

On Occurrence Of Plagiarism In

Published Computer Science

Thesis Reports At

Swedish Universities

Sindhuja Anbalagan

2010

Master Thesis

Computer Engineering

Nr:E4015D

Sindhuja Anbalagan Degree Project

 E4015D

2010

Dalarna University Tel: +46(0)23 7780000
Röda vägen 3S-781 88 Fax: +46(0)23 778080
Borlänge Sweden http://www.du.se

2

Programme

Master Programme in Computer Engineering- Applied

Artificial Intelligence

Reg number

E4015D

Extent

15 ECTS

Name of the student

Sindhuja Anbalagan

Year-Month-Day

2011-02-06

Supervisor

Jerker Westin

Examiner

Hasan Fleyeh

Company/Department

Department of Computer Engineering, Dalarna

University

Supervisor at

Company/Department

Jerker Westin

Title

On Occurrence Of Plagiarism In Published Computer Science Thesis Reports At Swedish

Universities

Keywords

Software clones , Software clones Detection, Clone Detection Methodologies, Plagiarism,

Software Plagiarism Detection, Data Analysis, Ephorus, Minitab, Statistical Analysis

Sindhuja Anbalagan Degree Project

 E4015D

2010

Dalarna University Tel: +46(0)23 7780000
Röda vägen 3S-781 88 Fax: +46(0)23 778080
Borlänge Sweden http://www.du.se

3

ABSTRACT

 In recent years, it has been observed that software clones and plagiarism are becoming an

increased threat for one‟s creativity. Clones are the results of copying and using other‟s work.

According to the Merriam – Webster dictionary, “A clone is one that appears to be a copy of an

original form”. It is synonym to duplicate. Clones lead to redundancy of codes, but not all

redundant code is a clone.

 On basis of this background knowledge ,in order to safeguard one‟s idea and to avoid

intentional code duplication for pretending other‟s work as if their owns, software clone

detection should be emphasized more. The objective of this paper is to review the methods for

clone detection and to apply those methods for finding the extent of plagiarism occurrence

among the Swedish Universities in Master level computer science department and to analyze the

results.The rest part of the paper, discuss about software plagiarism detection which employs

data analysis technique and then statistical analysis of the results.

Plagiarism is an act of stealing and passing off the idea‟s and words of another person‟s

as one‟s own. Using data analysis technique, samples(Master level computer Science thesis

report) were taken from various Swedish universities and processed in Ephorus anti plagiarism

software detection. Ephorus gives the percentage of plagiarism for each thesis document, from

this results statistical analysis were carried out using Minitab Software.

 The results gives a very low percentage of Plagiarism extent among the Swedish

universities, which concludes that Plagiarism is not a threat to Sweden‟s standard of education in

computer science.

 This paper is based on data analysis, intelligence techniques, EPHORUS software

plagiarism detection tool and MINITAB statistical software analysis.

Sindhuja Anbalagan Degree Project

 E4015D

2010

Dalarna University Tel: +46(0)23 7780000
Röda vägen 3S-781 88 Fax: +46(0)23 778080
Borlänge Sweden http://www.du.se

4

ACKNOWLEDGEMENT

 I begin with conveying my deepest gratitude to the Swedish government, for giving me

an opportunity to pursue a Master‟s degree in Computer Science.

 I would like to thank my supervisors Mr. Jerker Westin and Mr. Mevludin Memedi for

their continuous support and guidance for my thesis work. They were very kind to me and

approachable for any doubts and suggestions. Without their valuable suggestions, I guess this

thesis would not be possible. I sincerely thank both of them, for their endless source of ideas and

valuable hours of guidance for the past four months.

 I would like to thank Mr. Hasan Fleyeh, Mr. Siril Yella, Mr. Pascal Rebreyend, and Mr.

Mark Dougherty for their encouragements and valuable teachings.

 Finally I would like to convey my deepest love to my parents and friends for their

blessings and wishes.

Sindhuja Anbalagan Degree Project

 E4015D

2010

Dalarna University Tel: +46(0)23 7780000
Röda vägen 3S-781 88 Fax: +46(0)23 778080
Borlänge Sweden http://www.du.se

