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Particle filtering with dependent noise processes
Saikat Saha, Member, IEEE, and Fredrik Gustafsson, Fellow, IEEE

Abstract—Modeling physical systems often leads to discrete
time state space models with dependent process and measurement
noises. For linear Gaussian models, the Kalman filter handles this
case, as is well described in literature. However, for nonlinear or
non-Gaussian models, the particle filter as described in literature
provides a general solution only for the case of independent
noise. Here, we present an extended theory of the particle filter
for dependent noises with the following key contributions: (i)
The optimal proposal distribution is derived. (ii) The special
case of Gaussian noise in nonlinear models is treated in detail,
leading to a concrete algorithm that is as easy to implement
as the corresponding Kalman filter. (iii) The marginalized (Rao-
Blackwellized) particle filter, handling linear Gaussian substruc-
tures in the model in an efficient way, is extended to dependent
noise. Finally, (iv) the parameters of a joint Gaussian distribution
of the noise processes are estimated jointly with the state in a
recursive way.

Index Terms—Bayesian methods, recursive estimation, particle
filters, dependent noise, Rao-Blackwellized particle filter

I. INTRODUCTION

The particle filter (PF) provides an arbitrary good numerical
approximation to the online nonlinear filtering problem. More
specifically, the PF approximates the posterior distribution
p(xk|Yk) of the latent state xk at time k, given the observations
Yk = {y1, y2, . . . , yk}, based on the discrete time state space
model

xk+1 = f(xk, vk), (1a)
yk = h(xk, ek). (1b)

Here, the model is specified by the state dynamics f(·),
the observation dynamics h(·) and the initial state x0. Note
that the latent state is usually assumed to be Markovian,
i.e., the conditional density of xk+1 given the past state
x0:k ≡ (x0, x1, . . . , xk), depends only on xk. The process
noise vk and measurement noise ek, k = 1, 2, · · · are
both assumed to be independent over time (white noise). The
processes vk and ek are independent, except for either vk, ek
(type I) or vk−1, ek (type II), which in this contribution, are
assumed to be dependent. In this model, we assume that the
probability density functions for x0, vk and ek are known.

The theory of the PF as described in survey and tutorial
articles [6]– [11]) treats the process noise and measurement
noise as independent processes. This is in contrast to the
Kalman filter, where the case of correlated noise is a standard
modification, see for instance [4] where type I dependence is
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assumed throughout the whole book. It is the purpose of this
contribution to fill this gap in the PF theory.

The case of dependent noise might be more common in
practice than is acknowledged in the literature. More specifi-
cally, it occurs whenever a (linear or nonlinear) filter is based
on a discrete time model that is derived from a continuous time
model (the only exception is when a piecewise constant noise
process is assumed). For instance, in a typical target tracking
application, a radar is used to track an object. Even if the
measurement noise in the radar is completely independent of
the motion of the object, the sampling process of the motion
dynamics gives an extra noise contribution to the sensor model
which is dependent with the object’s motion. We will explain
this phenomenon in more detail in the last section. Also
downsampling the dynamics in filtering problem introduces
such noise dependency (see [23] for details). This dependency
also arises in modeling many practical applications of interests,
see e.g., [21].

In this article1, we propose a new class of particle filter
algorithms which can take care of the noise dependency. The
organization of this article is as follows. In section II, we
start with outlining the somewhat different structures of the
dependency and treat the optimal filtering for these different
structures in parallel. We then derive the optimal proposal
densities to be used in combination with the particle filters in
section III. The two most common approximations (prior and
likelihood proposals) are also outlined. The optimal proposals
are then specialized to the case of Gaussian dependent noise
processes. Moreover, with affine sensor model, the optimal
proposals for Gaussian dependent noise processes are obtained
in closed form. We next develop the marginalized particle filter
framework with dependent noise processes in section IV. In
section V, we address a recursive framework of estimating the
unknown noise statistics of the dependent Gaussian noises,
driving a general state space model. Finally, in section VI, as
illustration, we show how sampling continuous time models
can lead to the noise dependency.

II. OPTIMAL FILTERING WITH DEPENDENT NOISE
PROCESSES

For simplicity, consider the dynamic system (1) with additive
measurement noise

xk+1 = f(xk, vk) (2a)
yl = h(xl) + el (2b)

where xk is the latent state at time step k while yl is the
observation at time step l. vk and el are the respective process
and measurement noises with their joint density assumed to

1A preliminary version was presented in FUSION 2010 [21].
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be known. Furthermore, as in (1), the noise sequences are
individually assumed to be independent. The joint posterior
p(Xk|Yk) can be recursively obtained (up to a proportionality
constant) as

p(Xk|Yk) ∝ p(yk|Xk, Yk−1)p(xk|Xk−1, Yk−1)×
× p(Xk−1|Yk−1). (3)

For the standard Markovian model with independent process
and measurement noises (i.e. p(vi, ej) = p(vi)p(ej)), we have

p(xk|Xk−1, Yk−1) = p(xk|xk−1) (4a)
p(yk|Xk, Yk−1) = p(yk|xk). (4b)

Here the predictive density p(xk|xk−1) and the likelihood
density p(yk|xk) can be characterized in terms of the noise
densities, p(vk−1) and p(ek) respectively. This explains why
the standard model in particle filtering literature (see e.g. [6]–
[11]) is based on the prediction model and the likelihood
function, respectively.

Now we consider the more general case where the process
noise and the measurement noise are dependent. To further
explain this dependency, consider the graphical representation
of the dynamic system given by (2a)–(2b) in Figure 1. Here

Figure 1. A graphical representation of the state space model (2a)–(2b)

the process noise vk is driving the latent state xk to the
next time step xk+1. The measurements corresponding to
the adjacent states xk and xk+1 are yk and yk+1, obtained
through the measurement noises ek and ek+1 respectively.
According to the time occurrence of the dependency (adjacent
in time), we treat here two dependency structures where the
process noise vk either depends on (1) the measurement
noise ek (same time step) or (2) ek+1 (one step apart). As
we will explain here, the two cases are not quite the same.
However, to proceed with both the cases, the main idea is a
suitable decomposition of the joint density of the dependent
noises p(vi, ej), j = i or (i+ 1), into factors of appropriate
conditionals.

A. Type I dependency

We first consider the dependency structure where vk−1 is
dependent to ek−1, k = 1, 2, · · · , as shown in Figure 2. Here
the sequence of the noise vector (vk−1, ek−1)T over different k
is assumed to be independent. We call this Type I dependency.

