A standard case of subtitling

A comparative analysis of the subtitling of *Scrubs* and *House M.D.* with a focus on medical terminology.

Klara Lindell
A standard case of subtitling
A comparative analysis of the subtitling of *Scrubs* and *House M.D.* with a focus on medical terminology.
Klara Lindell

Abstract

Toury’s first law of translation states that translation of all kinds entails standardisation and, moreover, that the more peripheral the status of a text is, the more standardised its translation will be. As such, the purpose of this essay was to investigate to what extent this holds true in the Swedish translations of the two US television hospital shows *Scrubs* and *House M.D.* Though they are both hospital shows, *House M.D.* – considering its unprecedented genre hybridity and unusual plot structure – is a less mainstream and, as such, more peripheral example of a hospital show than *Scrubs*, which is more mainstream and, consequently, has a more central position within this genre. The object of study concerned the genre-specific register shared by the two shows – i.e. the medical terminology – which was extracted together with its Swedish subtitles and analysed, mainly in terms of coupled pairs. The analysis consisted of identifying which translation strategies had been adopted in the transfer of terminology and, moreover, what these strategies had entailed in terms of semantic increase, decrease, or correspondence between the original texts and their translations. From this it was concluded that both texts were indeed standardised and, additionally, that *House M.D.* – as the more peripheral of the two texts – had undergone a more extensive standardisation than *Scrubs* – being the text holding a more central status.

Keywords
Descriptive translation studies, AVT, subtitling, television, genre, text-type, register, medical terminology, standardisation, centripetal effect.
Contents

1. Introduction ... 1
2. Aim .. 1
3. Background ... 2
 3.1 Texts, text-types and genres .. 2
 3.2 Translation studies .. 3
 3.2.1 Audiovisual translation ... 4
 3.2.1.1 Subtitling ... 4
4. Material .. 5
5. Method .. 6
 5.1 Taxonomy of translation strategies .. 7
 5.1.1 Full translation ... 8
 5.1.2 Omission .. 9
 5.1.3 Retention .. 9
 5.1.4 Specification ... 10
 5.1.5 Generalisation ... 11
6. Results and analysis .. 13
7. Discussion .. 19
8. Conclusion .. 20
References .. 22
Appendix ... 24
1. Introduction

Like all types of translation, subtitling is intended to give speakers of other languages a chance to experience a text that would otherwise be incomprehensible to them. Traditionally, this entails that the translation aims at providing the target-language (TL) speakers with a target-text (TT) which appears to them as close as possible to how the source-text (ST) appears to source-language (SL) speakers. Moreover, how any text appears to its audience is closely connected to the concept of genre, i.e. how texts are categorised. Put differently, receivers of texts are “likely to bring with them a set of expectations, and to anticipate that these expectations will be met in one way or another” (Neale 2008a: 3). However, very few texts fall into just one genre and the medium of television is notably predominated by genre hybridity (cf. Neale 2008b: 5).

Television is an audiovisual medium and one of the most common types of audiovisual translation is subtitling. Being an overt type of translation where the TT appears together with the ST rather than replaces it, subtitling is intended to be true to the ST and, as such, reflect in the TT whatever genre is present in the ST. Nevertheless, the first law of translation, as posited by Toury, is that of growing standardisation (cf. section 3.2). The law states that any text, regardless of genre, will always appear more standardised – i.e. more mainstream – in its translated version than in the original, and, furthermore, that the less mainstream – i.e. the more peripheral – the original text is, the more considerable the standardisation will be.

In the present study, the Swedish subtitling of two American television hospital shows – presenting two different genre hybrids – will be analysed. The focal point of the study is the genre-specific register the two shows present – i.e. the vocabulary typical of this particular genre – in order to see whether the rule of growing standardisation is manifested in the transfer.

2. Aim

The aim of this study is to compare the subtitling of two television hospital shows and to analyse what these translations entail in terms of standardisation. The object of study is the American programmes House M.D. and Scrubs, which – though they are both hospital shows – present different kinds of genre hybridity. More specifically, the analysis concerns micro-level translation; the genre-specific register shared by the two shows – i.e. the medical terminology – will be extracted and compared in order to explore whether its translations present any signs of standardisation.

In accordance with Toury’s first law of translation, it is hypothesised that both shows in their translated versions will show signs of standardisation. Moreover, House M.D. is considered a less mainstream – and thus more peripheral – example of the hospital show than Scrubs, which is more mainstream – and thus more central – for this genre (cf. section 4). It is therefore additionally hypothesised that the standardisation of House M.D. will be more considerable than that of Scrubs.

The limited material of the present study restricts wider generalisations. As such,
the aim of the study is not to draw any general conclusions about the law of growing
standardisation in translation, but to, possibly, provide one such example and give some
insight into one way of approaching it.

3. Background

Within the medium of television, texts are communicated through more than one semiotic
channel. Audiovisual translation (AVT) is the type of translation that concerns these
polysemiotic texts (cf. section 3.1), and subtitling the type of AVT relevant for the present
study.

3.1 Texts, text-types and genres
The present study concerns the medium of television and, as such, audiovisual texts.
Therefore, the following definition of text will be applied: “As semiotics implies semantics,
any channel of expression in any act of communication carries meaning. For this reason,
even exclusively non-verbal communication may deserve the label ‘text’” (Gottlieb 2005a:
1).

Consequently, depending on the number of channels of communication, texts are
either mono- or polysemiotic; a monosemiotic text exhibits only one channel of
communication, whereas a polysemiotic text may exhibit four distinguishable semiotic
channels:

1. Verbal audio: the dialogue and its paraverbal elements
2. Non-verbal audio: (background) music and sound effects
3. Verbal video: displays and captions
4. Non-verbal video: composition and montage

(Gottlieb, quoted and translated by Pedersen 2007: 37)

Furthermore, the meaning of a polysemiotic text is created by and communicated through
these semiotic channels together, i.e. “in a polysemiotic context, semantic voids are often
tersemiotically filled” (Gottlieb 2005a: 21).

Every text has a communicative function – i.e. an intention – which makes it fall
into a certain text-type. In terms of translation, it is essential for the translator to determine
to which text-type any given text belongs, since this will affect both the translation process
and the final product (Reiß 1981/2000: 161). The three text-types as presented by Reiß are:

a. The communication of content – informative type
b. The communication of artistically organized content – expressive type
c. The communication of content with a persuasive character – operative type

In reality, however, texts rarely fall into pure text-types, but instead consist of a mixture of
text-types and present a variety of text-typical features. Consequently, no text can entail an
absolute categorisation in terms of text-type. Nevertheless, in a text with plural intentions,
most often “one intention (and, with it, the text function) is dominant” (Reiß 1981/2000: 161).

The three text-types as outlined above regard monosemiotic texts. However, Reiß subsequently adds a fourth type, which involves media other than print. It is a ‘hyper-type’, which “should be isolated as a super-structure for the three basic types: the multi-media text-type” (1981/2000: 164, italics in the original). The multi-media text-type is tantamount to the polysemiotic text as defined by Gottlieb, and paramount to the other three text-types, since it may be further characterised as being informative, expressive or operative (Nord 1996: 83). As such, the present object of study is the multi-media text-type, but for the sake of simplicity, the term polysemiotic text will be applied henceforth.

Similarly to the concept of text-types, the concept of genre is a tool in the identification of texts and texts are often realised in a hybrid of different genres (Creeber 2008: 1). Furthermore, “[t]he classification of texts is not just the province of academic specialists, it is a fundamental aspect of the way texts of all kinds are understood” (Neale 2008a: 3). As such, since the interpretation of material determines both the translational process and the final product, the concepts of genre and text-type are equally important aspects of translation.

3.2 Translation studies
For present purposes translation will be defined as “any process, or product hereof, in which verbal elements in a text are rendered by other verbal elements in order for that text to reach a new speech community” (Gottlieb 2005a: 3, italics in the original).

Descriptive Translation Studies (DTS) is the paradigm in which the present study is carried out. In brief, it could be explained as analysing and describing what translators in fact do, rather than instructing them in what they should do, which would be prescriptive. As such, DTS has two main objectives: “(1) to describe the phenomena of translating and translation(s) as they manifest themselves in the world of our experience, and (2) to establish general principles by means of which these phenomena can be explained and predicted” (Holmes 1994: 71).

These general principles are called norms and operate in all kinds of translation, at every stage in the translating process and are, consequently, reflected in every aspect of the final product (Toury 1995: 58). Further, norms are “a graded notion which is neither nil (i.e. total erraticness) nor 1 (i.e. absolute regularity); its extent should emerge at the end of a study as one of its conclusions, rather than being presupposed” (Toury 1995: 67, italics in the original). Accordingly, the intention of the present study is to analyse the translations in question and to conclude what norms – in terms of standardisation – operate within them.

The concept of norms notwithstanding, what is true for translation in general is that translations are more standardised than their original counterparts. This is the core reasoning of Toury’s tentative law of growing standardisation, which reads as follows: “in translation, textual relations obtaining in the original are often modified, sometimes to the point of being totally ignored, in favour of [more] habitual options offered by a target repertoire” (Toury 1995: 268, emphasis in the original). By the same token, the law also claims that the degree to which it is adhered to depends on what type of original text the translation involves. More specifically, “the more peripheral this status, the more translation will accommodate itself to established models and repertoires” (1995: 271,
emphasis in the original). In other words, texts that have a central status – i.e. are more mainstream – will undergo less standardisation when translated than those that hold a more peripheral – i.e. less mainstream – position. Consequently, the less mainstream becomes more mainstream. As outlined above (cf. section 2), this law constitutes the core reasoning of the present study.

3.2.1 Audiovisual Translation
Audiovisual translation (AVT) includes all types of translation that appear in an audio and/or visual context. As such, it always concerns polysemiotic texts (cf. section 3.1). More specifically, AVT includes transfers such as audio description, dubbing, voice-over, versioning, and all forms of subtitling (e.g. live subtitling or subtitling for the deaf and hard-of-hearing).

