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SE-651 88 Karlstad, SWEDEN
Abstract
This thesis is devoted to the study of mixed norm spaces that arise in

connection with embeddings of Sobolev and Besov type spaces. The work
in this direction originates in a paper due to Gagliardo (1958), and was
continued by Fournier (1988) and by Kolyada (2005).

We consider fully anisotropic mixed norm spaces. Our main theorem
states an embedding of these spaces into Lorentz spaces. Applying this re-
sult, we obtain sharp embedding theorems for anisotropic fractional Sobolev
spaces and anisotropic Sobolev-Besov spaces. The methods used are based
on non-increasing rearrangements and on estimates of sections of functions
and sections of sets. We also study limiting relations between embeddings
of spaces of different type. More exactly, mixed norm estimates enable us to
get embedding constants with sharp asymptotic behaviour. This gives an
extension of the results obtained for isotropic Besov spaces Bα

p by Bourgain,
Brezis, and Mironescu, and for Besov spaces Bα1,...,αn

p by Kolyada.
We study also some basic properties (in particular the approximation

properties) of special weak type spaces that play an important role in the
construction of mixed norm spaces and in the description of Sobolev type
embeddings.
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1. Introduction

This work is devoted to the study of mixed norm spaces that arise in
connection with embeddings of Sobolev and Besov spaces.

A function f ∈ Lp(Rn), 1 ≤ p <∞, is said to belong to the Sobolev space
W 1
p (Rn) if f has weak derivatives Dkf ∈ Lp(Rn) for all 1 ≤ k ≤ n. In 1938

Sobolev proved the following, now classical, theorem.

Theorem 1.1. Let n ≥ 2, 1 < p < n, and q = np/(n− p). If f ∈ W 1
p (Rn)

then f ∈ Lq(Rn) and

‖f‖q ≤ c
n∑
k=1

‖Dkf‖p. (1.1)

It was first in 1958 that this theorem was extended to the case p = 1. This
was done independently by Gagliardo and Nierenberg. The next lemma was
the central part of Gagliardo’s approach (see [10]). We use the notation x̂k
for the vector in Rn−1 obtained from a given vector x ∈ Rn by removing its
kth coordinate.

Lemma 1.2. Let n ≥ 2. Assume that the functions gk ∈ L1(Rn−1), k =
1, ..., n, are non-negative. Then∫

Rn

n∏
k=1

gk(x̂k)1/(n−1)dx ≤
( n∏
k=1

∫
Rn−1

gk(x̂k)dx̂k
)1/(n−1)

.

Let f ∈W 1
1 (Rn). For almost every x ∈ Rn,

|f(x)| ≤ 1
2

∫
R
|Dkf(x)|dxk ≡ gk(x̂k), k = 1, ..., n. (1.2)

Applying Lemma 1.2, we obtain (n′ denotes the conjugate of n)

‖f‖n′ ≤
1
2

( n∏
k=1

‖Dkf‖1
)1/n

.

This implies Theorem 1.1 for p = 1. However, one can obtain a stronger
statement from Lemma 1.2. Let

Vk ≡ L1
x̂k

(Rn−1)[L∞xk(R)], 1 ≤ k ≤ n,
be the space with the mixed norm

‖f‖Vk ≡ ‖Ψk‖L1(Rn−1),

where
Ψk(x̂k) = ess supxk∈R |f(x)|.

We say that the L1-norm is the “exterior” norm of Vk and the L∞-norm
is the “interior” norm. Applying Lemma 1.2 to the functions Ψk gives the
following theorem.
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Theorem 1.3. Let n ≥ 2. If f ∈ ∩nk=1Vk, then f ∈ Ln′(Rn) and

‖f‖n′ ≤
( n∏
k=1

‖f‖Vk
)1/n

.

For f ∈W 1
1 (Rn), inequality (1.2) gives

‖f‖Vk ≤
1
2
‖Dkf‖1. (1.3)

This estimate and Theorem 1.3 implies inequality (1.1) for p = 1.
Let S0(Rn) be the class of all measurable functions f on Rn such that the

distribution function λf (y) is finite for all y > 0. Let f∗ denote the non-
increasing rearrangement of a function f ∈ S0(Rn). If 0 < q, p < ∞, then
the Lorentz space Lq,p(Rn) is defined as the class of all functions f ∈ S0(Rn)
such that

‖f‖q,p =
(∫ ∞

0

[
t1/qf∗(t)

]pdt
t

)1/p
<∞.

For any fixed q, the Lorentz spaces increase as the secondary index p in-
creases (see Section 2.3 below).

It is well known that the left-hand side in (1.1) can be replaced by the
stronger Lorentz norm (see [8], [27], [28], and [29]). That is, the following
theorem holds.

Theorem 1.4. Let n ≥ 2 and 1 ≤ p < n. Set q = np/(n − p). If f ∈
W 1
p (Rn), then f ∈ Lq,p(Rn) and

‖f‖q,p ≤ c
n∑
k=1

‖Dkf‖p. (1.4)

In [9], Fournier proved this theorem for p = 1, using the following refine-
ment of Theorem 1.3.

Theorem 1.5. Let n ≥ 2. If f ∈ ∩nk=1Vk, then f ∈ Ln′,1(Rn) and

‖f‖n′,1 ≤ n′
( n∏
k=1

‖f‖Vk
)1/n

. (1.5)

Observe that for the characteristic function of the unit cube in Rn we
have equality in (1.5). Thus, the constant n′ is optimal.

Some extensions of Theorem 1.5 were obtained in the paper [5] due to
Blei and Fournier. In particular, it was proved that for any 1 < r ≤ ∞

‖f‖q,1 ≤ c
n∑
k=1

‖f‖
V

(r)
k

, (1.6)
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where q = nr/(nr − r + 1) and

V
(r)
k = L1

x̂k
(Rn−1)[Lrxk(R)] (k = 1, . . . , n).

It was shown in [9], [25] that the preceding results give a sharpening of
some inequalities for bilinear forms proved by Hardy and Littlewood.

In view of (1.3), Theorem 1.5 immediately implies Theorem 1.4 for p = 1.
Fournier [9, p. 66] observed that it was not clear how the methods based on
mixed norm estimates could be applied to obtain (1.4) also for 1 < p < n.
This problem was studied by Kolyada in [19]. He introduced a scale of
more general mixed norm spaces in which the interior norms are defined by
conditions on the rearrangements with respect to specific variables. These
conditions are expressed in terms of the “weak” spaces Λσ. Let σ ∈ R.
Denote by Λσ(R) the class of all functions f ∈ S0(R) such that

‖f‖Λσ = sup
t>0

tσ(f∗(t)− f∗(2t)) <∞. (1.7)

If 0 < σ < ∞ and r = 1/σ, then Λσ = Lr,∞ (where Lr,∞ is the
Marcinkiewicz space weak-Lr). If σ = 0, then Λσ coincides with the space
weak-L∞ introduced in [2]. If σ < 0, then (1.7) is a weak version of Lipschitz
condition for the rearrangement (see Section 3).

The main result in [19] is the following theorem.

Theorem 1.6. Let n ≥ 2. Assume that 1 ≤ p <∞ and that αk, k = 1, ..., n,
are positive numbers such that

α ≡ n
( n∑
k=1

1
αk

)−1
<
n

p
. (1.8)

Set

σk =
1
p
− αk, Vk ≡ Lpx̂k(Rn−1)[Λσkxk(R)],

and q = np/(n − αp). Suppose that f ∈ S0(Rn) and f ∈ ∩nk=1Vk. Then
f ∈ Lq,p(Rn) and

‖f‖q,p ≤ c
n∏
k=1

‖f‖α/(nαk)
Vk

, (1.9)

where

c = cn

( n∏
k=1

(nαk − α)α/(nαk)
)−1/p

(1.10)

and cn depends only on n.

Observe that Theorem 1.6 remains true for α = n/p (the space L∞,p is
defined in Section 2.3).
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It follows from Theorem 1.6 that for any 1 < r <∞, the interior Lr-norm
on the right-hand side of (1.6) can be replaced by the weaker Lr,∞-norm.

It was proved in [19] (see Lemma 5.5 and Remark 5.6 below) that if a
function f ∈ Lp(Rn) has a weak derivative Dkf ∈ Lp(Rn), then

‖f‖
Lpx̂k

[Λ
1/p−1
xk

]
≤ 4‖Dkf‖p, 1 ≤ p <∞.

Hence, there holds the embedding

W 1
p (Rn) ⊂

n⋂
k=1

Lpx̂k(Rn−1)[Λ1/p−1
xk

(R)]. (1.11)

We now obtain Theorem 1.4 in two steps. The first (and simplest) step
is (1.11) and the second step is Theorem 1.6 with α1 = · · · = αn = 1.

In [19], Theorem 1.6 was also applied to study estimates involving certain
Besov norms.

In Theorem 1.4 all derivatives Dkf belong to the same space Lp(Rn).
Nevertheless, it is quite reasonable to suppose that the functions Dkf ,
k = 1, . . . , n, belong to different spaces Lpk(Rn). Such conditions natu-
raly appear in embedding theory as well as in applications. Furthermore,
many authors have studied Sobolev and Besov spaces whose construction
involves, instead of Lp-norms, norms in more general spaces - first of all, in
the Lorentz spaces. There are many important problems in Analysis that
lead to spaces of this type.

Therefore it is natural to study mixed norm spaces which are anisotropic
not only with respect to interior norms, but also with respect to exterior
norms. The main problem considered in this work is to extend Theorem
1.6 to these, more general, mixed norm spaces. Our main result is Theorem
4.5, it states in particular the following.

Theorem 1.7. Let n ≥ 2, 1 ≤ p1, . . . , pn, s1, . . . , sn <∞, and α1, . . . , αn >
0. Put

α = n
( n∑
k=1

1
αk

)−1
, p =

n

α

( n∑
k=1

1
αkpk

)−1
, and s =

n

α

( n∑
k=1

1
αksk

)−1
.

Assume that p < n/α and put q = np/(n− αp). Set

σk =
1
pk
− αk, and Vk = Lpk,skx̂k

(Rn−1)[Λσkxk(R)],

and assume that

rk ≡
1
p
− α

n
− σk > 0,
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for k = 1, . . . , n. Suppose that

f ∈ S0(Rn) and f ∈
n⋂
k=1

Vk.

Then f ∈ Lq,s(Rn) and

‖f‖q,s ≤ c
n∏
k=1

‖f‖α/(nαk)
Vk

, (1.12)

where c depends only on p1, . . . , pn, s1, . . . , sn, α1, . . . , αn, and n.

We have obtained the constant in (1.12) explicitly. This explicit value is
used in Section 5, where we consider applications of Theorem 1.7.

As we will show, Theorem 1.7 holds in the case p = n/α as well.
The proof of Theorem 1.7 is based on the approach given in the works of

Kolyada [19] and Kolyada and Péres [21].
Applying Theorem 1.7, we obtain sharp embedding theorems for aniso-

tropic Sobolev-Liouville and anisotropic Sobolev-Besov spaces. We also
study limiting relations between embeddings of spaces of different type.
More exactly, mixed norm estimates enable us to get embedding constants
with sharp asymptotic behaviour. This gives an extension of the results
obtained for isotropic Besov spaces Bα

p by Bourgain, Brezis, and Mironescu
[7], and for Besov spaces Bα1,...,αn

p by Kolyada [19].
The use of mixed norm estimates clarifies the role of smoothness con-

ditions in the embedding theorems for Sobolev and Besov-type spaces and
provides a method which is sufficiently flexible to be applied in both of
these settings. We stress that estimates of the interior Λσ-norms play a
crucial role in these methods. This is why it is important to study the basic
properties of the spaces Λσ.

In Section 3 we will see that approximation in the “norm” on Λσ behaves
badly. However, we have obtained some positive results on approximation
of functions f in this space. Our main result in this direction is the following
theorem.

Let C0(R) denote the class of all continuous functions with bounded sup-
port in R.

Theorem 1.8. Let f ∈ Λσ (σ ∈ R). Then there exists a sequence {fk},
fk ∈ C0(R), such that {fk} converges to f in measure and ‖fk‖Λσ → ‖f‖Λσ .

Observe that this theorem is similar to known results for approximation
in variation (see [32], [14, Section 9.1]).

As follows from the exposition given above, the spaces Λσ have a relevant
role in the description of Sobolev-type embeddings. We emphasize also
that the use of Lorentz norms as exterior norms in the definition of mixed
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norm spaces is natural and important. We have already obtained some
preliminary results (they are not included in this work) which show that
spaces defined in terms of Lp-norms are embedded to spaces defined in
terms of Lorentz norms. Moreover, these “intermediate” embeddings are
sharp.

In the continuation of this work we plan to apply Theorem 1.7 to extend
the results by Hardy and Littlewood concerning bilinear forms to forms
bounded in Lorentz spaces.

This thesis is organized as follows. Section 2 contains main definitions and
some auxilliary propositions. In Section 3 we study some basic properties of
the space Λσ, in particular the approximation properties of these spaces. In
Section 4 we prove our main result, Theorem 1.7. This section also includes
some relevant lemmas. In Section 5 we study applications of Theorem 1.7
to embeddings of Sobolev- and Besov-type spaces.

2. Definitions and auxiliary propositions

This section contains definitions and known results. In Section 2.1 we
state some known inequalities that we need. In Section 2.2 we define the
non-increasing rearrangement of a function and give some of its basic prop-
erties. This definition was first given by G. Hardy and J. Littlewood [12].
Estimates in terms of rearrangements will be important in the following
sections. In Section 2.3 we introduce the Lorentz spaces.

2.1. Inequalities. For E ⊂ Rn and k = 1, . . . , n we let ΠkE ⊂ Rn−1 be the
orthogonal projection of E onto the hyperplane xk = 0. If E is measurable,
then we let mesnE denote the Lebesgue measure of E in Rn. The following
theorem was proved by L. H. Loomis and H. Whitney [23].

Theorem 2.1. For any Fσ-set E ⊂ Rn there holds the inequality

(mesnE)n−1 ≤
n∏
k=1

mesn−1ΠkE. (2.1)

The next theorem was proved by G. Hardy (see e.g. [3, p. 124]).

Theorem 2.2. Let α > 0 and 1 ≤ p <∞. If f is a non-negative measurable
function on R+ ≡ (0,∞) then(∫ ∞

0
tα−1

(∫ ∞
t

f(u)du
)p
dt
)1/p

≤ p

α

(∫ ∞
0

tp+α−1f(t)pdt
)1/p

(2.2)

and(∫ ∞
0

t−α−1
(∫ t

0
f(u)du

)p
dt
)1/p

≤ p

α

(∫ ∞
0

tp−α−1f(t)pdt
)1/p

. (2.3)
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If, as in the above theorem, f is a non-negative measurable function on
R+ and α > 0, there hold the obvious inequalities

sup
t>0

tα
∫ ∞
t

f(u)du ≤ 1
α

sup
t>0

t1+αf(t) (2.4)

and

sup
t>0

t−α
∫ t

0
f(u)du ≤ 1

α
sup
t>0

t1−αf(t). (2.5)

The next inequality is statement (iv) in Theorem 2 in [22]. It is similar to
Hardy’s inequality (2.2), but for the case 0 < p < 1 and for non-increasing
functions. The calculation of the constant can be found in [19, p. 150].

Theorem 2.3. Let f be a non-negative non-increasing function on R+.
Suppose that α > 0 and 0 < p < 1. Then∫ ∞

0
tα−1

(∫ ∞
t

f(u)du
)p
dt ≤ e

(
1 +

p

α

)∫ ∞
0

tα+p−1f(t)pdt. (2.6)

2.2. The non-increasing rearrangement. Let f be a measurable func-
tion on Rn. For y ≥ 0 we define the distribution function of f by

λf (y) = mesn{x ∈ Rn : |f(x)| > y}.
Observe that λf may take the value ∞. Recall that S0(Rn) denotes the
class of all measurable almost everywhere finite functions f on Rn for which
λf (y) <∞ for all y > 0. A non-negative and non-increasing function f∗ on
R+ which is equimeasurable with f , i.e. which satisfies

mes1{t > 0 : f∗(t) > y} = λf (y),

for all y ≥ 0, is said to be a non-increasing rearrangement of the function
f ∈ S0(Rn). We will also assume that f∗ is left-continuous on R+. Under
this condition f∗ is defined uniquely by (see [17, p. 142])

f∗(t) = sup{ inf
x∈E
|f(x)| : mesnE = t}, (2.7)

where the supremum is taken over all measurable sets E ⊂ Rn having
measure t.