Figure 2. Type I dependency between process and measurement noise
processes

This is pretty common in the engineering literature, see e.g.,
[5]. For this dependency, we have

p(xk|Xk−1, Yk−1) = p(xk|xk−1, yk−1) (5a)
p(yk|Xk, Yk−1) = p(yk|xk). (5b)

Now, we use the decomposition

p(vk−1, ek−1) = p(vk−1|ek−1)p(ek−1). (6)

Since knowing xk−1 and yk−1 together would provide
the complete information on ek−1, p(xk|xk−1, yk−1) and
p(yk|xk) can be characterized in terms of p(vk−1|ek−1) and
p(ek) respectively. Clearly, for this case, the hidden states
and the observations form jointly a Markov chain [14]. This
joint Markov chain model was considered in [13] for the
particle filter with correlated Gaussian noises.

B. Type II dependency

We next consider the dependency structure where vk and
ek+1 are dependent to each other for k = 0, 1, · · · , while the
sequence of the noise vector (vk, ek+1)T over different k is
assumed to be independent. We call this Type II dependency.
This is shown in 3. This dependency structure has been

Figure 3. Type II dependency between process and measurement noise
processes

considered, e.g., in [12] for the treatment of Kalman filter.
It follows that

p(xk|Xk−1, Yk−1) = p(xk|xk−1) (7a)
p(yk|Xk, Yk−1) = p(yk|xk, xk−1). (7b)
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For this case, we use the decomposition

p(vk−1, ek) = p(ek|vk−1)p(vk−1). (8)

Like the previous case, knowing xk and xk−1 together would
provide the complete information on vk−1. As a result,
p(xk|xk−1) and p(yk|xk, xk−1) can be characterized in terms
of p(vk−1) and p(ek|vk−1) respectively. Note that, this de-
pendency treatment here does not require any so called joint
Markovian assumption.

III. OPTIMAL PROPOSAL FOR DEPENDENT NOISES

In particle filtering, the posterior is approximated in the
form of (weighted) random samples, also known as particles.
These particles are generated from a different distribution,
called the importance distribution (or the proposal), which is
ideally supposed to be as close as possible to the (unknown)
posterior. Without going into further details of PF, we here
provide a generic PF algorithm that will be generalized to
dependent noise in our subsequent developments.

Algorithm 1: [Particle Filter]
Recursively over time k = 0, 1, 2, . . .
For i = 1, . . . , N , where N is the total number of particles,

• sample x(i)
k ∼ q

(
xk|X(i)

k−1, Yk

)
and

set X(i)
k ,

(
X

(i)
k−1, x

(i)
k

)
• evaluate the corresponding importance weights w(i)

k ac-
cording to

w
(i)
k ∝ w̃

(i)
k−1

p(yk|X(i)
k , Yk−1)p(x

(i)
k |X

(i)
k−1, Yk−1)

q(x
(i)
k |X

(i)
k−1, Yk)

.

• normalize the importance weights w̃(i)
k =

w
(i)
k∑N

i=1 w
(i)
k

.

• resample the trajectories {x(i)
k }Ni=1 with probabilities

{w̃(i)
k }Ni=1 and set w̃(i)

k = 1/N . Reampling can be done
at every time (SIR-PF) or when sample depletion is
indicated (SIS-PF).

The performance of PF depends critically on the selection
of the proposal q(xk|·). In this section, we derive the optimal
proposal when the noises are dependent. Here the proposal is
optimal in the sense of minimum conditional variance of the
importance weights [3].

A. Optimal Proposal for Type I dependency

In engineering literature, the following state space model, and
variants of it, is commonly used,

xk+1 = fk(xk) +Gkvk, (9a)
yk = hk(xk) + ek, (9b)

where the process noise sequence vk and the measurement
noise sequence ek, k = 1, 2, · · · , are individually assumed
to be independent, while vk and ek are dependent. This
corresponds to Type I dependency as defined in II-A. This

case of dependent noise can now be phrased as p(yk, xk+1|xk),
where

p(yk, xk+1|xk) 6= p(xk+1|xk)p(yk|xk), (10)

that is, yk and xk+1 are not independent, given xk.
The proposal distribution has the functional form

q(xk|Xk−1, Yk). In the standard PF, the Markovian property
and the independence of Yk−1 and xk are used to get [5]

q(xk|Xk−1, Yk) = q(xk|xk−1, yk). (11a)

For the case (10), there is a dependency between yk−1 and
xk, so we get

q(xk|Xk−1, Yk) = q(xk|xk−1, yk, yk−1). (11b)

Based on this, we derive the following theorem for the optimal
proposal function.

Theorem 1: [Optimal proposal for Type I dependent
noise] Here the optimal proposal function is given by

q(xk|xk−1, yk, yk−1) =
p(xk|yk−1, xk−1)p(yk|xk)

p(yk|yk−1, xk−1)
. (12)

Proof: The optimal proposal is given by the posterior distri-
bution of the same functional form, which can be rewritten
using Bayes’ law as

q(xk|xk−1, yk, yk−1) (13a)
= p(xk|xk−1, yk, yk−1) (13b)

=
p(xk, yk|yk−1, xk−1)

p(yk|yk−1, xk−1)
(13c)

=
p(yk|xk)p(xk|yk−1, xk−1)

p(yk|yk−1, xk−1)
. (13d)

This concludes the proof. �.
The optimal proposal as described in (12) has been used as
a special case for estimating the stochastic volatility in [15].
This optimal proposal should be compared to the standard one
given by

q(xk|xk−1, yk) =
p(xk|xk−1)p(yk|xk)

p(yk|xk−1)
. (14)

One can, just as for the standard PF, define two extreme
cases of sub-optimal proposal distributions

Prior : q(xk|xk−1, yk−1) ∝ p(xk|yk−1, xk−1)
(15a)

Likelihood : q(xk|yk) ∝ p(yk|xk). (15b)

The first proposal corresponds to the model (10), while the
second proposal is obtained directly from the observation
model (9b).

B. Gaussian Noise Case for Type I dependency

To get instructive and explicit expressions, the Gaussian
case,

x0 ∼ N (x̂1|0, P1|0), (16a)(
vk
ek

)
∈ N

(
0,

[
Qk Sk
STk Rk

])
, (16b)
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is studied in detail. The standard PF applies for the case Sk =
0 only. This Gaussian noise model can also be written as

p

((
xk+1

yk

)
|xk
)

= N
((

f(xk)
h(xk)

)
,

[
GkQkG

T
k GkSk

STk G
T
k Rk

])
.

(17)

Note that this noise covariance is the standard representation
in the classic text book [4] on Kalman filters (KF). The main
result is given in Theorem 2.

Theorem 2: [Optimal proposal for Type I Gaussian de-
pendent noise] For the model specified by (17), the optimal
proposal function is given by

q(xk|xk−1, yk, yk−1) ∝

N
(
f(xk−1) +Gk−1Sk−1R

−1
k−1

(
yk−1 − h(xk−1)

)
,

Gk−1

(
Qk−1 − Sk−1R

−1
k−1S

T
k−1

)
GTk−1

)
×

×N (h(xk), Rk). (18)

Proof: The result follows from (12) by studying the two factors
in the numerator. The second factor p(yk|xk) is obtained from
the observation model (9b). The first factor p(xk|xk−1, yk−1)
follows by using Lemma 1 below. �

Lemma 1: [Conditional Gaussian Distributions] Suppose
the vectors X and Y are jointly Gaussian distributed as(

X
Y

)
∼ N

((
µx
µy

)
,

[
Pxx Pxy
PTxy Pyy

])
= N

((
µx
µy

)
, P

)
.

