2 Restrictions . 35

7.3 Related Work . 36

7.4 Future Work . 36

8 Acknowledgements 39

References 41

Chapter 1

Introduction

Bambuser is a Swedish company providing an interactive live video broadcasting service,
for streaming live video from mobile phones and webcams to the internet [24]. Bambuser’s
main office is situated in Stockholm, Sweden.

This is an exam project given by a Swedish company Data Ductus AB situated in Skellefte̊a
The goal of the project was to create a Media streaming and monitoring application for
Bambuser. The design of the new system is basically an improved version of their old sys-
tem. A prototype was created first, which then was tested on different environments with
different settings. The prototype was then implemented as a real web application which was
tested by users and iteratively improved.

1.1 Background

1.1.1 Video Streaming

Streaming is a process to play an audio or video file over the internet and deliver constant
data stream to the player [27]. Streaming is now very popular over the internet as it allows
users to not wait for the file to download [27].
Now a days video streaming is very popular that allows users to stream live videos on the
internet. User need to subscribe to a streaming service provider (e.g. Hulu, Netflix) to get
a streaming IP. Using this IP, they can stream the media [11].

1.1.1.1 Working

There are three major components needed for the streaming i.e. the streaming publisher or
broadcaster, streaming server and a player on the client side [11].
The sender publishes the contents, received from a source (i.e. from an audio or video
device) which gets encoded into a proper format and sent to the streaming server. For en-
coding, the publisher uses application/framework such as GStreamer, VideoLAN, FFmpeg
etc. The streaming server that runs a streaming application such as Adobe Flash Media
Server (FMS), Red5, Darwin etc., receives the encoded contents from the user. The server
uses the streaming protocol (such as rtmp, rtsp etc.) to stream the contents to the client(s)
over the internet [11]. It is also shown in the figure 1.1.

1

2 Chapter 1. Introduction

Figure 1.1: Basic working of streaming [11].

1.1.1.2 Network Architecture Types

1.1.1.2.1 Unicast

Unicast streaming offers a one-to-one connection between the client and the server. Each
client gets a separate stream when it makes a request to the server as shown in figure 1.2
[9]. Unicast stream is a good solution when the streaming server has limited bandwidth and
can only support a specific number of clients or the network is not multicast-enabled [9].

1.1. Background 3

Figure 1.2: Streaming media based on Unicast [9].

1.1.1.2.2 Multicast

In multicast streaming the streaming server uses a single IP address to multicast the stream,
which is replicated on the internet and any client which has subscribed to this specific IP
can access the stream as shown in the figure 1.3 [9].
Multicast allows the clients to be synchronized with each other as everyone receives the
stream at the same time. Multicast stream is good when the number of clients is large [9].

4 Chapter 1. Introduction

Figure 1.3: Streaming media based on Multicast [9].

1.1.1.2.3 Content Delivery Network

Content Delivery Network (CDN) are large distributed system servers spread over the inter-
net [33]. CDN are generally commercial companies such as Akamai Technologies, Amazon
CloudFront which aim to provide the content to the end user with high availability and high
performance [8, 33].
CDN are now widely used for the live streaming to provide better quality of service to the
end user. The streaming server sends a unicast stream to a CDN server, the CDN server
routes the stream to its cache and proxy servers over the internet [8, 33]. The user(s) re-
quests for the stream (i.e. multicast-mode) from their ISPs (which are generally close to the
one of the CDNs on the internet) and then able to view the stream as shown in the figure
1.4 [8].

1.1. Background 5

Figure 1.4: Streaming media based on CDN [8].

1.1.1.3 Streaming Protocols

There are many streaming protocols available to stream an audio or video. Some popular
streaming protocols are for example RTP, RTSP, RTMP, HTTP etc. Each streaming proto-
col have different way of working and need different network and server requirements. We
have used the RTMP (Real Time Messaging Protocol) streaming protocol for our project
which we have described in more detail.

1.1.1.3.1 RTMP

RTMP protocol, which was developed by Adobe Systems, is used to stream Audio/Video
over the internet, using a Flash Media Server (FMS) and a Flash player. RTMP protocol
uses the TCP stateful port 1935 (by default) for the streaming [18].
The meaning of stateful is that the streaming server keeps track of all the client’s actions

6 Chapter 1. Introduction

(for example when the client starts the streaming and at which time it was stopped) [13].
The client communicates its states to the server by issuing commands (for example Play,
Stop etc.). The client uses the player that is responsible to communicate to server and
logs all the actions. When a session is established between the client and the server, the
server starts to transfer the stream data in the form of packets. This streaming process
continues until the session is ended [13]. Stream contents are not downloaded in advance
and discarded after being played.

RTMP is also supported by many CDNs such as Akamai Technologies, Amazon CloudFront,
CDNvideo etc. [33], which allows many professional media organizations (for example Hulu,
Vimeo etc.) to provide streaming to the end users.

1.1.2 Video4Linux

Video4Linux or V4L is an application programming interface (API) that allows to capture
video in Linux. V4L supports devices such as web camera, USB video camera, TV tuner
etc. The V4L initially introduced in the Linux Kernel version 2.2 [36, 10].
As V4L was the first ever API designed for the Linux video devices. It was very inflexible
and complex to be used for application development and testing purpose [36].

Later on a new version was released that is called Video4Linux2 or V4L2. It was intro-
duced in the Linux kernel version 2.6 [36]. The V4L2 allows much better usage of API for
different development and testing purpose. V4L2 is backward compatible but later on V4L
was deprecated and removed officially [36].
V4L2 API is supported by many popular applications such as. GStreamer, MPlayer, Skype,
VLC etc.

1.1.3 Linux Audio

Linux comes with the audio support and there are two main popular audio interfaces which
are widely used discussed below:

OSS

OSS (Open Sound System) was the first Linux audio interface to support audio devices[36].
It is open source and was initially designed for different UNIX based systems. Due to
its simple design, OSS was also used in other operating system such as Solaris [15]. OSS
however lacks in supporting modern audio devices and has different bugs and problems in
development and testing for newer versions of Linux kernel [36].

ALSA

ALSA (Advanced Linux Sound Architecture) is an open source audio framework providing
an API for audio devices [35]. ALSA was introduced in Linux kernel version 2.6 by replacing
OSS [36, 35]. ALSA was much powerful and quite easy to use than OSS for the developers
and it supports almost all audio devices. ALSA comes by default with all the major Linux
distributions. Although OSS is almost considered as obsolete now but ALSA still provides
backwards compatibility to support OSS APIs [35].

