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Utilization of combined remote sensing
techniques to detect environmental variables
influencing malaria vector densities in rural
West Africa
Peter Dambach1*, Vanessa Machault2, Jean-Pierre Lacaux2, Cécile Vignolles3, Ali Sié4 and Rainer Sauerborn5,1

Abstract

Introduction: The use of remote sensing has found its way into the field of epidemiology within the last decades.
With the increased sensor resolution of recent and future satellites new possibilities emerge for high resolution risk
modeling and risk mapping.

Methods: A SPOT 5 satellite image, taken during the rainy season 2009 was used for calculating indices by
combining the image’s spectral bands. Besides the widely used Normalized Difference Vegetation Index (NDVI)
other indices were tested for significant correlation against field observations. Multiple steps, including the
detection of surface water, its breeding appropriateness for Anopheles and modeling of vector imagines
abundance, were performed. Data collection on larvae, adult vectors and geographic parameters in the field, was
amended by using remote sensing techniques to gather data on altitude (Digital Elevation Model = DEM),
precipitation (Tropical Rainfall Measurement Mission = TRMM), land surface temperatures (LST).

Results: The DEM derived altitude as well as indices calculations combining the satellite’s spectral bands (NDTI =
Normalized Difference Turbidity Index, NDWI Mac Feeters = Normalized Difference Water Index) turned out to be
reliable indicators for surface water in the local geographic setting. While Anopheles larvae abundance in habitats is
driven by multiple, interconnected factors - amongst which the NDVI - and precipitation events, the presence of
vector imagines was found to be correlated negatively to remotely sensed LST and positively to the cumulated
amount of rainfall in the preceding 15 days and to the Normalized Difference Pond Index (NDPI) within the 500 m
buffer zone around capture points.

Conclusions: Remotely sensed geographical and meteorological factors, including precipitations, temperature, as
well as vegetation, humidity and land cover indicators could be used as explanatory variables for surface water
presence, larval development and imagines densities. This modeling approach based on remotely sensed
information is potentially useful for counter measures that are putting on at the environmental side, namely vector
larvae control via larviciding and water body reforming.

Keywords: Remote sensing, High spatial resolution, SPOT 5 satellite, Malaria, Rural West Africa, Burkina Faso, Geo-
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Background
Malaria is still widespread in Western Africa and results
in severe illness, death and hence in economic damage
to households and national economy. The desirable
overall use of countermeasures and strategies against
malaria and its vector, such as use of bed nets, larvicid-
ing, habitat reduction etc., is still below the needed
amount for showing a remarkable impact.
During the past two decades, remotely sensed data has

been used to describe and predict geographical and tem-
poral patterns in vector-borne disease transmission and
disease prevalence [1-3]. The basic idea behind the
remotely sensed assessment of malaria determinants is
to define environmental parameters that can be used to
identify areas with increased risk. One of the main goals
of this approach could be the detection of breeding
habitats or the mapping of vector densities through
remote sensing techniques, while some other studies
linked climate and environmental parameters directly to
malaria prevalence [2,4-6]. The suitability of habitats for
mosquito larvae breeding is dependent on the presence
and distribution of specific environmental variables (i.e.,
surface water, water related vegetation and distribution
and amount of precipitation) [7]. Studies mapping Ano-
pheles mosquito breeding habitats, transmission, or dis-
ease have been made in Africa [4,8-10] South and
Central America [11-14] and Asia [15,16]. Reliable infor-
mation about vector density and malaria transmission
risk is essential for understanding variations in disease
epidemiology and targeting intervention programs,

which are useful tools at the continental and national
scales, but are less appropriate in a context of local-
scale variations in disease patterns that often vary within
a few kilometers distance. Nevertheless, high local varia-
tion in malaria epidemiology is particularly common in
the Sahel region of Africa, where malaria is character-
ized by very focal and seasonal transmission [10,17-19].
In this paper we argue that, for the understanding of

local malaria ecology on a high resolution scale, an inte-
grated view on multiple influencing factors is helpful,
comprising the following objectives:

1. To detect surface water and water-related land
cover within the survey region.
2. To assign appropriateness for vector larvae breed-
ing to those land cover types.
3. To investigate the influence of environmental and
meteorological variables on larvae and adult vector
abundance.
4. To predict the adult Anopheles densities in vil-
lages using those variables as well as the surrounding
densities of larvae.
5. To validate the predicted vectorial risk using
ground captured Anopheles mosquitoes.