(19)
Then, the conditional distribution for X , given the observed
Y = y, is Gaussian distributed:

(X|Y = y) ∼ N (µx +PxyP
−1
yy (y−µy), Pxx−PxyP−1

yy Pyx).
(20)
�

In the above Lemma, let X = xk|xk−1 and Y = yk−1|xk−1

and use the joint distribution of X and Y from (17), time-
shifted one step, then

p(xk|xk−1, yk−1) =

N
(
f(xk−1) +Gk−1Sk−1R

−1
k−1

(
yk−1 − h(xk−1)

)
,

Gk−1

(
Qk−1 − Sk−1R

−1
k−1S

T
k−1

)
GTk−1

)
. (21)

The prior proposal in (15a) becomes more explicit as
summarized in Corollary 1.

Corollary 1: [Prior proposal for Type I Gaussian depen-
dent noise] For the model specified by (17), the prior proposal
function is given by

q(xk|xk−1, yk−1) =

N
(
f(xk−1) +Gk−1Sk−1R

−1
k−1

(
yk−1 − h(xk−1)

)
,

Gk−1

(
Qk−1 − Sk−1R

−1
k−1S

T
k−1

)
GTk−1

)
. (22)

Proof: In this case, the proposal is p(xk|xk−1, yk−1) which is
directly given by Lemma 1, as shown above. �

It is thus straightforward to generate samples from this
proposal using the Gaussian random number generator. The

standard SIR PF is obtained by letting Sk−1 = 0 in (22).

The optimal proposal in (18) cannot be analytically obtained
in general. However, one important exception is for an affine
sensor model, for which the optimal proposal is Gaussian. This
is shown below:

Corollary 2: [Optimal Gaussian proposal for affine sen-
sor model with Type I dependency] When the sensor model
in (9b) is affine, the optimal proposal in (18) is Gaussian, i.e.,
q(xk|yk, xk−1, yk−1) = N (µ̄k, Σ̄k) (refer to (27)).
Proof: From Corollary 1, we have
p(xk|xk−1, yk−1) = N(µ∗k,Σ

∗
k) where

µ∗k := f(xk−1) +Gk−1Sk−1R
−1
k−1

(
yk−1 − h(xk−1)

)
, (23a)

Σ∗k := Gk−1

(
Qk−1 − Sk−1R

−1
k−1S

T
k−1

)
GTk−1. (23b)

When the sensor model is affine (i.e. h(xk) = Ak + Ckxk),
we can write(

xk
yk

)
=

[
I 0
Ck I

](
xk
ek

)
+

(
0
Ak

)
. (24)

Conditioned on (xk−1, yk−1), we have((
xk
ek

)
|
(
xk−1

yk−1

))
∈ N

((
µ∗k
0

)
,

[
Σ∗k 0
0 Rk

])
, (25)

and by (24), we obtain

p

((
xk
yk

)
|
(
xk−1

yk−1

))
=

N
((

µ∗k
Ckµ

∗
k +Ak

)
,

[
Σ∗k Σ∗kC

T
k

CkΣ∗k CkΣ∗kC
T
k +Rk

])
.(26)

Now using Lemma 1 in (26), we can show that
p(xk|yk, xk−1, yk−1) = N (µ̄k, Σ̄k), where

µ̄k = µ∗k + Σ∗kC
T
k (CkΣ∗kC

T
k +Rk)−1×

× {yk − Ckµ∗k −Ak} (27a)

Σ̄k = Σ∗k − Σ∗kC
T
k ×

× (CkΣ∗kC
T
k +Rk)−1CkΣ∗k. (27b)

Now defining, Kk , Σ∗kC
T
k (CkΣ∗kC

T
k + Rk)−1, we can

rewrite (27a) – (27b) as

µ̄k = Kk(yk −Ak) + (I −KkCk)µ∗k (27c)
Σ̄k = (I −KkCk)Σ∗k. (27d)

�

C. Optimal Proposal for Type II dependency

We consider here the following model:

xk = fk(xk−1) +Gkvk−1, (28a)
yk = hk(xk) + ek, (28b)

where the process noise sequence vk and the measurement
noise sequence ek, k = 1, 2, · · · , are individually assumed to
be independent, while vk−1 and ek are dependent for different
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k = 1, 2, · · · . This corresponds to Type II dependency as
defined in II-B. This noise dependency implies that

p(xk, yk|xk−1) = p(xk|xk−1)p(yk|xk, xk−1). (29)

Theorem 3: [Optimal proposal for Type II dependent
noise] For the model specified by (28a)–(28b), the optimal
proposal function is given by

q(xk|Xk−1, Yk) = p(xk|xk−1, yk) (30)
∝ p(xk|xk−1)p(yk|xk, xk−1). (31)

Proof:

p(xk|xk−1, yk) =
p(yk, xk|xk−1)

p(yk|xk−1)

=
p(yk|xk, xk−1)p(xk|xk−1)

p(yk|xk−1)

∝ p(xk|xk−1)p(yk|xk, xk−1)

�.
Just like the standard PF, one can define the following two
sub-optimal proposal distributions

Prior : q(xk|xk−1) ∝ p(xk|xk−1) (32a)
Likelihood : q(xk|yk, xk−1) ∝ p(yk|xk, xk−1). (32b)

D. Gaussian Noise Case for Type II dependency

When the noises vk−1 and ek are jointly Gaussian as(
vk−1

ek

)
∈ N

(
0,

[
Qk−1 Sk
STk Rk

])
, (33)

the equivalent probabilistic description of the state space
model ((28a)–(28b)) can be given by

p

((
xk
yk

)
|xk−1

)
= N

((
fk(xk−1)
hk(xk)

)
,

[
GkQk−1G

T
k GkSk

STk G
T
k Rk

])
.

(34)

Theorem 4: [Optimal proposal for Type II Gaussian
dependent noise] For the model specified by (34), the optimal
proposal function is given by

q(xk|xk−1, yk) ∝ N
(
f(xk−1), GkQk−1G

T
k

)
×

×N
(
h(xk) + STk Q

−1
k−1G

†
k(xk − f(xk−1)),

Rk − STk Q−1
k−1Sk

)
. (35)

Proof: The result follows from (31) by studying the two
factors. The first factor is obtained directly from the process
model (28a). The second factor (yk|xk−1, xk) follows by using
Lemma 1 in (34). �

Corollary 3: [Prior proposal for Type II Gaussian de-
pendent noise] For the model specified by (34), the prior
proposal function is given by

q(xk|xk−1, yk) ∝ N
(
f(xk−1), GkQk−1G

T
k

)
(36)

Proof: In this case, the proposal is p(xk|xk−1) which is
directly obtained from the process model (28a). �

Corollary 4: [Optimal Gaussian proposal for affine sen-
sor model with Type II dependency] When the sensor model

in (28b) is affine, the optimal proposal in (35) is Gaussian,
given by q(xk|yk, xk−1) = N (µ̃k, Σ̃k) (refer to (37)).
Proof: When the sensor model is affine (i.e. h(xk) = Ak +
Ckxk), the state space model ((28a)–(28b)) can be written as(

xk
yk

)
=

(
f(xk−1)

Ak + Ckf(xk−1)

)
+

[
Gk 0

CkGK I

](
vk−1

ek

)
.

