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Power-Efficient Downlink Communication Using
Large Antenna Arrays: The Doughnut Channel

Saif Khan Mohammed and Erik G. Larsson
Communication Systems Division, Dept. Electrical Engineering (ISY),

Linköping University, Sweden. E-mail:saif@isy.liu.se anderik.larsson@isy.liu.se.

Abstract—Large antenna arrays at the base station can fa-
cilitate power efficientsingle user downlink communication due
to the inherent array power gain, i.e., under an average only
total transmit power constraint, for a fixed desired information
rate, the required total transmit power can be reduced by
increasing the number of base station antennas (e.g. with i.i.d.
fading, the required total transmit power can be reduced by
roughly 3 dB with every doubling in the number of base station
antennas, i.e., anO(N) array power gain can be achieved with
N antennas). However, in practice, building power efficient large
antenna arrays would require power efficient amplifiers/analog
RF components. With current technology, highly linear power
amplifiers generally have low power efficiency, and therefore
linearity constraints on power amplifiers must berelaxed. Under
such relaxed linearity constraints, the transmit signal that suffers
the least distortion is a signal with constant envelope(CE).
In this paper, we consider a single user Gaussian multiple-
input single-output (MISO) downlink channel where the signal
transmitted from each antenna is constrained to have a constant
envelope (i.e., forevery channel-usethe amplitude of the signal
transmitted from each antenna is constant, irrespectiveof the
channel realization). We show that under such a per-antenna
CE constraint, the complex noise-free received signal lies in the
interior of a “doughnut” shaped region in the complex plane.
The per-antenna CE constrained MISO channel is therefore
equivalent to adoughnut channel, i.e., a single-input single-output
(SISO) AWGN channel where the channel input is constrained to
lie inside a “doughnut” shaped region. Using this equivalence, we
analytically compute a closed-formexpression for an achievable
information rate under the per-antenna CE constraint. We then
show that, for a broad class of fading channels (i.i.d. and
direct-line-of-sight (DLOS)), even under the more stringent per-
antenna CE constraint (compared to the average only total power
constraint), an O(N) array power gain can still be achieved
with N base station antennas. We also show that withN ≫ 1,
compared to the average only total transmit power constrained
channel, the extra total transmit power required under the per-
antenna CE constraint, to achieve a desired information rate is
small and boundedfor a broad class of fading channels (i.i.d.
and DLOS). We also propose novel CE precoding algorithms.
The analysis and algorithms presented are general and therefore
applicable to conventional systems with a small number of
antennas. Analytical results are supported with numerical results
for the i.i.d. Rayleigh fading channel.

I. I NTRODUCTION

The high electrical power consumption in cellular base
stations has been recognized as a major problem worldwide

This work was supported by the Swedish Foundation for Strategic Research
(SSF) and ELLIIT. E. G. Larsson is a Royal Swedish Academy of Sciences
(KVA) Research Fellow supported by a grant from the Knut and Alice
Wallenberg Foundation.
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Fig. 1. Maximum Ratio Transmission (MRT) versus per-antenna Constant
Envelope (CE) constrained transmission, for a given averagetotal transmit
power constraint ofPT . h = (h1, · · · , hN )T is the vector of complex
channel gains.

[1]. One way of reducing the power consumed is to reduce
the total radiated radio-frequency (RF) power. In theory, the
total radiated power from a base station can be reduced
(without affecting downlink throughput), simply by increasing
the number of antennas. This has been traditionally referred
to as the “array power gain” [2]. In addition to improving
power-efficiency, there has been a great deal of recent interest
in multi-user Multiple-Input Multiple-Output (MIMO) systems
with large antenna arrays, due to their ability to substantially
reduce intra-cell interference with very simple signal process-
ing (see [3] for a recent work on communication with an
unlimitednumber of antennas).