Methods
The study site is located in the North-Western part of
Burkina Faso in the Kossi district (Figure 1). The study
region shows altitudes around 200 m with increasing
elevations towards the West. The mean precipitation for

Figure 1 Digital Elevation Model of the survey region [20]. Classes were built using natural breaks (Jenks-Caspall-algorithm). The villages and
the study villages are presented respectively in blue and dark red.
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Nouna has been 817 mm per year over a period of the
last ten years, with about 90% of annual rainfall during
the rainy season (June to September). The monthly
maxima during the rainy season can reach up to 350
mm. The yearly average temperature of Nouna is 27.8°
C. The North Western savannah regions of Burkina
Faso are a malaria holo-endemic area with a marked
seasonality. The study took place between July and Sep-
tember 2009, in 12 villages of the region (amongst
which 10 were covered by the SPOT-5 satellite scene).
Satellite images from the SPOT-5 (Satellite Pour l’Ob-

servation de la Terre) were programmed and acquired
for October 12th 2009, during the rainy season. Data
included three spectral bands at 2.5 m spatial resolution
(green, red and near infrared - NIR). One band for the
short wave infrared (SWIR) was also available at 10 m
spatial resolution. The three first bands were upscaled to
10 m and stacked with the fourth 10 m band. All images
were level 3 pre-processed (orthoimages), with map pro-
jection UTM zone 30 N, and datum WGS 84. In the cen-
ter of the satellite scene, which was 60 × 60 km, the
district capital Nouna is located at 12° 44’ N; 3° 51’ W.
A Digital Elevation Model (DEM) at 90 m spatial reso-

lution was available from the Shuttle Radar Topography
Mission (SRTM version 4.1) [20,21]. It was resampled at
10 m spatial resolution.
Weekly day and night Land Surface Temperatures

(LST) were extracted from MODIS (Moderate Imaging
Spectroradiometer) images at 1 km spatial resolution for
the full duration of the field work. The freely available
MODIS Reprojection Tool [22] was used to extract LST
values and to project the resulting images. The weekly
LSTs were averaged for the survey region.
The TRMM (Tropical Rainfall Measurement Mission)

daily data at 25 km spatial resolution were downloaded
for the duration of the survey period including an addi-
tional month, for calculating the cumulated precipita-
tions within different time lags before larvae and adult
mosquito captures respectively.
The data analysis was based on the conceptual

approach of tele-epidemiology developed by CNES, the
French Space Agency [23]i.e. i- assembling and analyz-
ing multidisciplinary in-situ datasets to identify the main
biological and physical mechanisms at stake in order to
highlight the main factors implied in the diseases spatial
and temporal distribution; ii- remote-sensing monitoring
of environment linking the disease with the parameters
previously identified with the aim to obtain well adapted
products from space; iii- modeling to generate predictive
environmental risk maps (Figure 2). This methodology
has been previously applied successfully for the Rift Val-
ley Fever in North Senegal [24,25] and for urban malaria
in Dakar [26,27]. The basic requirement for malaria to
occur is the presence of the vector, Anopheles. The

abundance of larvae and adults is directly linked to the
presence, distribution and persistence of water bodies
(puddles, ponds...). Based on this knowledge, the first
step of this present study was the detection of surface
water (hereafter called step 1). The second part (here-
after called step 2) analyzed the environmental para-
meters in and around the water collections, that could
be related to larvae presence and abundance, and the
third step (hereafter called step 3) aimed at identifying
the relationships between the predicted larval produc-
tion, the environmental and meteorological information
with the ground recorded Anopheles densities, repre-
senting a risk indicator for human population.
A Geographic Information System was built in ArcGIS

9.3, containing all remotely sensed and field data. All
environmental information was extracted at 10 m pixel
level or at village level and transferred into Stata 12
(Stata Corporation, College Station, Texas) for statistical
modeling. Multiple indices combining different spectral
bands were calculated from the SPOT-5 images using

Figure 2 Technical steps within the approach of Tele-
epidemiology.
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the band math functionality in ENVI 4.7 (Table 1) and
tested for statistical association with the presence of sur-
face water, Anopheles larvae and imagines abundance
according to the three steps above. Land Use and Land
Cover (LULC) from a supervised land cover classifica-
tion were available from a previous study [28].