3.2.1.1 Subtitling
Subtitling is intended “to retain and reflect in the subtitles the equilibrium between the image, sound and text of the original” (Georgakopoulou 2009: 30). Nevertheless, there are considerable technical restrictions to be taken into account and, albeit they vary from ST to ST, company to company, country to country, etc., some general conventions can be accounted for. Normally, subtitles consist of either one or two lines (known as ‘one-liners’ and ‘two-liners’ respectively) and each line is allowed a certain exposure time on the screen and a certain number of characters. Generally, the maximum is 12 characters per second and an exposure time of 5-6 seconds at the most for a full two-liner, which would make for a total of 72 characters per full two-liner, typically with no line comprising more than 36 characters (cf. Díaz Cintas & Remael 2007).

For this reason, subtitling must involve a shift of “the dialog from one sub-code (the seemingly unruly spoken language) to another (the more rigid written language). If this shift of sub-code was not performed, as a fundamental part of the subtitling process, the audience would be taken aback by reading the oddities of spoken discourse” (Gottlieb 1994: 106). Some speech-specific elements, however, may prove contextually relevant. As such, textual “elements can be selected by placing all utterances on a ‘relevance scale’ to determine how necessary each element is in the context […], whereby the viewer may get the maximum contextual effect with the minimum processing effort” (Guardini 1998: 102).

As such, subtitling necessitates a condensation of the ST material. Roughly speaking, an average of 30% is lost in the transfer, but the exact figure depends on the amount of ST material to be subtitled and the constraints of each specific subtitling situation (cf. Pedersen 2007: 74).

1 Toury further states that the flexibility or rigidity of the law additionally depends on the status which translation as an activity has in the target culture (1995: 271). However, this aspect regards polysystem theory (cf. Even-Zohar 1990/2000). As such, it does not concern the present study and the law as outlined above will suffice for present purposes.
4. Material

Scrubs is a hospital situation comedy, created by Bill Lawrence and first aired in 2001 in the US and in 2003 in Sweden. The focus lies on the emotions and experiences of a group of medical interns as they begin their careers as doctors. While presenting his point of view, the main character links the multiple story lines of each episode via voice-over narration. Modern sitcoms, such as *Scrubs*, “reject the traditional sitcom style, and have abandoned the laugh track, resulting in series with more complex narrative space” (Mills 2008: 91). As is typical of the hospital show, the setting, the patients and their conditions function as a background for dramatic situations and the exploration of personal issues and topics (cf. Jacobs 2008).

House M.D. is a hospital drama series which was created by David Shore and began airing in 2004 in the US and in 2005 in Sweden. It revolves around an exceptionally qualified but highly misanthropic diagnostician and his team of specialised doctors as they tackle various complicated medical cases. Contrary to that of *Scrubs*, the focal point in *House M.D.* is not the characters’ emotions and experiences, but rather the diagnosis taking form, i.e. ‘solving the case’. This renders a plot structure similar to that of crime shows, which regularly “foregrounds the radical contingency of accidents and the ‘sudden turn for the worse’ that can befall patients […] complemented by medical technobabble that overlays the confusing immediacy of injury and treatment” (Jacobs 2008: 36). The setting, injuries and illnesses constitute the focus of the plot and are not “catalysts for the exploration of human relationships, emotions, desires and morals” (Jacobs 2008: 35). Therefore, *House M.D.* is a less typical example of the hospital show than *Scrubs*.

Though they are both hospital shows – and therefore share the same (medical) terminology – they have different functions, which entails different text-type hierarchies (cf. section 3.1). *House M.D.* is expressive, but with a notably potent informative side. Typical of the informative text-type is that “the main function of language is to inform the reader about objects and phenomena in the real world. The choice of linguistic and stylistic forms is subordinate to this function” (Nord 1996: 83). In *Scrubs*, the reverse is true; the show is somewhat informative, but the expressive side is markedly dominant. In texts of the expressive text-type, “the informative aspect is complemented, or even overruled, by an aesthetic component. The stylistic choices made by the author contribute to the ‘meaning’ of the text, producing an aesthetic effect on the reader” (1996: 83).

The two shows furthermore present two different genre hybrids. *Scrubs* is a hospital show mixed with a sitcom. As such, it is not the first example of this type of hybridity; it has precedents such as *M*A*S*H* (1972) and *Only When I Laugh* (1981). *House M.D.* is a hospital show mixed with a crime show. As such, its genre hybridity is uncommon – if not unprecedented – within television.

Consequently, *Scrubs* – presenting a plot structure and a genre hybridity not unparalleled within the hospital genre – is a more mainstream, and thus a more typical example of this genre than *House M.D.* Vice versa, *House M.D.*, – presenting a plot

2 Correspondingly, the names of the episodes of each show reflect the different foci of the two programmes. For a full index of episode names, see the list of references.
structure and a genre hybridity less mainstream for the hospital show – is a more atypical example of this genre than *Scrubs*. Consequently, *Scrubs* holds a more central position within this genre than *House M.D.* which has a more peripheral status.

The material of the study comprises the first episodes of the first seasons of both shows. In order to make possible a comparison of the two shows in terms of amount of terminology, the episodes selected are the first ten episodes of *Scrubs* – each one close to 21 minutes long – and the first five episodes of *House M.D.* – each one close to 40 minutes long.\(^3\)

The object of study is the genre-specific register – i.e. the medical terminology – shared by both shows. Register concerns the two main parameters that cause language to vary, which are language user and language use, i.e. speaker and context (cf. Fawcett 1997: 75). Nevertheless, the existing amount of research about terminology in general and medical terminology in particular is lamentably small. What can be said about it more generally, however, is that there are no monolingual medical terms.

The medical terminology appearing in both ST and TT of the selected episodes was extracted and comprises terms which could be divided into four categories, namely ‘Diseases and disorders’, ‘Method, material and measurements’, ‘Parts of the body’, and ‘Miscellaneous’. The terminology was extracted in isolation, not in context, i.e. the study concerns how individual ST terms are rendered in the TT.

- ‘Diseases and disorders’ comprises terms denoting illnesses and generally malign conditions.
- ‘Method, material and measurements’ comprises terms denoting treatments and medical procedures, hospital apparatus and different units of medicine.
- ‘Parts of the body’ comprises terms denoting internal and external anatomy, including organs and body fluids.
- ‘Miscellaneous’ is a motley category and relatively small. It comprises those terms which do not match any of the categories above, but are nevertheless very much a part of the field of medicine.

5. Method

In order to be able to somehow measure the assumed standardisation in the translations in question, the translation strategies present in the material had to be distinguished and organised into a taxonomy.

Within translation studies, the term translation strategy denotes the means by which a translator translates individual fragments of a ST. In other words, the term concerns translation tactics related to micro-level solutions to TCPs (translation crisis points), i.e. “what is actually descriptive of local-level problem solving” (Pedersen 2007: 111). As

\(^3\) Albeit each episode of each programme is subtitled individually, the shows are, for the sake of congruity, treated as two uniform texts. However, the individual subtitlers of *House M.D.* are accounted for in the list of references. On the DVD of *Scrubs*, the subtitlers were not credited.
such, it is closely related to Toury’s notion of norms (cf. section 3.2), since translation strategies may be based on norms, or may serve to generate norms.

The first comprehensive taxonomy of translation strategies was presented by Vinay and Darbelnet in the late 1950s (cf. Vinay & Darbelnet 1958) and has since then been reproduced and modified several times. One of its most recent reworkings is that by Pedersen (2007), which constitutes the foundation of the taxonomy applied in the present study. Albeit Pedersen’s taxonomy concerns the subtitling of ECRs (extralinguistic cultural references), Pedersen himself claims that the treatment of ECRs could be regarded as symptomatic of overall strategies (2007: 112). The base-line translation strategies of Pedersen’s taxonomy are:

- Retention
- Specification
- Direct translation
- Generalization
- Substitution
- Omission
- Official equivalence

(cf. 2007: 130-152)

For a taxonomy to be semantically valid, it should be established so that it includes all findings, so that it exhibits significant differences in one’s findings, and so that it reflects the number of findings (cf. Pedersen 2007: 127). In accordance with these recommendations, Pedersen’s taxonomy has been adapted in order to fit the findings of the present study.

5.1 Taxonomy of translation strategies

Along with the description of each strategy is provided an example – supplemented by a back translation of the Swedish subtitle – with the term relevant to the strategy in question in italics. An illustration of all of the strategies in the present taxonomy is provided below.
5.1.1 Full translation
Full translation implies as full semantic correspondence between ST term and TT term as is linguistically possible. As such, it is a strategy similar to that of ‘Direct translation’ as described by Pedersen, which also implies that the semantic load is left unaltered by the transfer (cf. 2007: 135). ‘Direct translation’, however, involves decision-making on the part of the translator, while Full translation implies that there, for the ST term, already exists a corresponding TL term (most likely listed in a (medical) dictionary). In respect to this, the strategy in Pedersen’s taxonomy providing the most satisfactory description of this type of transfer is that of ‘Official equivalence’, “which is not so much a strategy, as an equivalent with a very special status” (2007: 130). By the same token, it could be argued to be administrative rather than linguistic; “[t]he most important aspect of official equivalents is that when one exists, it is unlikely that there will be a TCP […]. This is because there is a performed solution already in place” (2007: 152). By the same token, Full translation does not involve TCPs either, since corresponding TL terms already exist.
Doctor House and his team of specialists discuss possible diagnoses.

(5)
ST: “Which leads us to bacterial infection.”
TT: “Då återstår bakterieinfektion.”
Back translation: “Then, bacterial infection remains.”

(House M.D., episode 4, 08:22)

As affirmed by the back translation, the semantic load is left unaltered by the transfer from ST to TT, which makes this an example of Full translation.

