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Abstract

Efficient model checking is important in order to make this type
of software verification useful for systems that are complex in their
structure. If a system is too large or complex then model checking
does not simply scale, i.e., it could take too much time to verify the
system. This is one strong argument for focusing on making model
checking faster. Another interesting aim is to make model checking
so fast that it can be used for predicting scheduling decisions for real-
time schedulers at runtime. This of course requires the model checking
to complete within a order of milliseconds or even microseconds. The
aim is set very high but the results of this thesis will at least give a hint
on whether this seems possible or not. The magic card for (maybe)
making this possible is called Graphics Processing Unit (GPU). This
thesis will investigate if and how a model checking algorithm can be
ported and executed on a GPU. Modern GPU architectures offers
a high degree of processing power since they are equipped with up
to 1000 (NVIDIA GTX 590) or 3000 (NVIDIA Tesla K10) processor
cores. The drawback is that they offer poor thread-communication
possibilities and memory caches compared to CPU. This makes it
very difficult to port CPU programs to GPUs.

The example model (system) used in this thesis represents a real-
time task scheduler that can schedule up to three periodic self-suspending
tasks. The aim is to verify, i.e., find a feasible schedule for these tasks,
and do it as fast as possible with the help of the GPU.
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1 Introduction

The Graphics Processing Unit (GPU) is becoming more and more focused
on applications other than just graphics. Hence, we call this trend general
purpose computing on GPU, i.e., GPGPU. The GPU is currently holding
almost twice as much peak processing power compared to CPU and three out
of the five top supercomputers in the world today are powered by GPUs [8].
There is no doubt that many-core architectures such as GPUs are advancing
rapidly in the market, hence, research efforts in various areas must keep pace
with the evolvement of the GPU in order to make as much as possible out
of todays technology and stay competitive.

The GPU offers enormous computing capacity (if used in the right way)
while we also see computing problems in research areas such as software
verification. One such verification technique is called Model Checking [5, 7,
23] and it has one serious drawback: it cannot verify systems in a timely
manner if they are too large. It can take several years at worst.
We want to investigate if the GPU can offer a remedy for search issues found
in model checking.

The example problem that we will use in this thesis, in order to show
the effectiveness of running model checking on a GPU, is finding schedules
in a real-time task model called self-suspending tasks [9, 15, 17]. There
has been plenty of work on different aspects of self-suspending tasks in the
past [1, 10, 12, 13, 14, 19, 20, 21, 22]. However, to the best of our knowledge,
no existing work combine self-suspending tasks with model checking and
GPU programming.

To this day, there is no optimal algorithm for scheduling self-suspending
periodic real-time tasks. The search problem of finding schedulable systems
in the self-suspending task model has been proven to be NP-hard [22]. Feasi-
ble and sustainable schedules to such systems can be found by using timed-
automata-assisted scheduling (TAAS) [1], but only off-line. A note to the
reader is that the timed-automata presented in [1] cannot actually find feasi-
ble schedules. We will elaborate more on this in Section 3. In this thesis, we
investigate the possibility of finding feasible schedules on such systems using
a GPU. Positive results from this thesis can have great impact on scheduling
in real-time systems, as well as speeding up model checking in general.
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2 Preliminaries

This section will give preliminary background on timed automata and the
self-suspending task model.

2.1 Timed automata

Timed automata [2] is a modelling language for modelling and analyzing
software and hardware systems. Timed automata has later been extended
with tasks. The task parameters included are periods, priorities, execution
times etc. This model is referred to as task automata [6] and it associates
tasks to the locations in a timed automata system. The task-automata model
is supported by the UPPAAL-TIMES [3] tool. This tool can verify timed
automata models. The example self-suspending model used throughout in
this thesis was developed using UPPAAL-TIMES. The main benefit of using
this tool is that it supports task automata which is typically well suited when
modeling schedulers and tasks. UPPAAL-TIMES has a code-generator which
has been used in this thesis to generate C-code from the self-suspending task
model. This C-code has later been mapped to GPU (CUDA) source code.

Figure 1 illustrates an example of a task automaton. The left sub-figure
will stay in location Location 1 up until time-unit 10 (according to the guard
time==10 and the invariant time<=10). The transition to location Loca-
tion 2 will force (channel!) the automaton in the right sub-figure to also
move its control to Location 2. A task (task1) is released for execution when
the control reaches Location 2 (right sub-figure). The left sub-figure can at
any time move back to Location 1 again. The right sub-figure can loop the
transition (a:=a+1) any number of times without the clock progressing since
the state is marked with U, i.e., urgent.

Location_1
t ime<=10

Location_2

t ime==10
channel!

t ime==11
t ime:=0

Location_1

U
Location_2

task1

channel?

a:=a+1

Figure 1: Timed automata example.
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2.2 Self-suspending task model

The self-suspending task model [9, 15, 17] is an extension of the well known
periodic task model [11]. Periodic tasks τi execute periodically every period
Ti, for Ci time units based on the task priority Pri. A task τi must finish its
execution (of maximum time length Ci) before its deadline Di within every
period Ti (where Ci < Di ≤ Ti).

Self suspending tasks are characterized with the tuple τi = {Pi, Ti, Di}
where Pi is an execution pattern Pi = {C1

i , E
1
i , C

2
i , E

2
i , ..., C

m
i }. Each Cj

i

represents an execution time and each Ej
i corresponds to a suspension time.

Uncertain tasks have interval values for both Cj
i and Ej

i , i.e., execution and
suspension times can vary within an interval. Hence, uncertain tasks have
the execution pattern Pi = {[C1

i l, C
1
i u],[E

1
i l, E

1
i u],[C

2
i l, C

2
i u], ...,[C

m
i l, C

m
i u]}.