Step 1: Mapping of surface water
Outlines of pools and ponds (locally called “marigots”),
in which continuous larvae sampling was performed,
were mapped using a GPS device, and transferred to the
GIS. Points, further called presence points, were

generated in the center of all 10 m pixels that were
overlaid by the shape of a water body, even for small
areas. Additional points, called absence points, were ran-
domly generated outside of the pools. A total of 482
presence points and 1978 absence points were created.
The values of every indicator, as well as the LULC class
and the altitude (from the DEM) were extracted at every
presence and absence point. The linearity of the rela-
tionship between the outcome and each explanatory
variable was assessed, except for the elevation that has
been included as dichotomous variable. Logistic regres-
sions were fitted to identify the remotely sensed envir-
onmental variables significantly associated with the
presence/absence of water at each point. The inversion
of the best multivariate model allowed generating a 10
m resolution map of the probabilities of presence of
water in the studied area.

Step 2: Mapping of Anopheles larvae
Mosquito larvae at all stages were collected daily from
September 2nd to October 23rd 2009 in the 12 study vil-
lages (2 villages per day with a weekly repetition (Figure
3)). Within and around the villages, the follow-up con-
cerned the most common habitats, i.e. the ponds that
ranged in size from several meters to hundred meters in
diameter. A standardized dipper with 200 ml volume
was used to collect larvae.
For each potential breeding site, the environment was

taken into account as a mean of the remotely sensed
ecological variables computed in and around the water
bodies (10 m ring). This scale allowed taking into
account the surface (e.g. surface cover as vegetation) and
nearby structures (e.g. shade) on potential habitats that
could have an impact on the larval presence and density.
Meteorological data was tested at different temporal
scales until finding the best statistical association with
the larvae presence. The linearity of the relationship
between the outcome and each explanatory variable was
tested.
A negative binomial regression was fitted to identify

those remotely sensed environmental and meteorological
variables significantly associated with larval density
recorded in each water body at each date. The sampling
scheme implied that some correlations could exist
between observations obtained in a same water collec-
tion since repeated observations could be influenced by
similar environmental factors. Yet, the basic requirement
for using classical statistics is the independence of
observations and neglecting autocorrelations in the ana-
lysis may result in overestimation of the strength of the
associations. Thus, a pond random effect was added to
the models, to account for variables related to the water
collection environment that could be significant deter-
minants of the larvae abundance but would not have

Figure 3 Installation of a mosquito light trap and giving
instructions to an operator in charge for trap surveillance.

Table 1 Different indices combining different spectral
bands were tested for statistical association with
presence of surface water in step 1 and for correlation
with larvae abundance in step 2

Index Calculation

NDVI [29]
Normalized Difference Vegetation Index

NIR − red
NIR + red

SAVI [30]
Soil Adjusted Vegetation Index

NIR − red
NIR + red

∗ (1 + L)

NDPI [24]
Normalized Difference Pond Index

SWIR − green
SWIR + green

NDWI Gao [31]
Normalized Difference Water Index Gao

NIR − SWIR
NIR + SWIR

NDWI Mac Feeters [32]
Normalized Difference Water Index Mac
Feeters

green − NIR
green + NIR

MNDWI Mac Feeters [33]
Modified NDWI Mac Feeters

green − SWIR
green + SWIR

NDTI [24]
Normalized Difference Turbidity Index

red − green
red + green

NIR near infrared; SWIR short wave infrared
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been measured in the study. The environmental indica-
tors found to be statistically associated with the Ano-
pheles larval density were computed and fed back into
the GIS, in and around every pond predicted at step 1
of the study in order to predict larvae abundance for the
whole study area.

Step 3: Mapping of adult Anopheles
In the 12 villages where the larvae collection took place,
adult mosquitoes were captured using light traps. Dur-
ing 9 weeks from September to November 2009 villages
were visited within the same time schedule as for the
larvae collection, with a repetition period of 6 days.
Depending on village accessibility, data was available
from 5 to 7 visits. Each day, in 2 villages in the same
region light traps were installed. In each village 3 places
were chosen where a light trap was placed inside and
outside a house respectively. Those pairs of light traps
were installed in a distance of approximately 100 m
from each other to detect possible local differences in
vector abundance between different places within one
village. The traps inside the houses were installed near
the sleeping places if equipped with an untreated bed
net, the traps outside were put beside the house within
the common patio, where people stay in the evenings
(Figure 3). Light traps were connected to the batteries at
6 pm and disconnected and closed at 6 am. All mosqui-
toes caught in the light traps were transported to the
research centers laboratory for species and gender
determination.
The linearity of the relationship between the outcome

and each explanatory variable was verified. Then, a
negative binomial regression with a village random
effect was fitted to predict the density of adult Ano-
pheles caught in each village (mean of all the traps) at
each date of the ground work using remotely sensed
environmental and meteorological predictive variables,
as well as larval densities predicted in step 2. As the
sampling scheme implied that some correlations could
exist between observations from the same village, a ran-
dom effect was added at the village level.
To predict the adult Anopheles densities in non-sur-

veyed villages for every day of the study period, the
environmental indicators that were found to be statisti-
cally associated with the adult Anopheles density were
computed in buffers of 500 m around the villages, in
accordance with the flight range of emerged mosquitoes
from their breeding habitat [34-36].