(37a)

Now using (33) one can show

p

((
xk
yk

)
|xk−1

)
∼ N

(
µ̄k, Σ̄k

)
(37b)

where

µ̄k =

(
f(xk−1)

Ak + Ckf(xk−1)

)
(37c)

and

Σ̄k =


GkQk−1G

T
k GkQk−1G

T
kC

T
k +GkSk

CkGkQ
T
k−1G

T
k + STk G

T
k CkGk(Qk−1G

T
kC

T
k + Sk)+

+STk G
T
kC

T
k +Rk


(37d)

:=

[
P̄xx,k P̄xy,k
P̄Txy,k P̄yy,k

]
(37e)

Using Lemma 1 in (37b), we obtain

q(xk|yk, xk−1) = p(xk|yk, xk−1) = N (µ̃k, Σ̃k) (37f)

where

µ̃k = f(xk−1) + P̄xy,kP̄
−1
yy,k(yk −Ak − Ckf(xk−1)) (37g)

Σ̃k = P̄xx,k − P̄xy,kP̄−1
yy,kP̄

T
xy,k. (37h)

�
To conclude this section, a summary of the different pro-

posals for dependent noise cases is presented in Table I.

IV. MPF FOR MIXED LINEAR /NONLINEAR STATE SPACE
MODELS WITH DEPENDENT GAUSSIAN NOISES

The idea behind the marginalized particle filter (MPF) is
as follows. If there is an analytically tractable substructure
within the general state space model, the state estimation
problem can be divided into sub-parts: given any observation,
the non analytical part is estimated using the PF and the
tractable substructure can be estimated analytically condi-
tioned on the PF output. This method is also referred to as
Rao-Blackwellized particle filter. There are several advantages
using MPF: besides obtaining an improved estimate from the
Rao-Blackwellization, this helps us to keep the state dimension
small enough for the PF to be feasible.

A widely used MPF for state estimation is the one contain-
ing a conditionally linear-Gaussian substructure, for which op-
timal estimate can be obtained analytically using the Kalman
filter (see e.g., [17], [3], [19]). However, in all such available
algorithms for MPF, the measurement noise vector is assumed
to be independent of the process noise vector. Here we relax
this assumption and extend the available results to the case
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Table I
SUMMARY OF THE DIFFERENT PROPOSALS WITH DEPENDENT NOISE CASES

Dependent noise: Type I Dependent noise: Type II
Optimal proposal Theorem 1 Theorem 3
Opt. proposal: Gaussian noise case Theorem 2 Theorem 4
Prior proposal: Gaussian noise case Corollary 1 Corollary 3
Opt. proposal: Gaussian noise case with affine sensor model Corollary 2 Corollary 4

of dependent noise processes2. For the derivation, we mainly
follow [19].

A. Mixed linear/nonlinear state space model
A rather general model containing a linear-Gaussian sub-

structure is given as [5]

xlk+1 = f lk(xpk) +Alk(xpk)xlk +Glk(xpk)wlk (38a)

xpk+1 = fpk (xpk) +Apk(xpk)xlk +Gpk(xpk)wpk (38b)

yk = hk(xpk) + Ck(xpk)xlk + ek, k = 1, 2, . . . (38c)

where xlk denotes the state variable with conditionally linear
dynamics, xpk denotes the nonlinear state variable and yk
is the measurement at discrete time step k. wlk, wpk are the
process noises driving xlk+1 and xpk+1 respectively and ek is
the measurement noise. The noise vector at time step k, is
assumed to be jointly Gaussian with zero mean as

wlkwpk
ek

 ∼ N (0,Σk) (39)

with covariance marix

Σk =

 Σllk Σlpk Σlyk
(Σlpk )T Σppk Σpyk
(Σlyk )T (Σpyk )T Σyyk

 (40)

The sequence of this noise vector over different k is assumed
to be independent. Furthermore, xl0 is assumed to be inde-
pendent of the noises and distributed according to a Gaussian
as,

xl0 ∼ N (x̄0, P̄0). (41)

The density of xp0 is arbitrary, but it is assumed to be
known. We further assume that the dynamic model follows
favorable mixing property as in [18]. For notational brevity,
the dependence on xpk in equations (38a)–(38c) is suppressed
onwards.

B. Gram-Schmidt orthogonalization for dependent noise pro-
cesses

We define here two new Gaussian noise processes, w̄pk and
w̄lk, which are independent of each other and also individually
independent of ek, using the standard Gram-Schmidt proce-
dure ( [1], [4]) as follows:
Define

w̄pk , w
p
k − Σpyk (Σyyk )−1ek (42a)

2A multivariate Gaussian noise is completely characterized by the second
order statistics. Hence dependent Gaussian noise implies correlated Gaussian
noise.

such that

w̄pk ∼ N (0,Λp̄k) (42b)

with

Λp̄k = Cov(w̄pk) = Σppk − Σpyk (Σyyk )−1(Σpyk )T (42c)

Now define

Λlp̄k = E(wlkw̄
p
k) = Σlpk − Σpyk (Σyyk )−1(Σlyk ). (43)

Then

w̄lk , w
l
k − Σlyk (Σyyk )−1ek − Λlp̄k (Λp̄k)−1w̄pk, (44a)

leading to

w̄lk ∼ N (0,Λl̄k) (44b)

with

Λl̄k = Cov(w̄lk) = Σllk − Σlyk (Σyyk )−1(Σlyk )T −
−Λlp̄k (Λp̄k)−1(Λlp̄k )T . (44c)

For notational convenience, we define

Γpyk = Σpyk (Σyyk )−1 (45a)

Γlyk = Σlyk (Σyyk )−1 (45b)

Γlpk = Λlp̄k (Λp̄k)−1. (45c)

Now using (42a) and (44a), the model as described by (38a)–
(38c) can be re-written as

xlk+1 = f lk +Alkx
l
k +Glk[w̄lk + Γlyk ek + Γlpk w̄

p
k](46a)

xpk+1 = fpk +Apkx
l
k +Gpk[w̄pk + Γpyk ek] (46b)

yk = hk + Ckx
l
k + ek. (46c)