5

TABLE OF CONTENTS

ABSTRACT ………………………………………………………………… 3

ACKNOWLEDGEMENTS ………………………………………………… 4

1.INTRODUCTION

1.1 Terminologies ……………………………………………………. 9

1.2 Types of clones …………………………………………………... 9

2. CODE DUPLICATION

2.1 Reasons for code duplication …………………………………...... 11

2.2 Merits of code duplication ……………………………………...... 14

2.3 Demerits of code duplication …………………………………...... 15

2.4 Applications of clone detection ………………………………….. 15

3. DETECTION PROCESS

3.1 General Clone detection process: ………………………………... 16

4. DETECTION TECHNIQUES

4.1 Text Based Technique …………………………………………… 20

4.2 Token Based Technique …………………………………………. 25

4.3 Tree Based Technique …………………………………………… 27

4.4 PDG Based Technique ... 30

4.5 Metric Based Technique ………………………………………… 32

 4.6 Hybrid Techniques ………………………………………………. 34

5. MEASURES FOR AVOIDING CLONE DUPLICATION

5.1 Avoidance of clones …………………………………………….. 37

5.2 Removal of Code Clones ………………………………………… 37

5.3 Management of Clones …………………………………………... 38

6. PLAGIARISM

6.1 Introduction to Plagiarism ……………………………………….. 40

6.2 Detailed definition ……………………………………………….. 40

6.3 Reasons to avoid plagiarism ……………………………………... 41

Sindhuja Anbalagan Degree Project

 E4015D

2010

Dalarna University Tel: +46(0)23 7780000
Röda vägen 3S-781 88 Fax: +46(0)23 778080
Borlänge Sweden http://www.du.se

6

6.4 How to prevent plagiarism? ……………………………………… 41

7. PLAGIARISM DETECTION

7.1 Manual Plagiarism detection …………………………………….. 43

7.2 Software plagiarism detection …………………………………… 43

7.3 Ephorus ………………………………………………………....... 43

 7.4 Ephorus and its clone detection tool…………………………….... 45

 7.5 Other Software detection systems………………………………… 46

8. APPLICATION OF CLONE DETECTION TECHNIQUES

8.1 Plagiarism detection among Swedish universities ……………….. 49

8.2 Data Analysis…………………………………………………........ 49

8.3 Threshold Setting…………………………………………………. 56

8.4 Minitab Software …………………………………………............ 57

 8.5 Working on Minitab………………………………………………. 57

 8.6 Software Sensitivity test…………………………………………... 57

 9.RESULTS

9.1 Statistical Results ………………………………………………….. 59

9.2 Graphical Representation ………………………………………... 60

 9.3 Conclusion ………………………………………………………. 62

10.DISCUSSION AND FUTURE WORK…………………………………. 63

11. REFERNCES………………………………………………………………. 64

Sindhuja Anbalagan Degree Project

 E4015D

2010

Dalarna University Tel: +46(0)23 7780000
Röda vägen 3S-781 88 Fax: +46(0)23 778080
Borlänge Sweden http://www.du.se

7

List of Figures

Fig1: Tree diagram for the reasons of cloning ……………………………… 12

Fig2: General clone detection process ……………………………………… 17

Fig3: Working of plagiarism detection …………………………………....... 44

Fig4: Ephorus homepage with Swedish University documents…………….. 52

Fig5(i): Graphical Representation…………………………………………... 60

Fig5(ii): Graphical Representation…………………………………………... 61

List of Tables

Table 1: Allowed Document types in Ephorus ……………………………... 45

Table 2: Swedish Universities and samples ………………………………… 51

Table 3(i): Swedish Universities and percentage of Plagiarism ……………. 53

Table 3(ii): Swedish Universities and percentage of Plagiarism …………… 54

Table 4 : Thresholds and Counts……………………………………………. 56

Table 5: Statistical Output………………………………………………….... 59

Sindhuja Anbalagan Degree Project

 E4015D

2010

Dalarna University Tel: +46(0)23 7780000
Röda vägen 3S-781 88 Fax: +46(0)23 778080
Borlänge Sweden http://www.du.se

8

1. INTRODUCTION

INTRODUCTION:

 The objective of this paper is to review the methods for clone detection and to apply

those methods for plagiarism detection and to analyze the results. Various detection

methodologies will be analysed in detail.

 Copying a code fragment and then reuse by pasting with or without alterations is a

common activity in software development[1]. This type of reusing approach of the existing code

is known as code cloning and the reused code fragment with or without alterations is called a

clone of the original[2]. As a result of this reuse approach software systems often have a section

of code which is similar, called software clones or code clones.

 Cloning is often intentional [3] and are not necessarily harmful [4, 5] but there is a

consensus that clones should be detected, in order to overcome the maintenance difficulties

posed by such clones and to address a range of tasks that require the extraction of similar code

fragments.

 Several analyses show that, the software systems with code clones are more difficult to

maintain, than the ones without them [6]. Cloning not only produces codes that are difficult to

maintain, but also has a chance of introducing subtle errors [7]. Code clones are considered to be

the bad smells of the software system today [8]. The maintenance life cycle of software systems,

has been greatly affected by code clones.

 Therefore in order to maintain the life cycle of software systems and to avoid the adverse

effects of the software clones, it is beneficial to remove clones and prevent their introduction by

continuous monitoring of the source code during its evolution [9].

 There also cases in which clones are of special interest. For example, few software

engineering tasks such as understanding code quality, aspect mining, plagiarism detection,

Sindhuja Anbalagan Degree Project

 E4015D

2010

Dalarna University Tel: +46(0)23 7780000
Röda vägen 3S-781 88 Fax: +46(0)23 778080
Borlänge Sweden http://www.du.se

9

software evolution analysis, copyright infringement investigation, virus detection or detecting

bugs do require the extraction of similar code fragments.