We now give some basic properties of the rearrangement that will come
to use in what follows. Let f ∈ S0(Rn) and put

At = {x : |f(x)| > f∗(t)},
t > 0. By the definition of f∗ it holds that

mesnAt ≤ t. (2.8)

It is also a consequence of the definition of f∗ that the measure of the set
Bt = {x : |f(x)| ≥ f∗(t)} satisfies

mesnBt ≥ t. (2.9)
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For each f ∈ S0(Rn) and every scalar a ∈ R it is immediate that af ∈
S0(Rn) (the distribution function of af is y 7→ λf (y/a), so it is finite). It
follows directly from (2.7) that

(af)∗(t) = |a|f∗(t), (2.10)

for all t > 0.
For f, g ∈ S0(Rn) and t, s > 0 it holds that (see [17, p. 142])

(f + g)∗(t+ s) ≤ f∗(t) + g∗(s). (2.11)

Let f ∈ S0(Rn) and fix ε > 0. Since f∗ and f are equimeasurable we
have

mes1{t > 0 : f∗(t) > ε} = λf (ε) <∞.
Since f∗ is non-increasing it follows that f∗(t) ≤ ε for all t > λf (ε). Thus,

lim
t→∞

f∗(t) = 0. (2.12)

We also have
lim
t→0+

f∗(t) = ‖f‖∞. (2.13)

Indeed, let y0 denote this limit. By (2.8) it holds that

mesn{x : |f(x)| > y0} ≤ mesn{x : |f(x)| > f∗(t)} ≤ t,
for all t > 0. Thus mesn{x : |f(x)| > y0} = 0, so that ‖f‖∞ ≤ y0.
Furthermore, (2.9) implies that ‖f‖∞ ≥ f∗(t) for all t > 0, and therefore
‖f‖∞ ≥ y0.

We also mention the following result [17, p. 143].

Proposition 2.4. If the sequence {fk} ⊂ S0(Rn) converges in measure to
the function f ∈ S0(Rn), then f∗k → f∗ at every point of continuity of f∗.

Let C(Rn) denote the class of all bounded continuous functions on Rn.

Lemma 2.5. Let f ∈ S0(Rn) ∩ C(Rn). Then, for every t0 > 0 there exists
a point x0 ∈ Rn such that f∗(t0) = |f(x0)|.

Proof. Fix t0 > 0. It is immediate from the definition of f∗ that 0 ≤
f∗(t0) ≤ ‖f‖∞. First we assume that f∗(t0) = 0. Suppose |f(x)| > 0 for all
x ∈ Rn. Let E ⊂ Rn be a compact set having measure t0. Since f ∈ C(Rn)
there exists x1 ∈ E where

f∗(t0) ≥ inf
x∈E
|f(x)| = |f(x1)| > 0,

which is a contradiction.
Next we suppose that f∗(t0) = ‖f‖∞. According to (2.9), it holds that

mesn{x : |f(x)| = ‖f‖∞} = mesn{x : |f(x)| ≥ f∗(t0)} ≥ t0 > 0,

so there exists x0 ∈ Rn where |f(x0)| = ‖f‖∞ = f∗(t0).
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The remaining case is when 0 < f∗(t0) < ‖f‖∞. Since f ∈ S0(Rn) we
can not have |f(x)| > f∗(t0) > 0 for all x ∈ Rn. So there exists x′ ∈ Rn

such that
0 ≤ |f(x′)| ≤ f∗(t0). (2.14)

Clearly there also exists a point x′′ ∈ Rn where

f∗(t0) ≤ |f(x′′)| ≤ ‖f‖∞. (2.15)

Since f has the intermediate value property it follows from (2.14) and (2.15)
that there exists some x0 along the line segment from x′ to x′′ for which
|f(x0)| = f∗(t0). �

Lemma 2.6. Let f ∈ S0(Rn) ∩ C(Rn). Then f∗ is continuous on R+.

Proof. Fix t0 > 0. Assume that f∗ is discontinuous at t0. Since f∗ is
left-continuous and non-increasing, it follows that

y0 ≡ lim
t→t0+

f∗(t) < f∗(t0).

So, f∗ takes no values in (y0, f
∗(t0)). Let τ ∈ (y0, f

∗(t0)) and suppose
|f(x0)| = τ for some x0 ∈ Rn. Since f is continuous, there exists some
δ > 0 such that if x1 ∈ Rn and |x0 − x1| < δ then∣∣τ − |f(x1)|

∣∣ =
∣∣|f(x0)| − |f(x1)|

∣∣ < f∗(t0)− y0.

Therefore
mesn{x : |f(x)| ∈ (y0, f

∗(t0))} > 0.

But, f and f∗ are equimeasurable so

mesn{x : |f(x)| ∈ (y0, f
∗(t0))} = mes1{s > 0 : f∗(s) ∈ (y0, f

∗(t0))} = 0,

which is a contradiction. Thus, if f∗ is discontinuous at t0, then |f | takes
no values in the interval (y0, f

∗(t0)). By (2.9)

mesn{x : |f(x)| ≥ f∗(t0)} ≥ t0 > 0.

Again by (2.9) and the equimeasurability of f and f∗,

mesn{x : f∗(t0 + 1) ≤ |f(x)| ≤ y0} =

= mesn{x : |f(x)| ≥ f∗(t0 + 1)} −mes1{s > 0 : f∗(s) > y0} ≥ 1,

so |f | takes values greater than f∗(t0) and values less than y0. Since f has
the intermediate value property, it follows that the whole interval (y0, f

∗(t0))
is in the range of |f |. Thus, the assumption that f∗ is discontinuous at some
point t0 leads to a contradiction. �
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Let f be continuous on a set E ⊂ Rn. The modulus of continuity of f is
the function δ 7→ ω(f ; δ), which is defined for all δ > 0 by

ω(f ; δ) = sup{|f(x)− f(y)| : x, y ∈ E, |x− y| ≤ δ}.

The supremum is over all x and y in the domain E of f such that |x−y| < δ.
For all α > 0 it holds that (see [17, p. 123])

ω(f ;αδ) ≤ (α+ 1)ω(f ; δ). (2.16)

The inequality stated by the next proposition is known, but we give a
simpler proof of it. Similar estimates can be found e.g. in [13], [26] and [15].

Proposition 2.7. Let f ∈ S0(Rn) ∩ C(Rn). Then

ω(f∗; δ) ≤ c ω(f ; δ1/n), (2.17)

for all δ > 0, where c = 2v−1/n
n + 1 and vn is the measure of the unit ball in

Rn.

Proof. By the triangle inequality we have ω(|f |; δ) ≤ ω(f ; δ), so we may
assume that f ≥ 0. Fix 0 < t′ < t′′ and estimate f∗(t′) − f∗(t′′). We can
assume that f∗(t′′) < f∗(t′). Let

A′ = {x : f(x) = f∗(t′)} and A′′ = {x : f(x) = f∗(t′′)}.

Since f ∈ S0(Rn)∩C(Rn), the sets A′ and A′′ are nonempty by Lemma 2.5.
Fix N ≥ 3. We will show that there exist points x′ ∈ A′ and x′′ ∈ A′′ such
that

|x′ − x′′| < 2
N + 1
N − 1

v−1/n
n (t′′ − t′)1/n. (2.18)

Let d be the distance from A′ to A′′, i.e.

d = inf{|x′ − x′′| : x′ ∈ A′, x′′ ∈ A′′}.

If d = 0 then |x′−x′′| can be choosen arbitrarily small, in particular so small
that (2.18) is satisfied. Assume that d > 0. Then there exists x′ ∈ A′ and
x′′ ∈ A′′ such that |x′ − x′′| < (1 + 1/N)d. Let these points be choosen so
that the function τ 7→ f(x′τ +(1−τ)x′′) only takes values in (f∗(t′′), f∗(t′))
for τ ∈ (0, 1). Set λN = N/(N + 1) − 1/2 > 0. Let B be the ball in Rn

centered at p = (x′+x′′)/2 of radius λN |x′−x′′|. Then B ∩A′ = ∅. Indeed,
suppose there exist a point y′ ∈ B ∩A′. Then

|y′ − x′′| ≤ |y′ − x′ + x′′

2
|+ |x

′ + x′′

2
− x′′| <

< (λN +
1
2

)|x′ − x′′| < (λN +
1
2

)(1 +
1
N

)d = d,

which is a contradiction. Similarly B ∩A′′ = ∅.
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Let

E = {x : f∗(t′′) < f(x) < f∗(t′)}.

We will prove that B ⊂ E. By choice of x′ and x′′ we know that

f∗(t′′) < f(p) < f∗(t′).

Suppose there exists a point q ∈ B where f(q) < f∗(t′′). Since f has the
intermediate value property there exists a point r along the line segment
from p to q where f(r) = f∗(t′′). Thus r ∈ B∩A′′, which is a contradiction.
In the same way the assumption that f(x) > f∗(t′) for some x ∈ B leads
to a contradiction. This proves that B ⊂ E. By our observations (2.8) and
(2.9) we then obtain

mesnB ≤ mesnE ≤ t′′ − t′.

This gives inequality (2.18). Now

f∗(t′)− f∗(t′′) = f(x′)− f(x′′) ≤ ω
(
f ; 2

N + 1
N − 1

v−1/n
n (t′′ − t′)1/n

)
.

Since N is arbitrary, we obtain

f∗(t′)− f∗(t′′) ≤ ω
(
f ; 2v−1/n

n (t′′ − t′)1/n
)
. (2.19)

By (2.16), this implies (2.17). �

Remark 2.8. Let n = 1. Then we have c = 2 in (2.17). However, in this
case (2.19) gives

ω(f∗; δ) ≤ ω(f ; δ), (2.20)

that is, (2.17) holds with c = 1. It is possible to give a shorter proof of
(2.20). Indeed, let 0 < t < t+h. Assume that f∗(t) > f∗(t+h). By Lemma
2.5, there exists x′, x′′ ∈ R such that |f(x′)| = f∗(t), |f(x′′)| = f∗(t + h),
and f∗(t + h) < |f(x)| < f∗(t) for all x between x′ and x′′. It is clear that
|x′ − x′′| ≤ h since otherwise we would have

mes1{x : f∗(t+ h) < |f(x)| < f∗(t)} > h,

which is a contradiction (by (2.8) and (2.9), this set has measure at most
h). Thus,

f∗(t)− f∗(t+ h) = |f(x′)| − |f(x′′)| ≤ ω(f ;h).

This implies inequality (2.20).
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2.3. Lorentz spaces. The Lorentz spaces Lq,p form a two parameter family
of spaces that contains the Lebesgue spaces Lp. We give here the definition
and some basic properties.

We observe first that the rearrangement preserves the Lp-norm. Indeed
it holds that (see [31, p. 191-192])∫

Rn
|f(x)|pdx =

∫ ∞
0

[f∗(t)]pdt, (2.21)

for all 0 < p <∞, and
‖f‖∞ = ‖f∗‖∞.

It follows from Lemma 3.17 on page 201 in [31] that given f ∈ S0(Rn)
and t > 0, there exists a measurable set Et ⊂ Rn having measure t such
that ∫

Et

|f(x)|dx = sup
|E|=t

∫
E
|f(x)|dx =

∫ t

0
f∗(u)du, (2.22)

where |E| denotes the measure of E and the supremum is over all measurable
sets E ⊂ Rn having measure t.

In what follows we set

f∗∗(t) =
1
t

∫ t

0
f∗(u)du.

It follows from (2.22) that the operator f 7→ f∗∗ is subadditive, that is,

(f + g)∗∗(t) ≤ f∗∗(t) + g∗∗(t). (2.23)

As was already mentioned in Section 1, when 0 < q, p < ∞, the space
Lq,p(Rn) is defined as the class of all f ∈ S0(Rn) such that

‖f‖q,p ≡
(∫ ∞

0
[t1/qf∗(t)]p

dt

t

)1/p
<∞.

By (2.21) we have that Lp,p coincides with the space Lp, 0 < p < ∞. For
0 < q <∞ we let Lq,∞(Rn) be the space of all f ∈ S0(Rn) for which

‖f‖q,∞ ≡ sup
t>0

t1/qf∗(t) <∞.

We also set L∞,∞(Rn) ≡ L∞(Rn). When 0 < p ≤ s ≤ ∞, 0 < q <∞, there
holds the inequality (see [3, Proposition 4.2])

‖f‖q,s ≤ c‖f‖q,p, (2.24)

where c only depends on p, s, and q. The last range of the parameters for
which we define the Lorentz space is when q =∞, 0 < p <∞. Then we let
L∞,p(Rn) consist of all f ∈ S0(Rn) such that (see [1], [24])

‖f‖∞,p ≡
(∫ ∞

0
[f∗∗(t)− f∗(t)]pdt

t

)1/p
<∞.
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If 1 ≤ q, p <∞ and f ∈ Lq,p(Rn), then by (2.24)

f∗(t) = O(t−1/q), (2.25)

as t→ 0+ and as t→∞.
For any function f ∈ S0(Rn), we will use the notation

∆f (t) ≡ f∗(t)− f∗(2t),

for t > 0. This difference will play an important role in the sequel. We now
define the modified Lorentz norm, denoted ‖ · ‖∗q,p, which will be equivalent
to the Lorentz norm of f but which is defined in terms of ∆f . This modified
Lorentz norm was introduced in [19]. When 1 ≤ q <∞ we set

‖f‖∗q,p =


(∫ ∞

0
[t1/q∆f (t)]p

dt

t

)1/p
, 1 ≤ p <∞

sup
t>0

t1/q∆f (t), p =∞.

Clearly, ‖f‖∗q,p ≤ ‖f‖q,p. To show that ‖f‖q,p ≤ c‖f‖∗q,p for some constant
c, we use the inequality:

f∗(2t) ≤ 1
ln 2

∫ ∞
t

∆f (u)
du

u
. (2.26)

To verify that (2.26) holds, fix t > 0 and take N > 2t. Then∫ N

t
∆f (u)

du

u
=
∫ 2t

t
f∗(u)

du

u
−
∫ 2N

N
f∗(u)

du

u
≥ f∗(2t) ln 2− f∗(N).

Now (2.26) follows if we let N tend to∞ and use (2.12). By (2.26), Hardy’s
inequality (2.2), and (2.4) we obtain that

‖f‖q,p ≤
21/qq

ln 2
‖f‖∗q,p, 1 ≤ q <∞, 1 ≤ p ≤ ∞. (2.27)

We define the modified Lorentz norm also when q = ∞ and 1 ≤ p < ∞.
In this case we set

‖f‖∗∞,p ≡
(∫ ∞

0
(∆f (t))p

dt

t

)1/p
.

To prove the equivalence between ‖·‖∞,p and ‖·‖∗∞,p we will use the following
inequalities

1
2

∆f

( t
2
)
≤ f∗∗(t)− f∗(t) ≤ 2

t

∫ t

0
∆f (u)du. (2.28)

The left inequality in (2.28) is immediate,

f∗∗(t)− f∗(t) ≥ 1
t

∫ t/2

0
[f∗(u)− f∗(t)]du ≥ 1

2
[f∗(t/2)− f∗(t)].
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To prove the right inequality in (2.28) we take 0 < ε < t/2 and observe that

2
∫ t

ε
∆f (u)du ≥

∫ t

ε
f∗(u)du−

∫ 2t

t
f∗(u)du ≥

∫ t

ε
f∗(u)du− tf∗(t).

The left inequality in (2.28) immediately implies that ‖f‖∗∞,p ≤ 2‖f‖∞,p.
By the right inequality in (2.28) and Hardy’s inequality (2.3) we have that

‖f‖∞,p ≤ 2‖f‖∗∞,p. (2.29)

3. The space Λσ

In this section we consider a one parameter family of spaces denoted Λσ.
These spaces were introduced in [19]. Let σ ∈ R. Recall from Section 1 that
a function f ∈ S0(R) belongs to Λσ if

‖f‖Λσ ≡ sup
t>0

tσ∆f (t) <∞.

Propositions 3.1, 3.2, and 3.3 below state embeddings of Λσ for different
values of σ. These results where obtained in [19]. Theorems 3.6 and 3.8
show how functions in Λσ can be approximated by simple functions (defined
below) and by continuous functions with compact support.

First we determine to what extent ‖·‖Λσ satisfies the properties of a norm.
We have ‖f‖Λσ ≥ 0 for all f ∈ Λσ since ∆f is non-negative. Moreover,
∆f = 0 on R+ if and only if f∗ = 0 on R+. Therefore ‖f‖Λσ = 0 if and only
if f = 0 a.e. on Rn. Furthermore, by (2.10), we have ‖λf‖Λσ = |λ|‖f‖Λσ ,
for all λ ∈ R. However, we will show that if σ ≤ 0 then there is no constant
c such that the “triangle inequality”,

‖f + g‖Λσ ≤ c(‖f‖Λσ + ‖g‖Λσ), (3.1)

holds for all f, g ∈ Λσ. Set fn = nχ(0,1], h2 = χ(1,2], and hn+1 = hn+χ(1,2n],
n ≥ 2. Using induction we prove that

∆fn = nχ(1/2,1],

∆fn+hn = χ(1/2,2n−1],

and

∆hn =
n−1∑
k=1

χ((2k−1)/2,2k−1].