5.1.2 Omission
Since Omission involves replacing the ST term with nothing, it is a translation strategy which does not involve any translation per se, “[I]t involves doing nothing as opposed to doing something. […] However, when choosing Omission responsibly, there is of course the effort of testing alternative strategies” (Pedersen 2007: 148). Moreover, due to the required condensation of material between ST and TT, Omission is an inevitable part of the subtitler’s job.

Doctor Chase explains to Doctor House how they will reduce the intracranial pressure which a patient is suffering from:

(6)
ST: “We’re gonna put a shunt into one of the ventricles to give the cerebrospinal fluid an out.”
TT: “Vi sätter in en shunt för cerebrospinalvätskan.”
Back translation: “We’re putting a shunt in for the cerebrospinal fluid.”

(House M.D., episode 2, 13:35)

Since the ST term is removed in the transfer from ST to TT – thus leaving a gap in the TT – this is an example of Omission.

5.1.3 Retention
Retention implies keeping the ST term in the TT, without changing it in any way. Thus, it does not involve any translation per se. Pedersen defines Retention as the most common strategy for rendering ECRs and, furthermore, as the most source-oriented strategy, since it allows a source culture (SC) element to enter the TT (2007: 130-131). In the material in question, this holds true, since all of its ECRs are either retained or omitted. There is, however, a small number of additional cases of Retention where the retained item is not an ECR. In other words, another translation strategy may have been more felicitous, since the element retained does have a fully corresponding term – an official equivalent, if you will – in the TL.
Doctor House orders medicine for himself at the hospital pharmacy desk:

(7)

ST: “Thirty-six Vicodin.”
TT: “Trettiosex Vicodin.”
Back translation: “Thirty-six Vicodin.”

(House M.D., episode 3, 25:15)

Since the ST term is left untranslated in the TT, this is an example of Retention.

5.1.4 Specification
Pedersen describes Specification as retaining the ST term in its untranslated form, while adding information which is not present in the ST, thus making the TT term more specific than the ST term. As such, it does not involve any translation per se (2007: 131). In the present study, Pedersen’s definition of Specification will – in a slightly altered version – be called Explicitation. As such, it is listed as a subcategory of the present description of Specification, which has been extended to include one further subcategory. Explicitation is an additive strategy which disambiguates the ST term for the TL audience. It can be achieved by either Completion or Addition (both Pedersen’s terms). Completion, on the one hand, implies adding information which is latent in the ST medical term, as part of the expression side (e.g. spelling out acronyms or abbreviations). Addition, on the other hand, implies adding information which is latent in the ST medical term, not as part of the term as such, but as part of its sense and connotations. Moreover, Explicitation – as opposed to Pedersen’s definition of Specification – does not necessarily imply that the ST term is left untranslated in the TT. As stated above, the present definition of Specification has been made to further comprise translations where the ST term – by the use of hyponomy or meronymy – is rendered as something more specific in the TT. Specification achieved by using a term in this manner subordinate to the ST term is henceforth called Subordination.

Subordination
JD answers Doctor Kelso’s question during rounds about how to treat a patient with angio-aedema:

(8)

ST: “A combination of steroids and any of several antihistamines.”
TT: “Kortison och antihistamin kombinerat.”
Back translation: “Cortisone and antihistamine combined.”

(Scrubs, episode 3, 05:15)

Since cortisone is a type of steroid, this is an example of Subordination.
Explicitation, Addition

Doctor Foreman talks to a patient recovering from a severe allergic reaction to gadolinium:

(9)

ST: “Your chest will be sore for a while. We needed to shock you to get your heart going.”

Back translation: “You’ll feel pain in your chest for a while. You’ve been given electrical shocks.”

(“House M.D.”, episode 1, 24:02)

Since the word electrical in this context is latent in the sense and connotations of shocks, this is an example of Addition.

Explicitation, Completion

Doctor Chase gives orders to the nurses when trying to resuscitate a baby patient:

(10)

ST: “Defib.”

TT: “Defibrillator.”

Back translation: “Defibrillator.”

(“House M.D.”, episode 4, 22:22)

In the TT, the ST term – which is an abbreviation – has been spelled out, thus adding information which is part of the expression side of the ST term. As such, this is an example of Completion.

5.1.5 Generalisation

Generalisation entails replacing a ST term referring to something specific by a TL term referring to something more general. According to Pedersen, this may be done by replacing the ST term with a TL superordinate term, which is called Superordination (2007: 137). It may also be done by the use of Paraphrasing, i.e. by rendering the ST medical term, phrase, or sentence as a TL (medical) term, phrase, or sentence which is more or less synonymic, apart from being less specific. As such, the ST term is removed, but its sense or relevant connotations are kept. “This strategy is mainly used for solving […] crisis points that are too complex for Specification or Generalization using a Superordinate Term” (2007: 140). The difference between Pedersen’s definition of Generalisation and the one presented here is that the latter includes one further subcategory. It will henceforth be called Implicitation and it involves the process of making the explicit less so, most commonly by rendering a ST term written in full as an acronym or an abbreviation.
Superordination

Doctor Cox asks an obvious question, which JD has not thought of asking the patient:

(11)
ST: “Multilobar pneumonia at 31, how much does this guy smoke?”
Hur mycket röker han?”
Back translation: “Severe pneumonia at 31. How much does he smoke?”

(Scrubs, episode 2, 04:19)

Since multilobar pneumonia is a type of severe pneumonia, the TT term is more general than the ST term. As such, this is an example of Superordination.

Paraphrasing

Doctor House tells Doctor Cameron that he does not think the sex of the patient, whom he has never met, is of any actual importance regarding the diagnosis:

(12)
ST: “Him, her – does it matter? Does anyone think it’s a testicular problem?”
TT: “Jaha han. Än sen?
Kan det sitta i testiklarna?”

(House M.D., episode 3, 03:50)

The phrases “sitta i testiklarna” and “a testicular problem” are more or less synonymous, apart from the former being less specific than the latter. As such, this is an example of Paraphrasing.

Implicitation

Doctor Chase and the rest of the team discuss possible diagnoses in light of how the patient has reacted to previous treatments:

(13)
ST: “Mixed connective tissue disease. It’d explain why she was feeling better on the Prednisone.”
TT: “MCTD. Det kan förklara varför tillståndet förbättrades av Prednisonet.”
Back translation: “MCTD. It could explain why the condition was improved by the Prednisone.”

(House M.D., episode 5, 14:21)

In the TT, the ST term is made less explicit by being written as an acronym. As such, this is an example of Implicitation.
6. Results and Analysis

As mentioned above, the extracted medical terms could be divided into the four categories ‘Diseases and disorders’, ‘Method, material and measurements’, ‘Parts of the body’, and ‘Miscellaneous’. In total, the terminology consists of 735 terms in House M.D. and of 252 terms in Scrubs. The distribution between the categories was as follows:

Table 1. Distribution of terms within categories in both shows.

<table>
<thead>
<tr>
<th>Categories</th>
<th>House M.D.</th>
<th>Scrubs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>no of terms</td>
<td>% of all terms</td>
</tr>
<tr>
<td>Diseases and disorders</td>
<td>385</td>
<td>52.4</td>
</tr>
<tr>
<td>Method, material and measurements</td>
<td>276</td>
<td>37.6</td>
</tr>
<tr>
<td>Parts of the body</td>
<td>69</td>
<td>9.4</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>5</td>
<td>0.7</td>
</tr>
<tr>
<td>Total</td>
<td>735</td>
<td></td>
</tr>
</tbody>
</table>

As previously stated (cf. section 4), Scrubs is a more typical example of the hospital genre than House M.D. The notable difference in the amount of terminology presented by the two shows upholds this statement. In Scrubs, the hospital setting functions as a background for dramatic situations; as such, the medical register is not particularly extensive. In House M.D., however, the hospital-related situations in themselves constitute the drama of the show; as such, the medical terminology is foregrounded.

In House M.D., the focal point is the modus operandi of a diagnostician. Consequently, a considerable part of the dialogue in the show concerns various symptoms and possible diseases. For that reason, ‘Diseases and disorders’ is the largest category, constituting 52.4%. By the same token, the consideration of various symptoms and possible diseases commonly entails the mentioning of possible treatments, apparatus and medicine. As such, the second biggest category is ‘Method, material and measurements’, which constitutes 37.6%.

In Scrubs, however, the distribution of terms between these two categories is the reverse. Medical procedures can function as a background action, without removing the focus from the personal topics emphasised in the dialogue. As such, ‘Method, material and measurements’ is the largest category, constituting 52.4%. ‘Diseases and disorders’ is the second largest category, constituting 35.3%. This, as well, is to be expected, since there can be no mentioning of either treatments or hospital supplies without also mentioning what they are intended for – i.e. which condition they are meant to improve – albeit without granting this the same focus as in House M.D.

In the practice of medicine, what is most likely to change is the condition of a patient and, consequently, the required treatment. The anatomical location of an illness or injury, however, is more definite, and will, for that reason, appear less frequently in the dialogue. Accordingly, ‘Parts of the body’ constitutes the second smallest category in both
House M.D. and *Scrubs*, with 9.4% and 8.7% respectively.

Being a motley category, ‘Miscellaneous’ is, in both shows, the category comprising the least amount of terms. In *House M.D.*, it constitutes a mere 0.7% and in *Scrubs* 3.6%.

All things considered, the distribution of terms between the various categories in the two shows is in accordance with the previously mentioned description of the different plot structures, text-type hierarchies and genre hybrids presented by the two shows.