To illustrate the improvement in power efficiency with
large antenna arrays, let us consider a downlink channel
with the base station havingN > 1 antennas and a single-
antenna user. With knowledge of the channel vector (h =
(h1, h2, · · · , hN )T ) at the base station and anaverage only
total transmit power constraint ofPT , information u (with
mean energyE[|u|2] = 1) can be beamformed in such a way
(i-th antenna transmits

√
PTh

∗
i u/‖h‖2

) that the signals from
different base station antennas add upcoherentlyat the user
(user receives

√
PT ‖h‖2

u), thereby resulting in an effective
channel with a received signal power that is‖h‖2

2
/|h1|2 times

higher compared to a scenario where the base station has only
one antenna. For a broad class of fading channels (i.i.d. fading,
DLOS) ‖h‖2

2
= |h1|2O(N), andtherefore, for a fixed desired

received signal power, the total transmit power can be reduced
by roughly half with every doubling in the number of base



station antennas.This type of beamforming is referred to as
“Maximum Ratio Transmission” (MRT) (see Fig. 1).

In theory, to achieve an order of magnitude reduction in the
total radiated power (without affecting throughput) wouldneed
base stations with “large” number of antennas (by large, we
mean tens). However, building very large arrays in practice
requires that each individual antenna, and its associated RF
electronics, becheaply manufacturedand implemented in
power efficientRF technology. It is known that conventional
base stations arehighly power inefficient(the ratio of radiated
power to the total power consumed is less than5 percent), the
main reason being the usage of highlylinear and power in-
efficient analog electronic components like the power amplifier
[4].2 Generally, high linearity implies low power efficiency
and vice-versa. Therefore, non-linearbut highly power efficient
amplifiers must be used. With non-linear power amplifiers, the
signal transmitted from each antenna must have alow peak-
to-average-power-ratio, so as to avoid significant signal distor-
tion. The type of signal that facilitates the use of most power-
efficient and cheap power amplifiers/analog components is
therefore aconstant envelope(CE) signal.

With this motivation, in this paper, we consider the downlink
of a single-user Gaussian MISO fading channel with the signal
transmitted from each base station antenna constrained to
have constant envelope. Fig. 1 illustrates the proposed signal
transmission under a per-antenna CE constraint. Essentially,
for a given information symbolu to be communicated to
the end-user, the signal transmitted from thei-th antenna is
√

PT /Nejθ
u
i . The transmitted phase angles(θu1 , · · · , θuN ) are

determined in such a way that the noise-free signal received
at the end-usermatches closelywith u. As shown in Fig. 1,
under a per-antenna CE constraint, the amplitude of the signal
transmitted from each antenna isconstant(i.e.,

√

PT /N ) for
every channel-use, irrespective of the channel realization. In
contrast, with MRT, the amplitude of the transmitted signal
depends upon the channel realizationas well asu, and can
vary from 0 to

√
PT |u|.3 Since, the CE constraint is much

more restrictive than the average only total power constraint,
a natural question which arises now, iswhether, and how
much array power gain can be achieved with the stringent
per-antenna CE constraint ?

So far, in reported literature, this question has not been
addressed. For the special case ofN = 1 (SISO AWGN),
channel capacity under an input CE constraint has been
reported in [5]. However, forN > 1, the only known reported
works on per-antenna power constrained communication con-
sider an average-power only constraint (see [6] and references
therein). In contrast, in this paper, we consider a morestringent

2In conventional base stations, about40−50 percent of the total operational
power is consumed by the power amplifier and associated RF electronics
which have a low power efficiency of about5− 10 percent [4].

3The proposed transmission scheme is also different from EqualGain
Transmission (EGT). In a MISO channel with EGT, the signal transmitted
from the i-th antenna is

√

PT /(NE[|u|2]) u ejθi , where the anglesθi are
chosen independently ofu and depend only on the channel gains (for e.g.
ejθi = h∗

i /|hi|). Therefore in EGT, the envelope of the signal transmitted
from each antenna depends uponu and therefore varies over time.

constraint i.e., the instantaneous per-antennaper-channel-use
power isconstanti.e., PT /N (wherePT is the constant total
power radiated per-channel-use, and is independent of the
channel realization).