So, if α ≥ 0, then ‖fn‖Λ−α = n2α, ‖fn + hn‖Λ−α = 2α, and ‖hn‖Λ−α = 2α.
Clearly there is no constant c for which

‖fn‖Λ−α ≤ c(‖fn + hn‖Λ−α + ‖hn‖Λ−α),

for all n ≥ 2, so (3.1) is not satisfied when σ ≤ 0. For σ > 0, (3.1) holds
with c = 4σ/(σ ln 2). To prove this we will use the following proposition.



17

Proposition 3.1. Let σ > 0 and set r = 1/σ. Then Λσ = Lr,∞(R) and

‖f‖Λσ ≤ ‖f‖r,∞ ≤
2σ

σ ln 2
‖f‖Λσ . (3.2)

Proof. The first inequality in (3.2) is immediate for all f ∈ Lr,∞(R). Let
f ∈ Λσ(R). By (2.26),

‖f‖r,∞ ≤
2σ

ln 2
sup
t>0

tσ
∫ ∞
t

∆f (u)
du

u
.

The second inequality in (3.2) now follows by inequality (2.4). �

Let σ > 0 and set r = 1/σ. Suppose f, g ∈ Lr,∞(R). By (2.11) we have

‖f + g‖r,∞ ≤ sup
t>0

t1/r(f∗(t/2) + g∗(t/2)) ≤ 21/r(‖f‖r,∞ + ‖g‖r,∞).

This inequality and Proposition 3.1 now give

‖f + g‖Λσ ≤
4σ

σ ln 2
(‖f‖Λσ + ‖g‖Λσ), (3.3)

for all f, g ∈ Λσ, i.e. (3.1) holds when σ > 0.
Define the space W , called weak-L∞, as the class of all f ∈ S0(R) such

that
‖f‖W = sup

t>0
[f∗∗(t)− f∗(t)] <∞.

This space was introduced in [2] by Bennett, DeVore, and Sharpely.

Proposition 3.2. The spaces Λ0 and W coincide and
1
2
‖f‖Λ0 ≤ ‖f‖W ≤ 2‖f‖Λ0 .

Proof. Let f ∈ W . The first inequality follows immediately from the first
inequality in (2.28). Therefore W ⊂ Λ0. Suppose f ∈ Λ0. Fix t > 0. By
the second inequality in (2.28) we have

f∗∗(t)− f∗(t) ≤ 2
t

∫ t

0
∆f (u)du ≤ 2‖f‖Λ0 .

The second inequality now follows. This gives Λ0 ⊂W . �

Recall that C(R) denotes the class of all bounded continuous functions on
R. For 0 < α ≤ 1 we define Lipα to be the space of all functions f ∈ C(R)
for which

‖f‖Lipα ≡ sup
δ>0

ω(f ; δ)
δα

<∞. (3.4)

Proposition 3.3. Let 0 < α ≤ 1. If f ∈ S0(R) ∩ Lipα then f ∈ Λ−α and

‖f‖Λ−α ≤ ‖f‖Lipα,
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Proof. Fix t > 0. By inequality (2.20) in Remark 2.8 we have

∆f (t) ≤ ω(f∗; t) ≤ ω(f ; t)

and then
t−α∆f (t) ≤ ‖f‖Lipα.

Taking supremum over all t > 0 we obtain the inequality stated in the
proposition. �

The next proposition gives an equivalent definition of the space Λσ, when
σ < 0.

Proposition 3.4. Let σ < 0. Then f ∈ Λσ if and only if there exists a
constant A such that for all t > 0

‖f‖∞ ≤ f∗(t) +At−σ. (3.5)

Moreover, if A0 ≥ 0 is the smallest constant such that inequality (3.5) holds
for all t > 0, then

(1− 2σ)A0 ≤ ‖f‖Λσ ≤ 2−σA0. (3.6)

Proof. Suppose (3.5) holds. Then

∆f (t) ≤ ‖f‖∞ − f∗(2t) ≤ (2t)−σA,

and thus
‖f‖Λσ ≤ 2−σA.

So, f ∈ Λσ and the right-hand side inequality in (3.6) follows. Let now
f ∈ Λσ. For any N > 0,

f∗(2−N t)− f∗(t) =
N∑
k=1

∆f (2−kt) ≤ t−σ‖f‖Λσ
N∑
k=1

2kσ.

Let N →∞. By (2.13) we obtain

‖f‖∞ ≤ f∗(t) + t−σ
‖f‖Λσ
1− 2σ

.

Thus, (3.5) holds.
If A0 = 0, then (3.6) follows immediately. Suppose A0 > 0 and fix

ε ∈ (0, A0). By definition of A0 there exists t0 > 0 such that

‖f‖∞ > f∗(t0) + (A0 − ε)t−σ0 .

Take N > 0 such that f∗(2−N t0) > ‖f‖∞ − ε. We then have

A0 − ε < tσ0 (f∗(2−N t0)− f∗(t0) + ε) = εtσ0 + ‖f‖Λσ
N∑
k=1

2kσ.
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Since ε ∈ (0, A0) was arbitrary, it follows that

A0 ≤ ‖f‖Λσ
N∑
k=1

2kσ

which implies the left-hand side inequality in (3.6). �

Corollary 3.5. Let σ < 0. Then Λσ ⊂ L∞(R).

Proof. Let f ∈ Λσ. By Proposition 3.4, there exists a constant A > 0 for
which inequality (3.5) holds. This implies that f ∈ L∞(R). �

Proposition 3.6. Let σ > 0. Then the space Λσ is not separable.

Proof. We need only find an uncountable subfamily S ⊂ Λσ with the prop-
erty that

‖f − g‖Λσ ≥ 1, (3.7)

for all functions f, g ∈ S such that f is not equivalent to g. Indeed, suppose
S = {fξ}ξ∈I is such a family and let {gn}∞n=1 be any countable sequence in
Λσ. Set

r =
σ ln 2
22σ+1

.

Then the balls Bξ = B(fξ, r) are pairwise disjoint. Indeed, suppose g ∈
Bξ ∩Bη for some ξ, η ∈ I, ξ 6= η. By inequality (3.3) we would then have

‖fξ − fη‖Λσ ≤
4σ

σ ln 2
(‖fξ − g‖Λσ + ‖g − fη‖Λσ) < 1,

which is a contradiction. Since S is uncountable there must then exists balls
Bξ which does not contain any of the functions gn. Therefore the sequence
{gn}∞n=1 can not be dense in Λσ.

To construct such a family S ⊂ Λσ we set

fξ(t) = (t− ξ)−σχ(ξ,1](t),

for 0 < ξ < 1 and t 6= ξ. Then

f∗ξ (t) = t−σχ(0,1−ξ]

so that
sup
t>0

tσ∆fξ(t) ≤ sup
t>0

tσf∗ξ (t) = 1,

and therefore fξ ∈ Λσ. Let 0 < ξ < η < 1. By (3.2)

2σ+1

σ
‖fξ − fη‖Λσ ≥ sup

t>0
tσ(fξ − fη)∗(t) ≥ sup

t>0
tσ
(
(fξ − fη)χ(0,η]

)∗(t) = 1,

so we can let S consist of the functions 2σ+1σ−1fξ, ξ ∈ (0, 1). �
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Observe that if σ ≤ 0, it makes no sense to speak about approximation
“in the norm” ‖ · ‖Λσ . Indeed, if σ < 0 set α ≡ −σ and fn = χ(0,n]. Then

‖fn‖Λ−α = sup
t>0

t−αχ(n/2,n](t) =
( 2
n

)α
.

So, fn ∈ Λ−α and ‖fn‖Λ−α → 0, as n→∞. If σ = 0 we set

gn(x) =
(

1− log2(1 + x)
n

)
χ(0,2n−1](x).

For 0 < t ≤ (2n − 1)/2 we have

∆gn(t) =
1
n

log2

(1 + 2t
1 + t

)
<

1
n

and for ((2n − 1)/2) < t ≤ 2n − 1 we have

∆gn(t) = g∗n(t) ≤ gn((2n − 1)/2) < 1− 1
n

log2(2n−1) =
1
n
.

So, ‖gn‖Λ0 < 1/n. Thus gn ∈ Λ0 and ‖gn‖Λ0 → 0, as n → ∞. These
examples shows that even if ‖f‖Λσ is small, it can still happen that f is
“big”.

Let w be a positive continuous function on R+. We say that a function
f ∈ S0(R) belongs to the space Λ(w) if

‖f‖Λ(w) ≡ sup
t>0

w(t)∆f (t) <∞.

If w(t) = tσ, then ‖ · ‖Λ(w) = ‖ · ‖Λσ . We will give two theorems on how
a function f ∈ Λ(w) can be approximated by a function g. The approx-
imation will not be in the sence that ‖f − g‖Λ(w) is small. As the above
example shows, this does not imply that g is “close” to f . Instead we will
ensure that g approximates f in measure and at the same time that ‖g‖Λ(w)

approximates ‖f‖Λ(w). Observe that these results are similar to those ob-
tained for functions of bounded variation (see [32, p. 225]). There is no
additional complication of the proofs resulting from the replacement of Λσ

by Λ(w).
By a simple function we mean a real-valued measurable and everywhere

finite function f on R which takes only finitely many values and which has
the property that for every c 6= 0, the level set {x ∈ R : f(x) = c} has
finite measure. It is well known that bounded measurable functions can be
uniformly approximated by simple functions. We will use this property in
the following form.

Lemma 3.7. Let f ∈ S0(R). Suppose that |f(x)| ≤M for all x ∈ R,

|{x : |f(x)| = M}| > 0, (3.8)
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and
|{x : f(x) 6= 0}| <∞. (3.9)

Then for every ε > 0 there exists a simple function g such that:
(i) |g(x)| ≤M , for all x ∈ R;
(ii) {x : |g(x)| = M} = {x : |f(x)| = M};
(iii) {x : g(x) 6= 0} = {x : f(x) 6= 0};
(iv) |f(x)− g(x)| < ε, for all x ∈ R.

Proof. Fix ε > 0. We can assume that M/ε ∈ N. Set g(x) = f(x) if
f(x) = 0 or |f(x)| = M . Let E = {x : 0 < |f(x)| < M} and set

g(x) =
([f(x)

ε

]
+

1
2

)
ε,

for all x ∈ E (here [a] denotes the integral part of a number a). Then for
all x ∈ E

f(x)− ε

2
< g(x) ≤ f(x) +

ε

2
.

This implies statement (iv). Furthermore, −M < f(x) < M on E and
therefore

−M
ε
≤
[f(x)

ε

]
≤ M

ε
− 1,

for all x ∈ E. It follows that

−M +
ε

2
≤ g(x) ≤M − ε

2
on E. Thus |g(x)| < M on E, and statements (i) and (ii) hold. Finally,
g(x) 6= 0 on E which implies statement (iv). �

Theorem 3.8. Let f ∈ Λ(w). For every ε > 0 there exists a simple function
g on R which satisfies:

(i) |{x ∈ R : |f(x)− g(x)| > ε}| < ε;
(ii)

∣∣‖f‖Λ(w) − ‖g‖Λ(w)

∣∣ < ε.

Proof. We can assume that ‖f‖∞ > 0. Then we have ‖f‖Λ(w) > 0. Fix 0 <
ε < min(‖f‖Λ(w), ‖f‖∞). We will construct a function f1 that approximates
f and which has certain good properties that allow us to approximate it with
a simple function g. To construct f1 we first define the function f0 as follows.
Take t∗ > 0 such that

|w(t∗)∆f (t∗)− ‖f‖Λ(w)| <
ε

4
. (3.10)

Take t0 ∈ (0,min(t∗, ε/2)) and define f0 as

f0(x) =


f∗(t0), f(x) > f∗(t0)
f(x), −f∗(t0) ≤ f(x) ≤ f∗(t0)
−f∗(t0), f(x) < −f∗(t0).
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By (2.12), there exists t1 > 2t∗ such that λ ≡ f∗0 (t1) < min(ε/2, f∗(t0)).
Define f1 as

f1(x) =


f0(x)− λ, f0(x) > λ

0, −λ ≤ f0(x) ≤ λ
f0(x) + λ, f0(x) < −λ.

We will show that f1 approximates f . If f(x) = f0(x) then |f(x)− f1(x)| =
|f0(x)− f1(x)| ≤ λ < ε/2, so

|{x : |f(x)− f1(x)| > ε

2
}| ≤ |{x : f(x) 6= f0(x)}| =

= |{x : |f(x)| > f∗(t0)}| ≤ t0 ≤
ε

2
, (3.11)

where the second inequality holds by (2.8). By considering the three cases
t ∈ (0, t0/2], t ∈ (t0/2, t0], and t ∈ (t0,∞) one can verify that ∆f0(t) ≤
∆f (t), for all t > 0. Moreover, by considering the three cases t ∈ (0, t1/2],
t ∈ (t1/2, t1], and t ∈ (t1,∞) one can also verify that ∆f1(t) ≤ ∆f0(t) for
all t > 0. Thus

‖f1‖Λ(w) ≤ ‖f‖Λ(w). (3.12)

Observe that f∗0 (t) = min(f∗(t), f∗(t0)). Since t0 ≤ t∗ we then have

f∗0 (t∗) = f∗(t∗) and f∗0 (2t∗) = f∗(2t∗). (3.13)

We also note that f∗1 (t) = max(0, f∗0 (t) − λ). Since t1 ≥ 2t∗ we have
f∗0 (2t∗) ≥ f∗0 (t1) = λ and then

f∗1 (t∗) = f0(t∗)− λ and f∗1 (2t∗) = f0(2t∗)− λ.
By these two equalities and (3.13) we see that

∆f1(t∗) = ∆f (t∗). (3.14)

By (3.14) and (3.10) we obtain

‖f‖Λ(w) ≤
ε

4
+ ‖f1‖Λ(w). (3.15)

It remains only to approximate f1 by a simple function. First we observe
that ‖f1‖∞ <∞. Moreover,

m ≡ |{x : f1(x) = ‖f1‖∞}| > 0. (3.16)

Indeed, since λ < f∗(t0) we see that

{x : |f1(x)| = ‖f1‖∞} = {x : |f0(x)| = f∗(t0)} = {x : |f(x)| ≥ f∗(t0)}.

So (3.16) holds by (2.9). We also note that by (2.8),

M ≡ |{x : f1(x) 6= 0}| = |{x : |f0(x)| > λ} ≤ t1 <∞. (3.17)
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Fix ε1 ∈ (0, ε/2) such that for all t ∈ [m/2,M ],

8ε1w(t) < ε. (3.18)

By Lemma 3.7 there exists a simple function g on R such that

|f1(x)− g(x)| ≤ ε1 (3.19)

for a.e. x ∈ R,

{x : |g(x)| = ‖g‖∞} = {x : |f1(x)| = ‖f1‖∞} (3.20)

and
{x : g(x) 6= 0} = {x : f1(x) 6= 0}. (3.21)

By the triangle inequality

|{x : |f(x)− g(x)| > ε}| ≤

≤ |{x : |f(x)− f1(x)| > ε

2
}|+ |{x : |f1(x)− g(x)| > ε

2
}| ≤ ε

2
,

where the last inequality holds by (3.11) and (3.19). Thus, statement (i) is
true. According to (3.19) it holds that

g(x)− ε1 ≤ f1(x) ≤ g(x) + ε1,

for a.e. x ∈ R. It follows that

g∗(t)− ε1 ≤ f∗1 (t) ≤ g∗(t) + ε1,

which in turn implies that

|∆f1(t)−∆g(t)| ≤ 2ε1, (3.22)

for all t > 0.
By (3.12), (3.10), and (3.14) we have

‖f1‖Λ(w) ≤ ‖f‖Λ(w) ≤
ε

4
+ w(t∗)∆f1(t∗).