1.1. Background 7

1.1.4 GStreamer

GStreamer is a framework for media streaming which can be used in many different applica-
tions. GStreamer framework is originally written in C language and is widely used in many
different applications e.g. Xine, Totem, VLC etc. [39]. The reason of it’s widely usage is
because:

(a) It is available as an Open Source.

(b) It provides an API for multimedia applications.

(c) It comes with many audio video codec and other functionality to support various for-
mats.

(d) It provides bindings for different programming languages e.g. Python, C etc.

GStreamer is packed with the core libraries (which provides all the core GStreamer services
such as plugin management and its types, elements and bins etc.) [2]. It comes with the
four major plugins, which are also used in this project for media streaming, are described
in Table 1.1. [39, 37].

Plugin Names Summary
gst-plugins-base These are the essential set of base plugins for the GStreamer to work.
gst-plugins-good These are the set of good-quality plugins.
gst-plugins-ugly These are the set of good-quality plugins, may not work in some cases.
gst-plugins-bad These are not very good quality plugins but are useful for some cases.

Table 1.1: GStreamer core plugins.

GStreamer provides different kind of packages to be used in different applications, as per
the development’s need e.g. gst-python, gst-ffmpeg, gst-rtsp etc.
In GStreamer all begins with a source of the media stream. Source can be a file, a stream
from internet, camera, a sound from a microphone etc. A source needs an ending point,
which is called sink element. A sink element can be another file, speakers or a visual element.
The figure 1.5 below will help to understand this concept.

Figure 1.5: GStreamer high level overview [39].

There are also some other fundamental components which are taken from the source [39, 31]
are described below:

8 Chapter 1. Introduction

– Elements : In GStreamer every component is called an Element except the stream
itself. Every element should have at least one sink, a source, or both. An element has
one specific task, which can be the reading of data from a file or outputting this data
to the sound card. One will usually create a chain of elements linked together so data
can flow through this chain of elements. Such linking will create a pipeline that can
do a specific task for example media playback etc.
Elements can be in four states:

1. Null: This is usually the default state and no resources are allocated for this
state.

2. Ready: In this state the resources are allocated for the file or device but the
stream is not opened.

3. Paused: The stream is open by an element but is not currently active i.e. frozen.

4. Playing: The stream is active and the data is flowing.

– Filters : Filters are usually used to operate on the source (sink) data and pass on
the operated data as a source to the next element. The figure 1.6 is given below for
better understanding.

Figure 1.6: GStreamer pipeline with filters [39].

– Bus : A Bus is a simple system that is used to transfer messages between the pipeline
threads. Every pipeline by default contains a bus so there is no need to create anything
new. Automatic creation of bus makes the developers life easy. They do not need to
worry about threads as well. All they have to do is to define a handler to the messages
arriving through the pipeline.

– Working : The figure 1.7 below shows the very basic working of the GStreamer. It
needs a source element which can be a file or a hardware device such as web camera,
microphone and then you can put additional processing elements as needed and the
final output i.e. the sink element can be a display device or audio device.

As we can see for the above diagram it is taking the input from the source and then
using plugins such as mad, audioconvert and then transferring the final output to an
audio source [34]. A GStreamer pipeline consists of various data sources and sinks.
Here is the example of working pipeline command of the above figure 1.7.

gst-launch-0.10 filesrc location=music.mp3 ! mad ! audioconvert !

alsasink

1.1. Background 9

Figure 1.7: Basic GStreamer streaming pipeline working [34].

1.1.5 Monitoring and Control

Monitoring in this case is to keep track of the devices, attached to the user’s system. The
essential monitoring system includes the features to display the continuously updating status
of the Video Camera, Microphone, Server status, Battery/Power status. A help guide is
provided for the user’s help, to troubleshoot and control the system in some particular
scenarios.

10 Chapter 1. Introduction

Chapter 2

Problem Description

The problems this project aims to solve are mostly related to the streaming, monitoring and
flaws associated with it.
Currently the Bambuser does not support any Monitoring and Controlling solution. So a
monitoring functionality that monitors the resources at the client end (for example if the
camera is working, microphone is turned on, battery power status.) and shows to the user
as an overall status of the system, required to be developed. A controlling part will include
a troubleshoot guide for the user’s help.
Another problem is with the video streaming which is currently using the Adobe Flash
Media Server (FMS) for the audio video streaming but it is license based and adds the extra
cost to the company’s budget [28]. The limitation is that it does not support a wide range
of O.S platforms (such as OpenBSD and various Linux distributions) and it has limited
options (supports only flash based contents) for the streaming [28].
So we need a way to the streaming method platform independent and to be Open Source.

2.1 Goals

The main goal of this project is to build an application for monitoring and controlling a
system which is used for real-time video broadcasting. It should give the user the possibility
to launch an application where the settings are pre-defined for the stream. To accomplish
this, a series of sub-goals must be accomplished:

– A requirements study must be carried out in order to determine what the users need
in a Monitoring and Control system and how the issues associated with Bambuser
streaming can be solved.

– A prototype needs to be build and evaluated.

– The system must be implemented as a web application and must have troubleshooting
support for the users.

– The resulting system needs to be evaluated with user tests.

11

12 Chapter 2. Problem Description

2.2 Purpose

The purpose of doing this project is to improve the streaming mechanism for the Bambuser.
So the media can be streamed in various formats and supports most of the OS platforms.
As GStreamer is Open Source software, so the company will also save the licensing cost.
Another important part of this project is to implement a Monitoring and Controlling func-
tionality that allows the Bambuser users to view the status of necessary services for the
streaming.

Chapter 3

Comparison of
Framework/Technique

3.1 Background

A comparative study was required for the selection of an appropriate framework/technique.
The requirement was that the framework/technique should support, a wide range of au-
dio/video codecs, binding for different programming languages, streaming protocols e.g.
RTMP. On the other hand it should be Open Source to reduce the overall cost and should
be scalable to accommodate the further growth. This research is summarized below to
explain the pros and cons of different techniques.

3.2 General Principle

Before getting into details of the streaming, Let us first define a general principle that
describes how should the streaming media (i.e. audio and video) can be combined together
as a single unit. As shown in the figure 3.1, we are taking input for both the audio and the
video from a source. This source can either be a file or a hardware device. After that this
raw input is passed to the filtering unit. The filtering unit performs the filtering operations
such as audio/video rate, height, width etc. Later it is passed to the conversion unit which
converts the files into different formats (e.g. flv, avi, mp3, ogg). Finally they are multiplexed
together in a synchronized way as a single unit that can be sent to the sink. The sink can
either be a file, device or server.

3.2.1 User Factors

The above general principle may get changed as it depends on the user needs. For example,
if the user wants to have better quality of either audio or video then more processing
components will be involved. Similarly, if the user wants to have a specific file type extension
(for example, mp3 for the audio and avi for the video) then it is possible that there will be
an involvement of additional plugins and thus the principle will have some changes.