 Nevertheless, attempts are begin undertaken to detect clones [10] and when once the

clones are identical then they can be removed through source code refactoring. Refactoring is

kind of maintenance activity, but to note that “refactorings may not always improve the software

with respect to clones” and “skilled programmers often created and managed code clones with

clear intent”[11]

1.1 Terminologies:

 The terminologies which are often used in the clone detection process are explained

below:

Clone Pair:

 A pair of code portions/fragments is said to be a clone pair, when there exists a clone

relation (identical or similar) between the both.

Clone class:

 A clone class is said to be maximal set of code portions/fragments, among which any of

the two code portions/fragments hold a clone relation between them (i.e.) they tend to form a

clone pair.

Clone class family:

 The group of all clone classes that have the same domain is known as clone class family

[12].

1.2 Types of clones:

The following types of clones are discussed in order to find the textual similarity [13],

(i.e.) in order to find the occurrence and extent of plagiarism among the Swedish universities.

Sindhuja Anbalagan Degree Project

 E4015D

2010

Dalarna University Tel: +46(0)23 7780000
Röda vägen 3S-781 88 Fax: +46(0)23 778080
Borlänge Sweden http://www.du.se

10

Type 1:

 Identical code fragments except for variations in layout, white space and comments.

Type 2:

 Syntactically identical fragments except for variations in identifiers, literals, types,

whitespace, layout and comments.

Type 3:

 Copied fragments with further modifications such as changed, added, removed

statements, in addition to variations in literals , types, whitespace, layout and comments.

Functional Similarity:

 When the functionality of the two code fragments is identical or similar, then it is known

as semantic clone or type 4 clone.

Type 4:

 If two or more code fragments, which perform the same computation, but are

implemented by different syntactic variants, are known as type 4 clones.

Sindhuja Anbalagan Degree Project

 E4015D

2010

Dalarna University Tel: +46(0)23 7780000
Röda vägen 3S-781 88 Fax: +46(0)23 778080
Borlänge Sweden http://www.du.se

11

2. CODE DUPLICATION

2.1 Reasons for code duplication:

 Code clones do not occur by themselves either it could be developed or created

accidentally. There are number of factors which could give rise to code clones. Some of those

factors are,

(1) Cloning by accident.

(2) Clone occurrence during the development stage of the code.

(3) Cloning due to the programming techniques.

(4) Cloning for the system maintenance benefits.

(5) Cloning to improve the system efficiency in order to overcome the limitations.

The detailed description of each of these factors is as follows:

Cloning by accident:

Accidental cloning gives rise to more look alike than clones, which means that, when two

developers were involved in implementing the same kind of logic and eventually come up with

the similar procedures independently.

There also chances in which the developer‟s apply the same kind of logic for similar

problems , unknowingly. Those types of clones are the results of the side effect of developer‟s

memory.

Sindhuja Anbalagan Degree Project

 E4015D

2010

Dalarna University Tel: +46(0)23 7780000
Röda vägen 3S-781 88 Fax: +46(0)23 778080
Borlänge Sweden http://www.du.se

12

Figure1: Tree diagram for the reasons for the cloning [20]

Sindhuja Anbalagan Degree Project

 E4015D

2010

Dalarna University Tel: +46(0)23 7780000
Röda vägen 3S-781 88 Fax: +46(0)23 778080
Borlänge Sweden http://www.du.se

13

Clone occurrence during the development strategy:

 There are more possibilities of clones during the design of the system. During the

development stage, the developers are more interested in copying and pasting the existing code

(i.e.) reusing the existing code. This is one of the simplest and fastest way of introducing a clone

into the system. The term called “forking” is used by Kapser and Godfrey [14], which means the

reuse of similar solutions, with the expectation that they will diverge significantly as the system

evolves (i.e.) clones will be reused with slight modifications over time.

Clones due to the programming technique:

 Merging of two software systems with some functionality, may give rise to clone

.Though the two systems were developed by different teams, merging will result in the

implementation of similar functionalities in both the systems, which could be considered as

clone. Clones may also arise when there is a delay in restructuring the developed code.

Generative programming approach often gives rise to huge code clones, because the same

template is used in that tool to generate the same or similar logic.

Cloning for system maintenance benefits:

 It is always easier and safer to use the existing successful code , than in attempt to

develop a new code .The system maintenance is improved by using a well tested code, because it

avoids the monetary consequences of software error (since 70% of software effort in the

financial domain is spent on testing). Clones are also introduced in the system to maintain the

software architecture clean and understandable.

Cloning to improve the system efficiency in order to overcome the limitations:

 The two important limitations in software systems are language limitations and

programmer‟s limitations.

Sindhuja Anbalagan Degree Project

 E4015D

2010

Dalarna University Tel: +46(0)23 7780000
Röda vägen 3S-781 88 Fax: +46(0)23 778080
Borlänge Sweden http://www.du.se

14

 Language limitations often arise, when the programming language does not have the

sufficient extraction mechanism e.g. inheritance, generic types (called templates in C++) or

parameter passing , as result, the developers are urged to repeatedly implement these as idioms.