Applying (3.22) gives

‖f1‖Λ(w) ≤
ε

4
+ 2ε1w(t∗) + w(t∗)∆g(t∗) ≤

ε

4
+ 2ε1w(t∗) + ‖g‖Λ(w). (3.23)

We want to apply (3.18) to estimate 2ε1w(t∗), so we must check that t∗ ∈
[m/2,M ]. It is clear that ∆f (t∗) > 0, indeed if ∆f (t∗) = 0 then by (3.10)
we would have ‖f‖Λ(w) < ε/4 which contradicts our choice of ε. So by
(3.14) we know that ∆f1(t∗) > 0. However, by (3.16) and (3.17) it holds
that ∆f1(t) = 0 for all t ∈ (0,m/2) ∪ (M,∞). Thus we conclude that
t∗ ∈ [m/2,M ], so (3.18) holds for t = t∗, i.e. we have

8ε1w(t∗) ≤ ε
This inequality and (3.23) gives

‖f1‖Λ(w) ≤
ε

2
+ ‖g‖Λ(w).
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By (3.20) and (3.16) we have ∆g = 0 on (0,m/2) and by (3.21) and (3.17)
we know that ∆g = 0 on (M,∞). Therefore

‖g‖Λ(w) = sup{w(t)∆g(t) :
m

2
≤ t ≤M} ≤ ε

4
+ ‖f1‖Λ(w),

where the inequality holds by (3.22) and (3.18). By (3.12), (3.15), and the
two preceding inequalities, we obtain (ii). �

We let C0(R) denote the class of all continuous functions on R with
compact support.

Lemma 3.9. Let f be a simple function on R. For every δ > 0 there exists
a function g ∈ C0(R) such that:

(i) |{x ∈ R : f(x) 6= g(x)}| < δ;
(ii) ‖g‖∞ = ‖f‖∞.

Proof. Since f is a simple function we know that ‖f‖∞ <∞ and

M ≡ |{x ∈ R : f(x) 6= 0}| <∞. (3.24)

We can assume that f is not equivalent to 0 and then

m ≡ |{x ∈ R : |f(x)| = ‖f‖∞}| > 0. (3.25)

Fix δ ∈ (0,m). By (3.24) there exists N > 0 such that

|{x ∈ R : f(x) 6= 0, |x| > N}| < δ

4
. (3.26)

Simple functions are finite and measurable. Lusin’s theorem then ensures
the existence of a closed set F ⊂ [−N,N ] such that f is continuous relative
to F and

|[−N,N ] \ F | < δ

4
. (3.27)

So, by the extension theorem there exists a function g ∈ C0(R) such that

g(x) = f(x), (3.28)

for all x ∈ F ,
g(x) = 0, (3.29)

if |x| > N + δ/4, and
‖g‖∞ ≤ ‖f‖∞. (3.30)

By (3.28) and (3.29) we have the inclusion

{x ∈ R : f(x) 6= g(x)} ⊂

([−N,N ] \ F ) ∪ [−N − δ

4
,−N ] ∪ [N,N +

δ

4
] ∪ {x ∈ R : f(x) 6= 0, |x| > N}.

By this inclusion and inequalities (3.27) and (3.26) we obtain statement (i).
Since δ < m, statement (i) and (3.25) implies that g attains the value ‖f‖∞
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on some set of positive measure. Thus, ‖f‖∞ ≤ ‖g‖∞ which together with
(3.30) give statement (ii). �

Theorem 3.10. Let f ∈ Λ(w). For every ε > 0 there exists a function
g ∈ C0(R) such that:

(i) |{x ∈ R : |f(x)− g(x)| > ε}| < ε;
(ii)

∣∣‖f‖Λ(w) − ‖g‖Λ(w)

∣∣ < ε.

Proof. Fix ε > 0. By Theorem 3.8 we can assume that f is a simple function.
Let c1 > · · · > cN > 0 be the positive values of |f |. We may assume that
c1 = 1. For k = 1, . . . , N we put

Ek = {x ∈ R : f(x) = ck}.

We can assume that |Ek| > 0 for all k = 1, . . . , N . Indeed, if there is some
k for which |Ek| = 0 then we replace the value of f by 0 on Ek. This does
not change the value of f∗ at any point so ‖f‖Λ(w) remains the same. Put
t0 = 0 and

tk =
k∑
i=1

|Ei|,

for all k = 1, . . . , N . Then 0 < t1 < t2 < · · · < tN . Choose δ1 ∈ (0, ε) such
that

8δ1 < min{tk − tk−1 : 1 ≤ k ≤ N} (3.31)

and the condition
4|w(t′)− w(t′′)| < ε, (3.32)

holds for all t′, t′′ ∈ [t1/8, tN ] such that |t′ − t′′| < δ1 (this is possible since
w is uniformly continuous on [t1/8, tN ]).

First we will show that we can assume that 2tk 6= tl for all 1 ≤ k < l ≤ N .
We prove this by constructing a simple function h which has this property
and which approximates f . Define

η′ ≡ 1
2

min{|2tk − tl| : 1 ≤ k, l ≤ N, 2tk 6= tl},

and set η ≡ min(δ1, η
′). Choose in E1 any measurable subset of measure η

and replace the value of f by 0 on this subset. Denote the new function by
h. We then have

h∗(t) = f∗(t+ η), (3.33)

for all t > 0. Let t′0 ≡ 0 and t′k ≡ tk − η, k = 1, . . . , N . The intervals of
constancy of h∗ are (t′k−1, t

′
k], k = 1, . . . , N . Furthermore, for all 1 ≤ k, l ≤

N the numbers t′k and t′l satisfy

|2t′k − t′l| ≥ η. (3.34)
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Indeed, fix 1 ≤ k, l ≤ N . By the definition of t′k and t′l we have

2t′k − t′l = 2tk − tl − η, (3.35)

so if 2tk = tl then (3.34) holds. On the other hand, if 2tk 6= tl then by the
definition of η

0 < η ≤ 1
2
|2tk − tl|.

From this and (3.35) we get (3.34).
Next we will show that

‖f‖Λ(w) − ε ≤ ‖h‖Λ(w) ≤ ‖f‖Λ(w) + ε. (3.36)

We start with the proof of the right-hand side of (3.36). Fix t ∈ [t1/4, tN ].
By (3.33) it holds that

∆h(t) = f∗(t+ η)− f∗(2t+ η) ≤ ∆f (t+ η).

From this and the fact that ∆h = 0 on (0, t1/4) ∪ (tN − η,∞) we see that

‖h‖Λ(w) ≤ sup{w(s)∆f (s+ η) :
t1
4
≤ s ≤ tN − η} (3.37)

Since η ≤ δ1 we know from (3.32) that

w(s)∆f (s+ η) ≤

≤ w(s+ η)∆f (s+ η) +
ε

4
∆f (s+ η) ≤ ‖f‖Λ(w) +

ε

4
‖f‖∞,

for all s ∈ [t1/4, tN −η]. By this, (3.37), and the assumption that ‖f‖∞ = 1
we now obtain the right-hand side inequality in (3.36).

To obtain the left-hand side inequality in (3.36) we will first show that

∆f (t) ≤ max(∆h(t− η),∆h(t− η/2)), (3.38)

for all t ∈ [t1/4, tN ]. To prove this estimate we will consider the three cases
t ∈ [t1/4, tN/2], t ∈ (tN/2, tN/2 + η/2], and t ∈ (tN/2 + η/2, tN ]. Suppose
first that t ∈ (tN/2+η/2, tN ]. Then f∗(2t) = 0 and using (3.33) we see that
also h∗(2t− 2η) = 0. Thus

∆f (t) = f∗(t) = h∗(t− η) = ∆h(t− η),

where the second equality is (3.33). So, (3.38) holds in this case. Next
we suppose that t ∈ (tN/2, tN/2 + η/2]. Take k ∈ {1, . . . , N} such that
t ∈ (tk−1, tk]. Then t ∈ (tk−1, tk − η/2]. Indeed, if t ∈ (tk − η/2, tk] then

2t ∈ (tN , tN + η] ∩ (2tk − η, 2tk]. (3.39)

So we would have |2tk − tN | < 2η, but this contradicts the definition of η
(to see this, note that 2tk 6= tN by (3.39) so by definition η ≤ |2tk − tN |/2).
Thus, t ∈ (tk−1, tk−η/2] and then f∗(t) = f∗(t+η/2). From this and (3.33)

∆f (t) = f∗(t+ η/2)− f∗(2t) = h∗(t− η/2)− h∗(2t− η) = ∆h(t− η/2),
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and thus (3.38) holds also in this case. The last case in the proof of (3.38)
is when t ∈ [t1/4, tN/2]. Then there exist k, l ∈ {1, 2, . . . , N} such that
t ∈ (tk−1, tk] and 2t ∈ (tl−1, tl]. We then have either

t ∈ (tk−1, tk −
η

2
], (3.40)

or
2t ∈ (tl−1 + η, tl]. (3.41)

Indeed, suppose neither (3.40) nor (3.41) holds. Then we have

2t ∈ (2tk − η, 2tk] ∩ (tl−1, tl−1 + η]. (3.42)

Therefore,
|2tk − tl−1| < 2η, (3.43)

which contradicts the definition of η (to see this, observe that 2tk 6= tl−1

by (3.42), so by definition η ≤ |2tk − tl−1|/2). If (3.40) holds then f∗(t) =
f∗(t+ η/2). Using (3.33) then gives

∆f (t) = ∆h(t− η

2
), (3.44)

so (3.38) is satisfied. In the case (3.41), we have f∗(2t) = f∗(2t − η).
Applying again (3.33), we obtain

∆f (t) = ∆h(t− η), (3.45)

and thus (3.38) holds. The proof of (3.38) is now complete.
Since ∆f = 0 on (0, t1/4) ∪ (tN ,∞), we have

‖f‖Λ(w) = sup{w(t)∆f (t) :
t1
4
≤ t ≤ tN}.

Applying (3.38), we get

‖f‖Λ(w) ≤ sup{w(t) max(∆h(t− η/2),∆h(t− η)) :
t1
4
≤ t ≤ tN}. (3.46)

But by (3.32),

w(t)∆h(t− η) ≤ ε

4
‖h‖∞ + w(t− η)∆h(t− η) ≤ ε

4
+ ‖h‖Λ(w),

and similarly, w(t)∆h(t − η/2) ≤ ε/4 + ‖h‖Λ(w), for all t ∈ [t1/4, tN ], so
(3.46) implies the left hand side of inequality (3.36). The proof of (3.36) is
then complete. We have now proved that we can assume that

2tk 6= tl,

for all 1 ≤ k < l ≤ N .
We now choose δ ∈ (0, δ1) such that

8δ < min{|2tk − tl| : 1 ≤ k ≤ l ≤ N}. (3.47)
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Since f is a simple function on R, Lemma 3.9 ensures the existence of a
function g ∈ C0(R) such that

‖g‖∞ = ‖f‖∞ (3.48)

and
|{x ∈ R : f(x) 6= g(x)}| < δ. (3.49)

By this inequality we have statement (i) and the equality

(f − g)∗(δ) = 0. (3.50)

It only remains to check that also statement (ii) holds. First we will verify
that

‖f‖Λ(w) ≤ ε+ ‖g‖Λ(w). (3.51)
From (3.50) and the subadditivity (2.11) of the rearrangement we get that

f∗(t) ≤ g∗(t− δ) and g∗(2t− 2δ) ≤ f∗(2t− 3δ),

for all t > 3δ/2. Set Ψ(t) = f∗(t) − f∗(2t − 3δ), t > 3δ/2. By the two
preceding inequalities and (3.32) we obtain

w(t)Ψ(t) ≤ w(t)∆g(t− δ) ≤
ε

4
‖g‖∞ + ‖g‖Λ(w) =

ε

4
+ ‖g‖Λ(w), (3.52)

for all t > 3δ/2 (we use here that ‖g‖∞ = 1). To obtain (3.51) we only need
to show that

w(t)∆f (t) ≤ ε+ ‖g‖Λ(w), (3.53)
for all t ∈ [t1/4, tN ], since ∆f = 0 outside this intervall. To prove (3.53) we
will consider the three cases t ∈ [t1/4, tN/2], t ∈ [tN/2, tN/2 + 3δ/2], and
t ∈ [tN/2 + 3δ/2, tN ]. Suppose first that t ∈ [t1/4, tN/2]. In this case there
exists k, l ∈ {1, . . . , N} such that t ∈ (tk−1, tk] and 2t ∈ (tl−1, tl]. By choice
of δ we have that either

t ∈ (tk−1, tk − 2δ] (3.54)
or

2t ∈ (tl−1 + 3δ, tl]. (3.55)
Indeed, if neither (3.54) nor (3.55) holds then

2t ∈ (2tk − 4δ, 2tk] ∩ (tl−1, tl−1 + 3δ]

and then we would have

|2tk − tl−1| ≤ |2tk − 2t|+ |2t− tl−1| < 7δ,

which contradicts the definition of η. In the case of (3.54) we have

∆f (t) = f∗(t+ 2δ)− f∗(2t) ≤ f∗(t+ 2δ)− f∗(2t+ δ) = Ψ(t+ 2δ).

By (3.32) and (3.52) we then get

w(t)∆f (t) ≤ (w(t+ 2δ) +
ε

4
)Ψ(t+ 2δ) ≤ ε

4
Ψ(t+ 2δ) +

ε

4
+ ‖g‖Λ(w).
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Since Ψ is bounded by ‖f‖∞ = 1, inequality (3.53) follows in this case. If
instead (3.55) holds, then f∗(2t) = f∗(2t− 3δ) so

∆f (t) = Ψ(t).

In this case we immediately get inequality (3.53) from (3.52). Thus (3.53)
holds when t ∈ [t1/4, tN/2]. Next we suppose that t ∈ (tN/2, tN/2 + 3δ/2].
Then there exists k ∈ {1, . . . , N} such that t ∈ (tk−1, tk]. As above, the
definition of δ implies that t ∈ (tk−1, tk − 2δ]. As in the case (3.54) above,
we obtain (3.53). The last case is when t ∈ (tN/2+3δ/2, tN ]. Then f∗(2t) =
f∗(2t− 3δ) = 0, so

∆f (t) = Ψ(t)
and then (3.53) follows directly from (3.52). We have now proved inequality
(3.53) for all t ∈ [t1/4, tN ]. This implies (3.51).

To obtain statement (ii) we must also show that

‖g‖Λ(w) ≤ ε+ ‖f‖Λ(w). (3.56)

Since δ < t1/8, by (3.49) and (3.48) we see that ∆g = 0 outside the interval
[t1/2− δ/2, tN + δ], so (3.56) follows if we prove

w(t)∆g(t) ≤ ε+ ‖f‖Λ(w), (3.57)

for all t ∈ [t1/2− δ/2, tN + δ].
Fix t ∈ [t1/2− δ/2, tN + δ] and prove (3.57). By (3.50) and the subaddi-

tivity (2.11) of the rearrangement we have

g∗(t) ≤ f∗(t− δ) and g∗(2t) ≥ f∗(2t+ δ),

Set Φ(t) = f∗(t)− f∗(2t+ 3δ). By the two preceding inequalities

∆g(t) ≤ f∗(t− δ)− f∗(2t+ δ) = Φ(t− δ).

By (3.32) it holds that w(t) ≤ ε/4 + w(t− δ) so the above estimate gives

w(t)∆g(t) ≤
ε

4
+ w(t− δ)Φ(t− δ)

(we use here that Φ ≤ ‖f‖∞ = 1). Thus, for all t ∈ [t1/2 − δ/2, tN + δ] it
holds that

w(t)∆g(t) ≤
ε

4
+ sup{w(s)Φ(s) : s ∈ [t1/4, tN ]}. (3.58)

So, (3.57) follows from (3.58) if we prove that

w(s)Φ(s) ≤ ε

2
+ ‖f‖Λ(w), (3.59)

for all s ∈ [t1/4, tN ]. Fix s ∈ [t1/4, tN ] and prove (3.59). Suppose first
that s ∈ (tN/2, tN ]. Then Φ(s) = ∆f (s) and so (3.59) follows immediately.
Next we suppose that s ∈ [t1/4, tN/2]. Take k, l ∈ {1, . . . , N} such that
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s ∈ (tk−1, tk] and 2s ∈ (tl−1, tl]. As above, the definition of δ gives that
either

s ∈ (tk−1, tk −
3δ
2

], (3.60)

or
2s ∈ (tl−1, tl − 3δ]. (3.61)

Suppose that (3.60) is true. Then f∗(s) = f∗(s+ 3δ/2), so

Φ(s) = f∗(s+
3δ
2

)− f∗(2s+ 3δ) = ∆f (s+
3δ
2

).

By (3.32) we then have

w(s)Φ(s) =
ε

4
+ w(s+

3δ
2

)∆f (s+
3δ
2

)

which implies (3.59). In the case (3.61) we have f∗(2s) = f∗(2s+3δ) so that
we again obtain Φ(s) = ∆f (s). So in this case (3.59) follows immediately.
The proof of (3.59) is now complete. As we noted above, (3.59) together
with (3.58) implies (3.56). Thus, statement (ii) holds. �

Remark 3.11. Theorems 3.8 and 3.10 fail if one replaces statement (ii) in
their formulations by the statement ‖f − g‖Λ(w) < ε. Indeed, let w(t) = tσ

with σ > 0 and set

f(x) =

{
x−σ x > 0
0 x ≤ 0.