Specific contributions made in this paper are, i) we show
that, under a per-antenna CE constraint the MISO downlink
channel reduces to a SISO AWGN channel with the noise-
free received signal being constrained to lie in a “doughnut”
shaped region in the complex plane, ii) using the equivalent
doughnut channel model, we compute aclosed-formanalytical
expression for an achievable information rate, iii) we also
proposenovel algorithms for downlink precoding under the
per-antenna CE constraint. Our results show that for a large
class of fading channels (i.i.d. fading, DLOS), i) under theper-
antenna CE constraint, an array power gain ofO(N) is indeed
achievablewith N antennas, ii) by choosing a sufficiently
large antenna array, at high total transmit powerPT , the ratio
of the information rate achieved under the CE constraint to the
capacity of the average only total power constrained channel
can be guaranteed to beclose to1, with high probability. This
is in contrast to Wyner’s result in [5] forN = 1, where this
ratio is only 1/2 at highPT . Analytical results are supported
with numerical results for the i.i.d. Rayleigh fading channel.
We believe that the results and algorithms presented in this
paper are novel and are expected to have aprofound impact
in significantlyimproving thepower efficiencyof cellular base
stations by deployinglarge antenna arrays at low cost.

Notations: C and R denote the set of complex and real
numbers.|x| andarg(x) denote the absolute value and argu-
ment ofx ∈ C. For anyp ≥ 1 andh = (h1, · · · , hN ) ∈ C

N ,

‖h‖p ∆
= (

∑

i |hi|p)1/p. E[.] is the expectation operator. Abbre-
viations: r.v. (random variable), bpcu (bits-per-channel-use).

II. SYSTEM MODEL

We consider the downlink of a single user MISO system.
The complex channel gain between thei-th transmit antenna
and the user’s receive antenna is denoted byhi, and the
channel vector byh = (h1, h2, · · · , hN )T . The base station
is assumed to have perfect knowledge ofh, whereas the user
is required to have only partial knowledge (we shall discuss
this later in more detail). Let the complex symbol transmitted
from the i-th antenna be denoted byxi. The complex symbol
received by the user is given by

y =

N
∑

i=1

hixi + w (1)

wherew denotes the circularly symmetric distributed AWGN
noise having mean zero and varianceσ2. Due to the same
CE constraint on each antenna and a total transmit power
constraint ofPT , we must have|xi|2 = PT /N , i = 1, . . . , N .
Thereforexi must be of the form

xi =

√

PT

N
ejθi , i = 1, 2, . . . , N (2)

where j
∆
=

√
−1, and θi ∈ [−π , π) is the phase ofxi.

We refer to the type of signal transmission in (2) as “CE



transmission”. Note that under an average only total transmit
power constraint, the transmitted signals areonly required to
satisfyE[

∑

i |xi|2] = PT , which is muchless restrictivethan

(2). For the sake of notation, letΘ
∆
= (θ1, θ2, · · · , θN )T denote

the vector of transmitted phase angles. With CE transmission,
the signal received by the user is given by (using (1) and (2))

y =

√

PT

N

N
∑

i=1

hie
jθi + w. (3)

Let u ∈ U ⊂ C, denote the information symbol to be com-
municated to the user (U is the information symbol alphabet).
For a givenu, the precoder in the base station uses a map
Φ(·) : U → [−π, π)N to generate the transmit phase angle
vector, i.e.

Θ = Φ(u). (4)

The range of the AWGN noise-free received signal scaled

down by
√
PT , i.e.,

√

1
N

∑N
i=1 hie

jθi , is given by

M(h)
∆
=

{

∑N
i=1 hie

jθi

√
N

, θi ∈ [−π, π) i = 1, . . . , N
}

(5)

By choosingU ⊆ M(h), for any u ∈ U , it is implied that
u ∈ M(h), and therefore from (5) it follows that, there exists
a phase angle vectorΘu = (θu1 , · · · , θuN ) such that4

u =

√

1

N

N
∑

i=1

hie
jθu

i . (6)

With the precoder map

Φ(u)
∆
= Θu (7)

whereΘu satisfies (6), the received signal is given by

y =
√

PT u+ w (8)

i.e., the AWGN noise-free received signal is the same as the
intended information symbolu scaled up by

√
PT .

