Research Proposal : Strategy for Platform
Independent Testing

Anders Eriksson

March 27, 2012



Abstract

This work addresses problems associated with software testing in a
Model Driven Development (MDD) environment. Today, it is possible
to create platform independent models that can be executed and there-
fore, dynamically tested. However, when developing safety-critical
software systems there is a requirement to show that the set of test
cases covers the structure of the implementation. Since the structure
of the implementation might vary depending on e.g., compiler and tar-
get language, this is normally done by transforming the design model
to code, which is compiled and executed by tests until full coverage
of the code structure is reached. The problem with such approach is
that testing becomes platform dependent. Moving the system from
one platform to another becomes time-consuming since the test ac-
tivities to a large extent must start again for the new platform. To
meet the goals of MDD, we need methods that allow us to perform
structural coverage analysis on platform independent models in a way
that covers as much as possible of the the structure of any implemen-
tation. Moreover, such method must enable us to trace specific test
artifacts between the platform independent model and the generated
code. Without such trace a complete analysis must be done at code
level and much of the advantage of MDD is lost.

We propose a framework for structural coverage analysis at a plat-
form independent level. The framework includes: (i) functionality
for generation of test requirements, (i) creation of structural variants
with respect to the translation to code, and (iii) traceability between
test artifacts at different design levels. The proposed framework uses
a separate representation for structural constructs involved in cover-
age criteria for software in safety-critical systems. The representation
makes it possible to create variants of structural constructs already at
the top design level. These variants represent potential differences in
the structure at lower design levels, e.g., target language or executable
object code. Test requirements are then generated for all variants, thus
covering the structure of different implementations. Test suites cre-
ated to satisfy these test requirements are therefore, robust to different
implementations.



Contents

(1 Introduction|

2 Background|
(2.1 Standards for Satety-Critical Systems| .
[2.2  Modified Condition/Decsison Coverage|
[2.2.1  Unique Cause MCDC|. . . . . .
[2.2.2  Masking MCDC|. . . . ... ..
[2.2.3  Short Circuit Logic and MCDC|
[2.2.4  Expression folding and MCDC].
(2.3 Model Driven Architecturel . . . . . . .
[2.4  Model and Code Structural Coverage| .

[3 Problem Description|
[3.1 Research Objectives. . . . . . . . ...
[3.2  Imitial Approach|. . . . . . . . ... ..
(3.3  BEvaluationl . . . . . ... ... ... ..

4 Related Work

List of Figures

(1 MDA process.| . . . ... ... ... ..
[2 Structural coverage analysis framework.|

13
14
15
17

18

11



1 Introduction

Model Driven Development (MDD) is used increasingly in the avionics and
automotive industry for specifying software in safety-critical systems. The
upcoming revision of the guide-lines for flight-critical software in civil aviation
DO-178B (RTCA 1992) has taken this into account by specifying additional
guidelines regarding model-based development and formal methods as sup-
plemental documents. This means that technology is required that makes
it possible to specify system behavior with an underlying precise semantic.
A good starting point is the initiative taken by Object Management Group
(OMG) with the Model Driven Architecture (MDA) (OMG 2011c¢), which
offers a conceptual framework for defining a set of standards in support-
ing MDD. The most recognized is the Unified Modeling Language (UML)
(OMG 2010b) with its Action Sematic package, along with several other
technologies related to modeling, like Meta Object Facility (OMG 2011b)
and XML Metadata Interchange (OMG 2011d).

The focus in MDD today is on specifying systems and performing systems
verification] through model simulation. The verification process in MDD
today deals with coverage analysis regarding the functionality rather than
the structure. Moreover, MDD is not dealing with model coverage analysis
that can be traced all the way down to the executable object code (EOC).
This means that the MDD verification process has not yet taken advantage
of these new standards that enforce the usage of model transformations of
specifications to artifacts, e.g., source code, documents etc., representing
different aspects of the system.