Defining the pseudo measurements obtained from the residuals
as

Z
(1)
k = (xpk+1 − f

p
k ) (47a)

Z
(2)
k = (yk − hk). (47b)

It then follows that

Z
(2)
k = Ckx

l + ek (48a)

Z
(1)
k = Apkx

l
k +Gpk[w̄pk + Γpyk {Z

(2)
k − Ckx

l
k}]. (48b)

Defining
Āpk = [Apk −G

p
kΓpyk Ck], (49)

so that equation (48b) can now be written as

Z
(1)
k = Āpkx

l
k +GpkΓpyk Z

(2)
k +Gpkw̄

p
k. (50)
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Similarly, using equation (48a) and (50) in equation (46a) and
assuming Gpk to be invertible, we have

xlk+1 = f lk +Alkx
l
k +Glk[w̄lk + Γlyk {Z

(2)
k − Ckx

l
k}+

+Γlpk (Gpk)−1{Z(1)
k − Ā

p
kx

l
k −G

p
kΓpyk Z

(2)
k }]

= f lk + [Alk −GlkΓlyk Ck −G
l
k(Gpk)−1Γlpk Ā

p
k]xlk +

+Glk[Γlyk − Γlpk (Gpk)−1(Gpk)Γpyk ]Z
(2)
k +

+[GlkΓlpk (Gpk)−1]Z
(1)
k +Glkw̄

l
k. (51)

Define

Ālk = [Alk −GlkΓlyk Ck −G
l
k(Gpk)−1Γlpk Ā

p
k] (52)

and

f̄ lk = f lk+Glk[Γlyk −Γlpk Γpyk ]Z
(2)
k +[GlkΓlpk (Gpk)−1]Z

(1)
k , (53)

so that, equation (51) can be written as

xlk+1 = f̄ lk + Ālkx
l
k +Glkw̄

l
k. (54)

C. Revised Model Definition

The state space model obtained using equations (54), (50)
and (48a), is linear, driven by independent zero mean Gaussian
noises as

xlk+1 = f̄ lk + Ālkx
l
k +Glkw̄

l
k (55a)

Z
(1)
k = Āpkx

l
k +GpkΓpyk Z

(2)
k +Gpkw̄

p
k (55b)

Z
(2)
k = Ckx

l
k + ek (55c)

with

Z
(1)
k = (xpk+1 − f

p
k ) (55d)

Z
(2)
k = (yk − hk), (55e)

where

Cov

w̄lkw̄pk
ek

 =

Λl̄k 0 0
0 Λp̄k 0
0 0 Σyyk

 . (56)

Here f̄ lk, Ālk and Āpk are obtained using equations (53), (52)
and (49) respectively. Now one can apply the standard results
(e.g. in [19]) for MPF utilizing a linear-Gaussian substructure
on this revised model. The summary of the main steps are
given in Table II and the details are outlined in appendix.
An application of this framework to the terrain navigational
problem is presented in [24].

V. ESTIMATING THE UNKNOWN NOISE STATISTICS OF
DEPENDENT GAUSSIAN NOISES

Most of the estimation algorithms involving a state space
model assume a prior knowledge of the noise distributions,
whereas the properties of the noise processes are often
unknown for many practical problems. Moreover, the noise
distributions may be non-stationary or state dependent, which
further prevents the so called off-line tuning approach. For
linear Gaussian model, the adaptive Kalman filters can
estimate the unknown noise parameters jointly with the state.

However, the same problem for a general state space problem
is less studied. In this section, we address a joint state and
noise parameter estimation problem involving dependent
Gaussian noise processes using PF.

To proceed with, consider the following state-space model
with additive process and measurement noises:

xk = f(xk−1) + vk, (57a)
yk = h(xk) + ek, k = 1, 2, . . . (57b)

where xk ∈ Rnv is the hidden state and yk ∈ Rne is the
measurement, at time step k. vk and ek are the corresponding
process and measurement Gaussian noises, which are depen-
dent to each other 3. Define wk ∈ Rd (here d = nv + ne)
as

wk =

(
vk
ek

)
, (58)

where the sequence of wk is independent Gaussian conditioned
on an unknown mean µk and covariance matrix Σk. Here we
assume the parameters (µk,Σk) to be slowly varying in time.
This slowly varying nature can arise e.g., due to model mis-
specification [26]. Now, the conditional distribution of wk is
given as

wk|(µk,Σk) ∼ N (µk,Σk) (59)

with

µk = [µTv,k µ
T
e,k]T ; Σk =

[
Σvv,k Σve,k
ΣTve,k Σee,k

]
. (60)

One key objective here is to learn the noise parameters
θk , (µk,Σk) adaptively as the new measurement arrives. The
problem of learning those parameters (using a MPF approach)
when the noises are independent, has recently been addressed
in [22]. Here we consider a more general case with dependent
noises.

A. Conjugate prior for unknown Gaussian noise parameters

Following [2], a suitable conjugate prior for (µk,Σk) is
known to be a Normal-inverse-Wishart distribution of the form
(µk,Σk) ∼ NiW(νk, Vk), where

µk|Σk ∼N (µ̂k, Σ̂k) (61a)
Σk ∼ iW(νk − d− 1,Λk). (61b)

Here iW(·) denotes Inverse Wishart distribution. The parame-
ters νk and Vk hold the sufficient statistics and can be updated
recursively. The relevant quantities are defined as,

Vk =

(
Vwkwk,k V1wk,k

Vwk1,k V11,k

)
(62a)

µ̂k = V −1
11,kV1wk,k (62b)

Σ̂k = ΣkV
−1
11,k (62c)

Λk = Vwkwk,k − V1wk,kV
−1
11,kVwk1,k (62d)

3We note that this corresponds to Type II dependency (as in Figure 3, but
vk−1 is replaced by vk for notational convenience). Treatment of Type I
dependency, which we have not included here, can be carried out similarly.
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Table II
SUMMARY OF THE INFORMATION STEPS OF MPF UTILIZING A LINEAR-GAUSSIAN SUBSTRUCTURE

Prior p(xlk, X
p
k |Yk) = p(xlk|X

p
k , Yk)︸ ︷︷ ︸ p(Xp

k |Yk)︸ ︷︷ ︸
PF: TU p(Xp

k |Yk)︸ ︷︷ ︸
prior

⇒ p(Xp
k+1|Yk)

KF: Dyn MU p(xlk|X
p
k , Yk)︸ ︷︷ ︸

prior

⇒ p(xlk|X
p
k+1, Yk)

KF: TU p(xlk+1|X
p
k+1, Yk) =

∫
p(xlk+1|X

p
k+1, x

l
k, Yk) p(xlk|X

p
k+1, Yk)︸ ︷︷ ︸

KF:Dyn MU

dxlk

yk+1 is available now

PF: MU p(Xp
k+1|Yk)︸ ︷︷ ︸

PF:TU

⇒ p(Xp
k+1|Yk+1)