13

14 Chapter 3. Comparison of Framework/Technique

Figure 3.1: General Principle.

3.2.2 Technical Factors

The support of libraries and system driver files is also an important technical factor involved
that may affect the general principle. If the system driver/library files are outdated/obsolete
then it is possible that the principle will fail. Also variations in Operating System distribu-
tions (e.g. Debian, RedHat etc.) might cause some problems (such as synchronization, high
use of resources etc.) due to the device driver files they support.

3.3 Possible Solution

In this section we shall discuss the possible solutions that can be used for the success of this
project. We use the same general principle for getting the streaming media as previously
discussed in the section 3.2. Also we assume that file extension for the video must be flv
(which is also the need of this project).

3.3.1 FFmpeg

• Introduction
FFmpeg (stands for Fast Forward MPEG) is an Open Source multimedia framework.
It allows encoding, filtering, multiplexing, streaming etc. of videos in different formats
(such as flv, mpeg, avi etc.) [21]. FFmpeg is written in C language and is very easy
to use for the developers.

• Support and Performace
FFmpeg is cross-platform (i.e. Linux, Microsoft Windows, Mac OS X, Amiga OS
etc.) and supports more than 100 audio/video codecs. It is lightweight and is very
fast for converting audio/video files [21]. It is now a days supported by many of
the hosting providers (which are usually based on virtual private servers (VPS) or
dedicated servers) [14].

• How it works
FFmpeg will take the input for the audio source (i.e. ALSA) and video from the
camera (V4L2 based). For the audio we need to specify that from which hardware
device it can capture. As in our case we need to specify the interface with a device
name hw:0,0 to tell FFmpeg that it is a microphone [29]. The same case will be used

3.3. Possible Solution 15

for capturing the video as we will need to specify /dev/video0 to specify that it will
be a web camera [32].
After that the normal filtering (such as audio rate, video rate, video size) operations
will be applied on both the captured audio and video. The next step is to perform
the conversion of the formats it can be transmitted to the server.
In order to play the streaming media on the server over internet, it is required the
server is install and configured with the ffplay (which is an ffmpeg library) [21]. How-
ever other 3rd party softwares such as Red5, Wowza, Adobe FMS, etc. can also be
used for playing the streaming media.
All of theoretical detail described above, in practical will be defined in a single com-
mand line as FFmpeg does not support any bindings for the developers to define all
the parameter and settings in a programming language code.

• Pros and Cons
FFmpeg is easy and simple to use and available in both command line and graphical
interface for the developers. It also supports different streaming protocols. FFmpeg
at the moment is the mostly used video service by different hosting providers. One
of the major advantages of FFmpeg is that it can handle most of the complex details
automatically (e.g. multiplexing of an audio and a video, buffering etc.) which makes
is very easy to use.
However FFmpeg has some limitations i.e. it does not support a wide range of au-
dio/video codecs, especially when it comes to recording videos from devices such as
Android, TV etc. FFmpeg lacks also in supporting binding for different programming
languages. FFmpeg is better suited for streaming the media from a single source but
not from multiple sources.

3.3.2 VLC

• Introduction
VLC is an Open Source media player which is developed by the VideoLAN project
[20]. It is very popular and easy to use for video streaming and playback. It was
initially introduced as a client-end player but later on it is now also used by many
developers on different projects [20]. VLC is also widely used by cable TV operators
for the streaming of videos to the subscribers as it provides a very good GUI.

• Support and Performace
VLC is cross-platform (i.e. Linux, Microsoft Windows, Mac OS X, FreeBSD, Android
OS etc.) and provides portability of same settings on different environments. It
supports hundreds of audio/video codecs [20]. It also supports different streaming
protocols and provides binding to different programming languages (Java and Python).
VLC has recently started supporting Android based mobile devices [20]. VLC is
written in C, C++ and Objective C using Qt and provides a very good GUI for end
users and developers.

• How it works
VLC works in almost the same way as FFmpeg does, but it also need to know the
interfaces of audio and video devices so that it can capture and then perform the
filtering and conversion on them. The interesting thing here is to note that VLC is
well supported for the flv files.
VLC gives and option to the developers to write a program to perform the streaming by

16 Chapter 3. Comparison of Framework/Technique

using of the binding such as PyVLC (i.e. Python with VLC) [17]. This gives advantage
to the developers so they can perform various test and debugging operations. On the
other hand, VLC’s commands on the terminal are difficult to use and they are much
more complex than FFmpeg.
But VLC allows naive users to stream videos to the server by using the simple GUI.

• Pros and Cons
VLC provides much more support of audio video codecs than FFmpeg and has much
better GUI. Development is more easier on VLC due to the availability of the bindings
of different programming languages for the developers.
However VLC still lacks in supporting one of the major streaming protocols i.e. RTMP.
VLC development team is still trying to add the support for streaming the videos using
the RTMP protocol.

3.3.3 GStreamer

• Introduction
GStreamer is an Open Source multimedia framework, as previously discussed in de-
tailed under section 1.1.4.

• Support and Performance
GStreamer supports a wide range of audio/video codecs and is cross-platform sup-
ported (i.e. Linux, Microsoft Windows, Solaris, FreeBSD, Android OS etc.) [39, 37].
It also provides binding to more programming languages (such as Python, Java, C
etc.) than VLC [39]. GStreamer does not have a GUI (Graphical User Interface) but
still easy to use. Its performance is very good and that is why it is used in many
different media players (e.g. Totem, Xine etc.).

• How it works
GStreamer takes the input from the audio source (i.e. ALSA) and video from the
camera (V4L2 based). It is not necessary to specify the interface of the devices (as
GStreamer detects them automatically) unless some other interface is being used (e.g.
/dev/video1/ for a USB based video camera). Once the audio and video is captured
it is sent to the filtering unit for the adjustment of different rates and sizes. Later
then it is passed to the conversion plugin. Since our requirement is to have video in
flv format, therefore we have to use the FFmpeg plugin for the flv video conversion.
After that both streams i.e. the audio and the video are combined (multiplexed) as
a single stream which can later be transmitted to the server. More deeper level of
working detail can be found under the chapter 5.