Cost and time reduction for verification of safety-critical systems can be
achieved by using model coverage analysis at the top design level. This re-
quire however, that we establish a trace between artifacts at the top, i.e,
the platform independent model of the behavior, to a level with artifacts
produced during the transformations, e.g., the source code. Without such a
trace a complete analysis must be done at code level and much of the ad-
vantage with MDD is lost. If such trace can be established a cost and time
reduction can be achieved in the verification process of software in safety-
critical systems.

The rest of the proposal is organized as follows. Section [2] describes stan-
dards for safety-critical systems and give an overview of the MDA process.
Section [3| describes the problem, objectives and initial approach to solve the

!The term verification refers to the testing activity and not where a formal proof is
used.



problem. Section {| presents related work in the area of using design mod-
els and model coverage analysis combined with standards for safety-critical
system.



2 Background

This chapter presents standards for safety-critical systems and the modified
condition/decision coverage criterion used by the described standards. This
chapter also describes the development process of model driven architecture.
At the end of the chapter the relationship between model and code structural
coverage are discussed.

2.1 Standards for Safety-Critical Systems

There are several standards and guidelines for software in safety-critical
systems. DO-178B is a guideline for avionic systems (RTCA 1992). This
document was developed by the commercial avionics industry to establish
software guidelines for software developers in avionics. DO-178B describes
objectives for software life-cycle processes, activities and design consider-
ations for achieving those objectives, and technics to measure wheter the
objectives have been satisfied. One of the main objectives in the guideline
is that the functionality of the system under test must be covered by re-
quirements and vice versa. Five safety levels are defined in DO-178B; Level
A (highest) to Level E (lowest). The new revision DO-178C aims to clar-
ify areas of misconceptions, while addressing advances in avionics software
development and testing. Technical supplemental documents are added to
the core of the revised guideline, covering formal methods, model based de-
velopment, object-oriented technology and tool qualification. Another stan-
dard for safety-critical system is ISO 26262 (International Organization for
Standardization 2009), which is used in the automotive domain. ISO 26262 is
based on IEC 61508 (International Electrotechnical Commission 1999), which
is a standard for the development process of safety related components and
was originally designed only for hardware. Recently IEC 61508 has been
applied to software components as well. Similar to the avionics guideline,
the automotive related standard defines automotive safety integrity levels.
There are four classes from low safety critical to high safety critical.

The standards and guidelines use coverage criteria to cover the code struc-
ture. Different criteria are assigned at different safety critical levels. Both
DO-178B and ISO 26262 use a coverage criterion called modified condition-
decision coverage (Chilenski & Miller 1994) to cover the code structure in
software at the highest safety critical level.



2.2 Modified Condition/Decsison Coverage

Model-based testing can be used in several ways. The authors of the book
Introduction to software testing (Ammann & Offutt 2008), using models to
abstract different kind of coverage criteria. Each coverage criteria are de-
scribed in a theoretical way and later used in examples to demonstrate their
usage. The examples describes how these models can be obtained from var-
ious software artifacts. The kind of coverage criteria described in the book
are:

1. Graph Coverage

2. Logic Coverage

3. Input Space Partitioning
4. Syntax-Based Testing

MCDC is a logic coverage criterion that covers the structure of predicates.
The purpose with MCDC is to complement the requirements-based testing
and it is often used as an exit criterion for requirements-based testing. One
way MCDC complements requirements-based testing is to provide demon-
stration of absence of unintended functions. The structural coverage analy-
sis provides a way to confirm that the requirements-based tests exercised the
code structure.