As stated in sections 5 and 5.1, the purpose of the taxonomy of translation strategies was to determine whether the material in question presents any micro-level signs of standardisation. As such, the initial approach is to see how the various strategies are realised in the two shows. Table 2 displays the number of terms per translation strategy and how many per cent of the total amount of terminology each strategy constitutes:

<table>
<thead>
<tr>
<th>Strategies</th>
<th>House M.D.</th>
<th>% of all terms</th>
<th>Scrubs</th>
<th>% of all terms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full translation</td>
<td>517</td>
<td>70.3</td>
<td>201</td>
<td>79.8</td>
</tr>
<tr>
<td>Omission</td>
<td>111</td>
<td>15.1</td>
<td>14</td>
<td>5.6</td>
</tr>
<tr>
<td>Retention</td>
<td>10</td>
<td>1.4</td>
<td>3</td>
<td>1.2</td>
</tr>
<tr>
<td>Specification</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subordination</td>
<td>34</td>
<td>4.6</td>
<td>9</td>
<td>3.6</td>
</tr>
<tr>
<td>Explicitation</td>
<td>17</td>
<td>2.3</td>
<td>5</td>
<td>2.0</td>
</tr>
<tr>
<td>Generalisation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Superordination</td>
<td>63</td>
<td>8.6</td>
<td>25</td>
<td>9.9</td>
</tr>
<tr>
<td>Paraphrasing</td>
<td>33</td>
<td>4.5</td>
<td>17</td>
<td>6.7</td>
</tr>
<tr>
<td>Implicitation</td>
<td>26</td>
<td>3.5</td>
<td>8</td>
<td>3.2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>735</td>
<td>252</td>
</tr>
</tbody>
</table>

As seen in Table 2, the translation strategies are realised in a fairly similar pattern in both shows. Unsurprisingly, Full translation, which implies full semantic correspondence between ST term and TT term, uncontestably constitutes the most common strategy in both shows, with 70.3% in *House M.D.* and 79.8% in *Scrubs*. As stated above, however, the strategy of Retention also implies such semantic correspondence, albeit without the element of translation in its traditional sense (cf. section 5.1.4). As opposed to Full translation, however, Retention – as seen in the table above – constitutes the least common strategy in both shows, with 1.4% in *House M.D.* and 1.2% in *Scrubs*.

In other words, the translation strategies which imply no semantic alteration between ST term and TT term together constitute 71.7% of all the translated terms in *House M.D.* and 81.0% of those in *Scrubs*. Consequently, 28.3% of the terms in *House M.D.* and 19.0% of those in *Scrubs* are translated using either Omission, Generalisation or Specification, none of which imply full semantic correspondence between ST term and TT term.

So far, the distribution of translation strategies has been similar in both shows. Regarding the strategies of Omission and Generalisation, however, the distribution is
somewhat different. In House M.D., Omission comprises 15.1% and is thus the second most common strategy. Generalisation, which comprises 8.6%, is realised as the third most common strategy. In Scrubs, however, the relation between these two strategies is the reverse. Generalisation – comprising 9.9% – is the second most common strategy and Omission – comprising 5.6% – is the third most common one.

Omission and Generalisation are alike inasmuch as they both somehow reduce the semantic content from ST to TT, albeit Omission markedly more drastically so, since it not so much alters the semantic load from ST to TT, as removes it completely. Therefore, they may be grouped together (similarly to how Full translation and Retention were grouped together above). Together, Omission and Generalisation comprise 23.7% of the total amount of terminology in House M.D. and 15.5% of that in Scrubs. As such, only 4.6% of the terms in House M.D. and 3.6% of those in Scrubs have been translated using Specification, i.e. so as to increase the semantic load from ST to TT.

From this, three conclusions can be drawn. Firstly, the strategies presented in the taxonomy may – in terms of semantic relation between ST term and TT term – be grouped together as follows.

- Full translation and Retention both preserve the semantic content from ST term to TT term. As such, they both entail semantic correspondence, and comprise 71.7% of the translated terminology in House M.D. and 81.0% of that in Scrubs.
- Omission and Generalisation both reduce the semantic content from ST term to TT term. As such, they both entail semantic decrease, and comprise 23.7% of the translated terminology in House M.D. and 15.5% of that in Scrubs.
- Specification adds to the semantic content from ST term to TT term. As such, it entails semantic increase, and comprises 4.6% of the translated terminology in House M.D. and 3.6% of that in Scrubs.

Secondly, the two translation strategies which entail semantic decrease together constitute the second most common type of semantic modification. In other words, the majority of the terms which have not been translated to fully correspond semantically, have been translated so that the semantic content of the TT term is less than that of the ST term.

Thirdly, the most drastic strategy in terms of semantic decrease – i.e. Omission – is almost three times as common in House M.D. as it is in Scrubs. Put differently, a considerably more substantial amount of the genre-specific register is removed in the translation of House M.D. than in the translation of Scrubs.

Since a transfer which entails a semantic decrease serves to make the TT term more general than the ST term, it consequently serves to make the TT more mainstream than the ST and. As previously stated, strategies entailing a semantic decrease are more frequently adopted in the translation of House M.D. than in that of Scrubs. In other words, the first law of standardisation is upheld by the results in Table 2.

Nevertheless, though two translation strategies may both entail the same type of semantic alteration, it may be realised to different degrees. As such, these more general notions of semantic implication require a more detailed representation in terms of standardisation. In other words, the individual translation strategies have to be converted into countable units.

As stated above, the ST material of House M.D. consists of 735 terms and that of
Scrubs of 252 terms. If each ST term is counted as 1, each TT term may be converted correspondingly, according to the semantic implication of whichever strategy it presents.

However, semantic functions are neither static nor independent of context, which complicates the construction of a detailed conversion system. The strategies of Full translation, Retention and Omission constitute absolutes (i.e. the semantic load is either kept or removed), which makes them fairly unproblematic. Generalisation and Specification, however, are ambiguous since the extent of the semantic modification they entail varies from one term to another. Due to the extensive material and the spatial and temporal limitations of the present study, it was therefore decided to assign these strategies one set value each. Though this principle is a simplification of reality – and, as such, may be considered somewhat arbitrary – it is believed that it will suffice for present purposes and provide a strong enough indication about the extent of the standardisation of the material in question. As such, the conversion system is as follows:

- **Full translation**, which implies full semantic correspondence between ST term and TT term, equals 1.
- **Retention**, which, by definition, entails the same level of semantic correspondence as Full translation (albeit in the TC rather than the SC), also equals 1.
- **Omission**, which implies full semantic decrease – i.e. no semantic correspondence between ST term and TT term – has to be regarded as the complete opposite of Full translation, and, for that reason, equals 0.
- **Generalisation**, which entails a partial semantic decrease of information from ST to TT, equals 0.5.
- **Specification**, which entails a partial semantic increase of information from ST to TT, equals 1.5.\(^4\)

By means of this principle, the semantic conversion of the medical terminology of each show can be calculated as follows:

\(^4\) The increase is partial in the sense that the addition in the TT does not exist per se in the ST, but is somehow latent in the ST. A TT addition which is added to nothing in the ST is within translation called compensation, of which there are no examples in the present object of study.
From Table 3 it can thus be concluded that the semantic condensation rates of both shows are the following:

- In *House M.D.*, what semantically remains of the medical terminology is 82.9% (i.e. 609.5/735). Therefore, the semantic condensation rate of medical terminology is 17.1%.
- In *Scrubs*, what semantically remains of the medical terminology is 91.3% (i.e. 230/252). Therefore, the semantic condensation rate of medical terminology is 8.7%.

These figures make two conclusions possible. Firstly, it is evident that the medical terminology in both shows has undergone semantic condensation. Secondly, *House M.D.* is notably more semantically condensed than *Scrubs*.

Medical terminology is the genre-specific register of the hospital show. As such, the hospital shows in question rely on this register; without it, they could no longer be categorised as hospital shows. Toury’s tentative law of translation states that textual relations of the ST are modified in favour of more habitual options offered by a target repertoire (cf. section 3.2). In respect to this, the above calculated semantic condensation rates represent the extent to which the two shows have been modified in favour of more habitual – less peripheral – options, i.e. the extent to which the two shows have been standardised. In more general terms, the standardisation makes them both less characteristic in terms of genre, i.e. they have become less like hospital shows and more like just shows.

Toury’s law further states that the more peripheral the text, the more extensive this modification will be. In terms of text-types, *House M.D.* is expressive but with a strongly informative side, while *Scrubs* is somewhat informative, but with a notably more expressive character. Moreover, the different foci and genre hybrids of the two shows entail a higher content of medical terminology in *House M.D.* than in *Scrubs*. By the same token, *House M.D.* is a more atypical example of the hospital show, which makes it hold a more

| Strategy | *House M.D.* | | *Scrubs* | |
|-----------------|-------------|-------------|-------------|
| | No of terms | Semantically converted no of terms | No of terms | Semantically converted no of terms |
| Full translation| 517 | (517 x 1) 517 | 201 | (201 x 1) 201 |
| Omission | 111 | (111 x 0) 0 | 14 | (14 x 0) 0 |
| Retention | 10 | (10 x 1) 10 | 3 | (3 x 1) 3 |
| Specification | 34 | (34 x 1.5) 51 | 9 | (9 x 1.5) 13.5 |
| Generalisation | 63 | (63 x 0.5) 31.5 | 25 | (25 x 0.5) 12.5 |
| Total | 735 | 609.5 | 252 | 230 |

Table 3. Semantic conversion of medical terminology in both shows.
peripheral status as a text. Accordingly – as seen in Table 3 – *House M.D.* is subjected to more extensive standardisation than *Scrubs*. In other words, the more peripheral of the two texts has undergone more extensive standardisation than that with the more central status.

As previously mentioned (cf. section 3.2.1.1), the technical constraints of subtitling entail an overall – i.e. not semantic per se – condensation. Since these constraints are constant, it could be assumed that this condensation rate would be exponential, i.e. the more verbose the ST, the more extensive the condensation. In order to be able to calculate the overall condensation rate of the material in question, transcriptions of both ST and TT were conducted. In total 15% of each selected episode was transcribed and both shows according to the same principle. In *Scrubs*, the transcriptions consist of minutes 00:00-01:00, 11:00-12:00, and 20:00-21:00 of each episode. In *House M.D.*, minutes 01:00-03:00, 21:00-23:00, and 39:00-41:00 of each episode were transcribed.