• Pros and Cons
GStreamer covers all the limitations of both FFmpeg and VLC which we have dis-
cussed above. GStreamer allows streaming on the RTMP protocol and also supports a
wide range of audio/video codecs. GStreamer also supports binding for many different
programming languages (such as Python, Java, C etc.).
GStreamer do have some problems which we have found after doing the practical
testing during our project implementation. One of the major problem is the insta-
bility with different Linux distributions. These problems are defined in detail in the
chapter 5

3.4. Summary 17

3.4 Summary

From the articles and thesis reports study, a lot of information has been gained that is help-
ful during this thesis work. Most valuable finding is GStreamer. All the important points
are presented in this section.
Since Data Ductus has asked us to improve the streaming process of Bambuser, so we have
to get some detailed information about streaming process. Our goal is to create an im-
proved version of streaming process by analyzing different techniques and comparing their
pros and cons. It is a challenge for us to understand the background; the purpose and the
functionality of the product. This is something we need to overcome as the outcome would
highly affect the result. Quality is prioritized high to meet the user’s expectations, while
keeping in mind the reliability.

One of the issue with the earlier streaming method of Bambuser is that it is using the
Adobe Flash Media Server (FMS), which does not support a wide range of platforms (e.g.
OpenBSD and various Linux distributions) and also has limited options for the streaming
(e.g. no support for RTSP) [28, 6]. Also FMS is license based and adds extra cost to
the company’s budget. To overcome these limitations, we are using GStreamer which is an
Open Source multimedia framework. It overcomes all the limitations which were faced using
Adobe FMS.

Another problem at the user’s end is the unavailability of monitoring service (for exam-
ple if the camera is working, microphone is turned on, battery power status. etc.). We are
aiming to add this feature in the Bambuser so making user capable to monitor the resources
of their system. Interfaces surely will have a good graphical representation but much of the
attention will be given to the technical or the back end tasks.

18 Chapter 3. Comparison of Framework/Technique

Chapter 4

Design

4.1 System Design Overview

Figure 4.1 below describes the overall system design.

Figure 4.1: Overall System Diagram

The Monitoring and control part basically fetches the status of different services (for exam-
ple if the camera is working, microphone is turned on, battery power status. etc.), used in
the system. Bash scripts are used in the backend to fetch this information.
The web interface is the central part where user can stream the media and/or view the
status of different devices. The user can make a request to start the streaming using the
web interface, which is then sent to the GStreamer. The stream and the status of service
are then viewed on the interface, if the request is executed.
GStreamer is running at the backend that handles all the requests related to media stream-
ing. When it receives a request, it executes the predefined pipeline for streaming the media
that starts the live streaming and sends it to the Bambuser. Python bindings are used with
GStreamer for better handling of pipeline.

19

20 Chapter 4. Design

4.2 Tools and Environment Setup

Table 2 4.1 shows the tools and technologies used for this project.

Operating System Linux RedHat Fedora 15, 16
Web Server Apache 2.0
Languages PHP, Python, HTML, CSS, XML
Scripting Bash (Linux Shell Scripting)
Frameworks GStreamer, FFmpeg
Others JQuery

Table 4.1: Tools and Technologies used.

Following tools and packages (with their dependencies) were installed on our Linux machine
(Fedora 15, 16) to setup the environment.

• Apache

• cURL (with support of PHP.)

• FFmpeg (with support of FLV modules.)

• GStreamer (with support of all required plug-ins i.e. base, good, bad, ugly and the
support of Python bindings.)

• PHP

• Python

• XML

The installation and configuration of the GStreamer are based on the stable release that
is used to create the GStreamer pipeline as described in the section 5.1. We also have
done the customized installation and configuration of GStreamer unstable release (which
keeps the pre-installed version of GStreamer intact and use this unstable version without
any conflicts) using two different methods which was needed for the successful testing and
implementation of this whole project.
The two different methods are described below:

4.2.1 Method 1

In this method, we have installed and configured the GStreamer unstable version in order
to use the rtmpsink plugin [16]. This unstable version will not remove the pre-installed
GStreamer and will work in parallel with it. For this we have used the method of Pitivi
[12].
After the successful setup of the unstable version of GStreamer, Some tests were performed
to check the working of GStreamer with this new plugin. All the tests were successful except
the use of Python binding with GStreamer (due to the sub-sub shell access problem [12].)

4.2. Tools and Environment Setup 21

4.2.2 Method 2

In this method, more advanced and complex installation/configuration was done. We down-
loaded all the required modules of the GStreamer from the official website [4]. All these
modules are developer version and were downloaded in order to use the rtmpsink plugin and
test it with our application.
Surely we do not want to break down the system by removing the pre-installed GStreamer
version (as many different core system programs and applications are dependent of it e.g.
GNOME, KDE etc.). So we compiled all the downloaded sources and customized the in-
stallation path to /usr/local/bin instead of /usr/bin and setting up the appropriate
Environment variable path for it.

Also, to make the Python bindings work with the new GStreamer installation, the following
command should be used in the beginning of the python file:

sys.path.insert(0, '/usr/local/lib/python2.7/site-packages/gst-0.10')

After the successful installation and configuration of GStreamer, we performed the same
tests again and this time all the tests were successful. The above two methods are used to
create the GStreamer pipeline, that is discussed in more detail in section 5.2.

22 Chapter 4. Design

Chapter 5

Implementation

5.1 GStreamer pipeline using FFmpeg

After setting up a successful working environment, next step is to make the streaming
pipeline using the GStreamer elements. When we started this project we created the stream-
ing pipeline from the stable release.
The idea behind the pipeline working is that we have two FIFO Queues (one for audio and
one for video) and then combining them together to send the stream as shown in the figure
5.1. The first queue i.e. for video is able to handle video either from a web cam or a USB
video compliant device (i.e. V4L2). The audio queue is taken from ALSA (Advanced Linux
Sound Architecture) via built in microphone or some other audio input device. It is encoded
in GStreamer and then saved as .flv file. Then this Flash file is fed to FFmpeg which was
sent to the server [21].

Figure 5.1: GStreamer pipeline with FFmpeg.

This solution is a working one but it is not very effective, as there was the overhead of
first saving the file into an .flv format and then calling FFmpeg to send it for the broad-
casting.

23

24 Chapter 5. Implementation

5.2 GStreamer pipeline using rtmpsink

Research work was done to make the streaming more efficient. We found that a new ele-
ment rtmpsink in the gst-plugins-bad is available but not as a stable release [16]. The main
reason to use this plugin is that it does not need to have separate audio and video queues
as it takes them together and directly sends it to the server that is also shown in the figure
5.2. We had also discussed this scenario with the company and they recommended the same.

Figure 5.2: New GStreamer pipeline (using rtmpsink element).

Therefore to test and make the application working with a good streaming method we
setup the environment to use the GStreamer unstable release, as previously discussed in
section 4.2.