The notations for self-suspending tasks are inspired from [1].

2.3 CUDA

CUDA, short for Compute Unified Device Architecture, is a general-purpose
parallel computing architecture for GPUs developed by NVIDIA. It is the
architecture used in this thesis and this section will explain the basic of
CUDA.

2.3.1 Programming model

A CUDA-enabled GPU chip consists of a number of multiprocessors. These
multiprocessors each have a set of stream processors, which are used to run
all the threads. The threads are started by calling a kernel function. When
this function is called, you specify the number of threads you want to run.
In CUDA, a group of threads form a thread block. All blocks together form
the grid. The reason for this model is for threads to be able to communicate
with each other using low-latency memory. Another reason is because the
threads need to be mapped over to the processors of the GPU in a logic and
easy manner. All stream processors of a multiprocessor are able to run the
exact same instruction simultaneously. In CUDA, each block is assigned a
multiprocessor with its threads being assigned to different stream processors
as the program runs. This way, blocks dont need any kind of synchronization
in order to run in parallel. This is part of SIMT architecture and is explained
more extensively in [16].
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Figure 2: Grid of thread blocks

2.3.2 Memory hierarchy

There are three different types of memory spaces in which variables can be
declared:

� private: Each thread has its own private memory space. Variables in
this memory space can only be read from and written to by the thread
that owns it.

� shared: Each block has a shared memory space. Variables in this
memory space can be written to and read from by any thread within
the block.

� global: All threads are allowed to read from and write to variables in
this memory space.
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Figure 3: Address spaces
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3 Background

Based on paper [1], the authors try to find a solution for finding feasible
schedules for uncertain, periodic, self-suspending real-time tasks. The idea is
interesting because it has been shown to be difficult to find solutions for this
task model [22]. The tasks are defined as uncertain because their execution
and suspension times can vary (but they are defined within an interval of
time). The tasks execute periodically without priorities. The difference from
the periodic task model [11] is that the task execution is fragmented with
suspension intervals which is decided by the task itself, however, the time
intervals are clearly defined as part of this task model.

In essence, we believe that tools such as UPPAAL-TIMES [3] and UP-
PAAL [4] do not scale with complex models when it comes to verification. It
is usual that the verification runs out of memory. Conclusively, model check-
ing tools cannot cope with complex models such as self-suspending tasks.
We want to investigate if the GPU can accelerate the model checking up
to the point where it is feasible to find solutions for complex models like
the self-suspending task model. Tools such as UPPAAL use an extensive
amount of memory when verifying models. UPPAAL-TIMES has memory
problems when verifying our model of self-suspending tasks, even on modern
computers with up to 4 GB of memory.

The best possible result for this thesis would be if the GPU accelerated
model checking manages to find feasible scheduling paths in the order of milli
or micro seconds. In this case it would be possible for the GPU-accelerated
model checker to assist an operating system scheduler with finding new (more
efficient) scheduling paths during runtime.

Although many parts of this thesis (the idea of model checking self-
suspending tasks, the task-set used in our verification etc.) are based on [1],
this paper is actually not technically sound when it comes to the verification
results. Hence, we cannot compare our results with theirs (even though we
have access to their implementation). Figure 41 shows an UPPAAL-TIMES
model of the original UPPAAL-TIGA model presented in [1]. The input to
this model are the execution and suspension time durations of tasks. How-
ever, note that there are three transition guards with (WL-1) or (WU-1). The
variables WL and WU hold the lower and upper interval value of the task ex-
ecution time and the input values WL1 and WU1 to the model correspond
to the correct values. Hence, the task execution times will be 1 time-unit
less than the original value. This means that the verifications will pass easily
and fast because the system utilization decreases. However, removing the

1http://igm.univ-mlv.fr/~masson/Softwares/SelfSuspending/
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subtraction in (WL-1) and (WU-1) does not give a correct verification either
because the implemented model is then incorrectly modelled. This can be
observed when simulating the model. The model introduces idle time at cer-
tain time points which makes the schedule incorrect. The conclusion is that
we cannot compare our results with this model even though we use the same
task systems as presented in the paper.

Start
x<=ST

Init

x==ST
x:=0,time:=0,execdone:=0

Done

time>=STOPNOW,execdone==total

Exec
x < = 1

proc==1, time < STOPNOW
x:=0,proc:=0,a:=1,start:=start−1,WL:=WL1,WU:=WU1,i:=0

STOP

per1?

c<(WU−1),x==1
x:=0,c:=c+1,a:=0

Preempt

c<WU,x==0,a==0
proc:=1

proc==1
x:=0,proc:=0,a:=1

x < 1
per1?
proc:=1

End

c>=(WL−1),x==1,i==nb
proc:=1,c:=0,x:=0,execdone:=execdone+1

per1?
x:=0,start:=start+1,i:=0

Susp

c>=(WL−1),x==1,i<nb
proc:=1,c:=0,x:=0

x>=EL1
WL:=WL2,WU:=WU2,x:=0,i:=i+1

x<EU1
per1?

per1?