The ST transcription of *House M.D.* contains 3,088 words and that of the TT 2,112. In *Scrubs*, the ST transcription contains 3,405 words and that of the TT 2,568. From these figures it can be calculated that the overall condensation rate in *House M.D.* is 31.6% and in *Scrubs* 24.6%. In other words, it is the show with the least amount of dialogue – i.e. *House M.D.* – which presents the highest overall condensation rate. This is surprising.

Albeit *House M.D.* contains fewer words, it has a higher content of medical terminology, which – as previously stated – contributes to making it less mainstream and more peripheral in terms of genre. As most television viewers constitute non-specialists, this high content of medical terminology would also imply that it, as a show, is more demanding to follow. Consequently, the exposure time of the subtitles has to be more generous, in order to give the viewers more processing time (cf. Gottlieb 2001: 56).

This would explain why *House M.D.*, although its dialogue is less extensive than that of *Scrubs*, in its subtitles presents the highest condensation rate of the two shows. Its content is more demanding and, as such, requires more processing time. In other words, the assumed cognitive effort on the part of the viewer has been taken into account by the subtitler, i.e. the expected reading speed in *House M.D.* is slower. Consequently, its subtitles present a higher overall condensation rate than those in *Scrubs*, even though *Scrubs* in the original presents a more verbose ST. By the same token, *Scrubs* also has a more verbose TT.

In sum, both shows are subjected to standardisation and the more peripheral of the two shows, i.e. *House M.D.*, is more standardised than the more central one, i.e. *Scrubs*. Both these findings were hypothesised and are in accordance with Toury’s tentative law of translation. However, the present study constitutes a unique example of this tentative law. Moreover, though *Scrubs* constitutes the more verbose of the two shows, *House M.D.* shows a higher overall condensation rate. Put differently, the peripheral status in this case entails a more demanding content, which makes for a higher assumed cognitive effort on the part of the reader. This requires a more generous exposure time and, resultantly, a higher condensation rate. As such, the present study provides an unprecedented example of the cognitive effort being taken into account by the subtitler.
7. Discussion

The standardisation seen in the material in question can be explained by something which is called the centripetal effect in translation. It is described as a force by which the text in question is “sucked inward toward the center of the circle of texts in that genre” (Gottlieb & Grigaraviciute 2001: 110).

The genre in question may thus be represented by a bigger circle and the text by a smaller circle, somewhere – depending on the text-type hierarchy and genre hybridity of that particular text – inside the bigger one. The smaller circle is then pulled inward, toward the centre of the bigger circle. As such, the centripetal effect in translation may be illustrated as follows:

Figure 2. The centripetal effect in translation.

Figure 2 displays how the centripetal effect moves “the text away from its original and […] often excentric position within its genre, the new position being less extreme” (Gottlieb & Grigaraviciute 2001: 110). As such, the centripetal effect makes the mainstream less so. Similarly to the law of growing standardisation, the centripetal effect is described as being “instrumental in normalizing the text, by presenting the target-language audience with a version less non-standard than the original” (Gottlieb 2005b: 19). Furthermore, the notions of standardisation and centripetality share the quality of having a stronger effect the more extreme the text in question is.

Moreover, what this force entails is the normalisation of not only individual texts, but of these texts in relation to whichever genre they belong to. The same holds true in terms of text-types; the centripetal effect forces the previously mentioned text-type hierarchy to change in the transfer from ST to TT.

Due to its more extensive genre-specific register, unusual plot structure and unprecedented genre hybridity, House M.D. is, as previously stated, more atypical for the hospital show as a genre than Scrubs. As such, its position within the genre is more peripheral. Scrubs, on the other hand – containing less genre-specific register – has a less peripheral starting point. Consequently, the centripetal effect would – as has been affirmed above (cf. section 6) – have a stronger pull on House M.D. than on Scrubs. In respect to this, the centripetal effect on the two shows in question may be illustrated as follows:
Figure 3. The impact of the centripetal effect in translation on *House M.D.* and *Scrubs.*

Figure 3 displays how the two shows, when translated, move closer to each other within their genre; their TTs appear near the centre of the circle of the hospital show, whereas their STs are further apart. In other words, the centripetal effect have made the TTs of both shows less extreme than their STs. As such, the text-type hierarchies of the two shows have been altered by the centripetal movement, but to a higher degree in *House M.D.* than in *Scrubs.* In its TT, *House M.D.* is less informative than in its ST. By the same token, *Scrubs* – which already presents a weak informative side in its ST – is, in its TT, less informative, but not to the degree of *House M.D.* In other words, the two shows are, in their translations, more similar than in their original versions.

8. Conclusion

By extracting the medical terminology from the two American television hospital shows *House M.D.* and *Scrubs,* it could be concluded that *House M.D.* contains significantly more medical terms than *Scrubs* (735 terms and 252 terms respectively.)

By comparing their original and translated versions, it could also be concluded that what is presented in the subtitles is considerably standardised in comparison with the American STs. Moreover, the most peripheral of the two texts – i.e. *House M.D.* – has undergone a notably more extensive standardisation than the more central text – i.e. *Scrubs.* This could be established by identifying the translation strategies adopted in the material in question and analysing what they entail in terms of standardisation, i.e. how they semantically modify the material. It was evident that strategies which somehow serve to decrease the semantic load in the transfer from English to Swedish were adopted more frequently than those which serve to either maintain or increase this load. In other words, strategies which normalise the texts – and thus make them more mainstream and less non-standard – were more common than those which do not. Furthermore, these standardising strategies were adopted almost twice as frequently in *House M.D.* (17.1%) as in *Scrubs* (8.7%).

This standardisation is in accordance with – and constitutes a unique example of – Toury’s first law of translation. Furthermore, it tallies with the concept of centripetality in
translation, i.e. that translation entails a centripetal force which pulls the material to be translated towards the centre of the genre and thus makes it less non-standard than its original counterpart.

As such, the hypothesis that the two shows – in accordance with Toury’s first law of translation – would be standardised and that the more peripheral of the two shows would be subjected to the most noticeable standardisation, was confirmed.

The analysis moreover concluded that House M.D., being the most demanding to follow of the two shows, has been condensed more than Scrubs, although Scrubs is the most verbose of the two shows. In other words, House M.D. requires a more generous reading time in its subtitles and, therefore, the expected reading speed must be slower. Since House M.D. presents an overall condensation rate of 31.6% and Scrubs one of 24.6%. In other words, the most demanding – and, by extension, the most peripheral – show has undergone the most substantial condensation. As such, the present study provides unprecedented confirmation of the presumed cognitive effort being taken into account by the subtitler.

Since the study is based on only two translations, however, it is difficult to make wider generalisations; more studies of this kind are needed in order to uphold the present findings. In future studies it would, furthermore, be desirable to analyse whether Toury’s first law of translation is present in other aspects of the texts as well. Since the standardisation and the centripetal effect in translation make both texts less informative, it would be interesting to see whether their expressive sides, for this reason, have been granted a more dominant position. Or if the standardisation has had the same effect on all levels of the text-type hierarchy, i.e. if Scrubs has become less funny or House M.D. less like a crime show.
References

Primary sources

- Season 1, episode 1: “Pilot”. Directed by Singer, Bryan. Subtitled by Hemmingsson, Stefan, PrimeText International AB.
- Season 1, episode 2: “Paternity”. Directed by O’Fallon, Peter. Subtitled by Ewald, Per, PrimeText International AB.
- Season 1, episode 3: “Occam’s Razor”. Directed by Singer, Bryan. Subtitled by Hemmingsson, Stefan, PrimeText International AB.
- Season 1, episode 4: “Maternity”. Directed by Thomas Sigel, Newton. Subtitled by Ewald, Per, PrimeText International AB.
- Season 1, episode 5: “Damned If You Do”. Directed by Yaitanes, Greg. Subtitled by Johansson, Johan, PrimeText International AB.

- Season 1, episode 1: “My First Day”. Directed by Bernstein, Adam.
- Season 1, episode 2: “My Mentor”. Directed by Bernstein, Adam.
- Season 1, episode 3: “My Best Friend’s Mistake”. Directed by Bernstein, Adam.
- Season 1, episode 4: “My Old Lady”. Directed by Buckland, Marc.
- Season 1, episode 5: “My Two Dads”. Directed by Zisk, Craig.
- Season 1, episode 6: “My Bad”. Directed by Buckland, Marc.
- Season 1, episode 7: “My Super Ego”. Directed by Lauer, Peter.
- Season 1, episode 8: “My Fifteen Minutes”. Directed by Trilling, Lawrence.
- Season 1, episode 9: “My Day Off”. Directed by Keene, Elodie.
- Season 1, episode 10: “My Nickname”. Directed by Diamond, Matthew.

Secondary sources

APPENDIX

The appendix comprises the extracted terminology of *House M.D.* and *Scrubs*. The terms are divided into the four categories ‘Diseases and disorders’, ‘Method, material and measurements’, ‘Parts of the body’ and ‘Miscellaneous’ and each category is subsequently divided into the various translation strategies presented in section 5.1. Within each strategy, the terms are listed alphabetically, which means that no division has been made between episodes or chronological order within episodes. Should a strategy not be present in a given category, it will not appear in the appendix. Terms which are translated somewhat ambiguously have been assigned the strategy they match most closely, but are, for the sake of clarity, supplemented by an ‘[amb.]’.
House M.D.