5.2.1 Pipeline Overview

We have made a new pipeline for streaming and used the Python binding with GStreamer.
We have used the gst.parse launch() for our pipeline as it works perfectly for our application
[22]. In a pipeline, we are taking the audio from the ALSA source and Video from the V4L
or V4L2 compliant devices.
For the video, it first gets the synchronized video frames (by using GEntrans which is a
3rd party plugin [3]) and then applying the filtering (i.e. defining the parameters such as
height, width, etc.). The last step for video is to convert it into a proper flv format using
the ffmpegcolorspace.
For the audio, it performs the filtering operation (such as audio rate, channels etc.) and
then converting it into proper format.
The final step is to combine both (audio and video) using a multiplexer and which sends
the output results to the RTMP Server, as shown in the figure 5.3 below.

To have a better control over the pipeline, we have used the bus signals, by which it detects
the states (e.g. PLAY, PAUSE, NULL) and helps in better error handling [39]. Since we
have used the unstable release of GStreamer therefore we have to make some additional
adjustments in our PyGSt code by adding the proper path of the GStreamer launcher as
defined in previous section 4.2.2. We have used the secret user stream id when sending the
data to the server. To get the secret stream id, we have used the Python with XML that

5.2. GStreamer pipeline using rtmpsink 25

Figure 5.3: In depth detail of streaming pipeline.

collects the required information from the PHP-cURL code.

5.2.2 Pipeline Elements

5.2.2.1 v4l2src

The v4l2src element is used to capture the video frames from a V4L2 compliant device [16].
The video device sends the video frames to the V4L2 driver, which loads different driver
files as needed [36]. The V4L2 component works as an interface between the application
and the video device. It uses the V4L2 API to access the V4L2 driver so that it can send
the data to the application as shown in the figure 5.4 [32].

26 Chapter 5. Implementation

Figure 5.4: Components involved between V4L2 video and GStreamer [36].

5.2.2.2 stamp

The stamp element is used to synchronize the incoming raw video data from the web-camera
[3]. As the stamp counts the incoming video frames, sent by the v4l2src. It has two main
parameters i.e. sync-interval and sync-margin. The sync-interval checks and verifies whether
the timestamp of the incoming video frames is equal to the sync-margin timestamp. If it is
not then it will re-synchronize the frames. By using this element the video is delivered to
other pipeline elements in a synchronized form.
The stamp element is not an official GStreamer plugin but rather comes as a 3rd party tool
i.e. GEntrans [3].

5.2.2.3 filter - video

To filter the video, videorate element is used [16]. This element takes an incoming stream
of timestamped video frames, performs filtering operation such as width, height, frame-rate
etc.

5.2.2.4 ffmpegcolorspace

The ffmpegcolorspace element is used to convert the raw filtered video, which it gets from
the filter (videorate) element, into a valid colored format (i.e. Flash video format) [16].
We are also using the x264enc (i.e. a video encoder) plugin with the ffmpegcolorspace to
compress and reduce the size of the video without effecting its quality [16]. This significantly
helps to send video to server without using too much network bandwidth.

5.2.2.5 alsasrc

The alsasrc element is used to capture the audio from the audio hardware [16]. The audio
hardware sends the recorded analog audio to the ALSA kernel driver. The ALSA PCM

5.2. GStreamer pipeline using rtmpsink 27

plugin converts the analog audio format into digital format [29]. Finally GStreamer captures
the audio using the ALSA Library API which is also shown in the figure 5.5 below.

Figure 5.5: Components involved between ALSA audio and GStreamer [5].

As we are capturing the microphone data from the alsasrc, that is accessed via an interface
with a device name hw:0,0 by default [29]. This name can be different for example, for a
USB based audio device, the device name will be hw:1,0.

5.2.2.6 filter - audio

Audiorate element is used to filter the audio data [16]. This element takes incoming stream
of raw audio and produces a stream by inserting or dropping samples automatically as
needed.

5.2.2.7 audioconvert

The audioconvert element is used to convert the audio into various formats [16]. We are
using the audioconvert element to convert the raw audio format captured from the alsasrc
(i.e. from microphone) into an mp3 format. For converting the it into mp3 format, we are
using the lamemp3enc element [16].

5.2.2.8 mux

The mux here is basically working as a multiplexer, i.e. it is combining the audio and video
stream together as a single stream which can be later on sent to the server.

28 Chapter 5. Implementation

5.2.2.9 rtmpsink

The rtmpsink element is used to send FLV content such as Flash video to the server via
RTMP protocol [16]. In order to use the rtmp plugin it is required to install an additional
package of librtmp, which supports the library of RTMP streams (e.g. rtmp, rtmpt, rtmpe,
etc.).
We are using the rtmpsink element in our pipeline to send the stream to the server by
defining the URL of Bambuser with the secret user stream id.

5.3 Monitoring and Controlling

For the Monitoring of the essential services needed for the streaming, we have used Bash
scripting to find the information for the services running in the machine for example laptop
battery power, web-cam status, microphone status, server uptime, as shown in the figure
5.6. Various techniques (e.g. sed, awk, etc.) have been used in bash scripts to find the

Figure 5.6: Monitoring service

specific information about these services. These scripts are being called via PHP by using
the shell exec() function as this function returns the output from the Linux command line.
Following is the detail of the four parts used for the monitoring purpose in our application.

5.3.1 Battery

The Linux ACPI (Advanced Configuration and Power Interface) daemon is responsible for
providing the detailed information about the power status of various hardware components.
We have used the ACPI daemon with the proc command to find the information about the
battery power.

5.3.2 Microphone

ALSA provides an interface with the proc command to access and debug the audio hardware.
We have used the ALSA-Library API to get the information about the status of the hardware
(see figure 5.5 for reference) [29]. We are fetching the status of the Microphone with the
/proc/asound to find whether the device is in use or free.

5.3.3 Server

To monitor the server status we have used the ping command with additional options, -c
to count the number of requests sent to the server and -w to check the number of timeout
response from the server.

5.3. Monitoring and Controlling 29

5.3.4 Camera

We are using the command /dev/video0 (which is used to access V4L2 devices), to check
the status of the camera. It will be null if the camera is off otherwise it means that the
camera is in use. This /dev/video0 is basically derived from the V4L2 driver as shown in
the figure 5.7. The V4L2 driver has the support for the camera, ranging from 0 to 64. The
first camera (by default) start from 0 [32].

Figure 5.7: Camera using the V4L2 driver.

A wiki page is also created for troubleshooting and help purpose. As there can be many
reasons for a service to be interrupted or stopped. So, we have included some specific cases,
for which user can get help to solve the problem/issue as shown in figure 5.8. Different
possibilities are defined to why a particular service may not be working/running and what
can be done to resolve it.