U
RUN

task1

Figure 4: UPPAAL model used in [1].
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4 Related work

The most related work [1] with respect to this thesis use the tools UPPAAL
and UPPAAL-TIGA [4] to find schedulable paths for two different task sets.
We use the same task sets in this thesis, however, our main focus is to conduct
the verification on the GPU hardware in order to speed-up the process. Sta-
tistical model checking [24] use roughly the same technique as we do in this
thesis. Instead of searching the entire state-space [4], they search a part of
it in order to decrease the time length. Statistical approaches are often used
when the state-space is to large for systematic searches. UPPAAL-SMC [4] is
based on statistical model checking and can give, for example, probabilities
that certain properties are satisfied at different time instances in the model.
Looking at speed-up of model checking, such work has been done [18] but
the focus has been on faster searches by using distributed computers that
communicate with eachother in order to find good paths faster. This is,
however, only relevant for a CPU version of the algorithm used in this thesis
since the amount of memory needed for the search algorithms are too high
for GPUs. In [8] a responsive GPGPU execution model has been developed
so that tasks can execute some of their load on the GPU. The difference from
our work is that we synthesize the scheduler on the GPU while [8] run the
tasks on the GPU instead.
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5 Problem formulation

The goal of this thesis is to investigate how efficient a NP-hard search-
problem can be solved using the GPU. We have modelled a scheduler in
UPPAAL-TIMES that is suited for scheduling periodic self-suspending tasks.
Generated C-code from the model will represent the model that we will
search. The example system that we will try to find feasible schedules for is
shown in Table 1. Hence, our model implements these three tasks.

Task Period (T ) Deadline (D) Execution pattern (P)
τ1 10 10 (2,2,4)
τ2 20 20 (2,8,2)
τ3 12 12 (2)

Table 1: Task system used in our model.

Figure 5 shows the optimal schedule [1] for the taskset in Table 1. Note
that neither FPS nor EDF is optimal in finding schedules for periodic self-
suspending tasks. Hence, this schedule can not be derived using any schedul-
ing algorithm.

0 5 10 15 20 25 30 35 40 45 50 55 60

Task 1

Task 2

Task 3

Figure 5: The optimal scheduling graph.

The goal is to find out if a model-checking algorithm, running on a GPU,
can find a feasible schedule for the taskset in Table 1. If it can then the
resulting schedule should look like the one in Figure 5.
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6 Analysis of problem

This section will describe the different problem aspects of synthesizing a
model checking algorithm onto a GPU hardware platform.

The biggest constraint on a GPU is memory. This makes it impossible
to save already-tested paths. The second issue is to make the entire search
as parallelized as possible in order to achieve good speed-up.

6.1 Choosing a language

There are two GPU programming languages suitable for this project: OpenCL
and CUDA. The biggest advantage of choosing OpenCL is that it can be run
on almost any GPU, while CUDA can only be run on certain NVIDIA GPUs.
The advantage of CUDA is that it is optimized for NVIDIA GPUs, so it is
faster than OpenCL on these GPUs. Also, you can work with CUDA in Vi-
sual Studio 2010 which is a familiar working environment for the members in
this project. Another consideration is how good the support is for debugging
the code in these two languages. Last but not least, the available hardware
platform, i.e. NVIDIA or AMD, will affect the choice of language as well.

6.2 Parallelization

GPUs are designed for making heavy, parallelized calculations [8]. The gen-
erated code has to be modified so that it can take advantage of this in order
to make the search faster.

6.2.1 Branches

The threads in CUDA and OpenCL are divided into blocks. The threads in
a block have to be on the same path in the code in order to be able to make
calculations in parallel. If the threads are divided into different paths, each
path will be executed serially [16]. The number of branches in the code must
be kept to a minimum.

The biggest problem, considering branches in the original generated C-
code, is the function that evaluates the guards in the automaton. This func-
tion will be called before a transition is taken in the automaton so that a
valid transition will be taken. The function consists of a switch-case state-
ment with one case for every transition. Since each thread represents a
transition, this function will divide all of the threads to different cases and
thereby slow down the program significantly. This part of the code has to
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be rewritten in order for it to become more parallelized and thereby more
suitable for execution on a GPU.

6.2.2 Stopping the search

Since every block works independently [16], a way has to be found for one
block to tell all blocks when a succesful path has been found. Otherwise, all
other blocks will continue searching and the CPU will not get the result until
all blocks are finished.

6.3 Memory restrictions

The GPU has a smaller amount of low-latency memory compared to the
CPU [8]. The generated code has to be adjusted to fit the memory model
of a GPU. Another serious problem is the memory locality, i.e., memory
caching. Memory must be used in a sequence that is adapted to the GPU
memory cache-algorithm in order for the code to be as efficient as possible.

6.3.1 Choosing paths

In order for the search to be fast, we must avoid repeating already taken
paths. A simple way to do this is to save already taken paths to memory.
Considering the memory restrictions on the GPU, this would be very ineffi-
cient. Hence, a systematic and memory efficient way to choose paths must
be implemented so that paths are not repeated so often.
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7 Method

7.1 Parallelization

In the original code, the function that evaluates the guards of the transi-
tions in the automaton consists of a switch-case statement where each case
represents a transition. It would be natural to let each thread represent a
transition, but this would split all threads into different cases which would
lead to a lot of branching. Every case in the switch-case statement consists
of a number of comparison operations performed on variables and/or con-
stants. The results from all the comparisons are added together with the
binary AND operator. The transition is marked active if the result is equal
to 1.