Diseases and disorders

Full translation

- abdominal infection
 - bukinfection
 - infektion i buken
- abdominal pain
 - buksmärtor
 - buksmärta
 - buksmärtor
- abdominal pain
 - magont
- the abdominal pain
 - buksmärterna
- absidia
 - absidia
- adenopathy
 - adenopati
- allergens
 - allergener
 - allergener
- allergic
 - allergisk
- allergic reaction
 - allergisk reaktion
 - allergisk reaktion
- allergies
 - allergier
- allergy
 - allergi
- amnesia
 - amnesi
- anaphylactic shock
 - anafylaktisk chock
- aneurysm
 - aneurysm
- the antibiotics
 - antibiotikan
- arrhythmia
 - arytmierma
- arthritis
 - artrit
- asthma
 - asthma
- asthma attack
 - astamaanfall
- back spasm
 - kramper i ryggen
- bacterial infection
 - bakterieinfektion
- the blood pressure
 - blodtrycket
- bloody diarrhea
 - blodiga diarréer
- bowel obstruction
 - tarmobstraktion
- bowel obstruction
 - tarmobstraktion
- brain tumor
 - hjärntumör
breast cancer
breathing is labored
breathing problems
cancer
carcinoid
carcinoid
carcinoid
cardiac arrest
cardiac arrest
cardiac arrest
cardiac arrest
cardiac arrest
cardiac arrest
cardiac infection
cardiac infection
cardiac problem
the cardio myopathy
cellulitis
cerebral vasculitis
circling the drain
chronic fatigue syndrome
Church-Strauss
Church-Strauss
Church-Strauss
Church-Strauss vasculitis
CMV
CMV
CMV
CMV
CMV
colchicine poisoning
concussion
concussion
concussion
be contagious
contaminant
contractions
cough hosta
cough hosta
cough hosta
cough hosta
cough hosta
the cough hostan
the cough hostan
Creutzfeldt Jacob disease Creutzfeldt Jacobs sjuka
degenerative degenerativt
dermatitis dermatit
diabetes diabetes
diarrhea diarré
dizziness yrsel
double vision dubbelseende
had double vision såg dubbelt
echovirus ECHO-virus
echovirus II ECHO-virus II
enterovirus enterovirus
enterovirus enterovirus
enterovirus enterovirus
the eosinophile count eosinofilantalet
eosinophilia eosinofili
epidemic epidemi
the Epstein-Barr virus Epstein-Barrviruset
epileptiform activity epileptiform aktivitet
FAB fragments FAB-fragment
fever feber

mono
MRSA
MRSA
MRSA
MRSA
MRSA
MRSA
MS
MS
MS
MS
MS
MS
multiple sclerosis
myoclonic jerk
nausea
neurological complications
neurological damage
neurocysticercosis
night terror
obstruction
oedema
oxygen toxicity
pain
pain
pain in the abdomen
paramyxovirus
parasites
körtelfeber
MRSA
MRSA
MRSA
MRSA
MRSA
MRSA
MS
MS
MS
MS
MS
MS
multipel skleros
myokloni
illamående
neurologiska komplikationer
neurologiska skador
neurocysticerkos
nattskräck
nattskräck
nattskräck
nattskräck
nattskräck
nattskräck
nattskräck
stopp
ödem
syreförgiftning
smärta
smärta
magont
paramyxovirus
parasiter
parasite parasit
parasite parasit
parasite parasit
parasite parasit
parvovirus parvovirus
parvovirus B19 parvovirus B19
parvovirus B19 parvovirus B19
pneumonitis pneumonit
pseudomonas pseudomonas
pseudomonas pseudomonas
pseudomonas pseudomonas
psittacosis papegojsjuka
psittacosis papegojsjuka
pulmonary embolism lungemboli
pulmonary problems lungproblem
pulmonary problems lungproblem
pus var
progressive MS snabbutvecklande MS
rash utslag
rash utslagen
redness rodnad
respiratory distress andningssvårigheter
RSV RSV
rubella röda hund
seizure anfall
seizure anfall
seizure krampanfall
sepsis blodförgiftning
skin infection hudinfektion
<table>
<thead>
<tr>
<th>English</th>
<th>Swedish</th>
</tr>
</thead>
<tbody>
<tr>
<td>sinus infection</td>
<td>bihåleinfektion</td>
</tr>
<tr>
<td>the sinus infection</td>
<td>bihåleinfektionen</td>
</tr>
<tr>
<td>the sinus infection</td>
<td>bihåleinfektionen</td>
</tr>
<tr>
<td>spitting up</td>
<td>kräks [amb.]</td>
</tr>
<tr>
<td>spitting up</td>
<td>kräks [amb.]</td>
</tr>
<tr>
<td>stiffness</td>
<td>stelhet</td>
</tr>
<tr>
<td>stroke</td>
<td>stroke</td>
</tr>
<tr>
<td>sub-acute sclerosal panencephalitis</td>
<td>subakut skleroserande panencefalit</td>
</tr>
<tr>
<td>swelling</td>
<td>svullnad</td>
</tr>
<tr>
<td>swollen</td>
<td>svullna</td>
</tr>
<tr>
<td>syphilis</td>
<td>syfilis</td>
</tr>
<tr>
<td>syphilis</td>
<td>syfilis</td>
</tr>
<tr>
<td>systemic allergic response</td>
<td>systemisk allergisk reaktion</td>
</tr>
<tr>
<td>tachycardia</td>
<td>takykardi</td>
</tr>
<tr>
<td>tapeworm</td>
<td>bandmask</td>
</tr>
<tr>
<td>tapeworm</td>
<td>bandmask</td>
</tr>
<tr>
<td>tapeworm</td>
<td>bandmask</td>
</tr>
<tr>
<td>tapeworm</td>
<td>bandmask</td>
</tr>
<tr>
<td>tapeworm Larvae</td>
<td>bandmasklarver</td>
</tr>
<tr>
<td>thyrotoxicosis</td>
<td>tyreotoxikos</td>
</tr>
<tr>
<td>toxins</td>
<td>gifter</td>
</tr>
<tr>
<td>toxoplasmosi</td>
<td>toxoplasmos</td>
</tr>
<tr>
<td>trauma</td>
<td>trauma</td>
</tr>
<tr>
<td>tumor</td>
<td>tumör</td>
</tr>
<tr>
<td>tumors</td>
<td>tumörer</td>
</tr>
<tr>
<td>upset stomach</td>
<td>dålig i magen</td>
</tr>
<tr>
<td>vascular</td>
<td>kärlinflammation</td>
</tr>
</tbody>
</table>
vasculitis kärlinflammation
vasculitis vaskulit
vasculitis vaskulit
vasculitis vaskulit
vasculitis kärlinflammation
vasculitis vaskulit
viral heart infection virusinfektion i hjärtat
viral infection virusinfektion
viral infection virusinfektion
viral meningitis hjärnhinneinflammation
VRSA VRSA
VRSA VRSA
viral ett virus
virus virus
virus virus
virus virus
virus virus
virus virus
viruses virus
Wernicke’s encephalopathy Wernickes encefalopati
worm mask
worm mask
worm larvae masklarv
wound sår
Yersinia infection Yersinia infektion

Omission

allergies -
anaphylaxis -
auditorial hallucination -
belly pain -
bowel obstruction -
Church-Strauss -
CMV -
concussion -
contact dermatitis -
coughing

degenerative brain disease

encephalitis

infectious

inflammatory bowel

inflammatory response

jaundice

lesions

lung and eye damage

mad cow

measles antibodies

meningitis

Methicillin-resistant Staphylococcus aureus

mild fever

movement disorder

muscle death

nausea

neuropathy

night terror

pathology

scolded skin syndrome

sepsis

spasm

SSPE

stroke

systolic

tumor

tumor

tumor

VRE

worm

Specification: Subordination

bug

bakterier

intracranial pressure

tryck i hjärnan
seizing feberkramp
seizing krampar
seizure feberkramp

Specification: Explicitation

H flu Haemophilus Influenzae
West Nile West Nile-feber

Generalisation: Superordination

bacterial infections bakterier
brain cancer cancer
colorectal cancer, prostate cancer mag- och prostatacancer
echovirus B19 ECHO-virus
echovirus II echoviruset
gets a rash, is extremely uncomfortable blir sjuk
having a fever and a rash blev sjuk
kidney failure njurproblem
the kidney failure njurproblemen
lethargic slö
lymphocytic infiltrates lymfocyter
the mixed connective tissue disease sjukdomen
tapeworm mask
temporal lobe swelling svullnader i hjärnan
uric acid crystals urinsyra
vascular pathology kärlproblem

Generalisation: Paraphrasing

The blood pressure’s not responding to iv fluids. Blodtryck och vätskebalans är fel.
The blood pressure’s not responding to iv fluids. Blodtryck och vätskebalans korresponderar inte.
blood pressure problem det blodtrycket
cytosis det
inflammation det
lymphoma parasit
ring parasit
scratchy throat
ont i halsen
a testicular problem
sitta i testiklarna

Generalisation: Implicitation
inflammatory bowel IBD
mixed connective tissue disease MCTD
mixed connective tissue disease MCTD

Method, material and measurements

Full translation
albendazole albendazol
ANA ANA
the anaesthetics bedövningen
arterial line artärkateter
ASA ASA
ASA ASA
aspirin aspirin
anti-allergy medicine allergimedicin
antibiotics antibiotika
antibiotics antibiotika
the antibiotics antibiotikan
the antibiotics antibiotikan
the antibiotics antibiotikan
the antibiotics antibiotikan
the antibodies antikroppar
antihistamine antihistamin
antihistamine antihistamin
autopsy obduktion
autosomal dominant autosomalt dominant
azithromycin azithromycin
aztreonam aztreonam
aztreonam
biopsy
biopsy
biopsy
biopsy needle
birth control
birth control
birth control implant
blood test
broad-spectrum antibiotics
the catheter
21 cc
charge up the defibrillator
charting
clean room
clean room
colchicine
colchicine
colchicine
colchicine
colchicine
colchicine
cough medicine
cultures
diagnosis
diphenhydramine
DNA-test
DNA-test
DNA-test
echo cardiogram
EEG
EKG
epinephrine
epinephrine
epinephrine
epinephrine
epinephrine