30 Chapter 5. Implementation

Figure 5.8: Troubleshooting section for monitoring service

5.4 The Web Interface

The final step was to make a web based interface of this application. Objective was to keep
it simple and user friendly. We have used PHP programming language with HTML and
CSS. To start the stream, user needs first to login to the application.
Since we do not have the access to the Bambuser’s database which contains all the user’s cre-
dentials, therefore we have made a login system that uses the PHP cURL library. It checks
the username and password from the Bambuser website and if the username/password is
authenticated, it will allow the user to login to the application. It is also shown in the figure
5.9. We have used JQuery for our login system and PHP Session functions on all the pages
to make it as much secure as possible from invalid data and different attacks.

Once the user is logged in, an XML file is created that contains a unique stream id and a
specific URL for the streaming which is needed in order to start the live streaming. There
is a special page where we have shown the Monitoring status of different services along with
controlling option (which we have described in the section).
Since our goal was to show the status in real time (i.e. continuously updating values) there-
fore we have used JQuery that displays the updated status every few seconds. Bambuser
player API is used to display the streaming video as shown the figure 5.10.

5.4. The Web Interface 31

Figure 5.9: Login area for the users

Figure 5.10: Live streaming area with real time monitoring and controlling service

When the user starts the streaming, the exec() function executes the Python code which
runs on the terminal and it starts the streaming as well. During the streaming the user
views the video in the player and also can see the status of different services.

32 Chapter 5. Implementation

To stop the streaming we have made a bash script which stops the Python code running in
the background. Once the streaming stops the user gets back to the same page and can view
the video which was streamed recently. An animation is being played for a few seconds,
before and after the streaming so in the meanwhile, all the necessary scripts can be loaded.
So in this way we keep the user aware that something is loading in the background instead
of making him think of that something is not working.

Chapter 6

Evaluation

6.1 Test Results

After running several test runs we have made it working. We analyzed that the quality of
the audio and video is however not very smooth. To improve the smoothness of the video,
we have decreased the size of width and height property which comes inside the video rate
capabilities. By doing that it improved a lot.

To improve the quality of the audio we have decreased the audio rate inside the audio
capabilities of the audio source (i.e. ALSA). By doing that we have made it improved but
it was still no very good.

When using the Python bindings with GStreamer, we first used the normal add(), link()
and gst.element link many() functions, but it did not work with our pipeline . Since our
pipeline is very complex so it didn’t work out as we thought. It works correctly by using
the gst.parse launch() function. Although instead of using the add() and link() functions
for each elements to make a pipeline. The reason to do this is that since this both have
functions will have same results, but since the pipeline is very big and may get more complex
in future (as there will be a project to make a studio which provide streaming from multiple
sources) so for that gst.parse launch() function is better to use.

First we tried to create the streaming pipeline by using the pre-installed GStreamer (i.e.
GStreamer that comes with the Linux O.S by default) but it failed because it does not have
the support to stream the video to RTMP Server. Therefore we had to install and configure
a GStreamer’s unstable release with customized settings. So the both GStreamer release
can work without any conflicts.

This solution may not work correctly on all Linux distributions. We have tested our solu-
tion on Fedora 15, 16 and Ubuntu 9.10. It worked correctly on Ubuntu but with Fedora
it had audio/video synchronization problems. The reason for this problem is that video is
taking more resources that audio, due to which the stream starts correctly but then it stops
working.

33

34 Chapter 6. Evaluation

6.2 Bugs and other Problems

Our goal was to develop an efficient application for the Bambuser that is capable of streaming
the media and monitoring the user’s resource. But there some limitations:

• When we start the stream, it works as expected in the beginning but after a while, the
audio and video do not get synchronized with each other. It is because the video takes
much of the resources so the audio is unable to keep with the video. This problem
is solely based on the O.S that we used i.e. Red Hat Fedora 15 but the same thing
works correctly on Ubuntu 9.10.

• Video camera should support V4L2 drivers, Otherwise the camera will not be com-
patible with this streaming solution.

• The darkness in the surrounding environment will affect the streaming as the camera
will use much of the hardware resources to improve the video quality.

• Original GStreamer version pre-installed with the O.S did not work for this application.

• Portable GStreamer worked fine but not with python due to sub-sub shell access.

Chapter 7

Conclusion

The overall goal of the project was to build a system that can extend the functionality of
Bambuser. Several sub goals were set to reach this goal. A summary of how these sub goals
were fulfilled follows:

A requirement study focusing on user needs and the limitations of Bambuser.

• Prototypes were created and evaluated.

• The system was implemented as a web application.

• The web application was evaluated with user tests.

The system meets almost all the requirements. The requirements that could not accom-
plish, have been moved to the Future work section below.

7.1 Limitations

The limitations which we faced during this project were that the GStreamer’s unstable re-
lease worked for our application but it conflicted with the pre-installed version of the original
GStreamer and overlaps with the version of Python bindings.

This solution seems to work fine on Debian based Linux distributions but when tested
on other Linux distribution (for example Red Hat) it does not present the expected results,
i.e. the synchronization between the audio and video lags. The possible reason behind this
issue can be that the video is taking much of the system resources.
After doing some research on this issue, we found that the possibility of this issue might
be due to variation of the Linux distribution or non-compatible device driver for the audio
hardware.

7.2 Restrictions

We do not have the access to the main database of the Bambuser, where we can be able to
access the login credentials of the users.
For the work around we have made the login code using PHP with cURL which accesses
the Bambuser remotely. The code works correctly as needed. Recently Bambuser had made
several changes on their server due to which our login code still works but sometimes it fails.

35

36 Chapter 7. Conclusion

7.3 Related Work

Recently major TV channels such as CNN and NBC now broadcasting their TV programs
but the targeted viewers are PC users. Some countries started to provide the Digital Mul-
timedia Broadcasting service via satellite which is a major advancement in the streaming
service [30].
Another example is of Amazon, which has recently announced a licensing agreement with
different cable television providers [19]. It will make available the current TV shows and
programs for Amazon’s users.
Axis Communications AB is another renowned Swedish international company are currently
working in the area of network video solution using live video streaming technology for se-
curity and monitoring purpose [23]. This security and monitoring solution can be based on
a few or thousands of cameras.
StickAm is the pioneer of the live interactive web broadcasting, to the largest live commu-
nity [25]. This project is quite relative to the Bambuser. In addition, StickAm also allows
interactive video chatting that allows multiple users from different location, to interact with
each other. It also has the group gaming feature which allows users to play games (e.g.
poker, shuffle, chess etc.) in a group and interact with each other at the same time.
BlogTv is a leading live, interactive broadcasting platform that enables anyone with an
internet connection and a camera to connect to their audience in an evocative, direct way
[26]. blogTV uses a one to many model, which means that the user can broadcast to an
audience of unlimited size. Users have created their channels which categorized according
to video genre and language. It also shows the scheduled upcoming streams.