The first step towards parallelization is to add dummy comparisons to
all guards to make sure that the same operations are executed on all guards
and in the same order. In order for the dummy comparisons to not affect the
guards, they should always be true. Here is a simplified example of how the
generated code can be:

int a c t i v e s [ 3 ] ;

int eva l guard ( int trn )
{

switch ( t rn )
{

case 0 : return ( Clock > 3 ) ;
case 1 : return ( Clock != 2 ) ;
case 2 : return ( Clock < 1 ) ;

}
}

void c o l l e c t a c t i v e s ( )
{

for ( int i =0; i <3; i++)
a c t i v e s [ i ]= eva l guard ( i ) ;

}

For this code, every time collect actives() is executed the array actives[]
is updated with the three transitions’ statuses. We start by adding dummy
comparisons for each guard:

int eva l guard ( int trn )
{
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switch ( t rn )
{

case 0 : return ( Clock > 3 && 1 != 0 && 0 < 1 ) ;
case 1 : return (1 > 0 && Clock != 2 && 0 < 1 ) ;
case 2 : return (1 > 0 && 1 != 0 && Clock < 1 ) ;

}
}

Every guard now has the same number of operands, so a matrix can be
made that holds those values and each thread can be assigned a transition.
Now it is every thread’s responsibility to update the status of their assigned
transition.

int operands [ 3 ] [ 6 ] = {
{Clock , 3 , 1 , 0 , 0 , 1} ,
{1 , 0 , Clock , 2 , 0 , 1} ,
{1 , 0 , 1 , 0 , Clock , 1}
} ;

int eva l guard ( int trn )
{

return operands [ t rn ] [ 0 ] > operands [ t rn ] [ 1 ] &&
operands [ t rn ] [ 2 ] != operands [ t rn ] [ 3 ]
operands [ t rn ] [ 4 ] < operands [ t rn ] [ 5 ] ;

}

void c o l l e c t a c t i v e s ( )
{

int trn = getthreadID ( ) ;
a c t i v e s [ t rn ]= eva l guard ( trn ) ;

}
The next problem was that when a variable used in the calculations was

changed, it needed to be changed everywhere in the matrix. Therefore, the
matrix was remade to hold pointers which points to the addresses of the
variables used, instead of the actual values. Now each variable only needs to
be changed in one place.

7.2 Seed system

In tree searching it is normal to save each path in memory to make sure that
you don’t take the same path more than once. When performing exhaustive
searches on large trees on a GPU you don’t have the luxury of being able to
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save already-tested paths in memory because the blocks would have to use
global memory. Global memory on a GPU is the memory with the highest
latency and would probably hinder the search from being fast enough [16].
One way to search trees without saving paths is to make the entire search
random. However, this does not guarantee that every leaf will be found and
the expected time for the search to complete is unpredictable. Another way
to perform an exhaustive search is by doing it recursively, but this will also be
expensive in terms of memory. Therefore, we developed an algorithm, which
to the best of our knowledge did not exist before. It tests many paths but
few are repeated. This algorithm was named Seeded Tree Search (STS) and
it requires only that the current seed and the current product of branches
need to be stored in memory. These are both represented as regular integers.

7.2.1 Seeded Tree Search (STS)

In STS, each path is based on a number, called a seed. Information of how
many branches the path has passed is kept in a variable, and it is reset to
the value 1 every time a new seed is tested. At every node, the seed will
be divided by the value of the branches variable. The result of this division
is divided by the number of branches for the current node. The next node
in the path will be chosen based on the remainder of the second division.
Finally, the branches variable is updated by multiplying its current value
with the number of branches for the current node.

Algorithm 1 Seaded Tree Search

seed ⇐ start seed
while seed < end seed do

branches ⇐ 1
node ⇐ root
while node is not a leaf do

choice ⇐ seed
choice ⇐ choice mod node.branches
branches ⇐ branches ∗ node.branches
node ⇐ node.branch(choice)

end while
seed ⇐ seed+ 1

end while

To calculate the number of seeds needed with STS to make sure all leaves
are reached, find the leaf with the least probability of being reached and
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multiply the number of branches for each node on the path from the root
down to that node. See figure 6 for an example.

Figure 6: Amount of searches needed to cover all paths with STS is 2 * 2 *
3 = 12.

In figure 6 there is a tree with five leaves. To reach all the leaves with
STS, twelve seeds are needed. The optimal number of paths that will reach
all leaves will be five. A recursive search will accomplish this, but would
require more memory than STS. This is not a problem for the tree in Figure
6, but a tree with millions of leaves or more could be an issue in terms of
memory. With a fully balanced tree, STS finds all leaves without saving any
paths and without taking the same path more than once (Figure 7). The
reason why this algorithm works in this way is because we check at every
node how many times we have been there before. This is done by using the
division at line 6 in Algorithm 1.
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Figure 7: STS on a balanced tree with the first seed for every path

7.3 Search model

7.3.1 CUDA

CUDA C was chosen as language for this thesis. This was mainly because
of the available hardware, i.e. NVIDIA. Code written in CUDA C is divided
into host code and device code. The host code is regular C code with different
calls to CUDA functions, i.e. to allocate memory on the GPU. The device
code is executed on the GPU and has some extra functionality on top of
regular C. (This functionality is there to be able to specify in which address
space different variables should be stored and also to be able to synchronize
threads in different ways). The host code has the entry point for the program
and starts the device code by calling a GPU kernel function. When the call is
made, the host code specifies the number of threads and blocks. Each block
will have its own unique seed numbers and it is responsible for testing if any
of them succeeds in finding a feasible schedule. Every block must have at
least as many threads as there are transitions in the automaton.

7.3.2 Restrictions

During testing, it was observed that GPUs can only run for a certain amount
of time. If that time is exceeded then the GPU reboots. Therefore, a search
can not go on forever, so the CPU has to perform sub-searches on the GPU
in intervals. In our implementation, a loop is executed on the CPU that
transfers new seed numbers to the GPU at every iteration. If a successful
result is returned from the GPU then the loop exits.
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7.3.3 Device code

7.3.3.1 Memory All the variables that are used by all transitions must
be in shared address space which means that all threads in a block will be
able to reach them. The matrix of operands is represented as a list of private
pointers for each thread, pointing to different shared variables. Seed numbers
and results are represented as global arrays. The seed numbers are copied
to the device before starting a sub-search and the results are copied to the
host when a sub-search is finished. The global result array is also used by
one block to notify other blocks that a sub-search has been successful.