Results
Step 1: Mapping of surface water
A description of the distribution of the remotely-sensed
variables used at this step is presented in Table 2. Sig-
nificant correlations were found in uni- and multivariate

analysis between the NDWI Mac Feeters (Normalized
Difference Water Index), the NDTI (Normalized Differ-
ence Turbidity Index) and the DEM (Digital Elevation
Model) amongst 2,460 observations of the presence/
absence of ponds at 10 m pixel level (Table 3). The
DEM shows differences in altitude between study vil-
lages of about 100 m (Figure 1). Even if the contrast of
mean elevation between presence and absence points
was low, a significant association was highlighted
between a low elevation and an increased probability for
the presence of ponds. While the NDWI Mac Feeters
was positively correlated with the presence of environ-
mental surface water, the NDTI was found to be a pro-
tective factor.
Predictions of the probability for the presence of

ponds allowed to calculate the area under the ROC
(receiver operating characteristic) curve at 0.99 (95%
confidence interval: 0.99 - 1.00). The ROC curve is a
visualization of the sensitivity, or true positive rate, vs.
false positive rate for a binary classifier system whose
discrimination threshold is varied. The inversion of the
model and the extrapolation for the whole study area
allowed generating a map of the probability of presence
of water bodies. The application of a cut-off value on
those probabilities provided a raster map of the pre-
sence/absence of water at 10 m spatial resolution. The
filtering (closing filter) and vectorization allowed trans-
forming those maps into maps of ponds. A total of
4,600 water bodies were detected which sizes ranged
from 100 to about 5,000 m2.

Table 2 Description of the quantitative remotely-sensed
explicative variables associated with the presence of
ponds

Variable Water
present

Water absent

n observations =
2460

n = 482 n = 1978

NDTI Range -0.25; -0.01 -0.26; 0.05

Mean and 95% CI -0.14 [-0.15;
-0.15]

-0.10 [-0.10;
-0.09]

25-50-75 percentiles -0.20; -0.13;
-0.10

-0.13; -0.09;
-0.06

NDWI Mac
Feeters

Range -0.19; 0.42 -0.39; 0.11

Mean and 95% CI 0.12 [0.11;
0.14]

-0.17 [-0.18;
-0.17]

25-50-75 percentiles 0.03; 0.13; 0.25 -0.21; -0.17;
-0.14

Elevation In
meters

Range 253; 292 253; 292

Mean and 95% CI 266 [266; 267] 268 [268; 269]

25-50-75 percentiles 262; 265; 267 261; 268; 274
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Step 2: Mapping of Anopheles larvae
The Anopheles larvae presence/absence (164 observa-
tions positive for larvae and 3 negative) and the larval
density were recorded during September-November
2009. A total of 16 ponds were digitized in the GIS. All
the observations associated with those 16 collections
were included in the analysis, for a total of 73 observa-
tions. Description of the distribution of the remotely-
sensed and meteorological variables used at this step is
provided in Table 4. Results of the environmental and
meteorological determinants of the Anopheles larval
density recorded during the field work are presented in
Table 5.
Those variables significantly associated with the larval

density in multivariate analysis were the mean of the
NDVI in and around the ponds and the current night
Land Surface Temperature (night LST). The NDVI was
negatively associated whereas the LST was positively
associated with the Anopheles larval density in ponds.

The results of the likelihood ratio test (p < 0.001)
showed that the random effect model was significantly
different from a model fitted without accounting for the
pond effect. Predictions of the larval densities for each
observation allowed the calculation of Spearman correla-
tion with the observed densities at 0.55, showing med-
ium correlation between the tested variables. Daily maps
were drawn by inverting the global model predicting the
Anopheles larval density for each water collection
detected at step 1, for the full duration of the follow-up.
Those maps were used as basis of step 3.