Then ‖f‖Λσ = 1 − 2−σ, so f ∈ Λσ(R). Let g ∈ L∞(Rn) ∩ S0(Rn) and set
M = ‖g‖∞. Then |f(x)− g(x)| ≥ x−σ −M > 0 for 0 < x < M−1/σ. Thus
(f − g)∗(t) ≥ t−σ −M for 0 < t < M−1/σ. By Proposition (3.1) we then
have

‖f − g‖Λσ ≥
σ ln 2

2σ
.

So there is no function g ∈ L∞(Rn) ∩ S0(Rn) such that ‖f − g‖Λσ <
(σ ln 2)/2σ.

Applying Theorem 3.10 we obtain the following result.

Theorem 3.12. Let f ∈ Λ(w). Then there exists a sequence {fn}, fn ∈
C0(R), such that {fn} converges to f in measure and ‖fn‖Λ(w) → ‖f‖Λ(w).

Observe that by Riesz’s theorem there exists a subsequence {fnk} con-
verging to f a.e.

As it was pointed out above, there is an analogy between Theorems 3.8
and 3.10 and the results concerning the so called approximation in variation
[32], [14, Section 9.1].
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4. Mixed norm spaces

This section contains our main result - a theorem on embedding of aniso-
tropic mixed norm spaces into Lorentz spaces. As it was already pointed
out in the introduction, the first results in this direction where obtained by
Gagliardo [10] and Fournier [9] (see also [5]). These results were extended
by V. Kolyada [19] to more general mixed norm spaces. Our main theorem
is a follow-up of the work [19]. We consider fully anisotropic mixed norm
spaces. Our study is based on the methods developed in the works by V.
Kolyada [19] and V. Kolyada and J. Pérez [21].

In Section 4.1 we give the lemmas that we will use and in Section 4.2 we
state and prove Theorem 4.5.

4.1. Some lemmas. First we give a simple lemma concerning the mea-
surability of the part of a set E ⊂ Rn lying “above” some subset of the
projection of E onto a coordinate hyperplane.

Lemma 4.1. Let n ≥ 2 and 1 ≤ k ≤ n. Assume that E ⊂ Rn and
D ⊂ Rn−1 are measurable in Rn and Rn−1 respectively. Then the set

E′ = {x ∈ E : x̂k ∈ D}
is measurable in Rn.

Proof. It is sufficient to consider the case k = n. In this case

E′ = E ∩ (D × R).

Since the Cartesian product of two measurable sets is measurable, the mea-
surability of E′ follows. �

Next we include the statement of a lemma which was proved by V.
Kolyada in [16].

Lemma 4.2. Let ψ be a measurable non-negative function on Rn and let
P ⊂ Rn be a measurable set with mesnP = µ > 0. Then for any 0 < τ < µ
the set P can be decomposed into measurable disjoint subsets E′ and E′′

such that mesnE′ = τ ,

sup
x∈E′′

ψ(x) ≤ inf
x∈E′

ψ(x),

and ∫
E′′
ψ(x)dx ≤

∫ µ

τ
ψ∗(t)dt.

The following lemma was proved in [21] by V. Kolyada and F. Pérez. We
give the proof in order to get an explicit value of the constant in statement
(iii) in this lemma.
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Lemma 4.3. Let φ ∈ Lp,s(R+) (1 ≤ p, s < ∞) be a non-negative non-
increasing function on R+. Then for any δ ∈ (0, 1/p) there exists a contin-
uously differentiable function ψ on R+ such that:

(i) φ(t) ≤ ψ(t), t ∈ R+;
(ii) ψ(t)t1/p−δ decreases and ψ(t)t1/p+δ increases on R+;

(iii) ‖ψ‖p,s ≤
8
δ2
‖φ‖p,s.

Proof. Define

φ1(t) ≡ 2tδ−1/p

∫ ∞
t/2

u1/p−δ−1φ(u)du,

for t > 0. Since φ ∈ Lp,s(R+) and φ∗ = φ, we have by (2.25) that

φ(u) = O(t−1/p),

as u → ∞. Therefore the integral in the definition of φ1 converges, so φ1

is well defined. Moreover, since φ is non-increasing on R+ it is easy to see
that

φ1(t) ≥ 2tδ−1/pφ(t)
∫ t

t/2
u1/p−δ−1du ≥ φ(t), (4.1)

for all t > 0. Since δ < 1/p, then φ1 is decreasing on R+ and thus φ∗1 = φ1.
By this observation and Hardy’s inequality (2.2) we have

‖φ1‖p,s = 21+δ
( ∫ ∞

0
tδs−1

( ∫ ∞
t

u1/p−δ−1φ(u)du
)s
dt
)1/s ≤ 4

δ
‖φ‖p,s. (4.2)

Thus, φ1 ∈ Lp,s(R+), so by (2.25) we obtain that

φ1(u) = O(t−1/p),

as u→ 0+ (here we again use that φ∗1 = φ1). Therefore the function

ψ(t) ≡ (δ +
1
p

)t−1/p−δ
∫ t

0
φ1(u)u1/p+δ−1du

is well defined on R+, since the integral converges. The function ψ is contin-
uously differentiable on R+ since φ1 is continuous on R+. Since φ1 decreases
on R+ it holds that

ψ(t) ≥ (δ +
1
p

)t−1/p−δφ1(t)
∫ t

0
u1/p+δ−1du = φ1(t).

This estimate and (4.1) gives statement (i).
Clearly, ψ(t)t1/p+δ increases on R+. To obtain statement (ii) we must

also show that ψ(t)t1/p−δ decreases on R+. We make the change of variables
u 7→ u2δ to see that

ψ(t)t1/p−δ =
δp+ 1

2δp
t−2δ

∫ t2δ

0
η(v1/(2δ))dv
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for all t > 0, where η(u) ≡ u1/p−δφ1(u). Differentiating with respect to t in
the preceding equality gives

d

dt
(ψ(t)t1/p−δ) =

1 + δp

p
t−1
(
η(t)− t−2δ

∫ t2δ

0
η(v1/(2δ))dv

)
,

for all t > 0. Clearly η is non-increasing on R+, so by the preceding equality
d

dt
(ψ(t)t1/p−δ) ≤ 0,

and thus the function ψ(t)t1/p−δ is non-increasing on R+. So, statement (ii)
holds.

The function ψ is decreasing on R+ since ψ(t)t1/p−δ is non-increasing and
δ < 1/p. Therefore ψ∗ = ψ. By this observation and Hardy’s inequality
(2.3) we have

‖ψ‖p,s = (δ +
1
p

)
( ∫ ∞

0
t−δs−1

( ∫ t

0
u1/p+δ−1φ1(u)

)s
dt
)1/s ≤

≤ (1 +
1
δp

)‖φ1‖p,s ≤
2
δ
‖φ1‖p,s

(here we again use that φ∗1 = φ1 and that δ < 1/p). From this inequality
and (4.2) we obtain statement (iii). �

The following lemma is similar to Lemma 2.2 in [21] and the proof is
based on the same reasonings.

Lemma 4.4. Let n ≥ 2, 1 ≤ p1, . . . , pn, s1, . . . , sn <∞, and α1, . . . , αn > 0.
Put

α = n
( n∑
k=1

1
αk

)−1
, p =

n

α

( n∑
k=1

1
αkpk

)−1
, and s =

n

α

( n∑
k=1

1
αksk

)−1
.

Assume that p ≤ n/α. Let

q =

{
np/(n− αp), αp < n

∞, αp = n.

For all k = 1, . . . , n we set σk = 1/pk − αk and assume that

rk ≡
1
p
− α

n
− σk > 0. (4.3)

Denote
R = max

k=1,...,n

rk
αk

max
k=1,...,n

1
rk

(4.4)

and
ck =

αk
rk
, (4.5)
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k = 1, . . . , n. For each k = 1, . . . , n we let φk ∈ Lpk,sk(R+) be a non-
increasing and non-negative function on R+ and define

ηk(z, t) =
(z
t

)σk
φk(z), z, t > 0.

Set also

w(t) = inf{ max
k=1,...,n

ηk(zk, t) :
n∏
k=1

zk = tn−1, zk > 0},

for t > 0. Then there holds the inequality(∫ ∞
0

ts/q−1w(t)sdt
)1/s

≤ c
n∏
k=1

‖φk‖α/(nαk)
pk,sk

, (4.6)

where

c = Kn

n∏
k=1

(c1/sk
k max(R2, p2

k))
α/(nαk), (4.7)

and Kn only depends on n.

Proof. Fix t > 0. By (4.3) we see that R > 0. Set δ = 1/(2R). For each k
we set δk = min(δ, 1/(2pk)) and apply Lemma 4.3 to the function φk. This
way we obtain continuously differentiable functions ψk, k = 1, . . . , n, on R+

such that:
φk(z) ≤ ψk(z), for all z ∈ R+; (4.8)

ψk(z)z1/pk−δ decreases on R+; (4.9)

ψk(z)z1/pk+δ increases on R+; (4.10)

‖ψk‖pk,sk ≤
8
δ2
k

‖φk‖pk,sk = 32 max(R2, p2
k)‖φk‖pk,sk . (4.11)

For z > 0 we define
Gk(z) = zσkψk(z)

and
ξk(z, t) = t−σkGk(z),

k = 1, . . . , n. Observe that
δ < αk, (4.12)

for all k. Indeed,

δ <
1
R
≤ αl
rl

min
k=1,...,n

rk,

for all l = 1, . . . , n which implies (4.12). Write Gk as

Gk(z) =
ψk(z)z1/pk−δ

zαk−δ
. (4.13)
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It follows from (4.13), (4.9), and (4.12) that

lim
z→0+

Gk(z) =∞ and lim
z→∞

Gk(z) = 0. (4.14)

Define
µt(z1, . . . , zn) = max

k=1,...,n
ξk(zk, t).

Set also

v(t) = inf{ max
k=1,...,n

ξk(zk, t) :
n∏
k=1

zk = tn−1, zk > 0}.

The function µt is continuous on Rn
+ and v(t) is the infimum of µt over the

set

Et = {(z1, . . . , zn) ∈ Rn
+ :

n∏
k=1

zk = tn−1}.

From the definition of Et we see that by choosing z = (z1, . . . , zn) ∈ Et so
that |z| is sufficiently big, we can make mink=1,...,n zk arbitrarily small, i.e.
there holds the relation

lim
|z|→∞, z∈Et

(
min

k=1,...,n
zk
)

= 0.

Furthermore, (4.14) implies that for each k = 1, . . . , n

lim
zk→0+

ξk(zk, t) =∞.

By the two preceding equalities we see that

lim
|z|→∞, z∈Et

µt(z) =∞

and therfore the infimum in the definition of v need only be taken over some
compact subset of E (we use here that Et is closed in Rn). This infimum is
then attained at some point, i.e. there is a point (u∗1, . . . , u

∗
n) ∈ Et where

µt(u∗1, . . . , u
∗
n) = v(t). (4.15)

Differentiate in (4.13) to get

G′k(z) =
d

dz
(ψk(z)z1/pk−δ)zδ−αk − (αk − δ)zσk−1ψk(z),

for all z > 0. The first term on the right-hand side of this equality is
non-positive by (4.9), so we have

G′k(z) ≤ −(αk − δ)zσk−1ψk(z). (4.16)
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We may assume that each of the functions φk is positive at some point. Since
φk is non-increasing it then follows from (4.8) and (4.10) that ψk(z) > 0 for
all z ∈ R+. Using this observation and (4.12) in the estimate (4.16) gives

G′k(z) < 0, (4.17)

for all z > 0. So by (4.14) and (4.17) each Gk is a bijection of R+ onto R+

and G−1
k is continuously differentiable. Since v(t) ∈ R+ we then have that

for each k = 1, . . . , n there exists a unique number uk = uk(t) > 0 such that
Gk(uk) = tσkv(t), and then

ξk(uk, t) = v(t). (4.18)

We will now show that uk = u∗k for all k. Observe that by (4.17),

∂ξk
∂z

(z, t) = t−σkG′k(z) < 0 (4.19)

so ξk is strictly decreasing with respect to z. So if uk > u∗k for some k, then
(4.18) gives

v(t) = ξk(uk, t) < ξk(u∗k, t) ≤ µt(u∗1, . . . , u∗n),

but this contradicts (4.15). Thus uk ≤ u∗k for all k. Fix k ∈ {1, . . . , n} and
suppose that uk < u∗k. Since (u∗1, . . . , u

∗
n) ∈ Et, we know that

n∏
k=1

u∗k = tn−1. (4.20)

By (4.20) and the assumption uk < u∗k there are positive numbers dl, l =
1, . . . , n such that 0 < uk < dk < u∗k and 0 < ul ≤ u∗l < dl for l 6= k, which
satisfies

n∏
l=1

dl = tn−1.

Therefore (d1, . . . , dn) ∈ Et so that

v(t) ≤ µt(d1, . . . , dn). (4.21)

As we observed above, the functions z 7→ ξl(z, t), l = 1, . . . , n, are strictly
decreasing on R+, and thus ξl(dl, t) < ξl(ul, t) for all l. Therefore

µt(d1, . . . , dn) < µt(u1, . . . , un).

This inequality and (4.21) gives

v(t) < µt(u1, . . . , un) = max
k=1,...,n

ξk(uk, t).
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which is a contradiction according to (4.18). Thus, uk = u∗k for all k =
1, . . . , n, so (4.20) becomes

n∏
k=1

uk(t) = tn−1. (4.22)

We will now show that uk ∈ C1(R+), for all k. By (4.18) v(t) =
t−σkGk(uk(t)), and therefore

uk(t) = G−1
k (tσkv(t)) (4.23)

for all t > 0, k = 1, . . . , n. Define

Ψ(z, t) =
n∏
k=1

G−1
k (ztσk),

for z, t > 0. Then, by (4.23) and (4.22), Ψ(v(t), t) = tn−1. By (4.17) we
also have that (G−1

k )′ < 0 on R+. Therefore

∂

∂z
Ψ(z, t) =

n∑
k=1

Ψ(z, t)
G−1
k (ztσk)

(G−1
k )′(ztσk)tσk < 0,

for all z > 0. By the implicit function theorem we obtain that v ∈ C1(R+).
From (4.23) we then see that uk ∈ C1(R+) for all k = 1, . . . , n.

Next we will show that
uk(t)
t
≤ 4cku′k(t), (4.24)

for all t > 0, where ck is the constant defined in (4.5). Write (4.18) as
v(t) = t−σkGk(uk(t)) and differentiate to get

−v
′(t)
v(t)

=
σk
t
− u′k(t)

G′k(uk(t))
Gk(uk(t))

. (4.25)

By (4.9) and (4.10) we know that Gk(z)zαk−δ is decreasing and Gk(z)zαk+δ

is increasing on R+. Therefore

αk − δ
z

≤ −
G′k(z)
Gk(z)

≤ αk + δ

z
. (4.26)

By (4.25) and (4.26) we get

σk
t

+ (αk − δ)
u′k(t)
uk(t)

≤ −v
′(t)
v(t)

≤ σk
t

+ (αk + δ)
u′k(t)
uk(t)

, (4.27)

for k = 1, . . . , n. Differentiate (4.22) with respect to t to obtain
n∑
k=1

u′k(t)
uk(t)

=
n− 1
t

. (4.28)
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Observe that
n∑
k=1

rk
αk

= n− 1.

Since rk, αk > 0 (see (4.3)), this equality and (4.28) implies that there exists
a number m ∈ {1, . . . , n} such that

rm
αmt

≤ u′m(t)
um(t)

. (4.29)

Take k = m in the left-hand side inequality in (4.27) and apply (4.29). We
then get

−v
′(t)
v(t)

≥ σm
t

+ (αm − δ)
u′m(t)
um(t)

≥ 1
t
(σm + (αm − δ)

rm
αm

).

Set
γ ≡ max

k=1,...,n

rk
αk
.

Using the latter inequality and (4.3), we get

−v
′(t)
v(t)

≥ 1
t
(
1
p
− α

n
− δγ).

The right-hand side inequality in (4.27) implies

(αk + δ)
u′k(t)
uk(t)

≥ (rk − δγ)
1
t
.

Thus,
uk(t)
t
≤ αk + δ

rk − γδ
u′k(t).

By (4.12) and by observing that γδ ≤ rk/2, we see that the constant in this
inequality is smaller than 4ck, so (4.24) holds.

We are now ready to prove inequality (4.6). First we observe that by
(4.8), ηk(z, t) ≤ ξk(z, t) for all k = 1, . . . , n and all z > 0, and thus

w(t) ≤ v(t).

This inequality together with (4.18), and the fact that
∑n

k=1 α/(nαk) = 1
gives

w(t) ≤
n∏
k=1

ξk(uk(t), t)α/(nαk).