Those repeating activities may cause potentially frequent clones [15].

 Programmer‟s limitations often arise when the programmer does not have a complete or

sufficient knowledge about the domain he/she works. Then, in order to succeed the task, he/she

is forced to copy or reuse other‟s work which may lead to clone. The productivity of the

developer or the developed code relies mainly on the efficiency of the code, but in some cases

productivity is misunderstood as the number of lines of code. Under such misassumption, the

developer tend to increase the code length by reusing or copying, thus results in clones. Time

constraint-deadline in developing a code may also tend the developer to reuse to code, so as to

finish before the deadline.

2.2 Merits of code duplication:

(1) Refactoring the cloned code, will improve the quality of the source code.

(2) Code fragments which has been reused multiple time can be incorporated in a

library, citing its reuse is potentially official, because the often used code fragments

proves its significant usability.

(3) When the functionality of a cloned fragment is known, it is possible to get a clear

picture of other files which contains the other similar copies of the fragment.

(4) Functional usage patterns of a fragment could be found, if all the cloned fragments of

a same source fragment can be detected [16].

(5) Detecting the code clones helps in aspect mining for detecting cross cutting concerns,

Cross cutting concerns are nothing but the aspects of a program which affect other

concerns. These concerns cannot be easily separated from the rest of the system in

both the design and implementation, and could result in code duplication, tangling

(significant dependencies between systems) or both.

Sindhuja Anbalagan Degree Project

 E4015D

2010

Dalarna University Tel: +46(0)23 7780000
Röda vägen 3S-781 88 Fax: +46(0)23 778080
Borlänge Sweden http://www.du.se

15

2.3 Demerits of Code duplication:

(1) Code duplication threatens the safety of one‟s idea or knowledge.

(2) Since, the existing well tested code is reused again and again, leads no way to analyze

the problem in different approach.

(3) When the code that has been reused is not properly tested, it will serially affect all the

segments, which have been using the code segments containing a bug.

(4) Cloning will affect the system design, when the reused code lacks in good inheritance

and abstraction.

(5) When a cloned segment contains a bug, all of its counterparts should be investigated

for the presence of the bug. This will increase the maintenance cost.

2.4 Applications of Clone detection:

(1) Clone detection is useful in finding malicious software. Malicious software is

designed to secretly access a computer system without the owner‟s informed consent.

By comparing one malicious software with another, it is possible to find the matched

parts of one software system with another [17].

(2) Clone detection helps in detecting plagiarism [17].

(3) Copyright infringement is known to be unauthorized or prohibited use of work under

copyright ((i.e.) right to reproduce or perform the copyrighted work or to make

derivative works) infringing the copyright owner‟s exclusive right. Code duplication

helps in finding in copyright infringement [18].

(4) As the time evolves, different clones in different versions get evolved, thus it helps in

software evolution research [19].

(5) Clone detection techniques are used for compact device by reducing the source code

size [20].

Sindhuja Anbalagan Degree Project

 E4015D

2010

Dalarna University Tel: +46(0)23 7780000
Röda vägen 3S-781 88 Fax: +46(0)23 778080
Borlänge Sweden http://www.du.se

16

3.DETECTION PROCESS

3.1 General Clone detection process:

 A clone detector must able to find the pieces of code, which is of high similarity in a

system‟s source text. The main issue is that it is not aware beforehand which code fragments can

be find multiple times. The detector essentially has to compare every possible fragment with

every other possible to detect clones. Such comparison is more expensive in computational point

of view, thus various measures are to be carried out in order to reduce the domain of comparison

before performing the actual comparison. Once, potential cloned fragments are identified, and

then further analysis is carried out to detect actual clones. The following is the overall summary

of the clone detection process [20]

Preprocessing:

 Initially, in the clone detection process the target source is partitioned and the comparison

domain is determined. The main objectives to be considered in this phase are removing

uninteresting parts, determining the source units and determining the comparison unit/

granularity.

Sindhuja Anbalagan Degree Project

 E4015D

2010

Dalarna University Tel: +46(0)23 7780000
Röda vägen 3S-781 88 Fax: +46(0)23 778080
Borlänge Sweden http://www.du.se

17

Figure2: General clone detection process [20]

Sindhuja Anbalagan Degree Project

 E4015D

2010

Dalarna University Tel: +46(0)23 7780000
Röda vägen 3S-781 88 Fax: +46(0)23 778080
Borlänge Sweden http://www.du.se

18

Transformation:

 In the next stage, the source code‟s comparison unit is transformed to another

intermediate internal representation for ease of comparison or for extracting the comparable

properties. The transformation could be very simple by just removing the white space and

comments [21] or could be very complex by generating PDG representation [22] or extensive

source code transformations [17]. Few transformation techniques are pretty printing of source

code, removal of comments, removal of whitespace, tokenization, parsing, generating PDG,

normalizing identifiers, transformation of program elements and calculating metric values etc.