The MCDC criterion definition:

e Condition - A Boolean expression containing no Boolean operators
except for the unary operator.

e Decision - A Boolean expression composed of conditions and zero or
more Boolean operators. A decision without a Boolean operator is a
condition. If a condition appears more than once in a decision, each
occurrence is a distinct condition.

e Modified Condition/Decision Coverage - Each condition in a Boolean
expression used by a decision independently affects that decision’s out-
come. This can be done by:

— varying just that condition while holding fixed all other possible
conditions (known as unique cause MCDC or RACC (Ammann &
Offutt 2008))



— applying principles of Boolean logic to assure that no other condi-
tion influences the outcome, even though more than one condition
in the decision may change value (known as masking MCDC or

CACC (Ammann & Offutt 2008))

To achieve 100% MCDC coverage given a decision with n conditions the
minimal number of test cases are n+1 and the maximal number are 2n.

Table [l shows a truth table for the conditions and decision for the fol-
lowing programming construct. Note a decision need not be a branch point:

Z := A or (B and C); where A, B, C and Z are boolean variables.

Entry A B C| (Aor (Band(C))
0 F F F F
1 F F T F
2 F T F F
3 F T T T
4 T F F T
5 T F T T
6 T T F T
7 T T T T

Table 1: Truth table for decision (A or (B and C)). T and F stands for True
and False

2.2.1 Unique Cause MCDC

The entries from Tabel [1| that can show how each condition independently
affects the decision are:

For A - {0,4}, {1,5}, {2,6}
For B - {1,3}
For C - {2,3}

Two minimal sets of entries that show that every condition independently
affects the decision are {1,2,3,5} or {1,2,3,6}. {0,1,2,3,4} would also work,
but of course is not minimal.



2.2.2 Masking MCDC

To show A’s independence, (B and C) must be false. There are tree ways
that (B and C) can be false, and any of them can be used to show A’s
independent affect on the decision outcome. The entries from Tabel [1] that
can show how each condition independently affects the decision are:

For A - {0,4},{0,5},{0,6},{1,4},{1,5},{1,6},{2,4},{2,5},{2,6}
For B - {1,3}
For C - {2,3}

The three minimal sets of entries that show that every condition inde-
pendently affects the decision are {1,2,3,4}, {1,2,3,5} or {1,2,3,6}

2.2.3 Short Circuit Logic and MCDC

When using a standard and or or operator, both of the operands in the
expression are typically evaluated. For some programming languages, the
order of evaluation is defined by the language, while for others, it is left
as a compiler-dependent decision. Some programming languages also pro-
vide short-circuit control forms. In Ada, the short-circuit control forms, and
then and or else, produce the same results as the logical operators and and
or for boolean types, except that the left operand is always evaluated first.
The right operand is only evaluated if its value is needed to determine the re-
sult of the expression. The && and the || operators in C and C++ are similar.

For Unique Cause MCDC with short-circuit logic, the entries from Tabel[]]
that can show how each condition independently affects the decision are:

For A - {0,4}, {1,5}, {2,6}
For B - {1,3}
For C - {2,3}

Two minimal sets of entries that show that every condition independently
affects the decision are {1,2,3,5} or {1,2,3,6}.

2.2.4 Expression folding and MCDC

Expression folding eliminates all usage of local variables in expressions. The
test sets that achieve coverage over the non-folded expression will not always
achieve coverage over the folded expression.



Non-folded expression:
Y := B and C; where B, C and Y are boolean variables.
Z := A or Y; where A and Z are boolean variables.

One possible test set, Set! {(ABC)}: {(TTT),(FFT),(FTT),(TTF)}

Folded expression:
Z := A or (B and C); where A, B, C and Z are boolean variables.

One possible test set, Set2 {(ABC)}: {(FFT),(FTF),(FTT),(TFT)}

Both the expressions above have the same outcome for the variable Z.
But the test sets to achieve MCDC is not the same. While the test set Set2
achieves coverage for both the implementations, test set Setl only achieves
MCDC for the non-folded implementation. There is a need for a robustness
measurement, so different test sets can be compared and analyzed against
different implementations. This issue will be very important in the future
where model-based development is used for specifying safety-critical systems.