It follows that (∫ ∞
0

ts/q−1w(t)sdt
)1/s

≤

≤
(∫ ∞

0
ts/q−1

n∏
k=1

((uk(t)
t

)σkψk(uk(t)))sα/(nαk)
dt
)1/s

=
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=
(∫ ∞

0

n∏
k=1

(
uk(t)sk/pk−1uk(t)

t
ψk(uk(t))sk

)sα/(nαksk)
dt
)1/s

. (4.30)

Indeed, the equality in (4.30) can be proved by checking that

ts/q−1
n∏
k=1

(uk(t)
t

)sασk/(nαk) =
n∏
k=1

(
uk(t)sk/pk−1uk(t)

t

)sα/(nαksk)
,

which is equivalent to

ta =
n∏
k=1

uk(t)bk , (4.31)

where

a =
s

q
− 1 +

sα

n

n∑
k=1

( 1
skαk

− σk
αk

)
and

bk =
sα

nαkpk
− sασk

nαk
.

But,
σk
αk

=
1

pkαk
− 1.

Thus,

a =
s

q
− 1 +

sα

n

n∑
k=1

1
skαk

− sα

n

( n∑
k=1

1
pkαk

− n
)

=

=
s

q
− s

p
+ sα =

sα

n
(n− 1)

and
bk =

sα

n
,

k = 1, . . . , n. Thus, (4.31) reduces to (4.22).
Observe that

∑n
k=1 sα/(nαksk) = 1. We can then apply Hölder’s in-

equality with the parameters nαksk/(sα), k = 1, . . . , n, in the last integral
in (4.30) to get (∫ ∞

0
ts/q−1w(t)sdt

)1/s
≤

≤
n∏
k=1

(∫ ∞
0

uk(t)sk/pk−1uk(t)
t

ψ(uk(t))skdt
)α/(nαksk)

≤

≤
n∏
k=1

(
4ck

∫ ∞
0

uk(t)sk/pk−1u′k(t)ψ(uk(t))skdt
)α/(nαksk)

,
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where the last inequality holds by (4.24). Make the change of variables
z = uk(t). By (4.24), uk increases on R+, so we obtain(∫ ∞

0
ts/q−1w(t)sdt

)1/s
≤ 4n

n∏
k=1

(c1/sk
k ‖ψk‖pk,sk)α/(nαk).

Applying (4.11) we get inequality (4.6). The lemma is proved. �

4.2. The main theorem. We will consider rearrangements with respect
to specific variables. Let f ∈ S0(Rn) and 1 ≤ k ≤ n. Fix x̂k ∈ Rn−1 and
consider the function fx̂k(xk) = f(x̂k, xk). By Fubini’s theorem, fx̂k ∈ S0(R)
for almost all x̂k ∈ Rn−1. We define the rearrangement of f with respect to
xk, as the function

Rkf(t, x̂k) ≡ f∗x̂k(t).

This function is defined almost everywhere on R+ × Rn−1. Moreover, Rkf
is a measurable function equimeasurable with |f | (see [18]). In the proof of
the next theorem we will derive inequalities involving sections of sets. For
E ⊂ Rn and x̂k ∈ Rn−1 we define the x̂k-section of E as the set

E(x̂k) = {xk ∈ R : (x̂k, xk) ∈ E},

where (x̂k, xk) ≡ (x1, . . . , xn).

Theorem 4.5. Let n ≥ 2, 1 ≤ p1, . . . , pn, s1, . . . , sn <∞, and α1, . . . , αn >
0. Put

α = n
( n∑
k=1

1
αk

)−1
, p =

n

α

( n∑
k=1

1
αkpk

)−1
, and s =

n

α

( n∑
k=1

1
αksk

)−1
.

Assume that p ≤ n/α and put

q =

{
np/(n− αp), αp < n

∞, αp = n.

Set

σk =
1
pk
− αk, and Vk = Lpk,skx̂k

(Rn−1)[Λσkxk(R)],

and assume that

rk ≡
1
p
− α

n
− σk > 0, (4.32)

for k = 1, . . . , n. Suppose that

f ∈ S0(Rn) and f ∈
n⋂
k=1

Vk.
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Then f ∈ Lq,s(Rn) and

‖f‖∗q,s ≤ c
n∏
k=1

‖f‖α/(nαk)
Vk

, (4.33)

where

c = Knc
′ max
k=1,...,n

4nαk
n∏
k=1

(
1 +

1
αk

)α/(nαk)
, (4.34)

Kn only depends on n, and c′ is the constant from Lemma 4.4 defined in
(4.7).

Proof. We may assume that f ≥ 0. Fix t > 0. We will give a non-negative
upper bound on ∆f (t) and can therefore assume that ∆f (t) > 0. Let

E1 = {x : f(x) ≥ f∗(t)} and E2 = {x : f(x) > f∗(2t)}.

By (2.9), mesnE1 ≥ t so there exists an Fσ-set A ⊂ E1 such that mesnA = t.
Moreover, by (2.8), mesnE2 ≤ 2t so there exists a Gδ-set B ⊂ Rn such that
E2 ⊂ B and mesnB = 2t. Since Fσ-sets and Gδ-sets have measurable
sections, the functions

ak(x̂k) ≡ mes1A(x̂k) and bk(x̂k) ≡ mes1B(x̂k),

k = 1, . . . , n, are defined for all x̂k ∈ Rn−1. By Fubini’s theorem, these
functions are measurable on Rn−1. Since f(x) ≥ f∗(t) for all x ∈ A we have

f∗(t) ≤ inf
xk∈A(x̂k)

f(xk, x̂k) ≤ Rkf(ak(x̂k), x̂k), (4.35)

for all k = 1, . . . , n and all x̂k such that 0 < ak(x̂k) < ∞. Moreover, if
0 < bk(x̂k) <∞ then

Rkf(2bk(x̂k), x̂k) ≤ f∗(2t). (4.36)

Indeed, suppose 0 < bk(x̂k) < ∞ and let E ⊂ R be a measurable set of
measure 2bk(x̂k). Then there exists a point xk ∈ E such that (xk, x̂k) 6∈ B.
But E2 ⊂ B so then f(xk, x̂k) ≤ f∗(2t) and thus

inf
xk∈E

f(xk, x̂k) ≤ f∗(2t).

Since E was an arbitrary measurable set of measure 2bk(x̂k), (4.36) follows.
Observe that by our assumption ∆f (t) > 0, it holds that

A ⊂ E1 ⊂ E2 ⊂ B. (4.37)

For each k we put

Pk = {x̂k ∈ ΠkA : 0 < bk(x̂k) ≤ 2n+1ak(x̂k) <∞}.
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The sets Pk are measurable since ΠkA is measurable (A is an Fσ-set) and
since the functions ak and bk are measuurable. For all x̂k ∈ Pk we have the
inequalities (4.35) and (4.36), and from these we obtain

∆f (t) ≤ Rkf(ak(x̂k), x̂k)−Rkf(2bk(x̂k), x̂k)

≤ Rkf(ak(x̂k), x̂k)−Rkf(2n+2ak(x̂k), x̂k)

=
n+1∑
l=0

(
Rkf(2lak(x̂k), x̂k)−Rkf(2l+1ak(x̂k), x̂k)

)
≤ (ak(x̂k))−σkΨk(x̂k)

n+1∑
l=0

2−l σk ,

where Ψk(x̂k) = ‖f(x̂k, ·)‖Λσk . So for all x̂k ∈ Pk and every k = 1, . . . , n it
holds that

∆f (t) ≤ cak(x̂k)−σkΨk(x̂k), (4.38)
where

c =
n+1∑
l=0

2−lσk ≤ 2nmax(1, 2−(n+1)σk).

For all x̂k ∈ (ΠkA) \ Pk we have

2n+1ak(x̂k) ≤ bk(x̂k). (4.39)

Indeed, take x̂k ∈ (ΠkA) \ Pk. By the definition of Pk, we have either
bk(x̂k) = 0, 2n+1ak(x̂k) < bk(x̂k), or ak(x̂k) =∞. However, if bk(x̂k) = 0 or
ak(x̂k) =∞ then (4.39) holds by (4.37).

For k = 1, . . . , n we put

Ak = {x ∈ A : x̂k ∈ Pk}.
These sets are measurable by Lemma 4.1. Moreover,

mesnAk ≥ t(1− 2−n), (4.40)

for all k. Indeed, ΠkAk = Pk and for all x̂k ∈ Pk we have mes1(Ak(x̂k)) =
ak(x̂k), so

mesnAk =
∫
Pk

ak(x̂k)dx̂k.

By (4.39) and this equality we get

2t =
∫

ΠkB
bk(x̂k)dx̂k ≥ 2n+1

∫
(ΠkA)\Pk

ak(x̂k)dx̂k =

= 2n+1(mesnA−mesnAk) = 2n+1(t−mesnAk),
and then (4.40) follows.
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Let A∗ be an Fσ-subset of ∩nk=1Ak such that mesnA∗ = mesn(∩nk=1Ak).
By (4.40) we have mesn(A \A∗) ≤ n2−nt. This implies that

mesnA∗ ≥
t

2
. (4.41)

Let uk, k = 1, . . . , n, be positive numbers such that
n∏
k=1

uk = tn−1. (4.42)

Put
Ω = {k ∈ {1, . . . , n} : mesn−1Pk ≥

uk
2
}.

Then Ω 6= ∅. Indeed, suppose Ω = ∅. By (4.41) and the Loomis-Whitney
inequality (2.1),( t

2

)n−1
≤ (mesnA∗)n−1 ≤

n∏
k=1

mesn−1ΠkA
∗. (4.43)

Since ΠkA
∗ ⊂ Pk and Ω = ∅, it follows that( t

2

)n−1
<

1
2n

n∏
k=1

uk,

but this is false by (4.42). Thus, Ω 6= ∅.
Fix k in Ω. Assume that σk ≤ 0 and define

P̃k = {x̂k ∈ Pk : ak(x̂k) ≤
4t
uk
}.

Then P̃k is measurable since Pk and the function ak are measurable. Since
ak(x̂k) > 4t/uk for all x̂k ∈ Pk \ P̃k, we have

t = mesnA =
∫

ΠkA
ak(x̂k)dx̂k ≥

∫
Pk\P̃k

ak(x̂k)dx̂k ≥

≥ 4t
uk

(mesn−1Pk −mesn−1P̃k).

Since k ∈ Ω, we know that mesn−1Pk ≥ uk/2, so by the preceding inequality

mesn−1P̃k ≥
uk
4
. (4.44)

Since σk ≤ 0, (4.38) gives that

∆f (t) ≤ 2n4nαk
(uk
t

)σk
Ψk(x̂k),

for all x̂k ∈ P̃k. Taking infimum over the set P̃k and using (4.44), we get

∆f (t) ≤ 2n4nαk
(uk
t

)σk
Ψ∗k(

uk
4

). (4.45)



44

From here on we assume that σk > 0 for each k in Ω. We now partition
the sets Pk, k ∈ Ω, as follows. If mesn−1Pk > uk/2, then we apply Lemma
4.2 to obtain disjoint measurable sets P ′k and P ′′k such that Pk = P ′k ∪ P ′′k ,

mesn−1P
′
k =

uk
2
, (4.46)

and ∫
P ′′k

Ψk(x̂k)1/σkdx̂k ≤
∫ ∞
uk/2

Ψ∗k(z)
1/σkdz. (4.47)

On the other hand, if mesn−1Pk = uk/2 then we put P ′k = Pk and P ′′k = ∅.
Clearly (4.46) and (4.47) are satisfied also in this case.

For each k ∈ Ω we put

A′′k = {x ∈ A∗ : x̂k ∈ P ′′k }.

These sets are measurable by Lemma 4.1. We will consider two cases. First
we assume that there exists k ∈ Ω for which mesnA′′k ≥ t/(4n). Fix such an
index k. Since mes1(A′′k(x̂k)) ≤ ak(x̂k) and ΠkA

′′
k ⊂ P ′′k , it holds that

t

4n
≤ mesnA′′k ≤

∫
P ′′k

ak(x̂k)dx̂k (4.48)

(the first inequality is by our assumption on k). Since σk > 0, (4.38) gives

ak(x̂k)∆f (t)1/σk ≤ (2nΨk(x̂k))1/σk ,

for all x̂k ∈ Pk. Integrating over P ′′k and applying (4.47) we get

∆f (t)1/σk

∫
P ′′k

ak(x̂k)dx̂k ≤ (2n)1/σk

∫ ∞
uk/2

Ψ∗k(z)
1/σkdz. (4.49)

By this inequality and (4.48),

∆f (t) ≤ 4n2t−σk
(∫ ∞

uk

Ψ∗k
(z

2
)1/σkdz)σk . (4.50)

Now we turn to the remaining case when

mesnA′′k <
t

4n
, (4.51)

for all k ∈ Ω. Put
D = A∗ \

⋃
k∈Ω

A′′k.

By (4.41) and (4.51),

mesnD ≥ mesnA∗ −
∑
k∈Ω

mesnA′′k ≥
t

2
−

n∑
k=1

t

4n
=
t

4
. (4.52)
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Fix k ∈ Ω. Let the set S be defined by

S = {x ∈ D : ak(x̂k) ≥
t

4uk
}.

This set is measurable by Lemma 4.1. Let Q be an Fσ-subset of D \S such
that

mesnQ = mesn(D \ S).
Now,

mesnQ ≤
∫

ΠkQ
mes1D(x̂k)dx̂k ≤

∫
ΠkQ

ak(x̂k)dx̂k ≤
t

4uk
mesn−1ΠkQ.

But ΠkQ ⊂ ΠkD ⊂ Πk(A∗\A′′k) ⊂ P ′k so we have by (4.46) and the preceding
inequality that

mesn(D \ S) = mesnQ ≤
t

8
.

By this and (4.52),

mesnS = mesnD −mesn(D \ S) ≥ t

8
. (4.53)

Let S̃ be an Fσ-subset of S such that mesnS̃ = mesnS. Then

mesn−1ΠlS̃ ≤
ul
2
, (4.54)

for all l = 1, . . . , n. Indeed, if l ∈ Ω, then we have

S̃ ⊂ S ⊂ D ⊂ A∗ \A′′l ,
so that

ΠlS̃ ⊂ Πl(A∗ \A′′l ) ⊂ P ′l .
By (4.46) we then have (4.54), for all l ∈ Ω. Suppose Ω 6= {1, . . . , n} and
fix l ∈ {1, . . . , n} \ Ω. Then mesn−1Pl < ul/2. But

S̃ ⊂ S ⊂ D ⊂ A∗ ⊂ Al
and then

ΠlS̃ ⊂ ΠlAl = Pl,

so we again obtain (4.54).
By (4.53) and the Loomis-Whitney inequality (2.1),( t

8

)n−1
≤ (mesnS)n−1 = (mesnS̃)n−1 ≤

n∏
l=1

mesn−1ΠlS̃.

Applying (4.54) for each l ∈ {1, . . . , n}, except for l = k (recall that k ∈ Ω
is fixed), we obtain ( t

8
)n−1 ≤ 2−n+1

uk
mesn−1ΠkS̃

n∏
l=1

ul.
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By (4.42), this implies
uk

4n−1
≤ mesn−1ΠkS̃. (4.55)

Let x̂k ∈ ΠkS̃. Then inequality (4.38) holds and ak(x̂k) ≥ t/(4uk), so we
have

∆f (t) ≤ 8n
(uk
t

)σk
Ψk(x̂k)

(here we used that 0 < σk < 1 to estimate the constant). Taking infimum
over all x̂k ∈ ΠkS̃ in the preceding inequality and using (4.55), we obtain

∆f (t) ≤ 8n
(uk
t

)σk
Ψ∗k
( uk

4n−1

)
.

Since Ψ∗k is non-increasing, it follows that

∆f (t) ≤ 8nt−σk
(∫ ∞

uk

Ψ∗k(z/4
n)1/σkdz

)σk
. (4.56)

For each k ∈ {1, . . . , n} and z > 0 we define the function

φk(z) =

Ψ∗k(z/4), σk ≤ 0

z−σk
(∫ ∞

z
Ψ∗k(τ/4

n)1/σkdτ
)σk

, σk > 0,

and set ηk(z, t) ≡ (z/t)σkφk(z). It holds that

‖φk‖pk,sk ≤ 4n+1
(

1 +
1
αk

)
‖Ψk‖pk,sk . (4.57)

Indeed, fix k ∈ {1, . . . , n}. Assume first that σk ≤ 0. Then

‖φk‖pk,sk =
(∫ ∞

0
zpk/sk−1Ψ∗k(z/4)skdz

)1/sk
.

Making the change of variables z 7→ z/4 we obtain (4.57), with 4 as the
constant. Now we suppose that σk > 0. Then

‖φk‖pk,sk =
(∫ ∞

0
zαksk−1

(∫ ∞
z

Ψ∗k(τ/4
n)1/σkdτ

)skσk
dz
)1/sk

.