If we chooseU 6⊆ M(h), then it is clear that there
exists some information symbolu′ /∈ M(h), for which any
transmitted phase angle vectorΘ would result in a received
signal

y =
√

PTu
′ +

√

PT

(

∑N
i=1 hie

jθi

√
N

− u′
)

+ w (9)

where the energy of theinterferenceterm
√
PT

(∑N
i=1

hie
jθi

√
N

−
u′
)

is strictly positive for any Θ, since u′ /∈ M(h). This

4U ⊆ M(h) implies that the information symbol alphabet is chosen
adaptively withh, and therefore the user must be informed about the newly
chosenU , every time it changes. By appropriately choosingU (wheneverh
changes), the base station need not send control informationto the user about
each element of the chosenU . To be precise, we shall see in Section III that
the setM(h) is the interior of a “doughnut” in the 2-dimensional complex-
plane and can therefore be fully characterized with only2 non-negative real
numbers (the inner and the outer radius). Therefore, as an example, if we
chooseU to be square-QAM with its four maximal energy elements lying on
the outer boundary ofM(h), then the only information required to be sent to
the user is the QAM alphabet size and the outer radius ofM(h). A similar
observation holds true for PSK sets also.

interference could then result in a loss in information rate.5

Motivated by the above arguments, subsequently in this
paper, we propose to choose

U ⊆ M(h) (10)

and also that the precoder map is as defined in (7) and (6).
With U ⊆ M(h) it is clear that the information rate would
depend uponM(h), and therefore we characterize it in the
next Section.

III. CHARACTERIZATION OFM(h)

We characterizeM(h) through a series of intermediate
results. Due to lack of space we are unable to present proof for
the intermediate results. Firstly, we define the maximum and
minimum absolute value of any complex number inM(h).

M(h)
∆
= max

Θ=(θ1,··· ,θN ) , θi∈[−π,π)

∣

∣

∣

∣

∣

∑N
i=1 hie

jθi

√
N

∣

∣

∣

∣

∣

m(h)
∆
= min

Θ=(θ1,··· ,θN ) , θi∈[−π,π)

∣

∣

∣

∣

∣

∑N
i=1 hie

jθi

√
N

∣

∣

∣

∣

∣

(11)

Lemma 1: If z ∈ M(h) then so doeszejφ for all φ ∈
[−π, π).
The following two lemmas characterizeM(h) andm(h).

Lemma 2: M(h) is given by

M(h) =

∑N
i=1 |hi|√
N

=
‖h‖1√

N
. (12)

Lemma 3:

m(h) ≤ ‖h‖∞√
N

=
maxi=1,...,N |hi|√

N
. (13)

The next theorem characterizes the setM(h).
Theorem 1:

M(h) =
{

z | z ∈ C , m(h) ≤ |z| ≤ M(h)
}

. (14)

Proof – Let

(θ⋆1 , θ
⋆
2 , · · · , θ⋆N )

∆
= arg min

θi∈[−π,π) , i=1,2,...,N

∣

∣

∣

∣

∣

∑N
i=1 hie

jθi

√
N

∣

∣

∣

∣

∣

(15)

Consider the single variable function

f(t)
∆
=

∣

∣

∣

∣

∣

∑N
i=1 hie

jθi(t)

√
N

∣

∣

∣

∣

∣

2

, t ∈ [0, 1] (16)

where the functionsθi(t) , i = 1, 2, . . . , N are defined as

θi(t)
∆
= (1− t)θ⋆i − t arg(hi) , t ∈ [0, 1]. (17)

Note that f(t) is a differentiable function oft, and is
therefore continuous for allt ∈ [0, 1]. Also from (15), Lemma
2 and (11) it follows that

f(0) = m(h)2 , f(1) = M(h)2 (18)

5For U 6⊆ M(h), it may be possible to consider a precoder map which
for anyu /∈ M(h), finds the phase angle vector which minimizes the energy
of the interference term. However, even with this interference-minimizing
precoder, through simulations, it has been observed that forconventional
alphabets like QAM,PSK, havingU 6⊆ M(h), does not increase the
achievable information rate compared to whenU ⊆ M(h).



Sincef(t) is continuous, it follows that for any non-negative
real numberc with m(h)2 ≤ c2 ≤ M(h)2, there exists a value
of t = t′ ∈ [0, 1] such thatf(t′) = c2. Let

z′
∆
=

∑N
i=1 hie

jθi(t
′)

√
N

. (19)

From the definition of the setM(h) in (5), and (19) it is
clear thatz′ ∈ M(h). From (19) and (16) it follows that

|z′| =
√

f(t′) = c. (20)

Therefore, we have shown that for any non-negative real
numberc ∈ [m(h) , M(h)], there exists a complex number
having modulusc and belonging toM(h).