Step 3: Mapping of adult Anopheles
During the study period, 99% of the Anopheles caught in
the traps were Anopheles gambiae s.l. and 1% Anopheles
funestus. For both species, 89% of caught mosquitoes
were female, 11% were male. The total larval production
(surface water predicted in step 1 multiplied by the lar-
val density predicted in step 2 for a given date) in the

Table 3 Environmental factors significantly associated with the presence of ponds in the 10 meter pixels

Logistic regression

Univariate ** Multivariate

Number of obs. = 2460 Coef. 95% CI* p-value Coef. 95% CI* p-value

NDTI

Per unit increase -16.80 -18.91 - -14.69 < 0.0001 -38.81 -43.63 - -28.00 < 0.0001

NDWI Mac Feeters

Per unit increase 34.26 30.55 - 37.98 < 0.0001 43.55 38.54 - 48.77 < 0.0001

Elevation

Inferior to 270 m 1 1

Superior or equal to 270 m -1.03 -1.26 - -0.79 < 0.0001 -1.57 -2.22 - -0.92 < 0.0001

* 95% confidence interval

** Only the variables significantly associated in the multivariate model

Logistic regression

Table 4 Description of the quantitative remotely-sensed and meteorological explicative variables associated with
Anopheles larval densities in ponds

Variable Anopheles larval
density* < 28

Anopheles larval density*
> = 28 and < 47

Anopheles larval density*
> = 47 and < 82

Anopheles larval
density* > = 82

n
observations
= 73

n = 17 n = 19 n = 18 n = 19

NDVI (mean within pond +
10 m ring)

Range -0.02; 0.21 -0.12; 0.30 -0.12; 0.30 -0.12; 0.30

Mean and
95% CI

0.07 [0.04; 0.11] 0.09 [0.04; 0.14] 0.04 [-0.01; 0.10] 0.01 [-0.04; 0.05]

25-50-75
percentiles

0.00; 0.05; 0.13 0.00; 0.05; 0.21 -0.01; 0.04; 0.05 -0.05; 0.00; 0.05

Night LST (weekly mean for
the survey area) In °C

Range 20.5; 23.1 20.5; 23.1 20.5; 23.1 21.2; 23.1

Mean and
95% CI

21.4 [21.0; 21.8] 22.0 [21.6; 22.4] 21.9 [21.5; 22.3] 22.5 [22.2; 22.7]

25-50-75
percentiles

20.5; 21.1; 21.9 21.1; 22.1; 22.6 21.1; 21.9; 22.7 21.9; 22.6; 23.0

* Larval density = number of larvae per sample (8 dips per pond per date). Categories were chosen following quantiles.
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buffers around the villages was not significantly asso-
ciated with the number of Anopheles caught in the
traps. None of the LULC classes extracted from the
supervised classification was associated with the adult
densities. Nevertheless, other environmental (NDPI) and
meteorological (day LST and rainfall amount) factors
were significantly associated with the adult densities
(Tables 6 and 7). On the basis of the multivariate nega-
tive binomial regression, adult Anopheles predictions for
the 10 study villages covered by the SPOT image were
made for all capture dates between September 2nd and
October 23rd 2009. The comparison with actual values
is presented in Figure 4. Figure 5 is the prediction map
of Anopheles vector densities for October, 1st, 2009, for
the 37 villages included in the SPOT-image outline.

Discussion
The present study allowed drawing predictive high-reso-
lution risk maps for malaria vector abundance in a rural
area following three modeling steps: the detection of
water bodies, the larvae abundance in those water
bodies and the adult Anopheles densities in villages. In
the multivariate models for all three study steps, there
was more than one relevant influencing factor for the
presence of surface water as well as for Anopheles larvae
and imagines. Due to the close interweavement of fac-
tors influencing the surface water presence and vector
larvae and imagines abundance, the number of used and
combined techniques is comparably higher than in stu-
dies that focus on a single step, e.g. detection of appro-
priate larval habitats or prediction of vector density.