Make the change of variables τ 7→ 4−nτ and z 7→ 4−nz to get

‖φk‖pk,sk = 4n/pk
(∫ ∞

0
zαksk−1

(∫ ∞
z

Ψ∗(τ)1/σkdτ
)skσk

dz
)1/sk

.

Assume first that 1 ≤ skσk. By Hardy’s inequality (2.2),

‖φk‖pk,sk ≤ 4n/pk
(σk
αk

)σk(∫ ∞
0

tαksk+skσk−1Ψ∗k(t)
skdt

)1/sk
≤

≤ 4n

αk
‖Ψk‖pk,sk ,
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where we used that 0 < αk, σk < 1 to estimate the constant. Suppose now
that 0 < skσk < 1. Applying Theorem 2.3 gives inequality (4.57) with the
constant 4n/pk(e/(αkpk))1/sk (this estimate is similar to the previous case,
so we omit the details). This constant is less then 4n+1/αk, since 0 < αk < 1
and 1 ≤ pk, sk. In each of these three cases, the constant we get is less than
4n+1(1 + 1/αk), so (4.57) holds.

By (4.45), (4.50), and (4.56) there exists k ∈ {1, . . . , n} such that

∆f (t) ≤ 8n24nαkηk(uk, t). (4.58)

Set

w(t) ≡ inf{ max
k=1,...,n

ηk(zk, t) :
n∏
k=1

zk = tn−1, 0 < z1, . . . , zn}.

The numbers uk, k = 1, . . . , n, are arbitrary positive numbers satisfying
(4.42), so it follows from (4.58) that

∆f (t) ≤ dw(t),

where
d ≡ 8n2 max

k=1,...,n
4nαk .

Since t > 0 was arbitrary, we get

‖f‖∗q,s =
(∫ ∞

0
ts/q−1∆f (t)sdt

)1/s
≤ d
(∫ ∞

0
ts/q−1w(t)sdt

)1/s
.

Each of the functions φk is non-negative and non-increasing. Furthermore,
by (4.57) we have that φk ∈ Lpk,sk(R+). Since we also assumed (4.32), we
can apply Lemma 4.4 to get

‖f‖∗q,s ≤ dc′
n∏
k=1

‖φk‖α/(nαk)
pk,sk

,

where c′ is the constant from Lemma 4.4, given by (4.7). By (4.57) we then
get

‖f‖∗q,s ≤ 4n+1dc′
n∏
k=1

[(
1 +

1
αk

)
‖f‖Vk

]α/(nαk)
,

so we have proved (4.33). It follows from (4.33) that f ∈ Lq,p(Rn). Indeed,
when q =∞, we apply (2.29) and when q <∞ we apply (2.27). �

Remark 4.6. As was mentioned above, for pk = sk = p, k = 1, . . . , n,
Theorem 4.5 was proved in [19]. Note that in this case the condition (4.32)
reduces to the inequality αk > α/n which is certainly true for any k =
1, . . . , n. Indeed,

α

n
=
( n∑
k=1

1
αk

)−1
< αk.
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5. Applications

It was shown in [19] that estimates in terms of mixed norms provide a
unified approach to embeddings of Sobolev spaces and Besov spaces and
enable us to obtain optimal embedding constants. In this section we apply
Theorem 4.5 to get similar results for anisotropic Sobolev-Liouville spaces
and anisotropic Sobolev-Besov spaces.

5.1. Anisotropic Sobolev-Liouville spaces. Let 1 ≤ p <∞. A function
f ∈ Lp(Rn) is said to belong to the partial Sobolev space W 1

p;k(Rn) if f has
a weak derivative Dkf ∈ Lp(Rn). The norm in this space is defined as

‖f‖W 1
p;k

= ‖f‖p + ‖Dkf‖p.

Let 1 ≤ p1, . . . , pn < ∞. The anisotropic Sobolev space W 1
p1,...,pn(Rn) is

defined as the intersection

W 1
p1,...,pn(Rn) =

n⋂
k=1

W 1
pk;k(Rn),

with the norm

‖f‖W 1
p1,...,pn

=
n∑
k=1

‖f‖W 1
pk;k

.

In the case pk = p, k = 1, . . . , n, we easily see that the space W 1
p1,...,pn(Rn)

coincides with W 1
p (Rn) and that the norms are equivalent.

Let 0 < α < 1. The Bessel kernel of order α on R is the function Gα
defined by

Gα(x) =
1

(4π)α/2Γ(α/2)

∫ ∞
0

e−πx
2/te−t/(4π)t(α−n)/2−1dt, x ∈ R (5.1)

(see [30, p. 132]). We have
‖Gα‖1 = 1. (5.2)

For 1 ≤ p < ∞ and 0 < α < 1, we say that a measurable function f on
Rn belongs to the partial Sobolev-Liouville space Lαp;k(Rn) if there exists a
function gk ∈ Lp(Rn) such that

f(x) =
∫

R
Gα(xk − y)gk(x̂k, y)dy,

a.e. on Rn. The norm in Lαp;k(Rn) is defined as

‖f‖Lαp;k = ‖gk‖p.
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The function gk is called the Bessel derivative of order α of f with respect
to xk, and we denote it by Dα

k f . We extend the notation Lαp;k to the case
α = 1. Namely, we agree that L1

p;k = W 1
p;k (1 ≤ p <∞) and

‖f‖L1
p;k

= ‖f‖W 1
p;k
.

By Minkowski’s inequality and (5.2), we easily obtain the following.

Proposition 5.1. Let 1 ≤ p < ∞ and 0 < α ≤ 1. Suppose that f ∈
Lαp;k(Rn). Then f ∈ Lp(Rn) and

‖f‖p ≤ ‖f‖Lαp;k .

Let 0 < α1, . . . , αn ≤ 1 and 1 ≤ p1, . . . , pn < ∞. We define the
anisotropic Sobolev-Liouville space Lα1,...,αn

p1,...,pn (Rn) as the intersection

Lα1,...,αn
p1,...,pn (Rn) = ∩nk=1L

αk
pk;k(R

n),

with the norm

‖f‖Lα1,...,αn
p1,...,pn

=
n∑
k=1

‖f‖Lαkpk;k

We also write Lα1,...,αn
p (Rn) for the space Lα1,...,αn

p,...,p (Rn). From the definition
we have L1,...,1

p1,...,pn(Rn) = W 1
p1,...,pn(Rn), and the norms are equal.

We will apply Theorem 4.5 to prove an embedding for Lα1,...,αn
p1,...,pn (Rn). To

this end we need the following lemmas. The first lemma was proved in [17,
p. 148]. We use here the notation

∆(h)ϕ(x) = ϕ(x+ h)− ϕ(x). (5.3)

Lemma 5.2. Let ϕ ∈ L1
loc(R) ∩ S0(R) and assume that 0 < t < ∞. Then,

for each x ∈ R

|ϕ(x)| ≤ ϕ∗(t) +
1
t

∫ 2t

0
|∆(h)ϕ(x)|dh.

The next lemma states two well known inequalities concerning Gα.

Lemma 5.3. Let 0 < α < 1. The Bessel kernel on R satisfies the inequali-
ties

Gα(x) ≤ c|x|α−1 (5.4)

and
|G′α(x)| ≤ c|x|α−2, (5.5)

where c depends only on α.
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Proof. Differentiating in the formula (5.1), we get

|G′α(x)| = c|x|
∫ ∞

0
e−πx

2/te−t/(4π)t(α−1)/2−2dt ≤

≤ c|x|
∫ ∞

0
e−πx

2/tt(α−1)/2−2dt.

Using the inequality ez > z2, z > 0, we have∫ x2

0
e−πx

2/tt(α−1)/2−2dt ≤ 1
π2x4

∫ x2

0
t(α−1)/2dt =

2
π2(α+ 1)

|x|α−3.

Moreover,∫ ∞
x2

e−πx
2/tt(α−1)/2−2dt ≤

∫ ∞
x2

t(α−1)/2−2dt =
2

3− α
|x|α−3.

Combining these estimates, we obtain (5.5).
To estimate Gα, we break the integral as above. Using the inequality

ez > z, z > 0, to estimate the integral over (0, x2), we similarly obtain
(5.4). �

The next lemma is known (see e.g. [30, p. 158-159]), but we include the
proof for completeness.

Lemma 5.4. Let 0 < α < 1. The Bessel kernel on R satisfies

‖∆(h)Gα‖1 ≤ c|h|α, for any h ∈ R. (5.6)

Proof. We have

‖∆(h)Gα‖1 =
∫
|x|>2|h|

|∆(h)Gα(x)|dx+
∫
|x|≤2|h|

|∆(h)Gα(x)|dx. (5.7)

Observe that

|∆(h)Gα(x)| ≤
∫ 1

0

∣∣∣ d
dt

(Gα(x+ th))
∣∣∣dt = |h|

∫ 1

0
|G′α(x+ th)|dt.

By this and inequality (5.5),

|∆(h)Gα(x)| ≤ c|h|
∫ 1

0
|x+ th|α−2dt.

If 2|h| < |x|, it follows that

|∆(h)Gα(x)| ≤ c|h||x|α−2.

This implies∫
|x|>2|h|

|∆(h)Gα(x)|dx ≤ c|h|
∫ ∞

2|h|
xα−2dx ≤ c′|h|α. (5.8)
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By (5.4), ∫
|x|≤2|h|

|∆(h)Gα(x)|dx ≤ 4
∫ 3|h|

0
Gα(x)dx ≤

≤ c
∫ 3|h|

0
xα−1dx ≤ c′|h|α.

Applying this inequality, (5.7), and (5.8) we obtain (5.6). �

The next lemma states the embedding from anisotropic Sobolev-Liouville
spaces to the mixed norm spaces considered in Theorem 4.5. In the case
when α = 1, it was proved in [19].

Lemma 5.5. Let 1 ≤ p < ∞, 0 < α ≤ 1, n ≥ 2, and k ∈ {1, . . . , n}. If
f ∈ Lαp,k(Rn), then

f ∈ Vk ≡ Lpx̂k(Rn−1)[Λ1/p−α
xk

(R)] (5.9)

and
‖f‖Vk ≤ c‖D

α
k f‖p. (5.10)

where c depends only on p, α, and n.

Proof. Fix t > 0. Write fx̂k(xk) = f(x̂k, xk). Then fx̂k ∈ L1
loc(R) ∩ S0(R),

for a.e. x̂k ∈ Rn−1. Indeed, Lαp,k(Rn) ⊂ Lp(Rn) by Proposition 5.1. By
Fubini’s theorem it follows that fx̂k ∈ Lp(R) ⊂ L1

loc(R) ∩ S0(R), for a.e.
x̂k ∈ Rn−1. Fix such x̂k. By Lemma 5.2,

|fx̂k(xk)| ≤ f∗x̂k(2t) +
1
2t

Φ(xk) (5.11)

for all xk ∈ R, where

Φ(xk) =
∫ 4t

0
|∆(h)fx̂k(xk)|dh.

We have Φ ∈ S0(R). Indeed, by Minkowski’s inequality

‖Φ‖p ≤
∫ 4t

0
‖∆(h)fx̂k‖pdh ≤ 8t‖fx̂k‖p.

As we noted above, fx̂k ∈ Lp(R) and thus Φ ∈ Lp(R) ⊂ S0(R).
It follows from (5.11) that

f∗x̂k(t)− f∗x̂k(2t) ≤ 1
t
Φ∗(t). (5.12)
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Set g ≡ Dα
k f , that is, if 0 < α < 1 then g denotes the Bessel derivative, and

if α = 1 then g is the usual weak derivative. Write gx̂k(xk) = g(x̂k, xk). In
the case α = 1,

∆(h)fx̂k(xk) =
∫ h

0
gx̂k(xk + u)du.

So

Φ(xk) ≤ 4t
∫ 4t

0
|gx̂k(xk + u)|du ≤ 16t

∫ t

0
g∗x̂k(s)ds,

and thus

Φ∗(t) ≤ 16t
∫ t

0
g∗x̂k(s)ds. (5.13)

Assume now that 0 < α < 1. By definition of the Bessel derivative,

fx̂k(xk) =
∫

R
Gα(xk − u)gx̂k(u)du.

It follows that

∆(h)fx̂k(xk) =
∫

R
gx̂k(u)∆(h)Gα(xk − u)du.

Changing variables we get

∆(h)fx̂k(xk) =
∫

R
gx̂k(xk − u)∆(h)Gα(u)du.

So by Fubini’s theorem,

Φ(xk) ≤
∫

R
|gx̂k(xk − u)|ϕ(u)du,

where

ϕ(u) =
∫ 4t

0
|∆(h)Gα(u)|dh.

Let E ⊂ R be a measurable set having measure t. Integrating over E in the
preceding inequality and using Fubini’s theorem and (2.22), we obtain∫

E
Φ(xk)dxk ≤

∫
R
ϕ(u)

∫
E
|gx̂k(xk − u)|dxkdu ≤ ‖ϕ‖1

∫ t

0
g∗x̂k(s)ds.

Since E was an arbitrary set of measure t, (2.22) then implies

Φ∗(t) ≤ 1
t

∫ t

0
Φ∗(s)ds =

1
t

sup
|E|=t

∫
E

Φ(xk)dxk ≤
1
t
‖ϕ‖1

∫ t

0
g∗x̂k(s)ds.

By Fubini’s theorem and Lemma 5.4 we have

‖ϕ‖1 =
∫ 4t

0
‖∆(h)Gα‖1dh ≤ ctα+1.
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Thus,

Φ∗(t) ≤ ctα
∫ t

0
g∗x̂k(s)ds. (5.14)

By (5.12), (5.13), (5.14) we obtain

f∗x̂k(t)− f∗x̂k(2t) ≤ ctα−1

∫ t

0
g∗x̂k(s)ds,

for all 0 < α ≤ 1. For all 0 < α ≤ 1 and 1 ≤ p < ∞ we then get (using
Hölder’s inequality in the case 1 < p <∞)

‖fx̂k‖Λ1/p−α ≤ c‖gx̂k‖Lp(R).

Taking Lp(Rn−1)-norm with respect to x̂k and using Fubini’s theorem we
obtain (5.10), and then also (5.9). �

Remark 5.6. As we mentioned above, Lemma 5.5 is already known in the
case α = 1. The proof appeared in [19] with 4 as the constant in inequality
(5.10).

We will now apply Theorem 4.5 and the preceding lemma to prove the
aforementioned embedding of the spaces Lα1,...,αn

p1,...,pn (Rn).

Theorem 5.7. Let n ≥ 2, 1 ≤ p1, . . . , pn < ∞, and 0 < α1, . . . , αn ≤ 1.
Put

α = n
( n∑
k=1

1
αk

)−1
and p =

n

α

( n∑
k=1

1
αkpk

)−1
.

Assume that p ≤ n/α and that

1
p
− α

n
− 1
pk

+ αk > 0, k = 1, . . . , n.

Put

q =

{
np/(n− αp), p < n/α

∞, p = n/α.

Suppose f ∈ Lα1,...,αn
p1,...,pn (Rn). Then f ∈ Lq,p(Rn) and

‖f‖q,p ≤ c
n∏
k=1

‖Dαk
k f‖α/(nαk)

pk
, (5.15)

where c only depends on α1, . . . , αn, p1, . . . , pn, and n.

Proof. As in Theorem 4.5 we set

Vk ≡ Lpkx̂k(Rn−1)[Λ1/pk−αk
xk

(R)].
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Since f ∈ Lαkpk (Rn), for k = 1, . . . , n, it follows from Lemma 5.5 that f ∈ Vk
and

‖f‖Vk ≤ c‖D
αk
k f‖pk <∞. (5.16)

Thus f ∈ ∩nk=1Vk. We also have f ∈ S0(Rn), by Proposition 5.1. So by
Theorem 4.5, f ∈ Lq,p(Rn) and

‖f‖∗q,p ≤ c
n∏
k=1

‖f‖α/(nαk)
Vk

. (5.17)

Now, (5.15) follows from (5.17), (5.16), (2.27), and (2.29). �

Remark 5.8. Let p < n/α. The following special cases of the preceding
theorem are known:

If α1 = · · · = αn = 1, but the numbers pk may be distinct, then the above
theorem is a special case of Theorem 13.1 in [17].

If the numbers pk all coincide, but the numbers αk may be distinct, then
the above theorem is a special case of Theorem 9.3 in [17].

5.2. Limiting embeddings and anisotropic Sobolev-Besov spaces.
Let 1 ≤ p <∞ and f ∈ Lp(Rn). For x, h ∈ Rn we use the notation

∆(h)f(x) = f(x+ h)− f(x),

and set
Ip(h) = ‖∆(h)f‖p. (5.18)

The Lp-modulus of continuity of f is the function t 7→ ω(f ; t)p defined for
t > 0 by

ω(f ; t)p = sup
|h|≤t

Ip(h).