Further, from Lemma 1, we already know that the set
M(h) is circularly symmetric, and therefore all complex
numbers with modulusc belong toM(h). Since the choice of
c ∈ [m(h) , M(h)] was arbitrary, any complex number with
modulus in the interval[m(h) , M(h)] belongs toM(h).

A. The proposed precoder mapΦ(u) = Θu

The proof of theorem 1 is constructive and for a givenu ∈
U ⊆ M(h), it gives us a method to find the corresponding
phase angle vectorΘu = (θu1 , · · · , θuN ) which satisfies (6). For
a givenu ∈ U ⊆ M(h), we define the function

fu(t)
∆
= f(t)− |u|2 , t ∈ [0, 1] (21)

where f(t) is given by (16). Using Newton-type methods
or simple brute-force enumeration, we can find at = tu
satisfyingfu(tu) = 0 (the existence of such atu is guaranteed
by the constructive proof of theorem 1). The phase angles
which satisfy (6) are then given by

θui = θi(tu) + φ (22)

whereθi(t) is given by (17), andφ is given by

ejφ =
u
√
N

∑N
i=1 hiejθi(tu)

(23)

For largeN , it has been observed that, most local minima
of the error norm functioneu(Θ)

∆
= |u−∑N

i=1 hie
jθi/

√
N |2

have small error norms, and thereforelow-complexitymethods
like the gradient descentmethod can be used to findΘu by
minimizing eu(Θ). However, with smallN , for a significant
fraction of local minima, the value of the error norm function
may not be small, which leads to poor performance of the
gradient descent method. Therefore, for smallN , we propose
the following two-step algorithm6.

In the first step, we find a value ofΘ = Θ̃u such that|u−
∑N

i=1 hie
jθ̃u

i /
√
N |2 is sufficientlysmall. This step ensures that

with high probability,Θ̃u is inside the region of attractionof
the global minimum of the error norm function. In the second
step, with thisΘ = Θ̃u = (θ̃u1 , · · · , θ̃uN ) as the initial vector, a

6 It is to be noted here, that forN = 2, 3 there exist closed-form
expressions forΘu and therefore the following algorithm is only required
whenN is greater than3 and generally less than10 (Since with large enough
N , the low-complexity gradient descent method suffices).

simple gradient descent algorithm would then converge to the
global minimum.

The first step of the proposed algorithm is based on the
Depth-First-Search (DFS) technique. Basically, for a given u,
we start with enumerating the possible values taken byθ̃uN
such that (6) is satisfied withΘu = Θ̃u. To satisfy (6), it is
clear thatθ̃uN must equivalently satisfy

u− hNejθ̃
u
N

√
N

=

√

N − 1

N

∑N−1
i=1 hie

jθ̃u
i

√
N − 1

. (24)

Using theorem 1 this then equivalently implies that,

(
√
N/

√
N − 1)(u− hNejθ̃

u
N√

N
) ∈ M((h1, · · · , hN−1)

T ) i.e.

m(h(N−1)) ≤
√

N

N − 1

∣

∣

∣
u− hNejθ̃

u
N

√
N

∣

∣

∣
≤ M(h(N−1)) (25)

whereh(N−1) ∆
= (h1, . . . , hN−1)

T andm(·),M(·) are defined
in (11). For exampleM(h(N−1)) = ‖h(N−1)‖1/

√
N − 1.

Equation (25) gives us anadmissibleset IuN ⊂ [−π, π) to
which θ̃uN must belong for (24) to be satisfied. We call this as
the k = 0-th “depth” level of the proposed DFS technique.