Currently the Bambuser is just focusing on Live streaming i.e. the user’s records their
videos which then can be played on the Bambuser site later on. By studying and comparing
other broadcasting sites, we think that the features like video chatting, gaming etc. will
add value to the Bambuser. And more users will use their services as they will get all the
features at the same platform. We personally would like to have channels feature in the
Bambuser, so we can create the channel and stream the videos which are viewable by all
other users.

7.4 Future Work

Several interesting features could be implemented in the future.

• Currently the solution works for a single camera but this can be extended to a web
cam studio [7].

• It is also noted that for streaming from multiple video sources the current solution did
not work very well as the quality was not good, but by using the theora format for
the video works fine with it [38].

• One future work could be to make GStreamer compatible with different Linux distri-
butions.

• A customization that some users might appreciate is the ability to select which tasks
that should visible on a user basis.

7.4. Future Work 37

• Currently the Apache web server is used for the this application, but suEXEC can be
used in future if the web server might be used for other purpose [1].

38 Chapter 7. Conclusion

Chapter 8

Acknowledgements

We would like to thank our internal supervisor Jan Erik Moström for his support and help
with the report and the process for the project. We would also like to thank external
supervisor Mathias Gyllengahm at Data Ductus AB for his help and support with the
project. Also the other faculty members in the University (Thomas Frosmann, Frank Drewes
and some others) who help and guide us. Big thanks also go out to our family members for
supporting and helping us morally.

39

40 Chapter 8. Acknowledgements

References

[1] Apache suexec support. http://httpd.apache.org/docs/1.3/suexec.html.

[2] Gstreamer 0.10 core reference manual. http://gstreamer.freedesktop.org/data/

doc/gstreamer/head/gstreamer/html.

[3] Gstreamer entrans. http://gentrans.sourceforge.net.

[4] Gstreamer: open source multimedia framework. http://gstreamer.freedesktop.

org.

[5] Linux sound systems. http://en.opensuse.org/SDB:Sound_concepts.

[6] Streaming media. http://help.adobe.com/en_US/flashmediaserver/

techoverview/WS07865d390fac8e1f-4c43d6e71321ec235dd-7fff.html.

[7] Webcam studio for gnu/linux. http://www.ws4gl.org.

[8] Producing participatory media, 2006. http://itp.nyu.edu/_sve204/ppm_summer06/
class4.html.

[9] Unicast and multicast streaming, 2009. http://www.thehdstandard.com/

hd-streaming/unicast-and-multicast-streaming.

[10] What is v4l or dvb?, 2010. http://www.linuxtv.org/wiki/index.php/What_is_V4L_
or_DVB%3F.

[11] What is video streaming, 2010. http://www.sparksupport.com/blog/

video-streaming.

[12] Gstreamer from git, 2011. https://wiki.pitivi.org/wiki/GStreamer_from_Git.

[13] Http versus rtmp: Which way to go and why, 2011. http://www.cisco.com/en/US/

prod/collateral/video/ps11488/ps11791/ps11802/white_paper_c11-675935.

pdf.

[14] Introduction to ffmpeg, 2011. http://www.thewebhostinghero.com/articles/

introduction-to-ffmpeg.html.

[15] Open sound system, 2011. http://www.opensound.com/wiki/index.php/Main_Page.

[16] Overview of available plug-ins, 2011. http://gstreamer.freedesktop.org/

documentation/plugins.html.

[17] Python bindings, 2011. http://wiki.videolan.org/Python_bindings.

41

http://httpd.apache.org/docs/1.3/suexec.html
http://gstreamer.freedesktop.org/data/doc/gstreamer/head/gstreamer/html
http://gstreamer.freedesktop.org/data/doc/gstreamer/head/gstreamer/html
http://gentrans.sourceforge.net
http://gstreamer.freedesktop.org
http://gstreamer.freedesktop.org
http://en.opensuse.org/SDB:Sound_concepts
http://help.adobe.com/en_US/flashmediaserver/techoverview/WS07865d390fac8e1f-4c43d6e71321ec235dd-7fff.html
http://help.adobe.com/en_US/flashmediaserver/techoverview/WS07865d390fac8e1f-4c43d6e71321ec235dd-7fff.html
http://www.ws4gl.org
http://itp.nyu.edu/_sve204/ppm_summer06/class4.html
http://itp.nyu.edu/_sve204/ppm_summer06/class4.html
http://www.thehdstandard.com/hd-streaming/unicast-and-multicast-streaming
http://www.thehdstandard.com/hd-streaming/unicast-and-multicast-streaming
http://www.linuxtv.org/wiki/index.php/What_is_V4L_or_DVB%3F
http://www.linuxtv.org/wiki/index.php/What_is_V4L_or_DVB%3F
http://www.sparksupport.com/blog/video-streaming
http://www.sparksupport.com/blog/video-streaming
https://wiki.pitivi.org/wiki/GStreamer_from_Git
http://www.cisco.com/en/US/prod/collateral/video/ps11488/ps11791/ps11802/white_paper_c11-675935.pdf
http://www.cisco.com/en/US/prod/collateral/video/ps11488/ps11791/ps11802/white_paper_c11-675935.pdf
http://www.cisco.com/en/US/prod/collateral/video/ps11488/ps11791/ps11802/white_paper_c11-675935.pdf
http://www.thewebhostinghero.com/articles/introduction-to-ffmpeg.html
http://www.thewebhostinghero.com/articles/introduction-to-ffmpeg.html
http://www.opensound.com/wiki/index.php/Main_Page
http://gstreamer.freedesktop.org/documentation/plugins.html
http://gstreamer.freedesktop.org/documentation/plugins.html
http://wiki.videolan.org/Python_bindings

42 REFERENCES

[18] Video delivery: Rtmp streaming, 2011. http://www.longtailvideo.com/support/

jw-player/jw-player-for-flash-v5/12535/video-delivery-rtmp-streaming/.

[19] Amazon streaming adds staples from mtv, comedy central and nickelodeon, 2012. http:
//www.wired.com/epicenter/2012/02/amazon-prime-viacom.

[20] Documentation - videolan wiki, 2012. http://wiki.videolan.org/Documentation:

Documentation.

[21] Ffmpeg documentation, 2012. http://ffmpeg.org/ffmpeg.html.

[22] Gstreamer 0.10 core reference manual, 2012. http://gstreamer.freedesktop.

org/data/doc/gstreamer/head/gstreamer/html/gstreamer-GstParse.html_

gst-parse-launch.

[23] Axis Communications AB. Product guide, network video solutions, 2011. http://www.
axis.com/files/brochure/pg_video_45078_en_1111_lo.pdf.