Table 5 Meteorological and environmental factors associated significantly with Anopheles larval density in ponds

Negative binomial regression with pond random effect

Univariate ** Multivariate

Number of obs. = 73 Number of ponds = 16 Coef. 95% CI * p-value Coef. 95% CI * p-value

NDVI
(mean within pond + 10 m ring)
Per unit increase

-2.64 -4.93 - -0.34 0.024 -3.20 -5.36 - -1.03 0.004

Night LST
(weekly mean for the survey area)
Per °C increase

0.33 0.18 - 0.48 < 0.0001 0.36 0.21 - 0.50 < 0.0001

* 95% confidence interval

** Only the variables significantly associated in the multivariate model

Negative binomial regression with pond random effect

Table 6 Description of the quantitative remotely-sensed and meteorological explicative variables associated with the
adult Anopheles densities in villages

Variable Anopheles adult
density* < 110

Anopheles adult density
> = 110 and < 145

Anopheles adult density
> = 145 and < 240

Anopheles adult
density > = 240

n
observations
= 55

n = 12 n = 15 n = 14 n = 14

NDPI
(mean in 500 m buffer around
study villages)

Range 0.06; 0.13 0.06; 0.13 0.06; 0.13 0.06; 0.13

Mean and
95% CI

0.09 [0.07; 0.10] 0.08 [0.08; 0.09] 0.08 [0.07; 0.09] 0.09 [0.08; 0.10]

25-50-75
percentiles

0.07; 0.08; 0.09 0.07; 0.09; 0.10 0.07; 0.08; 0.08 0.08; 0.09; 0.10

Day LST(weekly mean for the
survey area)
In °C

Range 27.0; 33.0 26.2; 33.0 23.1; 30.6 23.1; 27.7

Mean and
95% CI

29.9 [29.0; 30.9] 29.6 [28.8; 30.4] 26.9 [25.6; 28.2] 24.5 [23.8; 25.3]

25-50-75
percentiles

29.5; 29.8; 30.4 28.7; 30.0; 30.3 24.4; 27.7; 28.7 23.5; 23.8; 25.4

Rainfall amount (sum during 15
preceding days for each village)
In mm

Range 22.1; 92.0 15.3; 147.4 22.1; 168.4 38.1; 220.2

Mean and
95% CI

55.2 [39.6; 70.8] 51.9 [34.0; 69.7] 91.2 [64.3; 118.2] 145.7 [114.8; 176.6]

25-50-75
percentiles

36.6; 46.5; 78.7 25.6; 38.1; 73.6 41.2; 83.3; 131.2 131.3; 148.8; 175.3
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Step 1: Mapping of surface water
The digital elevation model turned out to be an indica-
tor for surface water presence and swampy areas even
in the survey region’s setting with little differences in
local altitudes, while from survey regions that are more

heterogeneous and hilly this correlation and even its
influence on malaria parasite prevalence has already
been stated [37]. The NDWI Mac Feeters was positively
correlated with the presence of water, in line with the
fact that it is an indicator that increases with open

Table 7 Meteorological and environmental factors associated with adult Anopheles abundance in Nouna region in
September-November 2009

Negative binomial regression with village random effect

Univariate Multivariate

Number of obs. = 55
(Nights withmosquito captures) Number of villages = 10

Coef. 95% CI * p-value Coef. 95% CI * p-value

NDPI
(mean in 500 m buffer around study villages)

Per unit increase 6.01 -1.36 - 13.38 0.110 7.52 0.77 - 14.27 0.029

Day LST
(weekly mean for the survey area)

Per °C increase -0.16 -0.19 - -0.12 < 0.0001 -0.16 -0.20 - -0.12 < 0.0001

Rainfall amount (sum during 15 preceding days for each village)

Per 10 mm increase 0.06 0.04 - 0.08 < 0.0001 NS

* 95% confidence interval

Binomial negative regression with village random effect. Univariate and multivariate analysis

Figure 4 Captured (blue) and predicted (red) Anopheles numbers for 10 study villages with continuous larvae sampling and position
of buffer zone within the satellite scene for the duration of mosquito captures (2nd September - 23 rd October 2009).
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water presence, having been previously used for water
detection [26,27]. The NDTI, initially designed to
describe water turbidity, increases when water bodies
become muddy and have spectral reflectance similar to
bare soils [24] so it was logically negatively associated
with the presence of water.
The smallest pond recorded on the ground covered

one 10 m pixel so the direct water detection - using
indices thresholds coupled with photointerpretation
[24,25] - was not appropriate. Indeed, it is commonly
stated that object detection is feasible only when the
object size is at least 1.5 times larger than the pixel size.
Instead, statistical modelling allowed to benefit from
several remotely sensed data sources that could be put
together to predict the probability of presence of ponds.
This methodology already proved to be efficient for
detection of small Anopheles breeding sites in urban set-
tings [27]. The pixels that were predicted as belonging
to water bodies were grouped into water collections as
single objects, as it has been done in the North of Sene-
gal for the mapping of ponds harbouring larvae for Rift
Valley Fever vectors [24,25]. Indeed, important predic-
tors that could further be related to the presence of

larvae, such as shade around the collection, were water
body-related. In consequence, they had to be mapped at
the level of the water collection and not at the pixel-
level.
Step1 took advantage of the availability of a high reso-

lution SPOT image that was acquired at the time of the
field collections and that allowed to predict the presence
of relatively small ponds recorded on the ground. As the
image was taken during the rainy season, maximum
water collections were predicted, that could further be
weighted depending on the season. Even at 90 m spatial
resolution, the DEM provided useful information for
mapping the surface water and it should be expected
that a DEM with an increased spatial resolution would
improve the prediction by highlighting small altitude
contrasts.