2.3 Model Driven Architecture

In MDA, a platform-independent model (PIM) is initially expressed in a
platform-independent modeling language, such as Executable UML (Mellor
& Balcer 2002). The Executable UML is a profile of the UML that defines
execution semantics for the selected subset of UML. The subset is computa-
tionally complete, which means that an Executable UML model can be di-
rectly executed. Specifications in Executable UML consist of class diagrams,
state diagrams and action semantics to describe the operation behavior. Us-
ing a model compiler, the specification is transformed into a platform-specific
model (PSM) or any target language appropriate for the target platform. A
PSM can be specified in Analysis & Architecture Design Language (AADL)
(Feiler, Lewis & Vestal 2006), which was developed to meet special needs for
expressing performance-critical aspects in real-time systems such as timing
requirements, time and space partitioning. These capabilities make it pos-
sible for the system designer to analyze the systems for things like system
schedulability, sizing and timing. The results from the analysis can be used
for evaluating different architectural tradeoffs and changes.

Figure [1| shows the steps in an MDA process where a PIM is specified
in an Executable UML model and the PSM is represented by source code
in C++. BridgePoint?] and iUMIF] are tools suited for the MDA process

http://www.mentor.com/products/sm/model_development /bridgepoint
3http://www.kc.com/PRODUCTS /iuml/index.php

10



Platform independent model PIM
e Model
Compiler

Platform specific model
PSM
e Target
Compiler

EOC ——————> Transformation

Executable object code

7777777 > Transformer

Figure 1: MDA process.

by supporting Executable UML and model transformations. MDA Distilled
(Mellor, Scott, Uhl & Weise 2004) gives a detailed introduction to MDA
and related technologies. The authors argue that for MDA to succeed more
standards will be required as MDA matures. The previous mentioned tools
BridgePoint and iUML have the disadvantage that their meta-models and
action languages are proprietary and not publicly available. Differences in
syntax and semantics makes it hard to interchange, for example PIM models
between different UML tools.

Two new OMG standards, f{UML (OMG 2011a) and Alf (OMG 2010a),
will play a central role in mitigating these differences. This will make it
possible to achieve the goal of MDA since models can be transformed and
interchanged between different tools supporting these new standards. The
standard fUML provides a simplified subset of UML Action Semantics pack-
age (abstract syntax) for creating executable UML models, and also defines
execution semantics via an Execution Model. The Execution Model itself
is modeled in a subset of fUML. The circularity is broken by the separate
specification of a base semantics (bUML) for the subset of f{UML expressed in
axioms of first order logic. The action language Alf is designed to overcome
difficulties of creating f{UML executable models. The difficulties concerns the
UML primitives intended for execution, which are too low level to be useful
for large models.

11



2.4 Model and Code Structural Coverage

Baresel, Conrad, Sadeghipour & Wegener (December 2003) describe expe-
rience from using model coverage metrics in the automotive industry when
using Simulink/Stateflow. The conclusion of the experiment is that there are
comparable model and code coverage measurements but they heavily depend
on how the design model was transformed into code. The same conclusion
was made by Heimdahl, Whalen, Rajan & Staats (2008) where an empirical
study was performed to measure the effect of program and model structures
on MCDC test adequacy coverage. The study used six realistic systems from
the civil avionics domain. All systems were specified in Simulink. The pur-
pose of the study was to measure structural coverage on two versions of the
implementation, with and without expression folding (i.e., inlined and non-
inlined). The authors first generated test suites that satisfy MCDC over the
non-inlined implementation and then ran the same test suites over the inlined
version and measured MCDC coverage. The result was an average reduction
of 29.5% in MCDC achieved over the inlined implementation with the gen-
erated test suites. The reason for the loss in MCDC coverage is that the
non-inlined version does not take the effect of masking into account but the
inlined version does. The authors believe there is a serious need for coverage
criteria that take masking into consideration irrespective of implementation
structure, or a canonical way of structuring code so that condition masking
is revealed when measuring coverage using existing coverage criteria.