Next, for a given value of̃θuN ∈ IuN , we go to the next
“depth” level (i.e., k = 1) and find the set of admissible
values for θ̃uN−1. Essentially, at thek-th depth level, for
a given choice of values of(θ̃uN , θ̃uN−1, . . . , θ̃

u
N−k+1), with

θ̃uN−i+1 ∈ IuN−i+1, i = 1, · · · , k, we solve for the set of
admissible values for̃θuN−k such that (6) is satisfied with
Θu = Θ̃u. From theorem 1, this set (i.e.,IuN−k ) is given
by the values of̃θuN−k satisfying

∣

∣

∣
u(k) −

h
N−k

ejθ̃
u
N−k

√
N

∣

∣

∣
≥

√

N − k − 1

N
m(h(N−k−1))

∣

∣

∣
u(k) −

h
N−k

ejθ̃
u
N−k

√
N

∣

∣

∣
≤

√

N − k − 1

N
M(h(N−k−1)) (26)

whereu(k) ∆
= (u−∑k

i=1

h
N−i+1√

N
ejθ̃

u
N−i+1) andh(N−k−1) ∆

=

(h1, . . . , hN−k−1)
T . If there exists no solution to (26) (i.e.,

IuN−k is empty), then the algorithm backtracks to the previous
depth level i.e.,k− 1, and picks the next possible unexplored
admissible value for̃θuN−k+1 from the setIuN−k+1. If there
exists a solution to (26), then the algorithm simply moves
to the next depth level, i.e.,k + 1. The algorithm terminates
once we reach a depth level ofk = N − 1 with a non-
empty admissible setI1. Sinceu ∈ M(h), the algorithm is
guaranteed to terminate (by theorem 1). It can be shown that
for depth levels less thank = N − 2, the admissible set is
generally an infinite set (usually a union of intervals inR).
Therefore, due to complexity reasons, at each depth level it
is usually suggested to consider only a finite subset of values
from the admissible set (e.g. values on a very fine grid), and
terminate once the algorithm reaches a sufficiently high pre-
defined depth levelK with the current error norm i.e.,|u(K)|
below a pre-defined threshold.

In the second step, a gradient descent algorithm starting with
the initial vectorΘ = (θ̃uN , . . . , θ̃uN−K+1, 0, . . . , 0), converges
to the global minimum of the error norm functioneu(Θ).



IV. T HE DOUGHNUT CHANNEL AND AN ACHIEVABLE

INFORMATION RATE

From theorem 1 it is clear that, geometrically the setM(h)
resembles a “doughnut” in the complex plane. Since we
propose to use an information symbol setU ⊆ M(h), and
the precoder map as defined in (7), we effectively have a
“doughnut channel” (see (8))

y =
√

PT u+ w (27)

where the information symbolu is constrained to belong to the
“doughnut” setM(h). ForN = 1, the doughnut set contracts
to a circle in the two-dimensional complex plane, and for
which capacity is achieved when the inputu is uniformly
distributed on this circle, i.e.,u has uniform phase [5].

For N > 1, we proposeU = M(h), with u “uniformly”
distributed inside the doughnut, i.e., its probability density
function (p.d.f.) is given by

P unif
u (z) =

1

π(M(h)2 −m(h)2)
, z ∈ M(h). (28)

The information rate achieved with uniformly distributedu is
given by

I(y;u)unif = h
(

u+
w√
PT

)

− h
( w√

PT

)

≥ log2(2
h(u) + 2h(w/

√
PT ))− h(w/

√
PT )

= log2(1 + 2h(u)−h(w/
√

PT )) (29)

whereh(s)
∆
= −

∫

Ps(z) log2(Ps(z))dz denotes the differen-
tial entropy of the r.v.s (Ps(·) denotes the p.d.f. ofs). The
third step in (29) follows from the Entropy Power Inequality
(EPI) [7]7 which states that for any complex r.v. (essentially
a 2-real dimensional r.v.)y = u+ v, which is the sum of two
independent complex r.v’su and v, the differential entropy
of y (in bits) satisfies the inequality2h(y) ≥ 2h(u) + 2h(v).
Sinceu is uniformly distributed insideM(h), we haveh(u) =
log2(π(M(h)2 −m(h)2)). Using this in (29), we have

I(y;u)unif ≥ log2

(

1 +
PT

σ2

M(h)2 −m(h)2

e

)

(30a)

I(y;u)unif ≥ log2

(

1 +
PT

σ2

‖h‖21 − ‖h‖2∞
Ne

)

. using lemma 2,3

(30b)
We therefore have an achievable information rate given by
the R.H.S. in the equations above. Note that, to achieve the
information rate in the R.H.S of (30a), the receiver needs
to have partial CSI only, i.e., it needs to only knowm(h)
and M(h), since these real non-negative numbers totally
characterize the setM(h).