7.3.3.2 Layout The device code starts by assigning one thread to be
the coordinator for the sub-search. It is followed by letting the coordinator
set up the entire automaton with shared variables. When this is done, the
sub-search is started by going into a loop. The first job in the loop is to
check if the sub-search must be reset with a new seed number, which would
happen if the previous seed failed. If this is the case, then the coordinator
resets all the shared variables and starts over with a new seed number. The
second job for the coordinator is to update any shared variables that is in
need of an update. After the update, the non-coordinating threads update
their transition status which is located in shared address space. After this,
the coordinator goes through the results to sort out which transitions are
active and makes a choice based on the current seed number. Finally, the
coordinator makes the selected transition. At the end of the loop, every
thread checks if the path was successful and exits the loop if that was the
case. When a sub-search is successful and the loop has stopped, then the
coordinator for that block provides the global result array with the results
so every block observes it and stops.

7.3.4 Host code

The host code is responsible for allocating memory on the GPU device that
will hold the seed numbers and the result. Once the allocation is done, then
the seed numbers are copied to the device and sub-searches are started by
calling the GPU kernel function. When the sub-searches are finished, then
the result is copied back to the host for evaluation. If the result indicates that
the sub-searches have failed, then new sub-searches with new seed numbers
will be started.
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8 Solution

The implementation of this model consists of converting regular C code,
generated by UPPAAL-TIMES from the timed automaton, to CUDA C code.
This is done with the following steps within the GPU kernel function.

1. Map all the private pointers so that the threads point to the correct
variables in the switch-case statement in the original code.

2. Let one thread set all the variables for the automaton. This thread is
called the coordinator.

3. Create a while-loop and make it do the following at every iteration. If
the search is in need of a reset, then let the coordinator reset the entire
automaton and increase the seed number.

(a) Let the coordinator update any pointers that must point to a new
address.

(b) Let every transition-thread update the status of their correspond-
ing transition.

(c) Let the coordinator collect all active transitions.

(d) Let the coordinator choose one of the active transitions based on
the current seed number. If no transitions are active, then increase
the system time.

(e) Let the coordinator check that an endless transition loop has not
occurred. If it has, then reset with a new seed number.

(f) Let the coordinator check if a successful state has been reached,
and if so, notify other threads within the block and exit the loop.

4. Let the coordinator check if a successful state has been reached and
provide the global result array with the result if this is the case. There
must also be a test to see if any other block has already reached a
successful state. If that is the case then no modification will be made
to the result array.

The following steps are made in the host code:

1. Allocate memory on the host for the seed-number array and the result
array.

2. Allocate memory on the device for the seed-number array and the result
array.
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3. Create a while-loop with a condition that is true until a successful state
has been found.

(a) Set all result numbers in the result array on the device to zero.

(b) Fill the seed-number array on the host with appropriate values.
For a linear search this should start with zero. The seed numbers
should be randomized in a random search.

(c) Copy the content of the seed-number array on the host to the
seed-number array on the device.

(d) Run the GPU kernel function with the desired amount of blocks
and threads. The number of threads in each block should be
at least the same amount as the number of transitions in the
automaton.

(e) Copy the content of the result array on the device to the result
array on the host.

(f) Evaluate the result array to see if a successful state has been found.
If so, exit the loop.

4. Present the successful path.

8.1 Modified STS

Due to the nature of the automaton, there is a risk that it might end up in
an endless transition-loop. Therefore, the Seeded Tree Search was slightly
modified to cope with this. Instead of always dividing the current seed num-
ber with the number of branches, a condition was created to check if the
number of branches has exceeded the seed number. If this is true, then the
branches variable will stop increasing and the chosen branch will be based
on the remainder of the seed number divided by the number of branches for
the current node. It was obvious during our tests that this algorithm was
more efficient.
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Algorithm 2 Seaded Tree Search (Modified)

seed ⇐ startseed
while seed < endseed do

branches ⇐ 1
node ⇐ root
while node is not a leaf do

if seed < branches then
choice ⇐ seed mod branches

else
choice ⇐ seed
choice ⇐ choice mod node.branches
branches ⇐ branches ∗ node.branches

end if
node ⇐ node.branch(choice)

end while
seed ⇐ seed+ 1

end while

8.2 Example of converting guard evaluations from C
to CUDA C

The example automaton consists of five transitions. Part of the original
switch-case statement for this example is shown below:

// e va l ua t e guards
switch ( t rn )
{

case 0 : return ( Sched i !=NrTasks ) ;
case 1 : return ( Sched i<NrTasks ) ;
case 2 : return ( Sched i==NrTasks ) ;
case 3 : return (NrTasks<2);
case 4 : return ( Sched ReleaseQ [ Sched i ]<=Sched ReleaseQ [ Sched i +1]

&& Sched k !=(NrTasks−1)) ;
}

If this code is executed in CUDA and trn is set to thread ID, then each
thread will branch to its own case. This means that none of the threads
will be able to evaluate the guards simultaneously [16]. First, thread 0 will
evaluate case 0, and then thread 1 will evaluate case 1 etc. In order to make
the threads evaluate the guards simultaneously in CUDA, the following setup
must be done.
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// s h a r e d l e t s a l l t h reads in a b l o c k share v a r i a b l e s
s h a r e d int a c t i v e s [ 5 ] ;