12



3 Problem Description

Most of the modeling environments supporting MDA today focus on func-
tional testing, enabling the verification of design models against their spec-
ifications. This is normally done via model simulation. When developing
safety-critical software systems there is however, as stated in Section 2.1} a
requirement to show that the set of test cases covers the structure of the
implementation. Normally this is done by transforming the design model
to code, which is compiled and executed to collect the data used for struc-
tural coverage analysis. If the structural code coverage criteria are not met
at the PSM level, additional test cases should be created at the PIM level.
However, as coverage is analyzed at the PSM level, iterations between the
PIM level and the PSM level are required. These iterations can be very time
consuming. Moreover, designing tests at the PIM level to cover the structure
at the PSM level requires knowledge about the PIM to PSM transformation
to be able to create test cases at the PIM level that will reach specific parts
of the PSM. This violates one of the major benefits of MDA, which is the
separation of abstraction layers.

Because of this, there are two choices. The first choice is to create ad-
ditional tests at the PSM level and run them directly. This makes testing
time consuming because of the iterations between the PIM and the PSM
levels. Any changes to the PIM will be reflected in the PSM, which can lead
to manual changes to the additional test cases. This is typically how the
problem is handled today. The second choice is to address the structural
coverage analysis already at the PIM level in which case testing, to a large
extent, can take place at the PIM level without the time consuming iterations
between the PIM and the PSM. When the behavior of the model is verified
to satisfaction by the structural coverage analysis, the model is translated to
a PSM and tested by the same tests again. This approach conforms to MDA
and would significantly reduce the time spent on iterations between the PIM
and the PSM.

Therefore, we want to raise the level of abstraction for the structural
coverage analysis to be performed at the same level as the design model
verification, i.e., the PIM level. Tool vendors, for example Mathworks with
Simulink/ Stateﬁowlz_f], have started to apply structural coverage analysis to
their domain-specific design models. Simulink/Stateflow is used in control
design in domains such as avionics and automotive and is known for its

4http:/ /www.mathworks.com /products/simulink

13



model simulation capability. There is no tool with the same structural cov-
erage analysis functionality for design models specified in Executable UML
or fUML. The result from Heimdahl et al. (2008) shows a need for a represen-
tation for structural coverage analysis that is independent of the structures
used at each design level. With an independent representation it would be
possible to create robust PIM test suites that can be used on many different
PSMs with the same or almost the same structural coverage.

Problem Statement: To our knowledge, there are currently no
methods that can perform structural code coverage analysis on
a platform independent design level while managing traceability
of the covered structural constructs between the different design
levels.

3.1 Research Objectives

To solve the problem, this research must address the following:

e Generation of test requirements: Structural code coverage criteria
required for safety-critical software should be satisfied on a high design
level.

O1. Select a representation that can capture the properties needed
for structural coverage criteria, and adopt this representation to
represent an abstract model of structural constructs needed for
structural coverage criteria.

0O2. Propose an algorithm that generates test requirements according
to selected structural coverage criteria.

e Robustness with respect to structure: The method should be in-
dependent of model and target language. It should be possible to create
variants of the structure within a given design level. Test requirements
can then be created for these variants and compared to each other to
identify a set that is robust with respect to the two variants.

0O3. Select transformations rules that can be applied to the structural
constructs to create variants. For example, a rule for expression
folding could be to substitute away all local variables and have the
expression only depend on formal parameters and global variables

(section [2.2.4]).

14



O4. Propose an algorithm that takes two input sets of test require-
ments and calculates the difference with respect to coverage be-
tween these two sets.

e Traceability of test requirements between artifacts: Traceability
between artifacts makes it possible to trace individual test requirements
for artifacts at different design levels and variants, i.e. traceability is a
prerequisite for determining the level of coverage preservation.

O5. Select a representation that can formalize associations between
artifacts. These associations should be used to create traceability
between structural constructs. Via the associations sets of test
requirements for different design levels can be obtained and com-
pared.

