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Abstract

Predictive maintenance is becoming more and more
important in many industries, especially taking
into account the increasing focus on offering uptime
guarantees to the customers. However, in automo-
tive industry, there is a limitation on the engineer-
ing effort and sensor capabilities available for that
purpose. Luckily, it has recently become feasible to
analyse large amounts of data on-board vehicles in
a timely manner. This allows approaches based on
data mining and pattern recognition techniques to
augment existing, hand crafted algorithms.

Automated deviation detection offers both
broader applicability, by virtue of detecting unex-
pected faults and cross-analysing data from differ-
ent subsystems, as well as higher sensitivity, due
to its ability to take into account specifics of a se-
lected, small set of vehicles used in a particular way
under similar conditions.

In a project called Redi2Service we work towards
developing methods for autonomous and unsuper-
vised relationship discovery, algorithms for detect-
ing deviations within those relationships (both con-
sidering different moments in time, and different ve-
hicles in a fleet), as well as ways to correlate those
deviations to known and unknown faults. In this
paper we present the type of data we are working
with, justify why we believe relationships between
signals are a good knowledge representation, and
show results of early experiments where supervised
learning was used to evaluate discovered relations.

1 Introduction

Most industries nowadays are moving towards more
sophisticated cyber-physical systems, with new
challenges arising from increased software and sys-

tem complexity. Developing and, even more im-
portantly, maintaining those systems requires a sig-
nificant engineering effort. For commercial ground
vehicle operators (such as bus and truck fleet own-
ers), the maintenance strategy is typically reactive,
meaning that a fault is fixed only after it has be-
come an issue affecting vehicle’s performance. Up-
time guarantees consist in scheduling component
maintenance and replacement based on statistical
lifetime predictions.

The biggest difficulty in moving towards pre-
dictive maintenance, in the vehicle industry, lies
in limited budget for on-board sensors and the
amount of engineering time it takes to develop diag-
nostic algorithms. Predicting that there is a need
for maintenance before something breaks down is
virtually impossible to plan during vehicle develop-
ment cycle, especially if diagnostic algorithms need
to handle multiple different kinds of faults, work
in a consistent manner on a wide variety of vehicle
configurations, as well as for many different types
of operation under varying environment conditions.

The development costs of fault diagnostics in
the classical paradigm will keep growing, with the
current trend of increasing number of components
in vehicles and stricter requirements on their ef-
ficiency. The only solution seems to be augment-
ing engineering work with automated data analysis.
This has been made possible by the introduction of
low-cost wireless communication. Data mining can
now be performed on-board real vehicles as they
are being used. The subsystems that are critical for
safety or long-term health of the vehicle will always
use, to some degree at least, diagnostic mechanism
developed and tested by engineers, but there is a
lot of value to be gained from monitoring the state
of as many additional subsystems as possible.

Our approach is based on unsupervised discovery
of relations between various signals that are avail-
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able on the internal vehicle network. While it is
difficult to detect faults by looking at characteris-
tics of signals (such as road speed) in isolation, the
interrelations of connected signals are more indica-
tive of abnormal conditions.
The difference between our work and most other

approaches lies in the requirement that relation dis-
covery be done completely autonomously. While
engineers are often able to propose a large number
of “good” relations between various signals, those
are typically general enough to hold for all or al-
most all vehicles. A data mining system we aim to
develop, however, should be tightly connected to
a particular fleet of vehicles, either by geographic
region, vehicle configurations or type of operation.
Some of the relations that are useful for detecting
faults in long-haul trucks would be inadequate for
delivery trucks, for example. Today, it is not feasi-
ble to develop specialised diagnostic algorithms for
each of those cases, even though they would be very
useful.
Therefore, the two main benefits of automated

deviation detection are broader applicability and
higher sensitivity. The former is obtained by no
longer requiring an expert to target a particular
subsystem, analyse it in isolation, predict possible
faults, what their symptoms would be, and which of
those symptoms can be guaranteed to never appear
during normal operation. Instead, the data min-
ing approach can take a more “complete vehicle”
perspective, both cross-checking data from different
subsystems, as well as detecting faults nobody has
predicted can take place. There are many potential
problems that are currently not being monitored,
since the cost of hand-crafting diagnosis methods
for them is too high. We expect fully automatic
methods to be less reliable than engineered and
heavily tested diagnostic routines, but they are not
intended to replace, but rather supplement them.
Higher sensitivity can be achieved because un-