// dummy v a r i a b l e s and v a r i a b l e s t h a t needs updat ing
s h a r e d int zero , one , two , Sched ReleaseQ Sched i ,

Sched Re leaseQ Sched i p lus one , NrTasks minus one ;

// p r i v a t e f o r each thread
int * operand0 , * operand1 , * operand2 , * operand3 ,

* operand4 , * operand5 , * operand6 , * operand7 ;
int threadID , coo rd ina to r ;

// f i g u r e out threadID fo r each thread
threadID = threadIdx . y * blockDim . x + threadIdx . x ;

// l e t thread 0 be the coord ina tor
coo rd ina to r = 0 ;

// only the coord ina tor s e t s shared v a r i a b l e s
i f ( threadID == coord ina to r )
{

zero = 0 ;
one = 1 ;
two = 2 ;
NrTasks minus one = NrTasks−1;

// the s e two needs to keep updat ing
Sched ReleaseQ Sched i = Sched ReleaseQ [ Sched i ] ;
Sched Re l easeQ Sched i p lus one = Sched ReleaseQ [ Sched i +1] ;

}

// have every thread s e t i t s own p r i v a t e po in t e r s
i f ( threadID == 0)
{

operand0 = &Sched i ; // !=
operand1 = &NrTasks ; // !=
operand2 = &zero ; // <
operand3 = &one ; // <
operand4 = &one ; // ==
operand5 = &one ; // ==
operand6 = &one ; // <=
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operand7 = &one ; // <=
}

i f ( threadID == 1)
{

operand0 = &zero ; // !=
operand1 = &one ; // !=
operand2 = &Sched i ; // <
operand3 = &NrTasks ; // <
operand4 = &one ; // ==
operand5 = &one ; // ==
operand6 = &one ; // <=
operand7 = &one ; // <=

}

i f ( threadID == 2)
{

operand0 = &zero ; // !=
operand1 = &one ; // !=
operand2 = &zero ; // <
operand3 = &one ; // <
operand4 = &Sched i ; // ==
operand5 = &NrTasks ; // ==
operand6 = &one ; // <=
operand7 = &one ; // <=

}
i f ( threadID == 3)
{

operand0 = &zero ; // !=
operand1 = &one ; // !=
operand2 = &NrTasks ; // <
operand3 = &two ; // <
operand4 = &one ; // ==
operand5 = &one ; // ==
operand6 = &one ; // <=
operand7 = &one ; // <=

}
i f ( threadID == 4)
{

operand0 = &Sched k ; // !=
operand1 = &NrTasks minus one ; // !=
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operand2 = &zero ; // <
operand3 = &one ; // <
operand4 = &one ; // ==
operand5 = &one ; // ==
operand6 = &Sched ReleaseQ Sched i ; // <=
operand7 = &Sched Re lea seQ Sched i p lus one ; // <=

}

The next step is to update the pointers and then let every thread perform
its own evaluation simultaneously with the other threads.

// coord ina tor updates va l u e s from arrays indexed wi th v a r i a b l e s
i f ( threadID == coord ina to r )
{

Sched ReleaseQ Sched i = Sched ReleaseQ [ Sched i ] ;
Sched Re l easeQ Sched i p lus one = Sched ReleaseQ [ Sched i +1] ;

}

// a l l t h reads ( t r a n s i t i o n s ) update t h e i r s t a t u s ( e va l ua t e guard )
a c t i v e s [ threadID ] = (* operand0 != *operand1 ) &

(* operand2 < *operand3 ) &
(* operand4 == *operand5 ) &
(* operand6 <= *operand7 ) ;
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9 Results

9.1 Experimental setup

Our experiments were performed on two different GPUs, an NVIDIA GeForce
GT 320M with 24 CUDA cores running at 450 MHz and an NVIDIA GeForce
GTX 275 with 240 CUDA cores running at 633 MHz, as well as on two
different CPUs, an AMD Opteron 16 Core 2.0 GHz and an Intel Core Duo
2.4 GHz.

An important part of testing the model is to make sure how many blocks
that the GPU can handle. Due to the SIMT Architecture mentioned in
Section 2.3.1, the number of blocks should never exceed the number of multi-
processors on the GPU and the number of transitions in the automaton
should never exceed the maximum amount of threads per block on the GPU.
The GT 320M GPU has 3 multi-processors so only 3 blocks could be used,
while the GTX 275 GPU has 30 multi-processors allowing us to have up to
30 blocks. Another important aspect is the time that the GPU is allowed to
run before it reboots. This is different from one GPU to another. We will
elaborate more on this in Section 9.3.

The experiments in this thesis consist of two different setups; one random
and one linear search. The linear search is always started on seed number
zero and progresses through all seed numbers linearly until either a successful
result is found or until the search reaches an error state. The random search
was performed with each block starting on a random seed number. It then
continues with a linear search until the time-limit for the GPU iss reached
or until a successful result is found. If the time-limit of the GPU is reached,
then new random seed numbers are generated and the blocks restart their
linear search.

9.2 Finding feasible scheduling paths

These experiments were conducted using both the random and the linear
search method. With the random search method a successful path was found
up to time unit 20 in the scheduling graph in Figure 5. However, the linear
search method was only successful up to time unit 12. We did 10 test rounds
for every time unit from 1 up to the highest reachable time unit with both
search methods. We measured the time it took to find a successful path for
each time unit in the scheduling graph.
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Figure 8: Search-time results up to 10 time units in the scheduling graph.

Figure 9: Search-time results between 11 and 12 time units in the scheduling
graph.
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Figure 10: Search-time results between 13 and 20 time units in the scheduling
graph.