Match Detection:

 The transformed code is given as input to a suitable comparison unit, where it is

compared with each other in order to find the match. The order of comparison units are used, to

sum up the adjacent similar units to form larger units. The output of the comparison unit is a list

of matches with respect to the transformed code. These matches can be either the clone pair

candidates or they have to be aggregated to form clone pair candidates. Then every clone pair is

generally represented with the location information of the matched fragments in the transformed

code.

Formatting:

 In this stage, the clone pair list obtained with respect to the transformed code is then

converted to a clone pair list obtained with respect to the original code base. Normally, after

finding the clone pair location from the previous phase, it is then converted into line numbers on

the original source files.

Post processing:

 This stage helps out in filtering the false positive in two ways such as manual analysis

and visualization tool.

Sindhuja Anbalagan Degree Project

 E4015D

2010

Dalarna University Tel: +46(0)23 7780000
Röda vägen 3S-781 88 Fax: +46(0)23 778080
Borlänge Sweden http://www.du.se

19

Manual Analysis:

 Once the original source code has been extracted, the raw code of the clones of the clone

pair is subjected to the manual analysis, in order to filter out the false positive.

Visualization:

 To speed up the manual analysis in filtering out the false positives, visualization tool are

used to visualize the clone pair.

Aggregation:

 Finally, to perform certain analysis, we have to reduce the amount of data, so the clone

pairs should be aggregated to clusters, classes, cliques of clones or clone groups etc.

Sindhuja Anbalagan Degree Project

 E4015D

2010

Dalarna University Tel: +46(0)23 7780000
Röda vägen 3S-781 88 Fax: +46(0)23 778080
Borlänge Sweden http://www.du.se

20

4.DETECTION TECHNIQUES

This chapter discusses about the six clone detection techniques. They a

1) Text Based Technique.

2) Token Based Technique.

 3) Tree Based Technique.

 4) PDG Based Technique.

 5) Metric Based Technique.

 6) Hybrid Techniques.

They are discussed in detailed as below.

4.1 TEXT BASED TECHNIQUES:

 Pure text based/string based methods are incorporated in several clone detection

techniques today. In this approach, the target source program is assumed to be sequences of

lines/strings. And then, two code fragments are compared with each other to find the matched

sequences of text/strings. When a match is found ((i.e.) two or more code fragments are found to

be similar), then they are returned as clone pair or clone class by the detection technique.

 As the name says, it is purely based on textual/lexical approach, so the detected clones do

not correspond to structural elements of the language. Mostly, the raw source code is directly

used in clone detection process, without any transformation/normalization. However, few of the

latest text based clone detection technique use some of the transformation/normalization such as

comments removal, whitespace removal etc.

Algorithm Used:

1) Line based string matching algorithm

Sindhuja Anbalagan Degree Project

 E4015D

2010

Dalarna University Tel: +46(0)23 7780000
Röda vägen 3S-781 88 Fax: +46(0)23 778080
Borlänge Sweden http://www.du.se

21

2) Suffix tree algorithm.

Detection tool:

 The popular detection tool used in this method is DUP.

DUP :

 Supporting Language : C, C++, Java.

 Domain : CD/UNIX.

 Approach : Line based/Text based.

 Background : Academic.

 Validation : With two Systems

DUP Detection Tool

DUP finds either maximal exact matches over a user defined threshold length or maximal

parameterized matches over a user threshold length. The threshold length is the smallest clone

size that DUP will report, measured in terms of noncommentary source lines(ncsl) in each

fragment.

 DUP does not parse the input, but it tokenizes the input and classifies each token as a

parameter or non parameter. Tokenization depends on the language being processed. Identifiers

and constants are assumed as parameters and keywords, punctuation are assumed as non

parameters.

 A string of tokens , also known as symbols is known to be parameterized string or p-

string. Two p-strings are known to be exact match if they contain exactly the same symbols. Two

p-strings are known to be parameterized match(p-match) , if there exists a one to one function on

a alphabet of parameter and non parameter symbols such that the function maps each non

parameter symbol into itself and each parameter symbol into a possibly different parameter

symbol and one string is mapped by this function into the other.

Sindhuja Anbalagan Degree Project

 E4015D

2010

Dalarna University Tel: +46(0)23 7780000
Röda vägen 3S-781 88 Fax: +46(0)23 778080
Borlänge Sweden http://www.du.se

22

DUP Description:

 The size of the clones detected by the DUP based on PDG technique is expressed as the

number of vertices in the PDG that are included in a clone and in DUP based on the text based

detection it is expressed as the number of lines of the source code. For the cloned code(cc)

component or fragment , three vertices is the smallest minimum size that could still be handled,

because two vertices cause PDG to abort.

 DUP requires the user to set a commonality threshold which is used to remove clones that

are overlapped too much by other clones. It was suggested , the common threshold was set to

80%. DUP able to match the annotated crosscutting concern code. Originally few blank lines

and lines containing only opening and closing brackets (i.e.) “{” and “}” were included in the

annotations. Those lines will never be included in the results of DUP clone detector because

such lines are not included in the PDG-DUP‟s mapping from PDG vertices to source code or

during transformation. Hence such lines had their annotations removed.