The method should have an input format that can capture the require-
ments mentioned above. The transformation from each of the design levels
PIM, PSM and EOC to the input format of the method is not part of the
method itself. There are techniques already today to create transformations
from the PIM, PSM and EOC.

3.2 Initial Approach

The initial approach is to collect the functionality needed to solve the problem
stated above in a framework for structural coverage analysis.

Structural Coverage Analysis Framework

1
1 I

PIM 1 ! Structure Requirement |
! | Representation Generation "
1

! 1 ’ ’ \
I
[ > : Report
Variant Coverage

1
: 1
1 Transformation Analysis |
|

S U U gy

PSM

EOC

P L L

/ ————> Data Flow

________

Figure 2: Structural coverage analysis framework.

15



Figure [2| shows the main components contained in the framework and the
information flow between them. The core functionality of the framework is
to create test requirements for a specified coverage criteria and be able to
compare test requirements from the design levels PIM, PSM and EOC. The
creation and comparison of test requirements are done without the need of
running any test cases.

The following describes the initial approach A1-Ab5 to meet the defined
objectives O1-0O5:

Al.

A2

A3.

A4.

We will start with a literature study about different ways to repre-
sent structural constructs and how these can be analyzed formally. A
possible representation can be the Ordered Binary Decision Diagram
(OBDD) (Bryant 1992) which has the properties of being canonical and
extendable. One of the major uses of OBDDs is in formal verification.
Another possibility is to use an existing abstract syntax tree (AST) for
the C-language and annotate that with extra information if needed.

The expected result is a selected representation that captures structural
constructs in a platform independent way and makes it possible to
apply further transformations.

We will select criteria from safety-critical standards and generate test
requirements corresponding to these criteria using information stored
in the selected representation.

The expected result is an algorithm that generates test requirements
that satisfies the selected coverage criterion.

We will put requirements on approach AP2|to make it possible to handle
test requirements in sets where set functions like intersection and union
can be applied.

The expected result is an algorithm that makes it possible to compare
sets of test requirements.

We will start with a literature study in compiler technology about
transformations normally done to structural constructs. Also different
aspects of target languages should be considered, i.e., short circuit eval-
uation as described in section [2.2.3] There are several freely available
compiler frameworks that are widely used in the industry, like GC(

Shttp://gcc.gnu.org

16



and LLVM{% so one of them may be used. Both use Static Single As-
signment (SSA) (Cytron, Ferrante, Rosen, Wegman & Zadeck 1991)
as their intermediate representation, which is suitable for transforming
structural constructs, so they are natural candidates for the study.

The expected result is set of transformation rules that can be automat-
ically applied to the selected representation.

A5. We will start by modeling the traceability functionality as a database
schema in Executable UML. After that at least two choices are pos-
sible: (i) we use a freely available database like SQLite[], or (i) add
operational behavior to the model and use a model compiler that gen-
erates an application. The first choice is the default for now because
the search functionality is already supported.

The expected result is a method that makes it possible to create as-
sociations between artifacts in the framework and searching for test
requirements within a design level or between design levels.

3.3 Evaluation

The approach for the evaluation is to study the Software Verification Tools
Assessment Study (SVTAS) (Santhanam, Chilenski, Waldrop, Leavitt &
Hayhurst 2007). The aim of the SVTAS was to investigate criteria to im-
prove the process of evaluating structural coverage analysis tools for use on
projects intended to comply with the guideline DO-178B. The authors pro-
posed a test suite as an approach to increase objectivity and uniformity in
the application of the tool qualification criteria. A prototype test suite was
constructed and run on three different structural coverage analysis tools to
evaluate the efficacy of the test suite approach. The prototype test suite
identified anomalies in each of the three coverage analysis tools, demonstrat-
ing the potential for a test suite to help evaluate a tools compatibility with
the DO-178B requirements.

By designing a test suite according to the SVTAS from where test proce-
dures are chosen. Our proposed framework for structural coverage analysis
can be evaluated by measuring the ability to create necessary test require-
ments as stated in the SVTAS for the chosen test procedures. The defined
objectives O1-0O5 will all be evaluated.