Figures 8, 9 and 10 show the average time it took to find feasible schedul-
ing paths for time unit 1 up to 20 in the scheduling graph in Figure 5. We can
observe that the linear search was unable to find paths, in a timely manner,
from time unit 12 and upwards. For more details, see Table 3, 4, 5 and 6 in
Appendix.

Figure 11 shows a schedule up to time unit 15 that our GPU model-
checker managed to find. Our CUDA program sends a unique path ID back
to the CPU if a scheduling path is found. This ID can then be decoded by
a corresponding C-program of the model on the CPU. During decoding, the
C-program logs the schedule, and it finishes by creating a Grasp schedule
like the one in Figure 11.

0 5 10 15

Task1

Task2

Task3

Figure 11: Example of a scheduling graph that the GPU model-checker man-
aged to find.
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9.3 Paths per second

We also did experiments to find out how many paths per second we could
traverse with the two GPU cards. In addition, we also compared the GPU
results with two other CPU platforms:

� AMD Opteron (16 core) 2.0 GHz CPU

� Intel Core2 Duo (2 core) P9400 2.4 GHz CPU

Table 2 shows the measured (average) paths per second in the timed
automaton for these four platforms. The GT 320M GPU could run for almost
twenty seconds straight before it needed to reboot, while the GTX 275 GPU
could only run for about one second. It is interesting to note that cheap and
outdated GPUs match more modern (and expensive) CPUs in terms of this
type of performance. The GT 320M, GTX 275 and the Intel Core2 Duo date
back to 2008/2009 while the AMD Opteron represents the state-of-the-art in
hardware.

Hardware Nr of paths/second
NVIDIA GeForce GTX 275 4875

AMD Opteron 4160 (16x260)
Intel Core2 Duo 470 (2x235)

NVIDIA GeForce GT 320M 300

Table 2: Paths per second on different hardware platforms.

Figure 12 shows the benchmark results from G3DMark2. This benchmark
measures how efficient the graphics cards can render, display and play movie
scenes. We can see that the GTX 275 and GT 320M card are not even close
to performance compared to newer cards such as the GTX 580. A note to
the reader is that the newest GTX card (GTX 590) has twice the amount
of CUDA cores (1024 cores) compared to GTX 580 and the NVIDIA Tesla
series offer even more computing power (up to 3000 cores).

2http://www.videocardbenchmark.net/gpu.php?gpu=GeForce+GT+320M
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Figure 12: G3D Mark benchmark-results for various graphics cards.
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10 Conclusion

The random search method was more effective than the linear one. It would
probably be even faster if there was a fast enough way to randomize numbers
in the GPU kernel code so the program could take fully randomized paths,
instead of just randomizing the seeds. This would prevent the automaton
from getting stuck in endless transition loops.

The results reached in this project do not show that it is currently possible
to use GPU model checking for online scheduling of self-suspending real-
time tasks. However, optimized code combined with a high-end GPU card
(with more CUDA cores) together with more complex search techniques could
perhaps make it possible. Since the search-problem is NP-hard it could be
interesting to look at new search methods using heuristics.

However, the speed we achieved (in terms of searches per second) with
low-end GPUs were surprisingly good compared to CPUs. Conclusively,
GPU model checking could be useful in verification purposes if more powerful
hardware was used with efficient search methods.

An interesting finding from this project is that the GPU (and the corre-
sponding CPU version) model-checker managed to find scheduling solutions
up to time unit 20 in the scheduling graph. UPPAAL-TIMES could not find
any scheduling path in the corresponding model.
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11 Future work

There are several improvements that could be done in order to get more
efficient model-checking using the GPU. First of all, the generated C-code
from UPPAAL-TIMES could be optimized so that fewer CUDA cores would
be needed to check guards in transitions. This would increase the number of
work-groups and hence increase the number of paths per second. The second
improvement would be to try out state-of-the-art GPUs such as NVIDIA
GeForce GTX 590 or NVIDIA Tesla K10. The third and most important
improvement would be to try out different search techniques.
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Appendix

Tables 3, 4, 5 and 6 show the measured time it took to find feasible sched-
ules. Rows represent the time units in the scheduling graph. The columns
represent the test results for each round and the last column presents the
average results from all 10 rounds. The presented results are represented in
milliseconds and the best result(s) for each time unit is written in bold font.

Table 3: Results for random search with GT320M GPU
TU 1 2 3 4 5 6 7 8 9 10 Avg

1 3.7 4.5 3.7 4.6 3.7 4.5 3.6 4.5 3.7 4.5 4.1
2 5.1 4.9 5.2 6 6.9 4.9 6 4.1 4.1 9 5.62
3 5.6 9.2 5.7 6.2 5.5 6.9 5.5 9.4 5.4 8.3 6.77
4 12 8.3 12.6 11.2 7.1 6.3 11.2 25.1 7.8 10.8 11.24
5 8.7 25.2 9.1 8.5 8 8 12.5 14 13.1 5.3 11.24
6 6.7 23.9 14.6 11.9 9.1 6.6 12.9 11.8 13.5 16.9 12.79
7 13.1 13.7 24.6 9.4 16.1 12.6 19.9 14.2 13 14.3 15.09
8 24.7 11.7 16.7 13.9 17 25.5 7.4 12 12.9 26.9 16.87
9 23.9 27.9 11.3 9.6 25.5 15.8 14.3 26.7 15.2 15.7 18.59
10 39.8 15 22.6 15 25.5 48.3 12.3 17.6 17.2 26.7 24
11 1670 5205 550 2885 8751 3581 29778 921 3814 278 5743.3
12 11864 16589 5913 17044 8970 28650 5866 7183 578 14719 11737.6
13 74928 409 7111 1078 21784 43096 1054 32118 17534 18181 21729.3
14 6074 19422 35317 11606 25971 26302 15573 34306 19027 13861 20745.9
15 19016 121718 58485 18790 1468 5177 875 10769 19934 27498 28373
16 6665 8984 46871 21690 10745 56228 41493 26598 26125 54023 29942.2
17 16140 4541 79927 18013 2086 46662 19005 5041 75717 89623 35675.5
18 70579 39524 18424 8248 44133 74074 145975 77567 71265 36494 58628.3
19 80315 27159 26428 288 21788 21244 22823 16550 53313 84995 35490.3
20 21575 1237 377 7276 54038 51608 10757 38180 114371 8608 30802.7