 For Memory handling , the DUP clone detector performs the best. The recall precision for

DUP is significantly above those of CCdiml and CCfinder clone detectors. DUP is bound to

conform to language syntax as well since its PDG‟s are built on top of AST‟s. DUP results in

higher level of precision, by making a better distinction between, the code that is similar at the

lexical level, yet conceptually different.

 DUP lacks efficiency in Error handling. DUP clone classes have the best match with the

tracing code. DUP performs the best in NULL value checking. A limitation that is surfaced

mainly for the

DUP detector is due to the line granularity of the case study. Each source code line can

belong to atmost one concern while , in some cases, we could consider including a line in

multiple concern. The DUP clone detector appears to be most suitable for such refactoring

activities since it respects both syntactic integrity and include context dependencies in its clone.

Sindhuja Anbalagan Degree Project

 E4015D

2010

Dalarna University Tel: +46(0)23 7780000
Röda vägen 3S-781 88 Fax: +46(0)23 778080
Borlänge Sweden http://www.du.se

23

DUP options and performance:

DUP allows the user to set the threshold size for reporting maximal matches. DUP is used

to find maximal p-matches or only maximal exact matches, or when a p-match is also an exact

match. It has an option to filter out p-matches that have too many changed parameters. Since the

number of p-matches found in large software system is often large, the filtering option can be

used to eliminate some of the less useful matches.

DUP is implemented in about 4000 lines of C and runs under UNIX. It is very fast. For

example, on the largest project analyzed in the experiment , with 202k source lines and 136k

noncommentary source lines , DUP used 11.7 seconds and 57MB when run on one processor of

an IRIX machine with eight 250Mhz processors.

Initially some detectors where based on lexical analysis. For instance, Baker‟s dup [21,

23] used sequence of lines, to represent a source code and line by line clone checking was done.

Therefore, lexer/line based algorithm was incorporated.

Dup tool removes whitespaces, tabs and comments. The identifiers of functions, variables

and types where replaced by a special parameter. It concatenates all lines which have to be

analyzed into a single text line. It hashes each line for comparison. Using suffix tree algorithm, it

extracts a set of pairs of longest matches

Some Examples:

Baker’s Approach:

Baker[1] also analyzed the problem of finding exact and near duplication in software. In

this approach, Baker investigated the objective of parameterized matches (p-match) in Dup tool.

A code fragment is said to be matched (clone), if both the fragments are contiguous sequences of

source lines with some consistent parameter/ identifier mapping scheme.

Sindhuja Anbalagan Degree Project

 E4015D

2010

Dalarna University Tel: +46(0)23 7780000
Röda vägen 3S-781 88 Fax: +46(0)23 778080
Borlänge Sweden http://www.du.se

24

Johnson’s Approach:

Johnson‟s [6] redundancy finding mechanism using fingerprints on a substring of the

source code is another approach in pure text based approach. Karp- Rabin fingerprinting

algorithm is used. In this algorithm, signatures to be analyzed are first collected, then signatures

are calculated per line are compared in order to detect the matched substring.

This algorithm is used for calculating the fingerprint of all length n substrings of a text.

Initially, a text to text transformation is carried out on the source file, so as to discard the

uninterested characters. Then the whole text is subdivided into set of substring, so that every

character in the text appears in atleast one substring.

 Finally, the matched substrings are identified. The results obtained could be further

improved, by applying a transformation. Instead of applying a set of text to text transformation,

Johnson applied a transformation technique which is a combination of all basic transformation.

Advantages:

(1) Most widely used technique.

(2) Easy to implement.

(3) To eliminate noise, it is possible to remove uninteresting language elements.

Disadvantages:

(1)There are several problems could be arised in a line by lin technique, they are

line break, identifier changes, parenthesis removal/adding for a single statement and

transformation.

(2)Dup tool does not support exploration and navigation through the duplicated

code.

(3)Detection accuracy is low.

Sindhuja Anbalagan Degree Project

 E4015D

2010

Dalarna University Tel: +46(0)23 7780000
Röda vägen 3S-781 88 Fax: +46(0)23 778080
Borlänge Sweden http://www.du.se

25

4.2 Token Based Technique:

 In this approach, the entire raw source code is lexed/parsed/transformed into sequence of

tokens. Then this sequence of tokens is scanned for finding the duplicated sequence. At last, the

original code portions which represent the duplicated sequences are returned as clones.

Algorithm Used:

 Suffix tree based sub string matching algorithm.

Detection tool:

 The clone detection tools used in this method are CC Finder, RTF, CP-Miner.

 The plagiarism detection tool used in this technique are winnowing, JPlag and SIM.

CCFinder:

 Supporting Language : C,C++, Java, COBOL.

 Domain : CD / Windows / NT.

 Approach : Transformation/Token based technique.

 Background : Academic.