Shttp://llvm.org
"http://www.sqlite.org

17



4 Related Work

Little work has been done in the area of analyzing f{UML models. The work
done by Lazar, Lazar, Parv, Motogna & Czibula (2009) will make the analy-
sis of fUML models possible, by the defined framework ComDeValCo (Com-
ponent Definition, Validation, and Composition). The framework includes
functionality for specifying components structure and behavior. The behav-
ior is specified by using an action language defined the authors.

Later, the framework was extended by Lazar (2011) to use the action lan-
guage Alf (OMG 2010a). The authors conclude that they can both simulate
and test the f{UML models without having to generate code. This framework
can be combined with our proposed framework to enable structural coverage
analysis of f{UML models. There are currently no existing tool, to our knowl-
edge, capable of that.

A more restricted way of handling structural coverage analysis compared
to our method is described in Kirner (2009). The author focuses on ensuring
that the structural code coverage achieved at a higher program representation
level is preserved during transformation down to lower program representa-
tions. To guarantee preservation of structural coverage, the author defined
formal properties that have to be fulfilled during the transformation between
different program representations. The defined formal properties has been
used in Kirner & Haas (2009) to automatically create coverage profiles that
can extend compilers with the feature of preserving any given code coverage
criteria by enabling only those code optimizations that preserve it.

Our method work in the opposite by adding test requirements at the
highest program representation derived from lower program representations.
Both methods share the same possible code transformations, this makes the
authors analysis how different code transformations influence the structural
coverage preservations important.

Our method has similarities to the approach behind testability transfor-
mation described by Harman, Hu, Hierons, Wegener, Sthamer, Baresel &
Roper (2004), which is a source to source transformation. The transformed
program is used by a test-data generator to improve its ability to generate
test data for the original program. The source to source transformation serves
the same purpose as our creation of variants of the structural constructs. The
work done by Baresel et al. (December 2003) is another motivation for our
method. The authors analyzed, by an empirical study, the relationship be-
tween achieved model coverage and the resulting code coverage. The authors
found that the code coverage heavily depends on how the model is trans-

18



formed into code. This motivates the step in our method where variants can
be created to improve the set of test requirements at model level.

19



References

Ammann, P. & Offutt, J. (2008), Introduction to software testing, New York:
Cambridge University Press, ISBN 978-0-521-88038-1.

Baresel, A., Conrad, M., Sadeghipour, S. & Wegener, J. (December 2003),
The interplay between model coverage and code coverage, in ‘Proceed-

ings of the 11th european iternational conference on Software Testing,
Analysis and Review’, EuroSTAR ’03.

Bryant, R. E. (1992), ‘Symbolic boolean manipulation with ordered binary-
decision diagrams’, ACM Comput. Surv. 24, 293-318.

Chilenski, J. & Miller, S. (1994), ‘Applicability of modified condition/decision
coverage to software testing’, Software Engineering Journal 9(5), 193 —
200.

Cytron, R., Ferrante, J., Rosen, B. K., Wegman, M. N. & Zadeck, F. K.
(1991), ‘Efficiently computing static single assignment form and the
control dependence graph’, ACM Trans. Program. Lang. Syst. 13, 451—
490.

Feiler, P. H., Lewis, B. A. & Vestal, S. (2006), The SAE Architecture Analy-
sis & Design Language (AADL) a standard for engineering performance
critical systems, in ‘Computer Aided Control System Design, 2006 IEEE
International Conference on Control Applications, 2006 IEEE Interna-
tional Symposium on Intelligent Control, 2006 IEEE’, pp. 1206 —1211.

Harman, M., Hu, L., Hierons, R., Wegener, J., Sthamer, H., Baresel, A. &
Roper, M. (2004), ‘Testability transformation’, Software Engineering,
IEEE Transactions on 30(1), 3 — 16.