KF: MU p(xlk+1|X
p
k+1, Yk)︸ ︷︷ ︸

KF:TU

⇒ p(xlk+1|X
p
k+1, Yk+1)

Posterior p(xlk+1, X
p
k+1|Yk+1) = p(xlk+1|X

p
k+1, Yk+1)p(Xp

k+1|Yk+1)

Vwkwk,k is defined as the upper-left d× d sub-block of Vk ∈
R(d+1)×(d+1). The joint density of (µk,Σk) is of the form

p(µk,Σk) = NiW(νk, Vk) (63a)

=
1

c
|Σk|−

νk
2 ×

× exp(−1

2
tr(Σ−1

k [−Id, µk]Vk[−Id, µk]T )), (63b)

where c is the normalizing constant. Consequently, the poste-
rior predictive distribution of wk can be analytically obtained
as a multivariate Student’s t distribution of the form

p(wk) = tν̃k(µ̃k, Σ̃k)

=
Γ(ν̃k/2 + d/2)

Γ(ν̃k/2)

|Σ̃k|−1/2

(ν̃kπ)(d/2)
×

×
[
1 +

1

ν̃k
(wk − µ̃k)T Σ̃−1

k (wk − µ̃k)

]−(
ν̃k+d

2 )

(64)

where ν̃k = νk − d + 1, is the degree of freedom, µ̃k =

µk and Σ̃k =
(1+V11,k)

(νk−d+1)V11,k
Λk are the location and the scale

parameters of the above Student’s t distribution, with Γ(·) as
the Gamma function. If we now partition the variable wk into
two blocks (corresponding to vk and ek respectively), then the
marginals of wk (i.e. vk and ek) are also obtained as Student’s
t distributions [20]

vk ∼ tν̃k(µ̃v,k, Σ̃vv,k) (65a)

ek ∼ tν̃k(µ̃e,k, Σ̃ee,k). (65b)

Moreover, the conditional, p(ek|vk) can be obtained as,

p(ek|vk) ∼ t(ν̃k+de)(µ̃e|v,k, Σ̃e|v,k) (65c)

with

µ̃e|v,k = µ̃e,k + Σ̃Tve,kΣ̃−1
vv,k(vk − µ̃v,k) (65d)

Σ̃e|v,k = he|v,k(Σ̃ee,k − Σ̃Tve,kΣ̃−1
vv,kΣ̃ve,k) (65e)

he|v,k =
1

(ν̃k + dv)
[ν̃k + (vk − µ̃v,k)T ×

× Σ̃−1
vv,k(vk − µ̃v,k)]. (65f)

B. Joint state and parameter estimation

Our interest lies in estimating p(xk|Yk) and p(θk|Yk)
recursively over time. Suppose we are at time step k − 1 and
p(xk−1|Yk−1) is approximately given in the form of weighted
particle cloud. The propagation of p(xk−1|Yk−1) to the next
time step using a running PF is shown below:

1) Particle filter update: PF approximates p(Xk−1|Yk−1)
by the empirical measure as

p(Xk−1|Yk−1) '
N∑
i=1

ω
(i)
k−1δX(i)

k−1

(Xk−1). (66)

Now we generate new samples x(i)
k from the proposal q(xk|·)

and form the trajectories X(i)
k as X(i)

k , [X
(i)
k−1, x

(i)
k ] such

that

p(Xk|Yk) '
N∑
i=1

ω
(i)
k δ

X
(i)
k

(Xk). (67)

The weight update of PF can be obtained recursively as

ω
(i)
k = ω

(i)
k−1

p(yk|X(i)
k , Yk−1)p(x

(i)
k |X

(i)
k−1, Yk−1)

q(x
(i)
k |·)

. (68)

So to obtain the new weights, we need to evaluate
p(yk|Xk, Yk−1) and p(xk|Xk−1, Yk−1) respectively. Now,
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from (57a)–(57b), p([xk − f(xk−1)]|Xk−1, Yk−1) = p(vk),
which is given by (65a). So,

(xk|Xk−1, Yk−1) ∼ t(ν̃k+dv)(µ̃
∗
v,k, Σ̃vv,k), (69)

where µ̃∗v,k = µ̃v,k + f(xk−1).

Similarly, p([yk − h(xk)]|Xk, Yk−1) = p(ek|vk), given by
(65c). So p(yk|Xk, Yk−1) is another Student’s t distribution as
given by (65c), with mean modified as

¯̃µ∗e|v,k = µ̃e|v,k + h(xk). (70)

Subsequently, from (67), one can approximate the marginal as

p(xk|Yk) '
N∑
i=1

ω
(i)
k δ

x
(i)
k

(xk). (71)

PF provides an approximation of the joint smoothing
distribution recursively. However, as k increases, such particle
filter suffers due to a progressively impoverished particle
representation as a result of resampling. This problem is
known as the particle path degeneracy problem [8]. On the
other hand, uniform convergence in time of the particle filter
is known under the mixing assumptions as in [18]. This
property ensures that any error is forgotten exponentially with
time and explains why the particle filter works for marginal
filter density (as in (71)) in most practical applications.

2) Updates on noise parameters: We note from ((57a)–
(57b)) that knowing the sequence (Xk−1, Yk−1) would lead
us to the completely observed noise sequence w1:k−1. Now
suppose that p(θk−1|Xk−1, Yk−1) is given by a Normal-
inverse-Wishart prior4 as

p(θk−1|Xk−1, Yk−1) = p(θk−1|wk−1) = NiW(νk−1, Vk−1).
(72)

Since we assume the noise parameters to be slowly varying,
we approximate the time update step using principle of expo-
nential forgetting [25] as

p(θk|Xk−1, Yk−1) = p(θk|wk−1) = NiW(λνk−1, λVk−1),
(73)

where λ ∈ [0, 1] is the forgetting factor used 5. Via Bayesian
conjugacy, the posterior p(θk|Xk, Yk) is again a Normal-
inverse-Wishart distribution as

p(θk|Xk, Yk) = p(θk|wk) = NiW(νk, Vk), (74)

with

Vk = λVk−1 +

(
wk
1

)(
(wk)T 1

)
(75)

νk = λνk−1 + 1, (76)

where
wk =

(
vk
ek

)
=

(
xk − f(xk−1)
yk − h(xk)

)
. (77)

4Treating both µk and Σk to be unknown might have implications on
the observability and identifiability of the model. When Σk is the only
unknown parameter, a suitable conjugate prior is given by the inverse Wishart
distribution and the posterior predictive is again a Student’s t distribution [27].

5Similar argument was put forward in [26], page 369, where λ is called a
discount factor.