 Validation : With four Systems.

RTF:

 Supporting Language : C.

 Domain : CD.

 Approach : Token / Suffix array.

 Background : Academic.

 Validation : With Linux parts.

CP-Miner:

 Supporting Language : C, C++.

Sindhuja Anbalagan Degree Project

 E4015D

2010

Dalarna University Tel: +46(0)23 7780000
Röda vägen 3S-781 88 Fax: +46(0)23 778080
Borlänge Sweden http://www.du.se

26

 Domain : CD / Windows / Linux.

 Approach : Sequence Database/ Frequent subsequent.

 Background : Academic.

 Validation : Several Systems.

JPlag :

 Supporting Language : C, C++, Java, Scheme, NL text.

 Domain : PD / Online.

 Approach : Token / Greedy.

 Background : Academic.

 Validation : With two Systems.

SIM :

 Supporting Language : C

 Domain : PD / Linux.

 Approach : Parse tree to string / String alignment.

 Background : Academic.

 Validation : With several Systems.

Example:

Kamiya et al Approach:

 This approach was one of the leading states, in the token based technique, which

employed CC Finder detection tool [17]. Then each line of the source is partitioned into tokens

by lexer, and tokens of all the source file are concatenated to a single token sequence.

Transformation (i.e. tokens are added, removed or changed) on the basis of the transformation

rules of the language interest is applied, which aims at regularizing the identifiers and identifying

the structures. Each identifier in relation to their types, variables and constants are replaced with

Sindhuja Anbalagan Degree Project

 E4015D

2010

Dalarna University Tel: +46(0)23 7780000
Röda vägen 3S-781 88 Fax: +46(0)23 778080
Borlänge Sweden http://www.du.se

27

a special token. Thus this identifier replacement enables code fragments with different variable

names clone pair.

 A suffix tree based sub string algorithm is applied to detect the similar sub sequence on

the transformed token sequence, once when the matches are found, the similar sub sequence

pairs are returned as clone pairs/clone classes. As the clone pair/clone class information is

obtained with respect to the token sequence, a mapping is required to obtain the essential clone

pair/clone class information with respect to the original source code.

Advantages:

 (1) This approach is usually more robust against code changes such as formatting and

spacing, when compared to text based approaches.

(2) Fragile to statement reordering and code insertion due to the sequential analysis in

CCFinder and Dup.

 (3) Generally, a reordered or inserted statement can break the token sequence, which

could be later disregarded as duplicate to another sequence. This limitation can be overcome, by

using CP Miner, which employs frequent subsequence mining technique, where a frequent

sequence can be interleaved in its supporting sequence.

Disadvantages:

 (1)Sometimes noise arises as a result of suppression of insignificant token classes (e.g.

Access modifiers of Java).

4.3 Tree Based technique:

 In this technique the program is pared into a parser tree or an abstract syntax tree (AST)

with a parser of language of interest. Then, using a tree matching technique, similar sub trees are

searched in the tree, when a match is found corresponding source code of the similar sub trees

are returned as clone pairs or clone classes. The complete information about the source code is

Sindhuja Anbalagan Degree Project

 E4015D

2010

Dalarna University Tel: +46(0)23 7780000
Röda vägen 3S-781 88 Fax: +46(0)23 778080
Borlänge Sweden http://www.du.se

28

available in the parse tree or AST. The variables names and literal values of the source code are

discarded during the tree representation; still it is possible to employ more sophisticated clone

detection tools.

Algorithm used:

 Tree matching Algorithm [20].

(1) An annotated (AST) parse tree is generated by a complier generator.

(2) Using tree matching, AST compares it sub trees by characterization metrics based on

a hash function.

(3) When a match is found source code of similar trees are returned as clones.

The hash function is used to detect the parameterized matching, to detect the gapped clones and

also to identify the code portions in which some statements are reordered.

Detection Tools:

 There are two detection tools used in this technique, CloneDR and ccdiml.

CloneDR :

 Supporting Language : C, C++, Java, COBOL.

 Domain : CD, windowNT.

 Approach : AST / Tree Matching.

 Background : Commercial.

 Validation : Process Control System

Ccdiml :

 Supporting Language : C, C++

 Domain : CD / Linux

 Approach : AST / Tree Matching.

 Background : Academic.

Sindhuja Anbalagan Degree Project

 E4015D

2010

Dalarna University Tel: +46(0)23 7780000
Röda vägen 3S-781 88 Fax: +46(0)23 778080
Borlänge Sweden http://www.du.se

29

 Validation : Against several systems.

Ccdinl differs from CloneDR , by having an extra advantage like the avoidance of the similarity

metric, in handling the sequence and hashing.

CloneDR differs from ccdinl, by working concurrently, in order to maintain and check the

consistency.

Some Examples:

Yang Approach:

 Yang‟s approach [24] aimed at finding the syntactic differences between two versions of

the same program. In his approach, he generated a variant of parse tree for both the versions, and

he applied dynamic programming in searching similar sub trees.