Step 2: Mapping Anopheles larvae
The findings were generally in line with the findings of
other studies but show some particularities due to the
very high resolution remote sensing approach. The
NDVI at this scale turned out to be a hindering factor
for larval production in contrast to most studies that
utilize satellite imagery at a lower scale [38-40]. As far
as the authors are aware, this correlation is unique to
this study but may be reverse if changing towards a dif-
ferent scale. In the present study, the NDVI could have
been a proxy of shade on the water collection or surface
vegetation that are both usually related to lower Ano-
pheles larval densities [41-43]. In consequence, the nega-
tive association between NDVI and the larval density
was coherent with the biological mechanisms of larval
development already highlighted in ground studies.
The night LST during the ground prospecting days

was significantly positively related to the Anopheles lar-
val densities in the water collections. In breeding sites,
the entire development cycle from egg to the emerging
imago can be completed under favorable conditions.
This cycle’s duration can vary between 1 and 3 weeks,
depending on water and air temperatures, assuming suf-
ficient food availability. Its length shortens with tem-
perature increase [44] in accordance with the
observation that LST was significantly positively asso-
ciated with the density of larvae. Night LST showed
stronger correlation than day temperature, probably due
to the decreased impact of solar radiation and a more
representative portrait of the average water temperature.
The cumulated rainfall during the 15 days preceding

the day of larvae collection was positively associated
with the low/high densities of larvae (results not shown)
in univariate analysis. Rainfall patterns steer the avail-
ability of surface water for mosquito larvae breeding. In
this study, only flooded water collections were included,
so rainfall was already taken into account by definition.

Figure 5 Adult Anopheles predictions for 37 villages within the
satellite scene of SPOT 5 for the 1st October 2009. Data used
for the predictions in all 40 villages have been derived from villages
within the “base zone for calculations”, the zone in which data was
taken during fieldwork.
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Nevertheless, the amount of rainfall could be a proxy for
the persistence of water bodies, providing sufficient time
for larvae to develop. On the other hand, rainfall might
be a surrogate variable for global larval productivity
within a region.
Step 2 benefited from the high spatial resolution of

the SPOT image and the high temporal resolution of
the meteorological data. Indeed, rainfall and temperature
were taken into account at coarse spatial resolution (vil-
lage and study area levels) which was consistent with
scales of the meteorological heterogeneity. Nevertheless,
the daily or weekly repetition of data was necessary for
evaluating the evolutions of local conditions favourable
for larvae development.

Step 3: Mapping adult Anopheles
The multivariate model predicting the Anopheles adult
densities at the village level included an environmental
and a meteorological variable, which allowed recording
of a spatial (using NDPI in 500 m buffers around the
villages) effect that differed between villages and a tem-
poral effect (using weekly LST).
The NDPI was correlated with the number of cap-

tured mosquitoes. Increasing values for the NDPI char-
acterize the presence of mixed pixels that show both,
water and vegetation. The presence of this mixed envir-
onment can be seen as an ideal prerequisite for emer-
ging imagines to rest. In consequence, the NDPI was
logically associated positively with the Anopheles adult
densities.
As a meteorological factor, night LST was not signifi-

cantly associated with the adult mosquito density
whereas day LST was negatively associated. The higher
the day LST, the lower the number of mosquitoes
caught, which may indicate higher environmental stress,
making it more difficult to survive or search for blood
meal. Higher day LSTs in this region also go hand-in-
hand with a lower relative humidity, especially during
the rainy season. Lower environmental air humidity is
less appropriate for mosquitoes survival [45] and blood
meal retrieval success [46].
The cumulative amount of rainfall in the 15 preceding

days was significantly positively correlated with the
adult Anopheles density in univariate analysis. This is
likely to be explained by the increased number and
extended outlast of larval habitats. It can also be an
indicator of humid air conditions that favors adult mos-
quito survival.
The prediction for larval densities in environmental

habitats within the buffer zone around mosquito capture
points (500 m) was not significantly correlated with the
imagines abundance. In extrapolating the prediction
models for water collections and larval densities to

assess adult Anopheles densities, some errors were
accepted, such as follows.