göra en biopsi
biopsi
biopsi
biopsinål
preventivmedel
preventivmedel
implanterat p-piller [amb.]
bloodanalys
bredspektrumantibiotika
katetern
0,1 ml [amb.]
ladda defibrillatorn
journalskrivande
kliniskt rum [amb.]
kliniskt rum [amb.]
kolkicin
kolkicin
kolkicin
kolkicin
kolkicin
kolkicin
hostmedicin
odlingar
diagnos
difenhydramin
DNA-test
DNA-test
DNA-test
ekokardiogram
EEG
EKG
epinefrin
epinefrin
epinefrin
epinefrin
epinefrin
epinephrine syringes
eOG
extubated
full body scan
gadolinium
gadolinium
got vaccinated
gout medication
gout medicine
gout medicine
history
history of his symptoms
implants
inhaler
inject
interferon
intraventricular interferon
intraventricular interferon
intubate
IUD
IUD
iv
iv
lab result
labs
latex tubing
levothyroxine
LFTs
lumbar puncture
medical history
mental status
mental status
Mercaptopurine
microscope
nephrology
neurological

epinefrinsprutor
EOG
extuberad
helkroppsröntgen
gadolinium
gadolinium
vaccinerad
medicin mot gikt
giktmedicin
giktmedicin
historia
symptombild
implantat
inhalator
injicera
interferon
intraventrikulär interferon
intraventrikulär interferon
intubera
spiral
spiral
dropp
intravenöst
provsvar
labb
latexslangar
levotyroxin
LFT
lumbalpunktion
sjukdomshistoria
mental status
mental status
Merkaptopurin
mikroskop
nefrologi
neurologisk
niacin
non-steroidal anti-inflammatory
to 110 over 70
oesophagil microphones
Ommaya reservoir
oral corticosteroids
the PCR-test
penicillin
penicillin
penicillin
perform the biopsy
point one cc
point one cc of epinephrine
polysomnograph
prednisone
prednisone
prednisone
prednisone
prednisone
prednisone
prednisone
prednisone
QRS
radiation
to radiation
to radiation
sampled their DNA
saturate
sensors
sequencing machine
shunt
shunt
shunt
skin test
status
steroid
steroid enema

niacin
antiinflammatorisk utan steroid
110/70
strupmikrofoner
Ommaya-behållare
corticosteroider oralt
PCR-testet
penicillin
penicillin
penicillin
penicillin
ta en biopsi
0.1 ml [sic]
0.1 mg epinefrin [sic]
polysomnografi
prednison
prednison
prednison
prednison
prednison
prednison
prednison
prednison
DNA-testade dem
syremätta
sensorer
sekvensmaskin
shunt
shunt
shunt
pricktest
tillstånd
steroid
steroidlavemang
steroids
sulfasalazine
the tests
TSH
TSH
tube
vaccinated
vaccinated
ventilate
vaccinating
vaccination dates
vaccinations
vaccine
VEP
vancomycin
vancomycin
vancomycin
vancomycin
vancomycin
vancomycin
vancomycin
was scanned
white blood count
white cell count
white count cell [sic]
Omission

Adivan
antibiotic
antibiotics
the antiviral
aztreonam
birth control
blood test
CBC
colchicine
CPR
cramp car
CT scan
CHEM-7
deep wave inversion
dNA
drain
EEG
fluid wide open
GCSF
high valium
imaging studies
intraveneous
iv fluids
labs
lab-work
lumbar puncture
magnetic resonance
MRI
MRI
MRI
MRI
penicillin
prednisone
prednisone
prep
protein markers
radiation
RPR-test
steroids
stick test
T3 and T4
tap him
thyroid medication
TID
titers
Unasyn
vials
vancomycin
white blood cell count
white cell activity
X-ray

Retention
Atrivan
Levaquin
Motvin
MRI
MRI
Tylenol
Vicodin
Vicodin

Specification: Subordination
antiviral
antivirals
the antiviral
call a code
casts
drug
the prednisone
RPR
shock

Specification: Explicitation

<table>
<thead>
<tr>
<th>English</th>
<th>Swedish</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBC</td>
<td>blodkroppsräkning</td>
</tr>
<tr>
<td>CBC</td>
<td>blodkroppsräkning</td>
</tr>
<tr>
<td>defib</td>
<td>defibrillator</td>
</tr>
<tr>
<td>epi</td>
<td>epinefrin</td>
</tr>
<tr>
<td>epi</td>
<td>epinefrin</td>
</tr>
<tr>
<td>MIDNIT</td>
<td>"Midnite“ [amb.]</td>
</tr>
<tr>
<td>MIDNIT</td>
<td>"Midnite“ [amb.]</td>
</tr>
<tr>
<td>radioisotope</td>
<td>radioaktiv isotop</td>
</tr>
<tr>
<td>run DNA</td>
<td>göra DNA-test</td>
</tr>
<tr>
<td>CAT scan</td>
<td>datortomografi</td>
</tr>
</tbody>
</table>

Generalisation: Superordination

<table>
<thead>
<tr>
<th>English</th>
<th>Swedish</th>
</tr>
</thead>
<tbody>
<tr>
<td>abdominal CT scan</td>
<td>bukröntgen</td>
</tr>
<tr>
<td>broad-spectrum antibiotics</td>
<td>antibiotika</td>
</tr>
<tr>
<td>CBC</td>
<td>blodvärden</td>
</tr>
<tr>
<td>CBC</td>
<td>blodprov</td>
</tr>
<tr>
<td>chest CT</td>
<td>CT</td>
</tr>
<tr>
<td>central MRI</td>
<td>MRI</td>
</tr>
<tr>
<td>cordical steroids</td>
<td>steroider</td>
</tr>
<tr>
<td>did an MRI</td>
<td>röntgat</td>
</tr>
<tr>
<td>exploratory laparotomy</td>
<td>vanlig laparotomi [amb.]</td>
</tr>
<tr>
<td>a full body scan</td>
<td>röntgenundersökt</td>
</tr>
<tr>
<td>iv penicillin</td>
<td>penicilllin</td>
</tr>
<tr>
<td>medical history</td>
<td>historia</td>
</tr>
<tr>
<td>test for viral infections</td>
<td>göra virustest</td>
</tr>
<tr>
<td>white count</td>
<td>vita</td>
</tr>
</tbody>
</table>

Generalisation: Paraphrasing

<table>
<thead>
<tr>
<th>English</th>
<th>Swedish</th>
</tr>
</thead>
<tbody>
<tr>
<td>boost his white blood cell count</td>
<td>han behöver fler vita blodkroppar</td>
</tr>
<tr>
<td>bowel obstruction on a chart</td>
<td>diagnosen tarmobstruktion</td>
</tr>
</tbody>
</table>
CT, MRI, CBC, CHEM-7, chest X-ray
hyperbaric oxygen chamber
hyperbaric treatment
hyperbaric treatment
McDonald criteria
The protein markers for the three most prevalent brain cancers came out negative.
surgical pins
their DNA
this MRI
under an X-ray
Where’s the surgical airway kit?
you’ll have a chest CT scan
alla sorters hjärnröntgen [amb.]
syrebehandling i tryckkammare
behandling i tryckkammare
tryckkammaren
enligt McDonald
Vi hittade inga spår av cancer.
titanspikar
DNA-provet
de här MRI-bilderna
på en röntgenplåt
Vi måste öppna luftstruven.
vi ska röntga ert bröst

Part of the Body and Body Parts

Full translation

adrenaline
blood count
blood levels
blood pressure
blood pressure
blood pressure
blood pressure
blood pressure
corpus callosum
cretinism
dilate
electrical impulses
gas
gas pattern
the heart
immune system
immune system
adrenalin
blodkroppar
blodvärden
blodtryck
blodtryck
blodtryck
blodtryck
blodtryck
hjärnbalken
kretinism
vidgas
elektriska impulser
gaser
gasmönster
hjärtat
immunsystem
immunförsvaret
immune system
immune system
the lungs
lung function
mucus
mucus production
neoplasma
oligoclonal bands
organs
pituitary gland
pressure
pulmonary resistance
pulse
respiration
right atrium
sinus rhythm
tense
tricuspid valve
the urine

Omission
blood pressure
blood vessels
the brain
BUN
creatine
creatine
CSF
glands
immune system
O₂ sat
oligoclonal bands
a pulse
respiration rate
sub-dural
temperature
transmission -
ventricles -
white matter -

Specification: Subordination
ANA ANA-värden
BUN and creatinine BUN och kreatininnivåerna
creatinine kreatininnivån

Specification: Explicitation
BP blodtryck
BP blodtryck
BP blodtryck
BP blodtryck
BP blodtryck

Generalisation: Superordination
blood thiamine level tiaminvärde
cardiac arrhythmia arytni
respiratory secretions slem

Generalisation: Paraphrasing
secretions spit out of every gland körtlarna arbetar för högtryck

Generalisation: Implicitation
sedimentation rate SR

Miscellaneous

Full translation
Hippocratic oath läkareden
hypo-allergenic o-allergent
hypocondriac hypokondriker
<table>
<thead>
<tr>
<th>Generalisation: Paraphrasing</th>
</tr>
</thead>
<tbody>
<tr>
<td>colonel</td>
</tr>
<tr>
<td>self-abort</td>
</tr>
</tbody>
</table>
Diseases and disorders