[24] Bambuser. Bambuser official website for live video broadcasting, 2007. http://www.

bambuser.com.

[25] Bambuser. Live stream video chat — stickam, 2012. http://www.stickam.com.

[26] blogTV. blogtv - stream live for free — live broadcasts, live chat, live tv, 2012. http:
//www.blogtv.com.

[27] Iomega Corporation. Understanding media streaming. Technical report, Iomega an
EMC Company, 3721 Valley Centre Drive, Suite 200, San Diego, CA 92130, USA, 2009.
http://download.iomega.com/resources/whitepapers/media-streaming.pdf.

[28] Adobe Systems Incorporated Adobe Flash Media Server 4.5 Datasheet. Adobe® flash®

media server 4.5, 2011. http://www.adobe.com/products/flashmediaserver/pdfs/
fms45_ds_ue_v1.pdf.

[29] Takashi Iwai Frank van de Pol Jaroslav Kysela, Abramo Bagnara. ALSA library API
reference. http://www.alsa-project.org/alsa-doc/alsa-lib.

[30] Seunghoon Jeong. Customized and manageable streaming service using a le-converting
server. Master’s thesis, University of California, San Diego, November 2006. http:

//cseweb.ucsd.edu/classes/fa06/cse237a/finalproj/sjeong.pdf.

[31] Marcelo Lira. Introducing the gstreamer, 2008. http://www.cin.ufpe.br/~cinlug/

wiki/index.php/Introducing_GStreamer.

[32] Hans Verkuil Martin Rubli Michael H Schimek, Bill Dirks. Video for Linux Two API
Specication Revision 0.24, 2008. http://v4l2spec.bytesex.org/v4l2spec/v4l2.

pdf.

[33] Chris O’Kennon. Content delivery networks, 2010. http://www.faulkner.com/

freereport/content.htm.

[34] Jens persson. Python gstreamer tutorial, 2009. http://pygstdocs.berlios.de/

pygst-tutorial/index.html.

[35] Dave Phillips. A user’s guide to alsa. Linux Journal Contents # 136, August 2005.

http://www.longtailvideo.com/support/jw-player/jw-player-for-flash-v5/12535/video-delivery-rtmp-streaming/
http://www.longtailvideo.com/support/jw-player/jw-player-for-flash-v5/12535/video-delivery-rtmp-streaming/
http://www.wired.com/epicenter/2012/02/amazon-prime-viacom
http://www.wired.com/epicenter/2012/02/amazon-prime-viacom
http://wiki.videolan.org/Documentation:Documentation
http://wiki.videolan.org/Documentation:Documentation
http://ffmpeg.org/ffmpeg.html
http://gstreamer.freedesktop.org/data/doc/gstreamer/head/gstreamer/html/gstreamer-GstParse.html_gst-parse-launch
http://gstreamer.freedesktop.org/data/doc/gstreamer/head/gstreamer/html/gstreamer-GstParse.html_gst-parse-launch
http://gstreamer.freedesktop.org/data/doc/gstreamer/head/gstreamer/html/gstreamer-GstParse.html_gst-parse-launch
http://www.axis.com/files/brochure/pg_video_45078_en_1111_lo.pdf
http://www.axis.com/files/brochure/pg_video_45078_en_1111_lo.pdf
http://www.bambuser.com
http://www.bambuser.com
http://www.stickam.com
http://www.blogtv.com
http://www.blogtv.com
http://download.iomega.com/resources/whitepapers/media-streaming.pdf
http://www.adobe.com/products/flashmediaserver/pdfs/fms45_ds_ue_v1.pdf
http://www.adobe.com/products/flashmediaserver/pdfs/fms45_ds_ue_v1.pdf
http://www.alsa-project.org/alsa-doc/alsa-lib
http://cseweb.ucsd.edu/classes/fa06/cse237a/finalproj/sjeong.pdf
http://cseweb.ucsd.edu/classes/fa06/cse237a/finalproj/sjeong.pdf
http://www.cin.ufpe.br/~cinlug/wiki/index.php/Introducing_GStreamer
http://www.cin.ufpe.br/~cinlug/wiki/index.php/Introducing_GStreamer
http://v4l2spec.bytesex.org/v4l2spec/v4l2.pdf
http://v4l2spec.bytesex.org/v4l2spec/v4l2.pdf
http://www.faulkner.com/freereport/content.htm
http://www.faulkner.com/freereport/content.htm
http://pygstdocs.berlios.de/pygst-tutorial/index.html
http://pygstdocs.berlios.de/pygst-tutorial/index.html

REFERENCES 43

[36] Martin Rubil. Building a webcam infrastructure for gnu/linux. Master’s thesis, Swiss
Federal Institute of Technology, Lausanne, Switzerland, 2006. http://rubli.info/

academia/projects/thesis/linux_webcam.pdf.

[37] Ninad Sathaye. Learn how to develop multimedia applications using Python with this
practical step-by-step guide. Packt Publishing Ltd., 32 Lincoln Road, Olton, Birming-
ham, B27 6PA, UK, 2010.

[38] Theora.org. Theora.org documentation - theora, video for everyone, 2011. http://

www.theora.org/doc/.

[39] Andy Wingo Ronald S. Bultje Stefan Kost Wim Taymans, Steve Baker. GStreamer Ap-
plication Development Manual 0.10.36. http://gstreamer.freedesktop.org/data/

doc/gstreamer/head/manual/manual.pdf.

http://rubli.info/academia/projects/thesis/linux_webcam.pdf
http://rubli.info/academia/projects/thesis/linux_webcam.pdf
http://www.theora.org/doc/
http://www.theora.org/doc/
http://gstreamer.freedesktop.org/data/doc/gstreamer/head/manual/manual.pdf
http://gstreamer.freedesktop.org/data/doc/gstreamer/head/manual/manual.pdf

	Introduction
	Background
	Video Streaming
	Video4Linux
	Linux Audio
	GStreamer
	Monitoring and Control

	Problem Description
	Goals
	Purpose

	Comparison of Framework/Technique
	Background
	General Principle
	User Factors
	Technical Factors

	Possible Solution
	FFmpeg
	VLC
	GStreamer

	Summary

	Design
	System Design Overview
	Tools and Environment Setup
	Method 1
	Method 2

	Implementation
	GStreamer pipeline using FFmpeg
	GStreamer pipeline using rtmpsink
	Pipeline Overview
	Pipeline Elements

	Monitoring and Controlling
	Battery
	Microphone
	Server
	Camera

	The Web Interface

	Evaluation
	Test Results
	Bugs and other Problems

	Conclusion
	Limitations
	Restrictions
	Related Work
	Future Work

	Acknowledgements
	References