supervised deviation detection algorithms can take
a fleet-based approach, where “normal operation”
can be defined on a much smaller scale. There are
very few subsystems in a vehicle where manufac-
turers can afford to develop a diagnostic method
that is specialised (or at least parameterised) for
a particular geographical region or a particular us-
age pattern. In the case of pattern recognition ap-
proaches, it is very easy to define “standards” for
a particular location or for a particular type of op-

eration — or even for both at the same time, for
example by only comparing vehicles within a sin-
gle company. This can lead to earlier detection of
problems, where a fleet owner is alerted that a given
symptom is unusual for their vehicles, even though
the same symptom would be perfectly normal for
another operator. This is becoming more impor-
tant as new hardware and, especially, software ca-
pabilities in vehicles lead to higher customisability
of the manufacturers’ offer and mean that “one size
fits all” solutions are becoming less desirable.

This paper is organised as follows. We briefly
present related research in the next section, fol-
lowed by description of data we are working with in
Section 3. We discuss signal relations in Section 4
and ways to discover them in 5. We close by eval-
uation in Section 6 and conclusions in Section 7.

2 Related research

Automated data mining for vehicle applications has
previously been the topic of several papers. An
early paper by Kargupta et. al. [4] shows a sys-
tem architecture for distributed data-mining in ve-
hicles, and discusses the challenges in automating
vehicle data analysis. In Zhang et al. [9], being
able to do cross-fleet analysis (comparing proper-
ties of different vehicles) is shown to benefit root-
cause analysis for pre-production diagnostics. In
Byttner et. al. [1], a method called COSMO is
proposed for distributed search of “interesting re-
lations” (e.g. strong linear correlations that hold
for long periods of time) among on-board signals
in a fleet of vehicles. The interesting relations can
then be monitored over time to enable e.g. devi-
ation detection in specific components. A method
based on a similar concept of monitoring correla-
tions (but for a single vehicle instead of a fleet) is
shown in D’Silva [2]. In Vachkov [8], the neural
gas algorithm is used to model interesting relations
for diagnostic of hydraulic excavators. Contrary to
our work, however, both the papers by D’Silva and
Vachkov assume that the signals which contain the
interesting relations are known apriori. In [5], a
method for monitoring relations between signals in
aircraft engines is presented. Relations are com-
pared across a fleet of planes and flights. Unlike
us, however, they focus on discovering relationships
that are later evaluated by domain experts.
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Figure 1: Engine Coolant Temperature

3 Description of data

As a part of the Redi2Service project, we have
equipped 19 Volvo buses with the hardware capa-
ble of collecting data from the internal vehicle net-
work. Our setup has been in place since September
2011, giving us almost half a year worth of data
from their operation in western Sweden. The data
consists of over 100 signals that are measured with
a sampling frequency of 1 Hz. This results in a
volume of roughly 10GB of data per week. As an
example, in Figure 2 we plot the values of a signal
called Vehicle Speed over a half an hour episode.
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Figure 2: Vehicle Speed

This gives us access to data from a real-world
operation of those vehicles, without any artificial
modification to either the usage or condition of the
buses. On one hand, this makes the data extremely
valuable, but at the same time makes it difficult to
analyse, since we cannot assume that all the buses
are in the perfect initial condition. In fact, we are
already seeing symptoms that indicate significant
number of technical problems in some of them.
The most natural way of analysing such data is

by using histograms. This is not the only way,

of course, and there are a number of characteris-
tics that are not captured by a histogram, but this
is a good starting point. In the abstract, before
bringing human expert knowledge to the table, we
are interested in differences in signal characteristics
along two axes: between different time periods and
between different vehicles.

In this paper we will focus on the first one. We
need to analyse how does a particular signal change
in time, hopefully leading to a discovery of compo-
nents that are starting in good condition, slowly
wear out, until they reach a point where they can
be considered “broken” and they start to negatively
affect the performance of the whole bus.

A promising trend can be seen in Figure 1, where
we plot a sequence of histograms for the signal
called Engine Coolant Temperature over a period of
four months. Each horizontal line corresponds to
a set of 20000 data readings, presented as a colour
map histogram with logarithmic scale. The bar on
the right visualises how the value probabilities are
mapped into colours. It is interesting to note that
the actual amount of data we obtain from each bus
varies significantly in time, according to usage in a
given period. Therefore, while the Y axis in Fig-
ure 1 represents real time, it is definitely not linear,
as indicated by the dates shown.