7 With N > 1, a condition that is required for the usage of EPI to be valid
is thatM(h) > m(h), since otherwise the setM(h) has a zero Lebesgue
measure leading to undefinedh(u). From Lemma 2 and 3 it follows that the
condition ‖h‖1 > ‖h‖∞ implies M(h) > m(h). Since,‖h‖1 > ‖h‖∞
holds for anyh having more than one non-zero component, the required
condition is met for most channel fading scenarios of practical interest.

V. I NFORMATION RATE COMPARISON: CE VS. MRT

With an average only total transmit power constraint, MRT
with Gaussian information alphabet achieves the capacity of
the single user Gaussian MISO channel, which is given by

C = log2

(

1 + ‖h‖2
2

PT

σ2

)

. (31)

For a desired information rate, let the ratio of the total transmit
power required under the per-antenna CE constraint to the
power required under the average only total power constraint
(APC) be referred to as the “power gap”. From (30b) and (31)
it now follows that the power gap can be upper bounded by
1/κ, where

κ
∆
=

‖h‖21 − ‖h‖2∞
Ne‖h‖22

=

(∑
i |hi|
N

)2

−maxi
|hi|2
N2

e
∑

i |hi|2
N

(32)

Clearly 0 ≤ κ < 1/e for any h. From (30b) and (31) it also
follows that

1 >
I(y;u)unif

C
≥ 1− log2

(

1
κ

)

C
. (33)

For practical fading scenarios of interest like i.i.d. fading
and DLOS, with sufficiently largeN , κ can be shown to
be greater than some strictly positive constantµ, with high
probability. For example, for a single-path only direct-line-of-
sight (DLOS) channel, we have|h1| = . . . = |hN |. Using this
fact, it can be shown that1/κ → e asN → ∞, for any h.
With i.i.d. fading, asN → ∞, using the law of large numbers
and Slutsky’s theorem [8] it can be shown that

κ →p
(E[|hi|])2
eE[|hi|2]

(34)

where→p means convergence in probability (asN → ∞)
w.r.t. the distribution ofh.8 This then implies that, for any
arbitrary ǫ > 0, there exists an integerN(ǫ) such that with
N > N(ǫ), the probability that a channel realization will have
a value ofκ ≥ (E[|hi|])2

eE[|hi|2] − ǫ is greater than1− ǫ. From (34) it
also follows that, the asymptotic (N → ∞) power gap limit is
eE[|hi|2]/(E[|hi|])2. For example, with i.i.d. Rayleigh fading
this asymptotic power gap limit is4e/π, i.e., 5.4 dB.

For N = 1, it is known that, at largePT /σ
2 (i.e., largeC),

for a givenPT /σ
2 the maximum information rate achieved

with CE transmission is roughlyhalf of the channel capacity
under APC [5]. In contrast, withN ≫ 1, from (33) it follows
that CE transmission can achieve an information rateclose
to the capacityC under APC, since1 − log2(1/κ)

C is close to
1 (as C is large, andκ is greater than a positive constant
with high probability (as discussed in the paragraph above)).
This fact is illustrated through Fig. 2, where we plot the
ergodic information rate achieved with CE transmission (i.e.,
information rate averaged over the channel fading statistics
which is assumed to be i.i.d.CN (0, 1) Rayleigh fading). In
Fig. 2, the exactI(y;u)unif has been computed numerically
whereas the EPI lower bound is given by the R.H.S. of (30a).

8Here we have also used the fact thatmaxi |hi|/N converges to zero in
probability asN → ∞. Results from order statistics, show that for largeN ,
‖h‖∞ = maxi |hi| = E[|hi|]O(log(N)), and thereforemaxi |hi|/N =

E[|hi|]O(
log(N)

N
). (see [9] and references therein for more details)
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Fig. 2. Comparison between the ergodic information rate achieved with
an average only total power constraint (MRT) to that achieved with constant
envelope (CE) transmission. i.i.d.CN (0, 1) Rayleigh fading assumed.