We again stress that the path dependency of the parameter
posterior leads to accumulation of errors over time. However,
by using the principle of exponential forgetting, this is less
critical here. Now, we define Tk(xk) := p(θk|xk, Yk). Since
Tk(xk) can be written as

Tk(xk) =

∫
p(θk|Xk, Yk)p(Xk−1|Yk−1, xk)dXk−1,(78)

we can establish the recursive relation for Tk(xk) as

Tk(xk) =

∫∫
p(θk|Xk, Yk)p(θk−1|Xk−1, Yk−1)

p(θk−1|Xk−1, Yk−1)
×

× p(Xk−2|Yk−2, xk−1)p(xk−1|Yk−1, xk) ×
× dXk−2 dxk−1

=

∫
p(θk|Xk, Yk)

p(θk−1|Xk−1, Yk−1)
Tk−1(xk−1) ×

× p(xk−1|Yk−1, xk)dxk−1. (79)

From the forward particle filter, we have

p(xk−1|Yk−1, xk) ≈

∑N
j=1 ω

(j)
k−1p(xk|x

(j)
k−1)δ

x
(j)
k−1

(xk−1)∑N
l=1 ω

(l)
k−1p(xk|x

(l)
k−1)

.

(80)

Now using (80) we can approximate (79) as

Tk(x
(i)
k ) =

N∑
j=1

NiW(ν
(ij)
k , V

(ij)
k )

NiW(ν
(j)
k−1, V

(j)
k−1)

Tk−1(x
(j)
k−1)×

×
ω

(j)
k−1p(x

(i)
k |x

(j)
k−1)∑N

l=1 ω
(l)
k−1p(x

(i)
k |x

(l)
k−1)

, (81)

with

V
(ij)
k = λV

(j)
k−1 +

(
w

(ij)
k

1

)(
(w

(ij)
k )T 1

)
(82)

ν
(ij)
k = λν

(j)
k−1 + 1, (83)

where we define

w
(ij)
k =

(
x

(i)
k − f(x

(j)
k−1)

yk − h(x
(i)
k )

)
. (84)

Finally, using (81) and (71), we get

p(θk|Yk) ≈
∫
Tk(xk)p(xk|Yk)dxk

=

N∑
i=1

ω
(i)
k Tk(x

(i)
k ). (85)

C. Algorithmic summary

In this section, we give a summary of one step of the main
algorithm.

Algorithm 2: [Estimating the statistics of unknown
dependent Gaussian noises]
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• At time step (k − 1):

we have
{
x

(i)
k−1, ω

(i)
k−1, Tk−1(x

(i)
k−1)

}N
i=1

, such that

p(xk−1|Yk−1) '
N∑
i=1

ω
(i)
k−1δx(i)

k−1

(xk−1),

p(θk−1|Yk−1) '
N∑
i=1

ω
(i)
k−1Tk−1(x

(i)
k−1).

• At time step (k):
with new observation yk

– Generate particles from the proposal
x

(i)
k ∼ q(xk|·).

– Recursive weight update:
ω

(i)
k according to (68) using (69)–(70).

Recursive computation Tk(x
(i)
k ) using (81)–(84).

To summarize this section, the problem of estimating the
unknown state from a general state space model involving
unknown Gaussian noise characteristics is presented. Specifi-
cally, we addressed the online joint state and noise parameter
estimation problem involving additive dependent Gaussian
noises using a PF based approach.

VI. SAMPLING CONTINUOUS TIME MODELS

Dependency between process and observation noises in a
general state space model occurs naturally in many situation,
although it is often ignored in favor of modeling conveniences.
This section motivates the importance of dependent noise
processes for a wide range of applications starting with a
continuous time models.

Consider the following continuous time linear model with
a noisy input u(t),

ẋ(t) = Ax(t) +B
(
u(t) + v(t)

)
, (86a)

y(tk) = Cx(tk) + e(tk), (86b)
e(tk) ∈ N (0, R). (86c)

where x(t) is the continuous time state, y(tk) is the discrete
time observation and v(t) is a zero mean white Gaussian noise
process, with E(v(t)v(s)T ) = Qδ(t− s), where E(·) denotes
the expectation operator and δ(·) is the Dirac delta function.
For the continuous time model, it is natural to assume that
v(t) and e(tk) are independent. However, discretization of
the model to a sampled discrete time model defined at the
time instants tk may introduce dependence. Tables III and
IV summarize different sampling strategies (see Chapter 13.1
in [5]) for single and double integrators, respectively. The
corresponding discrete time model is given by,

xk+1 = Fxk +G
(
uk + vk

)
= Fxk +Guk + v̄k, (87a)

yk = Hxk + J
(
uk + vk

)
+ ek = Hxk + Juk + ēk,

(87b)(
v̄k
ēk

)
∈ N

(
0,

[
GQGT GQJT

JQGT JQJT +R

])
. (87c)

We note from Tables III and IV that we get dependence (J 6= 0
and G 6= 0) in all cases except for ZOH, where a piecewise

constant process noise is assumed. The following application
areas surveyed in [16] are important cases:
• Navigation – The input is one of or a combination of

acceleration and angular rates as measured by accelerom-
eters and gyroscopes. The basic form of continuous time
dynamics is in both cases given by a double integrator
p̈(t) = u(t) + v(t). The sensors are typically low-pass
filtered before sampling to avoid aliasing, and thus the
true acceleration/angular rate u(t)+v(t) is not piecewise
constant.

• Odometry – Here the angular speeds of two wheels
are measured and used to compute the position based
on the principle of dead-reckoning. The basic form of
continuous time dynamics here is a single integrator
ṗ(t) = u(t)+v(t). The angular rate encoders are typically
low-pass filtered before sampling.

• Tracking – The input is an unobserved force, so u(t) = 0
and v(t) models the force input. The dynamics is given
by a double integrator p̈(t) = v(t). A suitable model
for v(t) is subject to debate, but all cases except when
it is assumed piecewise constant synchronized with the
external position sensor lead to dependent noise.

VII. CONCLUSIONS

The fact that the process noise is dependent to the measure-
ment noise in sampled models is often neglected in literature.
There might be several reasons for this. The process noise is
often instrumental for the tuning, so its physical interpretation
is of less importance. Another reason is that the correlation
can be quite small for fast sampling compared to the time
constant of the system. A final reason might be that the PF
theory is not yet adapted to dependent noise, in contrast to
the KF literature where this is more of a standard assumption
with a rather simple remedy.

We have extended the particle filter theory in three ways.
First, the important choice of proposal density is examined.
Both the prior and optimal proposal are derived for depen-
dent noise, for two different cases of dependence structures.
For Gaussian noise, the optimal proposal gets an analytical
expression, which further simplifies to a Gaussian for the
prior proposal. Second, the marginalized particle filter, that is
instrumental for real-world applications to mitigate the curse
of dimensionality, was derived for dependent noise. Third, the
less studied problem of estimating parameters in the noise
distributions was addressed for the case of Gaussian dependent
noise.
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APPENDIX
DETAILED STEPS OF MPF USING A LINEAR-GAUSSIAN

SUBSTRUCTURE

At time zero, p(xl0|X
p
0 , Y0) = N (x̂l0|0, P0|0).