This plot, however, reveals a critical flaw in look-
ing at signals in isolation. To a human expert Fig-
ure 1 does not indicate a trend corresponding to a
wearing out component, but rather an influence of
a well-known external condition: it is simply sig-
nificantly colder in January than it is in October.
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4 Signal Relations

One possible way to increase robustness against ex-
ternal influences is to look at relations between dif-
ferent but related signals. Our claim — supported,
to some degree at least, both by the data we have
been collecting now and by results of earlier ex-
periments — is that there exist a large number of
“interesting” relationships between signals and that
those are a better predictors of faults than charac-
teristics of individual signals alone.
One such example would be relation between sig-

nals Oil Temperature and the aforementioned En-

gine Coolant Temperature, depicted in Figure 3. It
is more difficult to visualise such relation across
multiple time periods, and so we have decided to
only present a scatter plot for October 2011 and for
January 2012, each containing 40000 readings.
As can be expected due to the basic laws of

thermodynamics, there is a strong linear relation
between those two signals. The plots are defi-
nitely not identical (for example, both signals reach
higher values in October), but there is a fundamen-
tal structure to the relation that has not changed.
Our goal is to capture this in a model. Faults
that affect one of the subsystems but not the other
would then introduce a systematic shift that would
change parameters of that model.

Figure 3: Scatter plot of Oil Temperature against Engine
Coolant Temperature, October and January

Of course, relations between signals can be ar-
bitrarily complex, but one aspect of the hardware
installed in our buses is it’s capability to perform
pattern recognition on-board. Right now we are
storing all the data on USB memories and only min-
ing this data off-line, in order to better understand

what we are dealing with. Ultimately, however, the
model estimation will be done on the vehicle and
only the result of it will be transmitted, wirelessly,
to a central server. There, they will be compared
with data from the past and from other members
of the fleet, and decision will be made whether any
deviations are interesting enough to show the user.
Due to limited computational power, we have

mostly limited ourselves to looking at linear mod-
els. We are investigating other solutions, however,
since non-linear relations are quite common.
An important resource is also a database called

Vehicle Service Records, which contains a detailed
information about every repair and maintenance
operation during the lifetime of a bus. It will al-
low us to not only inform the user that there is a
problem with their vehicle, but also what had to be
done to fix it last time similar thing happened.

5 Relation discovery

In general, it is far from trivial to evaluate ideas
we have presented in the previous sections. The
only true measure is the savings in maintenance ex-
penses once the system is deployed. However, as a
start, we have performed an experiment on a Volvo
VN780 truck, where we have been collecting values
of 21 signals, over 10 driving runs with four differ-
ent faults injected, as well as 4 runs under normal
operating conditions. Each episode lasted approx-
imately four hours, and took place in a controlled
environment under a variety of driving situations.
The exact details of faults are not important here,
but they include clogged of Air Filter and Grill,
leaking Charge Air Cooler and partially congested
Exhaust Pipe.
The method we used for discovering relations

consists of three steps. We start with data pre-
processing and removing the influence of ambient
conditions, but we do not discuss details here, inter-
ested readers can find them in [6]. We then proceed
to choose the most interesting signals to model, as
well as which signals should be used to model them.
Finally, we estimate model parameters.
The main challenge is to determine which rela-

tions exist between signals. We begin by modelling
each signal using all other signals as regressors:

Ψk = argmin
Ψ∈Rs−1

(

n
∑

t=1

(

yk(t)−Ψ⊤ϕk(t)
)2

)

(1)
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Figure 4: Model parameters (Lasso method)1

where s is number of signals, Ψk is a vector of
parameter estimates for the model of yk and ϕk is
the regressor for yk (i.e. the set of all other signals).
Following the LASSO (Least Absolute Shrinkage

and Selection Operator) method [7], we use an en-
ergy constraint Ck as an upper bound on the sum
of absolute values of all parameters for yk:

s−1
∑

i=0

||Ψk,i|| < Ck (2)

We gradually increase value of Ck, performing a
cross-validation test after each run. Initially, the
mean squared error of the model keeps decreasing,
but at some point it begins to increase, as it starts
to overfit. We then make a decision of whether
the MSE is sufficiently low to consider this model
to be good enough. Different Ck are optimal for
each model, with some never reaching below the
chosen MSE threshold and thus being considered
uninteresting for further analysis.
The second stage consists of finding and remov-

ing insignificant model parameters, namely those
which are unstable and with low values. To this
end, a sequence of estimates for each regressor
within a model is collected over a series of time
slices. We perform a t-test to find which of those
estimates are significant, i.e. which are non-zero.
This allows us to remove artificial signal dependen-
cies, leaving only strong relationships.
For calculating parameters for the selected mod-

els at difference times, we have tested two differ-
ent approaches. The first is the LASSO method as
outlined above, where we split data into a number
of time slices, and, for each slice, calculate opti-
mal model parameters. The second method is RLS
(Recursive Least Squares) method [3], which recur-
sively calculates the estimates over a sliding win-
dow defined by the forgetting factor:

1previously published in [6]

Figure 5: Model parameters (RLS method)1

P (0) = δ−1

initI Θ(0) = Θinit (3)

e(n) = y(n)− Θ⊤(n− 1)ϕ(n) (4)

g(n) =
P (n− 1)ϕ(n)

λ+ ϕ⊤(n)P (n− 1)ϕ(n)
(5)

P (n) = λ−1P (n−1)−g(n)ϕ⊤(n)λ−1P (n−1) (6)

Θ(n) = Θ(n− 1) + e(n)g(n) (7)

The reason we chose those two methods is that
LASSO approach allows an estimator to easily
adapt to models that are changing in time, at the
cost of possible oscillating behaviour if several mod-
els are of similar quality. On the other hand, RLS
offers very fast convergence, but — due to it’s in-
cremental nature — takes a long time to “catch up”
if the underlying relation changes.
As an example, Figures 4 and 5 show parameters

in “fuel inst = p1∗cac in p+p2∗ inmanif t” relation:
fuel inst (instantaneous fuel consumption) can be
approximated using cac in p (charge air cooler in-
put pressure) and in manif t (input manifold tem-
perature). We plotted estimates obtained by both
LASSO and RLS methods using colours to mark
which fault was injected during a particular run.
From among our four faults, only clogged Air

Filter (AF) can be discovered based on the fuel inst
relation above. There are other relations that are
useful for other faults, of course, but it is difficult
to get a clear overview of the complete solution.

6 Evaluation

As shown in the previous section, some faults can
be detected reasonable easily. Unfortunately, it
does not hold for all of them. Actually, the biggest
problem with the experiment as we have done it
is that some of the injected faults were easy, while
others were very difficult to detect.
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Figure 6: Classification error, Lasso and RLS1

We have decided to use supervised learning to
evaluate whether parameters of our models (both
from LASSO and RLS estimators) can be useful for
detecting faults. We tried three different classifiers:
linear regression, support vector machine (SVM)
and random forest. Both the forgetting factor (for
RLS) and the number of data slices (for LASSO)
are parameters for tuning. We have found that less
slices and larger forgetting factor gives better signal
to noise ratio and a more robust solution. However,
they are a lot less sensitive to faults that are only
apparent under certain conditions. This is due to
the smoothing larger slices and forgetting factor re-
sults in. As an example, a partially clogged air filter
will only have a visible effect if the engine is run-
ning at high power, since this is the only situation
when a large air flow is required.

We have run the classification task a number of
times, varying the time slice size the and forgetting
factor. It is easy to see from Figure 6 that choosing
too small forgetting factor for RLS is detrimental.
On the other hand, the effect of choosing too many
data slices is hardly visible.

In general, the random forest classifier outper-
forms both SVM and linear classifier by a pretty
large margin. We do not know why this is the case,
since we have not investigated the classification it-
self in great depth. More interestingly, RLS esti-
mator appears to give slightly better results than
the LASSO estimator, but it probably is not worth
the increased computational complexity.

As a final comment, the resulting classification
error appears to be rather high, but it is important
to take into account that this data set is a very
difficult one. There is a lot of different external
influences that disturb the “normal” operation of
a truck, and the low quality of available sensors
result in high levels of noise in the data. The lack
of dedicated sensors is also a problem: neither of
the four faults we have analysed is being monitored
in any way for current in-production vehicles.

7 Conclusions

In this paper we present a project that we are in-
volved in, developing an unsupervised algorithm for
discovering interesting relations between time series
of vehicle signal data, to be used for fault detec-
tion and predictive maintenance. We present our
approach and show initial evaluation, using super-
vised learning, on the data collected from a Volvo
truck during a fault injection experiment.
This is a step towards a system that would be

able to analyse on-board data on real vehicles and
detect anomalies in an autonomous way. Ideas pre-
sented here are very much work in progress and
there are numerous directions to extend those re-
sults. Primarily, we have not really answered the
question of how to distinguish “interesting” rela-
tions from “uninteresting” ones, especially taking
into account that we are looking for those that hold
most, but definitely not all, of the time.
It is also not quite clear if the supervised clas-

sification is the best way of evaluating usefulness
of discovered relations. We intend to explore other
possibilities, especially those connected to the ser-
vice records database we have access to.
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