• Randomly created points for the absence of surface
water did possibly fall to some extent into zones
that were covered with water or had high soil
humidity. In consequence, the map of water collec-
tion could have been biased. Here, a more detailed
study of the situation around the study villages
would be needed, with the collection of ground
absence points (i.e. absence of water).
• The quality of the validation of the prediction of
larval densities with actual ground values was mod-
erate, larger field dataset collections may improve
the accuracy of the models.
• Working with a single satellite image, the positions
and in particular the dimensions of ponds and other
surface water were static and did not take into con-
sideration the possible change in circumference after
rainfalls or longer periods of continuous evaporation.
The acquisition of several images could improve this
point, as well as the modeling of the size of the
ponds depending on rainfall amount and distribution
as it has been done in North Senegal [25].
• Step 2 was undertaken to model larval densities, as
no multivariate model could have been adjusted to
predict the presence/absence of larvae. In conse-
quence, the water collections that were not breeding
sites could have been misclassified.

Ground entomological data
The field work undertaken in the Nouna region in the
2009 rainy season showed that most of the Anopheles
caught in traps were An. gambiae s.l. that are known to
be vectors for malaria. In consequence, risk maps drawn
in the present study, may be seen as basis information
for malaria risk mapping as the location of the vector’s
larval habitats and their dynamics are the primary deter-
minants of the spatial and temporal distribution of
malaria transmission. Then, in addition to this entomo-
logical approach, it should be emphasized that malaria
transmission occurs only if a competent infected vector
meets a sensitive human population; if a Plasmodium
reservoir is present.
Data was collected from September to November, the

period representing the peak and outgoing rainy season.
Onset of precipitations is volatile during the last years
but usually starts in June. The adult vector abundance,
and with some delay malaria transmission find their
peak around September. In consequence, the risk pre-
dicted in the present study can be seen as the maximum
annual entomological malaria risk. Even given the much

Dambach et al. International Journal of Health Geographics 2012, 11:8
http://www.ij-healthgeographics.com/content/11/1/8

Page 10 of 12



lower malaria transmission during more than 6 months
due to drastically reduction of environmental habitats
and rainfall, an extended future study including more
survey month could allow to better understand the year
round vector dynamics. Still little is known about the
vector resting places during dry season and the process
of re-emergence in rainy season.
Only the ponds have been followed-up in and around

the study villages while small water collections that are
known to be seasonally productive breeding sites of An.
gambiae s.l. were not included for logistical reasons. It
is argued that the larval productivity recorded at pond
level may have been a surrogate evaluation of the total
productivity in the villages. Nevertheless, it cannot be
excluded that the lack of association between larval and
adult densities may partly rely on this partial sampling.
In addition, the use of light traps to catch adult mosqui-
toes may have biased the estimates of vector densities -
e.g. depending on the density [47] and have introduced
noise that could also explain the absence of significant
association between the larval and adult densities.
In general, differences in vector abundance between

villages may not only be subject to environmental, but
also anthropogenic variables. Within the study area,
there were no vector control interventions performed
during the study year and the use of bed nets was
equally distributed. In consequence, no bias was intro-
duced when evaluating entomological figures.

Conclusion
Remotely sensed environmental and meteorological data
allowed the prediction of water presence in the region
of Nouna, as well as the dynamic prediction of Ano-
pheles larval and adult densities. While high resolution
satellite data provided possibilities for spatial mapping
of vector abundance, the amount and regional distribu-
tion of precipitations and the temperature are the dri-
vers for vector development; the temporal component of
the risk model. The results of the present study could
be seen as the basic element of a dynamic system aim-
ing at facilitating real-time monitoring of human health
in rural Burkina Faso. The derived risk maps may keep
validity for several years up to a decade, since the geo-
graphic factors change only within small limits. Having
ground truth data on the region’s characteristic environ-
mental features, the extension of this approach to neigh-
boring regions should be possible with a significantly
reduced need for preparatory fieldwork. With the acqui-
sition of additional satellite images and weather data,
predictions on vector abundance for bordering areas can
be performed. For usage in additional regions, the tech-
niques appliance can be probably performed with drasti-
cally decreased costs due to the omission of extensive
fieldwork components.
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