Under favorable mixing condition, we assume that
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Table III
CORRELATION DUE TO SAMPLING OF THE STATE x(t) = (p(t), v(t))T IN A DOUBLE INTEGRATOR USING ZERO-ORDER HOLD (ZOH, ASSUMING

PIECEWISE CONSTANT INPUT), FIRST-ORDER HOLD (FOH, ASSUMING PIECEWISE LINEAR INPUT), AND BILINEAR TRANSFORMATION (BIL), WHICH IS
AN OFTEN USED APPROXIMATION FOR BAND-LIMITED SIGNALS.

Continuous time A =

(
0n In
0n 0n

)
B =

(
0n
In

)
C = (In, 0n) D = 0n

ZOH F =

(
In TIn
0n In

)
G =

(
T2

2
In

TIn

)
H = (In, 0n) J = 0n

FOH F =

(
In TIn
0n In

)
G =

(
T 2In
TIn

)
H = (In, 0n) J = T2

6
In

BIL F =

(
In TIn
0n In

)
G =

(
T2

4
In

T
2
In

)
H =

(
In,

T
2
In
)

J = T2

2
In

Table IV
SIMILAR TO TABLE III, BUT FOR A SINGLE INTEGRATOR USING THE STATE x(t) = p(t).

Continuous time A = 0n B = In C = In
ZOH F = In G = TIn H = In J = 0n
FOH F = In G = TIn H = In J = T

2
In

BIL F = In G = In H = TIn J = T
2
In

p(xlk|X
p
k , Yk) = N (x̂lk|k, Pk|k) at an arbitrary time, k.

Now we outline here one complete cycle of propagating
the joint density of the state conditional on the available
observation.
PF time update (PF: TU)
At this stage, it is required to generate N new particles

(samples)
{
x
p(i)
k+1

}N
i=1

from the appropriate importance
function q(xpk+1|·).
KF dynamic measurement update (KF : DYN MU)

p(xlk|X
p
k+1, Yk) =

p(xpk+1|X
p
k , x

l
k, Yk)p(xlk|X

p
k , Yk)∫

p(xpk+1|X
p
k , x

l
k, Yk)p(xlk|X

p
k , Yk)dxlk

.

(88)

From the prior, we have p(xlk|X
p
k , Yk) = N (x̂lk|k, Pk|k).

Now, at this stage, Z(1)
k is available. Let p(xlk|X

p
k+1, Yk) =

N (x̂l∗k|k, P
∗
k|k). Then following the proof (part 2) of [19],

N∗k = ĀpkPk|k(Āpk)T +GpkΛp̄k(Gpk)T (89a)

Lk = Pk|k(Āpk)T (N∗k )−1 (89b)

x̂l∗k|k = x̂lk|k + Lk(Z
(1)
k − Ā

p
kx̂

l
k|k −G

p
kΓpyk Z

(2)
k )(89c)

P ∗k|k = Pk|k − Lk(N∗k )(Lk)T (89d)

KF time update (KF: TU)

p(xlk+1|X
p
k+1, Yk) =

∫
p(xlk+1|X

p
k+1, x

l
k, Yk)×

× p(xlk|X
p
k+1, Yk)dxlk, (90)

where p(xlk|X
p
k+1, Yk) = N (x̂l∗k|k, P

∗
k|k). It follows that

p(xlk+1|X
p
k+1, Yk) = N (x̂lk+1|k, Pk+1|k) with

x̂lk+1|k = f̄ lk + Ālkx̂
l∗
k|k (91a)

Pk+1|k = ĀlkP
∗
k|k(Ālk)T +GlkΛl̄k(Glk)T (91b)

PF measurement update (PF: MU)
With new measurement yk+1, we get p(Xk+1|Yk+1) '∑N
i=1 ω

(i)
k+1δX(i)

k+1

(Xk+1), where the weights of the particle
filter can be recursively updated according to :

ω
(i)
k+1 = ω

(i)
k

p(yk+1|Xp(i)
k+1, Yk)p(x

p(i)
k+1|X

p(i)
k , Yk)

q(x
p(i)
k+1|·)

. (92)

The transition density p(xpk+1|X
p
k , Yk) can be obtained as

p(xpk+1|X
p
k , Yk) =

∫
p(xpk+1|X

p
k , x

l
k, Yk)p(xlk|X

p
k , Yk)dxlk,

where, p(xlk|X
p
k , Yk) = N (x̂lk|k, Pk|k), as obtained from the

prior. Since at this stage Z(2)
k is known, we have from (55b)

and (55d), p(xpk+1|X
p
k , Yk) = N (µtrk+1,Σ

tr
k+1), where

µtrk+1 = fpk + Āpkx̂
l
k|k +GpkΓpyk Z

(2)
k (93a)

Σtrk+1 = ĀpkPk|k(Āpk)T +GpkΛp̄k(Gpk)T . (93b)

We now obtain the likelihood density p(yk+1|Xp
k+1, Yk) as

p(yk+1|Xp
k+1, Yk) =

∫
p(yk+1|Xp

k+1, x
l
k+1, Yk)×

× p(xlk+1|X
p
k+1, Yk)dxlk+1. (94)

Let p(yk+1|Xp
k+1, Yk) = N (µLk+1,Σ

L
k+1). Then

µLk+1 = hk+1 + Ck+1x̂
l
k+1|k (95a)

ΣLk+1 = Ck+1Pk+1|k(Ck+1)T + Σyyk+1. (95b)

KF measurement update (KF: MU)
From KF time update stage, we have p(xlk+1|X

p
k+1, Yk) =

N (x̂lk+1|k, Pk+1|k). As yk+1 is available now, it implies that

Z
(2)
k+1 = (yk+1 − hk+1) is also available at this stage. Now
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following the proof (part 1) of [19], we have

p(xlk+1|X
p
k+1, Yk+1) =

p(yk+1|Xp
k+1, x

l
k+1, Yk)p(xlk+1|X

p
k+1, Yk)∫

p(yk+1|Xp
k+1, x

l
k+1, Yk)p(xlk+1|X

p
k+1, Yk)dxlk+1

. (96)

Using the fact that the measurement noise and thereby
p(yk+1|Xp

k+1, x
l
k+1, Yk) is Gaussian, and using KF, We can

show that

p(xlk+1|X
p
k+1, Yk+1) = N (x̂lk+1|k+1, Pk+1|k+1), where

Mk+1 = Ck+1Pk+1|k(Ck+1)T + Σyyk+1 (97a)

Kk+1 = Pk+1|kCk+1(Mk+1)−1 (97b)

x̂lk+1|k+1 = x̂lk+1|k +Kk+1(Z
(2)
k+1 − Ck+1x̂

l
k+1|k)(97c)

Pk+1|k+1 = Pk+1|k −Kk+1Mk+1(Kk+1)T (97d)

�
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