Full translation

<table>
<thead>
<tr>
<th>English</th>
<th>Swedish</th>
</tr>
</thead>
<tbody>
<tr>
<td>abdominal cramps</td>
<td>bukkramper</td>
</tr>
<tr>
<td>accelerated heartbeat</td>
<td>ökad puls</td>
</tr>
<tr>
<td>angio-edema</td>
<td>angioödem</td>
</tr>
<tr>
<td>appendicitis</td>
<td>blindtarmsinflammation</td>
</tr>
<tr>
<td>arrhythmia</td>
<td>hjärtrubbning</td>
</tr>
<tr>
<td>atelectitis</td>
<td>atelektas</td>
</tr>
<tr>
<td>bad circulation</td>
<td>dålig blodcirkulation</td>
</tr>
<tr>
<td>Beck’s triad</td>
<td>Becks triad</td>
</tr>
<tr>
<td>bleeds out</td>
<td>förblöder</td>
</tr>
<tr>
<td>break</td>
<td>brott</td>
</tr>
<tr>
<td>broken bones</td>
<td>benbrott</td>
</tr>
<tr>
<td>cancer</td>
<td>cancer</td>
</tr>
<tr>
<td>congestive heart failure</td>
<td>blodstockning</td>
</tr>
<tr>
<td>cough</td>
<td>hosta</td>
</tr>
<tr>
<td>crashed</td>
<td>kollapsade</td>
</tr>
<tr>
<td>be decompensating</td>
<td>lider av hjärtsvikt</td>
</tr>
<tr>
<td>diabetic</td>
<td>diabetiker</td>
</tr>
<tr>
<td>diaphoretic</td>
<td>svettas</td>
</tr>
<tr>
<td>dizziness</td>
<td>yrsel</td>
</tr>
<tr>
<td>non-displaced femoral fracture</td>
<td>icke-förrskjutet lårbensbrott</td>
</tr>
<tr>
<td>echo</td>
<td>echo</td>
</tr>
<tr>
<td>encephalopathy</td>
<td>enecefalopati</td>
</tr>
<tr>
<td>erythema migrans</td>
<td>erythema migrans</td>
</tr>
<tr>
<td>fever</td>
<td>feber</td>
</tr>
<tr>
<td>fever</td>
<td>feber</td>
</tr>
</tbody>
</table>
fever
fever
fever
headache
heart attack
heart disease
hernia
hernia
hypertrophic cardiomyopathy
hypoglyceamic
hypotension
hypotension
infected stool
infection
jaundice
liver disease
lymphoma
meningococcus
migrane
necrosis
neutropenic fever
pericarditis
plague
prerenal azotemia
problems urinating
puking
pulmonary embolism
no puls
rash
rash
rash
rash
renal failure
respiratory distress
respiratory problem
septic
shortness of breath
shortness of breath
someone’s heart fails
superior mesenteric insufficiency
swelling
systolic murmur
syncope
temperature
total renal failure
uraemia
viral infection
virus
virus
virus
vomited
vomiting

Omission

gas
hyperventilating
septic

Specification: Subordination

bad gas

Generalisation: Superordination

he’s hemodynamically stable
multilobar pneumonia

Method, material and measurements

Full translation

amp
antihistamine
apendectomy
apspirin

50
aspirin huvudvärkstabletter
autopsy obduktion
autopsy obduktion
bandage plåster
bedpan bäcken
blood cultures blododling
blood work blodprov
blood work provsvår
blood work provsvår
bypass bypass
catheter kateter
chart diagram
chart journal
chart journal
chart journal
chart journal
chest tube thoraxdrän
chest tube tray thoraxdrän
chest X-ray bröströntgen
close sy igen
diagnose diagnoser
dialysis dialys
disempact bowels tarmtömning
diuretics urindrivande
enema lavemang
EKG EKG
EKG EKG
EKG EKG
Emergency Room akuten
exam undersökning
Foley catheter Foley-kateter
gauze gasbinda
gauze gasbinda
gurney sjuksäng
gurney bår
heart monitor hjärtmonitor
heparin heparin
heparin heparin
incision snitt
insuline insulin
insuline insulin
intensive care intensiven
internal medicine invärtes medicin
iv dropp
iv dropp
iv dropp
iv dropp
iv nutrition näring intravenöst
KCl KCL [sic]
lab coats läkarrockar
labs provsvar
maternity ward BB
medicine medicin
mouth-to-mouth mun-mot-mun-metoden
NG tube v-sond
operate operationer
OR operationssal
paddles hjärtlungmaskin
patient care patientvård
physical undersökning
physical undersökning
pronounce dödförklara
respiratory treatment respiratorisk behandling
saline vanlig saltlösning
scrubs blått ställ
sponges svabbar
stent
stethoscope
stitches
tamponade
test
test
tests
thrombolytics
thrombolytics
thrombolytics
TIPPS
TIPPS-procedure
trach. kit
transplant
transplant
units per hour
urine sample
white blood cell count

Omission
AVG
D50
lab
lavage
LFTs
one gram iv
post-op
stats
tox screen

Retention
mEq
mEq
Lasix
Specification: Subordination

<table>
<thead>
<tr>
<th>English</th>
<th>Swedish</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVG</td>
<td>blodgasanalys [amb.]</td>
</tr>
<tr>
<td>code</td>
<td>akutfall</td>
</tr>
<tr>
<td>code</td>
<td>varning</td>
</tr>
<tr>
<td>steroids</td>
<td>kortison</td>
</tr>
</tbody>
</table>

Specification: Explicitation

<table>
<thead>
<tr>
<th>English</th>
<th>Swedish</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPR</td>
<td>hjärt-lungräddning</td>
</tr>
<tr>
<td>mass cas. alert</td>
<td>larm om allvarlig olycka</td>
</tr>
</tbody>
</table>

Generalisation: Superordination

<table>
<thead>
<tr>
<th>English</th>
<th>Swedish</th>
</tr>
</thead>
<tbody>
<tr>
<td>blood cultures</td>
<td>blodprov</td>
</tr>
<tr>
<td>CT result</td>
<td>resultat</td>
</tr>
<tr>
<td>Foley catheter</td>
<td>kateter</td>
</tr>
<tr>
<td>heparin drip</td>
<td>heparin</td>
</tr>
<tr>
<td>high resolution CT</td>
<td>skiktröntgen</td>
</tr>
<tr>
<td>invasive vascular procedure</td>
<td>kärloperationer</td>
</tr>
<tr>
<td>surgical mask</td>
<td>mask</td>
</tr>
<tr>
<td>TIPPS-procedure</td>
<td>TIPPS</td>
</tr>
<tr>
<td>TIPPS-procedure</td>
<td>TIPPS</td>
</tr>
<tr>
<td>TIPPS-procedure</td>
<td>TIPPS</td>
</tr>
<tr>
<td>tox screen</td>
<td>blodprovsresultat</td>
</tr>
<tr>
<td>vitals</td>
<td>vitala delar</td>
</tr>
<tr>
<td>white blood cell count</td>
<td>vita blodkroppar</td>
</tr>
</tbody>
</table>

Generalisation: Paraphrasing

<table>
<thead>
<tr>
<th>English</th>
<th>Swedish</th>
</tr>
</thead>
<tbody>
<tr>
<td>central line changes</td>
<td>tagit reda på provsvar [amb.]</td>
</tr>
<tr>
<td>discharge summaries</td>
<td>antecknat utskrivna patienter</td>
</tr>
<tr>
<td>how many mEqs</td>
<td>hur mycket</td>
</tr>
<tr>
<td>pharmacy renewals</td>
<td>beställt medicin</td>
</tr>
<tr>
<td>time of death</td>
<td>dog</td>
</tr>
<tr>
<td>wrote out the pharmacy renewals</td>
<td>förnyade recepten</td>
</tr>
<tr>
<td>stitches</td>
<td>sy ihop</td>
</tr>
</tbody>
</table>
Part of the Body and Body Parts

Full translation

<table>
<thead>
<tr>
<th>English</th>
<th>Swedish</th>
</tr>
</thead>
<tbody>
<tr>
<td>appendix</td>
<td>blindtarm</td>
</tr>
<tr>
<td>cardiac enzymes</td>
<td>hjärtenzymer</td>
</tr>
<tr>
<td>colon</td>
<td>grovtarm</td>
</tr>
<tr>
<td>Cooper’s ligament</td>
<td>Coopers ligament</td>
</tr>
<tr>
<td>endorphines</td>
<td>endorfiner</td>
</tr>
<tr>
<td>fluid</td>
<td>vätskor</td>
</tr>
<tr>
<td>fluid</td>
<td>vätska</td>
</tr>
<tr>
<td>genitals</td>
<td>könsorgan</td>
</tr>
<tr>
<td>heart rate</td>
<td>hjärtfrequens</td>
</tr>
<tr>
<td>heart rate</td>
<td>hjärtfrequensen</td>
</tr>
<tr>
<td>heart rate</td>
<td>puls</td>
</tr>
<tr>
<td>insides</td>
<td>inälvor</td>
</tr>
<tr>
<td>medulla oblongata</td>
<td>förlängda märgen</td>
</tr>
<tr>
<td>ligament</td>
<td>ligament</td>
</tr>
<tr>
<td>pleura</td>
<td>lungsäck</td>
</tr>
<tr>
<td>stomach fluid</td>
<td>bukvätska</td>
</tr>
<tr>
<td>the ulna</td>
<td>armbägsbenet</td>
</tr>
<tr>
<td>wind pipe</td>
<td>luftstrupe</td>
</tr>
</tbody>
</table>

Omission

<table>
<thead>
<tr>
<th>English</th>
<th>Swedish</th>
</tr>
</thead>
<tbody>
<tr>
<td>bones</td>
<td>-</td>
</tr>
</tbody>
</table>

Specification: Explicitation

<table>
<thead>
<tr>
<th>English</th>
<th>Swedish</th>
</tr>
</thead>
<tbody>
<tr>
<td>O sat</td>
<td>syrehalten i blodet</td>
</tr>
<tr>
<td>O₂ sat</td>
<td>syrenivå</td>
</tr>
</tbody>
</table>

Generalisation: Paraphrase

<table>
<thead>
<tr>
<th>English</th>
<th>Swedish</th>
</tr>
</thead>
<tbody>
<tr>
<td>co-ex/coax</td>
<td>blod [amb.]</td>
</tr>
</tbody>
</table>

Miscellaneous

Full translation

<table>
<thead>
<tr>
<th>English</th>
<th>Swedish</th>
</tr>
</thead>
<tbody>
<tr>
<td>med school</td>
<td>läkarstudier</td>
</tr>
<tr>
<td>on call</td>
<td>ansvarige</td>
</tr>
<tr>
<td>on call</td>
<td>jour</td>
</tr>
<tr>
<td>on call</td>
<td>jour</td>
</tr>
</tbody>
</table>

55
on call

Omission
post partum -

Generalisation: Superordination
nursing home hem
pre-med grundläggande