Heimdahl, M., Whalen, M., Rajan, A. & Staats, M. (2008), On MC/DC
and implementation structure: An empirical study, in ‘Digital Avionics
Systems Conference, 2008. DASC 2008. IEEE/AIAA 27th’, pp. 5.B.3-1
-5.B.3-13.

International Electrotechnical Commission (1999), IEC 61508: Functional
Safety of Electrical/ Electronic/ Programmable Safety-Related Systems.

International Organization for Standardization (2009), ISO 26262: Road ve-
hicles - Functional safety.

Kirner, R. (2009), ‘Towards preserving model coverage and structural code
coverage’, FURASIP J. Embedded Syst. 2009, 6:1-6:16.

20



Kirner, R. & Haas, W. (2009), ‘Automatic Calculation of Cover-
age Profiles for Coverage-based Testing’.  Vienna University of
Technology, Institute of Computer Engineering, Vienna, Austria,
raimund@vmars.tuwien.ac.at.

Lazar, C.-L. (2011), ‘Integrating Alf Editor with Eclipse UML Editiors’, Stu-
dia Univ. BabesBolyai, Informatica LVI(3), 27 — 32.

Lazar, C.-L., Lazar, 1., Parv, B., Motogna, S. & Czibula, I.-G. (2009), Using
a fUML Action Language to Construct UML Models, in ‘Symbolic and
Numeric Algorithms for Scientific Computing (SYNASC), 2009 11th
International Symposium on’, pp. 93 —101.

Mellor, S. & Balcer, M. (2002), Ezecutable UML: A Foundation for Model
Driven Architecture, Boston: Addison Wesley, ISBN 0-201-74804-5.

Mellor, S. J., Scott, K., Uhl, A. & Weise, D. (2004), MDA Distilled: Priciples
of Model-Driven Architecture, Boston: Addison Wesley, ISBN 0-201-
78891-8.

OMG (2010a), ‘Action Language for Foundational UML (ALF),
version 1.0 - betal’. Retrieved September 14, 2011
http://www.omg.org/spec/ALF /1.0/Betal/.

OMG (20108), ‘Unified Modeling Language (UML), Infrastruc-
ture, version 2.3’ Retrieved September 14, 2011 from
http://www.omg.org/spec/UML/2.3.

OMG  (2011a), ‘Foundational ~ Subset  of  Executable  UML
(FUML) version 1.0 Retrieved — September 14,  2011.
http://www.omg.org/spec/FUML/1.0/.

OMG  (2011b),  ‘Meta  Object Facility (MOF) Core Speci-
fication  Version 2.4’ Retrieved  September 14,  2011.
http://www.omg.org/spec/MOF /2.4 /Beta2/.

OMG (2011¢), ‘Model Driven Architecture (MDA)’. Retrieved September
14, 2011. http://www.omg.org/mda/specs.htm.

OMG  (20114), ‘XML  Metadata  Interchange  (XMI)  ver-
sion 24 - beta2’. Retrieved  September 14,  2011.
http://www.omg.org/spec/XMI/2.4/Beta2/.

21



RTCA (1992), RTCA Inc. DO-178B: Software Considerations In Airborne
Systems and Equipment Certification. Requirements and Technical Con-
cepts for Aviation.

Santhanam, V., Chilenski, J. J., Waldrop, R., Leavitt, T. & Hayhurst,
K. J. (2007), ‘Software Verification Tools Assessment Study’, Report

No. DOT/FAA/AR/AR-06/54. Retrieved September 27, 2011 from
http://actlibrary.tc.faa.gov.

22



	Introduction
	Background
	Standards for Safety-Critical Systems
	Modified Condition/Decsison Coverage
	Unique Cause MCDC
	Masking MCDC
	Short Circuit Logic and MCDC
	Expression folding and MCDC

	Model Driven Architecture
	Model and Code Structural Coverage

	Problem Description
	Research Objectives
	Initial Approach
	Evaluation

	Related Work