Further, for h ≥ 0 and x ∈ Rn, we set

Ip,k(h) = ‖∆(hek)f‖p
(ek is the kth unit coordinate vector in Rn). We define the partial Lp-
modulus of continuity of f with respect to xk as

ωk(f ; t)p = sup
0≤h≤t

Ip,k(h). (5.19)

Let 0 < α < 1 and 1 ≤ p, θ < ∞. The following relation between ω(f ; t)p
and ωk(f ; t)p is easy to verify

max
k=1,...,n

ωk(f ; t)p ≤ ω(f ; t)p ≤
n∑
k=1

ωk(f ; t)p. (5.20)

We define the Besov space Bα
p,θ(Rn) as consisting of all f ∈ Lp(Rn) for which

‖f‖bαp,θ ≡
( ∫ ∞

0
(t−αω(f ; t)p)θ

dt

t

)1/θ
<∞.
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The partial Besov space Bα
p,θ;k(Rn) is similarly defined as the class of all

functions f ∈ Lp(Rn) such that

‖f‖bαp,θ;k ≡
( ∫ ∞

0
(t−αωk(f ; t)p)θ

dt

t

)1/θ
<∞.

We set Bα
p ≡ Bα

p,p and Bα
p;k ≡ Bα

p,p;k. Let 0 < α1, . . . , αn < 1 and 1 ≤
p1, . . . , pn <∞. The anisotropic Besov space Bα1,...,αn

p1,...,pn (Rn) is defined as the
intersection

Bα1,...,αn
p1,...,pn (Rn) = ∩nk=1B

αk
pk;k(R

n).

We set also

‖f‖bα1,...,αn
p1,...,pn

=
n∑
k=1

‖f‖bαkpk;k
.

We let Bα1,...,αn
p denote Bα1,...,αn

p,...,p . It follows from (5.20) that if αk = α and
pk = p, k = 1, . . . , n, then the spaces Bα1,...,αn

p1,...,pn (Rn) and Bα
p (Rn) coincide

and
1
n
‖f‖bα,...,αp,...,p

≤ ‖f‖bαp ≤ ‖f‖bα,...,αp,...,p
(5.21)

The following theorem is well known (see [11]).

Theorem 5.9. Let 0 < α1, . . . , αn < 1,

α ≡ n(
n∑
k=1

1
αk

)−1,

and 1 ≤ p < n/α. Set q = np/(n − αp). For every f ∈ Bα1,...,αn
p (Rn) we

have f ∈ Lq,p(Rn) and

‖f‖q,p ≤ c
n∑
k=1

‖f‖bαkp;k , (5.22)

where c only depends on α1, . . . , αn, p, and n.

Suppose α1 = · · · = αn = α. By (2.24), (5.22), and (5.21),

‖f‖q ≤ c‖f‖bαp . (5.23)

Bourgain, Brezis, and Mironescu [6] proved a limiting relation between
the Besov norm and the Sobolev norm. They showed that for any f ∈
W 1
p (Rn) (1 ≤ p <∞) there holds the equality

lim
α→1−

(1− α)1/p‖f‖bαp = (
1
p

)1/p‖∇f‖p. (5.24)



56

The sharp asymptotic of the best constant in (5.23) as α → 1− was found
by Bourgain, Brezis, and Mironescu in [7]. Namely, they proved that if
1/2 < α < 1, 1 ≤ p < n/α, and q = np/(n− αp), then for any f ∈ Bα

p (Rn),

‖f‖pq ≤ cn
1− α

(n− αp)p−1
‖f‖pbαp . (5.25)

They where the first to explicitly observe that embeddings for Sobolev
spaces can be derived from embeddings of Besov spaces. Indeed, in view
of (5.24), Sobolev’s inequality (1.1) can be considered as a limiting case of
(5.25).

The next theorem was obtained in [19] as a corollary of estimates via
mixed norms (see Theorem 1.6 and Proposition 5.14 below).

Theorem 5.10. Let 1 ≤ p <∞, n ≥ 2, and 1/2 < α1, . . . , αn < 1. Assume
that

α ≡ n
( n∑
k=1

1
αk

)−1
≤ n

p
.

Let

q =

{
np/(n− αp), p < n/α

∞, p = n/α.

Then, for every f ∈ Bα1,...,αn
p (Rn) we have that f ∈ Lq,p(Rn) and

‖f‖∗q,p ≤ cn
n∏
k=1

[(1− αk)1/p‖f‖bαkp;k ]α/(nαk), (5.26)

where cn only depends on n.

Inequality (5.26) gives the sharp asymptotic behaviour of the best con-
stant in (5.22) as some of the numbers αk tend to 1.

We shall apply Theorem 4.5 to extend these results to the fully anisotropic
space Bα1,...,αn

p1,...,pn (Rn) . First we will prove a version of the relation (5.24) for
the partial Besov norm (this is Proposition 5.13 below). Observe that we
follow here the approach in [20].

Lemma 5.11. Let 1 ≤ p < ∞, 1 ≤ k ≤ n. Then C1
0 (Rn) is dense in

W 1
p;k(Rn).

The proof of this lemma is exactly the same as that of Proposition 1 in
[30, p. 122].

Proposition 5.12. Let 1 ≤ p < ∞. For every f ∈ W 1
p;k(Rn) there holds

the relation

lim
t→0+

ωk(f ; t)p
t

= ‖Dkf‖p.
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Proof. For all h ∈ R and a.e. x ∈ Rn we have

∆k(h)f(x) ≡ f(x+ hek)− f(x) =
∫ 1

0
Dkf(x+ thek)hdt.

By Minkowskis inequality,

Ip,k(h) = ‖∆k(h)f‖p ≤

≤
(∫

Rn

(∫ 1

0
|Dkf(x+ thek)h|dt

)p
dx
)1/p

≤ |h| ‖Dkf‖p.

Thus (recall (5.19)),
ωk(f, δ)p ≤ δ‖Dkf‖p (5.27)

for all δ > 0. Fix ε > 0. By Lemma 5.11, there exists a function fε ∈ C1
0 (Rn)

such that
‖Dk(f − fε)‖p ≤ ε. (5.28)

It follows that

ωk(fε; δ)p ≤ ωk(f ; δ)p + ωk(f − fε; δ)p ≤ ωk(f ; δ)p + δε, (5.29)

where the last inequality holds by (5.27) and (5.28). Since fε has compact
support, there exists a compact set K ⊂ Rn which contains the support of
∆k(δ)fε− δDkfε, for all 0 ≤ δ ≤ 1. Since this function is continuous on Rn,
it follows that

1
δ

∆k(δ)fε −Dkfε → 0

uniformly on K, as δ → 0. Hence, by the uniform convergence theorem,

µε(δ) ≡ ‖
1
δ

∆k(δ)fε −Dkfε‖Lp(K) → 0,

as δ → 0. Thus, there exists a number δε > 0 such that

µε(δ) < ε, (5.30)

for all 0 < δ < δε. Furthermore, by the triangle inequality

‖Dkfε‖p ≤ µε(δ) +
1
δ
ωk(fε; δ)p. (5.31)

So, for all 0 < δ < δε we have

‖Dkf‖p ≤ ε+ ‖Dkfε‖p ≤ ε+ µε(δ) +
1
δ
ωk(fε; δ)p ≤

≤ 3ε+
1
δ
ωk(f ; δ)p,

where the first inequality holds by (5.28), the second by (5.31), and the third
by (5.30) and (5.29). By this and inequality (5.27) the proof is complete. �
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Proposition 5.13. Let 1 ≤ p, θ <∞. If f ∈W 1
p;k(Rn), then

lim
α→1−

(1− α)1/θ‖f‖bαp,θ;k = θ−1/θ‖Dkf‖p. (5.32)

Proof. Put Ak = ‖Dkf‖p. Fix ε > 0 and let 0 < α < 1. By Proposition
5.12 there exists δ > 0 such that∣∣∣(ωk(f ; t)p

t

)θ
−Aθk

∣∣∣ < ε, (5.33)

for all 0 < t < δ. We have

(1− α)‖f‖θbαp,θ;k −
Aθk
θ

= Iδ + Jδ, (5.34)

where

Iδ = (1− α)
∫ δ

0
[t−αωk(f ; t)p]θ

dt

t
−
Aθk
θ

and

Jδ = (1− α)
∫ ∞
δ

[t−αωk(f ; t)p]θ
dt

t
.

To estimate Iδ we observe that

(1− α)
∫ δ

0
t(1−α)θ−1

[(ωk(f ; t)p
t

)θ
−Aθk

]
dt =

= (1− α)
∫ δ

0
[t−αωk(f ; t)p]θ

dt

t
−
Aθk
θ
δ(1−α)θ = Iδ +

Aθk
θ

(1− δ(1−α)θ).

Applying (5.33) we now get

|Iδ +
Aθk
θ

(1− δ(1−α)θ)| ≤ ε

θ
δ(1−α)θ,

and thus

|Iδ| ≤
ε

θ
δ(1−α)θ +

Aθk
θ
|1− δ(1−α)θ|. (5.35)

Moreover, since ωk(f ; t)p ≤ 2‖f‖p for all t > 0, we have

Jδ ≤
2(1− α)‖f‖p

αθδαθ
. (5.36)

Combining (5.34), (5.35) and (5.36) we get∣∣∣(1− α)‖f‖θbαp,θ;k −
Aθk
θ

∣∣∣ ≤ ε

θ
δ(1−α)θ +

Aθk
θ
|δ(1−α)θ − 1|+ 2(1− α)‖f‖p

αθδαθ
.

Clearly there exists 0 < σ < 1 such that the left-hand side in this inequality
is less that 3ε for all α ∈ (1− σ, 1). �
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As it was observed in [19], the constant in (5.26) has the sharp asymptotic
behaviour as some of the numbers αk tend to 1. Indeed, if a function
f ∈ Bα1,...,αn

p (Rn) has a weak derivative Dkf ∈ Lp(Rn) for some k, then for
the corresponding factor in (5.26) we have by (5.32) (with θ = p)

(1− αk)1/p‖f‖bαkp →
(1
p

)1/p
‖Dkf‖p, αk → 1− .

The next proposition was proved in [19].

Proposition 5.14. Let n ≥ 2, 0 < α < 1, 1 ≤ p <∞, and 1 ≤ k ≤ n. Set

Vk = Lpx̂k(Rn−1)[Λ1/p−α
xk

(R)].

Assume that f ∈ Bα
p;k(Rn). Then f ∈ Vk and

‖f‖Vk ≤ 100[α(1− α)]1/p‖f‖bαp;k .

Applying Theorem 4.5 and Proposition 5.14, we obtain the following.

Theorem 5.15. Let n ≥ 2, 1/2 < α1, . . . , αn < 1, and 1 ≤ p1, . . . , pn <∞.
Set

α = n
( n∑
k=1

1
αk

)−1
and p =

n

α

( n∑
k=1

1
αkpk

)−1
.

Assume that p ≤ n/α and set

q =

{
np/(n− αp), p < n/α

∞, p = n/α.

Assume also that for k = 1, . . . , n,

rk ≡
1
p
− α

n
− 1
pk

+ αk > 0.

If f ∈ Bα1,...,αn
p1...,pn (Rn), then f ∈ Lq,p(Rn) and

‖f‖∗q,p ≤ cn
n∏
k=1

[
dk(1− αk)1/pk‖f‖bαkpk;k

]α/(nαk)
, (5.37)

where cn depends only on n,

dk = r
−1/pk
k max(R, pk)2, and R = max

k=1,...,n

1
rk

max
k=1,...,n

rk.

Proof. By Proposition 5.14,

f ∈ Vk ≡ Lpkx̂k(Rn−1)[Λ1/pk−αk
xk

(R)]

and (since αk < 1 for all k)

‖f‖Vk ≤ 100(1− αk)1/pk‖f‖bαkpk;k
.



60

So, f ∈ ∩nk=1Vk. By assumption, f ∈ Bα1,...,αn
p1...,pn (Rn) ⊂ S0(Rn). Hence, by

Theorem 4.5, f ∈ Lq,p(Rn) and

‖f‖∗q,p ≤ c
n∏
k=1

‖f‖α/(nαk)
Vk

,

where c is the constant defined in (4.34). We have

c = cn max
k=1,...,n

4nαk
n∏
k=1

(
1 +

1
αk

)α/(nαk)
n∏
k=1

[(αk
rk

)1/pk
max(R′, pk)2

]α/(nαk)
,

where R′ = maxk=1,...,n rk/αk maxk=1,...,n 1/rk. Since 1/2 < α1, . . . , αn < 1
it follows that

c ≤ cn
n∏
k=1

d
α/(nαk)
k .

Now (5.37) follows from the three preceding inequalities. �

We will now define the Sobolev-Besov space WBα1,...,αn
p1,...,pn (Rn). Let n ≥ 2,

0 ≤ m ≤ n, α1 = · · · = αm = 1, and 0 < αm+1, . . . , αn < 1 (with the obvious
interpretation if m = 0 or m = n). Also let 1 ≤ p1, . . . , pn <∞. A measur-
able function f on Rn belongs to the space WBα1,...,αn

p1,...,pn (Rn) if f ∈W 1
pk;k(Rn)

for k = 1, . . . ,m and f ∈ Bαk
pk;k(R

n) for k = m + 1, . . . , n. A number
of embedding theorems have been obtained for these spaces by Gagliardo,
Slobodeckii, Uspenskii, and other authors (see [4, Chapter 18.15]).

The next result coincides with the preceding theorem in the case m = 0.

Theorem 5.16. Let n ≥ 2, 1 ≤ p1, . . . , pn <∞, and 0 ≤ m ≤ n. We also
let α1 = · · · = αm = 1 and 1/2 < αm+1, . . . , αn < 1. Set

α = n
( n∑
k=1

1
αk

)−1
and p =

n

α

( n∑
k=1

1
αkpk

)−1
.

Assume that p ≤ n/α and set

q =

{
np/(n− αp), p < n/α

∞, p = n/α.

Assume also that for k = 1, . . . , n,

rk ≡
1
p
− α

n
− 1
pk

+ αk > 0.

If f ∈WBα1,...,αn
p1...,pn (Rn), then f ∈ Lq,p(Rn) and

‖f‖∗q,p ≤ cn
m∏
k=1

[
dk‖Dkf‖pk

]α/n n∏
k=m+1

[
dk(1− αk)1/pk‖f‖bαkpk;k

]α/(nαk)
,
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where cn depends only on n,

dk = r
−1/pk
k max(R, pk)2, and R = max

k=1,...,n

1
rk

max
k=1,...,n

rk.

Theorem 5.16 can be proved in the same way as Theorem 5.15, using
Theorem 4.5, Proposition 5.14, and Lemma 5.5 (see remark 5.6). As we
will now show, Theorem 5.16 can also be obtained by using Theorem 5.15
and letting α1, . . . , αm → 1−. Assume therefore that the conditions of
Theorem 5.16 hold. For simplicity we shall only consider the case m = 1.
Then f ∈ W 1

p1;1(Rn). By Proposition 5.13, it follows that there exists an
ε ∈ (0, 1) such that f ∈ B1−ε

p1;1(Rn). Put α̃1 = 1 − ε. Let α̃, p̃, q̃, r̃k, and
d̃k, k = 1, . . . , n, be defined by replacing α1 by α̃1 in α, p, q, rk, and dk,
respectively. By assumption we know that rk > 0, for all k. Therefore
we may assume that ε was choosen so small that also r̃k > 0, for all k.
Moreover, p̃ < n/α̃. Indeed,

α̃p̃ = n
( 1
α̃1p1

+
n∑
k=1

1
αkpk

)−1
< n

( n∑
k=1

1
αkpk

)−1
= αp ≤ n.

Hence, the conditions of Theorem 5.15 are satisfied, and so we have that

‖f‖∗q̃,p̃ ≤ cn
n∏
k=1

[
d̃k(1− αk)1/pk‖f‖

b
α̃k
pk;k

]α̃/(nα̃k)
. (5.38)

By Fatou’s lemma,∫ ∞
0

[
t1/qf∗(t)

]pdt
t
≤ lim inf

ε→0+

∫ ∞
0

[
t1/q̃f∗(t)

]p̃dt
t

Let ε→ 0+ in (5.38). By the preceding inequality and Proposition (5.13),

‖f‖∗q,p ≤ cn
[
d1

( 1
p1

)1/p1
‖D1f‖p1

]α/n n∏
k=2

[
dk(1− αk)1/pk‖f‖bαkpk;k

]α/(nαk)
.

This proves Theorem 5.16.
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