Table 4: Results for linear search with GT320M GPU
TU 1 2 3 4 5 6 7 8 9 10 Avg

1 4.7 3.7 4.5 5 4.6 4.7 4.5 4.4 4.6 4.4 4.51
2 5 4.8 4.9 5 5.7 6 5 4.1 4.1 4 4.86
3 5.4 5.3 5.3 5.3 5.3 5.1 5.3 5.4 4.3 5.4 5.21
4 4.7 4.8 4.9 5.6 5.6 5.6 4.8 6.1 6.7 5.6 5.44
5 6 6 6.2 6.1 6 6 6.2 6 5.8 6.1 6.04
6 6.3 5.7 5.7 6.4 6.6 6.5 5.6 6.3 5.7 6.5 6.13
7 6.8 6.7 6.8 6 6.8 6.8 6 6.9 7 6 6.58
8 7.1 6.3 6.4 7.2 7.4 6.3 7.2 6.4 6.3 7.2 6.78
9 7.7 7.6 7.7 6.9 7.8 6.7 7.9 7.4 6.8 7.6 7.41
10 7.9 7.2 7.2 7.1 8 8 7.2 8.1 8.2 8 7.69
11 7314 7315 7314 7315 7314 7315 7316 7314 7314 7314 7314.5
12 14934 14936 14937 14936 14935 14935 14936 14940 14933 14938 14936



Table 5: Results for random search with GTX275 GPU
TU 1 2 3 4 5 6 7 8 9 10 Avg

1 2.9 2.9 2.8 2.8 2.8 2.9 3 4.5 4.8 2.9 3.23
2 3.1 5.1 4.1 3.1 3.2 4.6 3.2 3.2 3.2 3.2 3.6
3 4.4 3.5 3.4 3.5 3.4 3.4 4.1 3.5 3.5 3.5 3.62
4 3.8 3.8 3.9 3.8 4.6 3.8 5.7 3.8 3.8 3.8 4.08
5 5.1 4.8 4.1 4.2 4.2 4.1 4.7 6.3 4.1 4.6 4.62
6 5.1 4.4 4.4 4.4 4.4 6.1 7.7 7.5 4.4 7.1 5.55
7 7.8 6.4 6.5 6.5 8.8 7.9 7.1 7.1 7.1 7 7.22
8 9.1 5.1 5.1 7.3 7.3 6.7 6.9 8.3 5.7 6.7 6.82
9 8.8 7.2 8.6 10.9 6.9 10.1 7 8.7 6.9 8.2 8.33
10 8.1 8.3 8.8 9.6 10.5 11.8 8.6 9 11.4 10.7 9.68
11 585 62 402 532 64 66 352 142 33 518 275.6
12 64 273 192 16 114 353 146 241 989 1127 351.5
13 2229 1812 389 3090 206 36 25 2260 1171 7964 1918.2
14 1822 1154 154 64 1321 319 459 28 1280 79 668
15 3006 1339 2658 145 3417 291 3754 859 2468 344 1828.1
16 139 3190 1257 213 2015 1558 50 2413 466 1448 1274.9
17 966 95 1041 2574 995 650 771 416 196 49 775.3
18 3499 1371 58 4367 2148 869 1393 1251 111 366 1543.3
19 521 32 87 4908 3334 1066 430 516 2501 1731 1512.6
20 2450 3088 352 1010 1282 377 901 767 494 2902 1362.3

Table 6: Results for linear search with GTX275 GPU
TU 1 2 3 4 5 6 7 8 9 10 Avg

1 4.6 2.7 2.8 2.9 2.8 2.9 2.8 3.8 3.2 2.8 3.13
2 3.1 3.1 3.2 3.2 3.2 3.2 3.1 3.2 3.1 3.2 3.16
3 3.4 3.4 3.3 5.4 3.4 3.4 3.4 3.4 3.4 3.4 3.59
4 3.7 3.7 3.7 3.7 4.7 3.7 3.7 3.7 3.7 3.7 3.8
5 4.1 5.3 5 4.2 4.1 4 4 4.1 4.1 4.1 4.3
6 4.3 5.6 4.4 4.4 4.3 5.8 4.4 4.4 4.4 5.4 4.74
7 4.7 4.7 4.6 4.6 4.7 4.6 4.6 4.6 4.7 4.6 4.64
8 4.9 7.1 5 5 5 5 5.1 4.9 6 4.9 5.29
9 6.3 8.1 5.2 5.3 5.3 5.7 5.2 5.2 5.3 5.2 5.68
10 5.5 5.6 5.6 5.6 5.5 5.6 5.6 5.5 7.1 7.9 5.95
11 714 714 714 714 714 715 714 715 716 714 714.4
12 1428 1432 1431 1418 1429 1431 1429 1430 1427 1427 1428.2