We observe that forN > 1, the information rate curve with CE
transmissionruns parallelto the capacity curve for an average
only total power constrained (APC) channel.9 This observation
supports our analytical claim that, with high probability (w.r.t.
the distribution ofh) the ratio I(y;u)unif/C is close to1
for large C. However forN = 1 (as also reported in [5]
for non-fading SISO AWGN channel), we observe that the
CE information rate curve has a muchsmaller slope w.r.t.
log(PT /σ

2), when compared to the slope of the capacity curve
for the APC channel. In Fig. 2, we also observe that with
N = 16 and over a wide range of values ofPT /σ

2, the power
gap is about5.3 − 5.5 dB (which matches closely with the
asymptotic power gap limit of5.4 dB as discussed earlier).

VI. A CHIEVABLE ARRAY POWER GAIN

For a desired rateR and a given precoding scheme; with
N antennas, thearray power gainachieved by this scheme
is defined to be the factor of reduction in the total transmit
power required to achieve a rate ofR bpcu, when the number
of base station antennas is increased from1 to N . With an
average only total power constraint, with N antennas the MRT
precoder achieves an array power gain of (using (31))

GMRT
N (R) =

∑N
i=1 |hi|2
|h1|2

(35)

which is O(N) for i.i.d. fading and DLOS. With CE trans-
mission, using the R.H.S of (30b) as the information rate, the
array power gain achieved withN antennas is given by

GCE
N (R) = N

GCE
2 (R)

2

{

{
∑N

i=1 |hi|/N
}2 −maxi |hi|2/N2

}

{

{
∑2

i=1 |hi|/2
}2 −maxi=1,2 |hi|2/4

}

where GCE
2 (R) is the array power gain achieved with

only 2 antennas and depends only onh1 and h2. From the
equation above, it is clear thatGCE

N (R) is O(N) for i.i.d.
fading and DLOS (for i.i.d. fading

∑

i |hi|/N →p E[|hi|]
andmaxi |hi|/N →p 0 asN → ∞). The important result is
therefore that, for practical fading scenarios like i.i.d.fading

9This is also true for smallN = 2, 3, which we are unable to plot here
due to space constraints.

TABLE I
PT /σ2 (DB) REQUIRED TO ACHIEVE AN ERGODIC RATE OF3 BPCU

N=1 N=2 N=3 N=4 N=8 N=16
MRT 10.1 6.4 4.3 2.9 -0.4 -3.5
CE 14.3 10.4 9.0 8.2 5.0 1.8

and DLOS,anO(N) array power gain can indeed be achieved
even with CE transmission.10 This conclusion is validated in
Fig. 2, where we observe that in increasing the number of
antennas fromN = 4 to N = 8 to N = 16, the required total
transmit power to achieve a fixed desired information rate of4
bpcu,reducesby a factor of roughly3.0 dB for everydoubling
in the number of antennas. Similar conclusions can be drawn
from Table I, where the requiredPT /σ

2 to achieve an ergodic
rate of 3 bpcu is listed as a function ofN (i.i.d. CN (0, 1)
Rayleigh fading assumed). Also, CE transmission with even
small N can savepower, e.g., in Table I, the required total
power with CE transmission andN = 3 is less than that
required withN = 1 and an average only power constraint.

VII. CONCLUSIONS ANDFUTURE WORK

In this paper, we derived an achievable rate for a single-user
Gaussian MISO downlink channel under the constraint that the
signal transmitted from each antenna has a constant envelope.
We showed that for i.i.d. fading and DLOS, even with the
stringent per-antenna CE constraint, anO(N) array power
gain can still be achieved withN antennas. Also, compared to
the average only total transmit power constrained channel,the
extra total transmit power required under the CE constraint
to achieve a desired rate (i.e., power gap), is shown to be
bounded and small. We believe that these results hold true for
a much broader class of fading channels, and are not limited
to i.i.d. fading and DLOS. Future work involves deriving the
capacity of the equivalent “doughnut” channel in order to
exactly characterize the power gap. We would also extend
results in this paper to the multi-user setting.
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