Wahler et al Approach:

 Whaler and others [25] aimed at detecting the exact and parameterized clones in a more

abstract level than AST. In his approach, first he attempted in converting the AST of the program

into XML. Then he employed data mining frequent item set technique to the XML of the AST in

order to find the clones.

Evans and Fraser Approach:

 Evans and Fraser [26] proposed a method for structure abstraction. They aimed at finding

the exact and near miss clones with gaps. In their approach, they built ASTs from lexical

abstraction of a program by parameterzing only AST leaves (i.e.) abstraction of identifiers and

literal values. Then by further parameterizing the arbitrary sub trees of ASTs structural

abstraction is obtained.

Advantages:

 (1)Clones can be determined in linear time and space by using current techniques based

on abstract syntax suffix trees.

Sindhuja Anbalagan Degree Project

 E4015D

2010

Dalarna University Tel: +46(0)23 7780000
Röda vägen 3S-781 88 Fax: +46(0)23 778080
Borlänge Sweden http://www.du.se

30

Disadvantages:

 (1)ASTs are fragile to statement reordering and control replacement, because they

disregard the information about identifiers and ignores the data flow.

 (2)No special treatment for identifiers and literal values in ASTs for detecting clones.

These limitations could be overcome by using PDG based technique.

4.4 PROGRAM DEPENDENCY GRAPH (PDG) TECHNIQUE:

 Program dependency graph (PDG) approach considers the semantic information of the

source code, so it goes one step further in obtaining the source code representation of high

abstraction than any other approach. Semantic information is carried in PDG, because it contains

both control flow and data flow information of a program. When a set of PDGs are obtained

from a subject program, isomorphic sub graph matching algorithm is employed , in order to find

the similar sub graphs, which are then returned as clones.

Algorithm:

 Isomorphic Sub graph matching algorithm.

 Detection Tool:

 The tools that are based on PDG techniques are,

Clone detection tool, PDG –DUP

Plagiarism detection tool, GPLAG

PDG-DUP:

 Supporting Language : C,C++

 Domain : CD / Clone refactoring

 Approach : PDG / Slicing.

Sindhuja Anbalagan Degree Project

 E4015D

2010

Dalarna University Tel: +46(0)23 7780000
Röda vägen 3S-781 88 Fax: +46(0)23 778080
Borlänge Sweden http://www.du.se

31

 Background : Academic.

 Validation : With some systems

CCFinder:

 Supporting Language : C, C++, Java, COBOL.

 Domain : CD / Windows / NT.

 Approach : Token based technique.

 Background : Academic.

 Validation : With four Systems.

Examples:

Komondoor and Horwitz’s Approach:

 This approach [22, 27] aims at finding the isomorphic PDG subgraphs using program

slicing. This is the most leading PDG based clone detection approach, but they also proposed an

approach to support software refactoring, in which they group identified clones together while

preserving the semantics of the original code for automatic procedure extraction.

Krinke Approach:

 This approach [28] uses iterative k-length patch matching for detecting maximal similar

sub graphs.

Chen at al. Approach:

 Chen at al and others [19] proposed a technique using PDG for code compaction which

has several advantages in embedded systems. This approach has concern both in syntactic

structure and data flow.

Advantages:

Sindhuja Anbalagan Degree Project

 E4015D

2010

Dalarna University Tel: +46(0)23 7780000
Röda vägen 3S-781 88 Fax: +46(0)23 778080
Borlänge Sweden http://www.du.se

32

PDG-based techniques are more robust to reordered statements, insertion and deletion of

code, intertwined code, and non-contiguous code.

 Disadvantages:

 This technique is not scalable to large size programs.

4.5 Metric based technique:

In this technique, instead of comparing the code directly, different metrics of code were

gathered and these metrics were compared to detect the clones. Many clone detection techniques

today uses software metrics for detecting similar codes. Initially, fingerprinting functions which

are nothing but a set of software metrics are calculated for one or more syntactic units such as a

class, a function, a method or even a statement and then these metric values are compared to find

clones over these syntactic units. Generally such metrics are calculated by parsing the source

code into AST/PDG representation. Then the metrics were calculated from names, layout,

expression and simple control flow of functions. A clone is detected only when pair of whole

function bodies that have similar metrics values are identified.

Detection Tool:

PDG-DUP:

 Supporting Language : C, C++

 Domain : CD / Clone refactoring

 Approach : PDG / Slicing.

 Background : Academic.

 Validation : With some systems

Sindhuja Anbalagan Degree Project

 E4015D

2010

Dalarna University Tel: +46(0)23 7780000
Röda vägen 3S-781 88 Fax: +46(0)23 778080
Borlänge Sweden http://www.du.se

33

Examples:

Mayrand et al

 This approach [29] considered each function units of a program for calculating the

metrics, say for example, number of lines of source, number of function calls contained, number

of CFG edges, etc. Code clones are identified to be units with similar metric values. Partly

similar units were not detected. Intermediate Representation Language (IRL) was used to

represent the source, which characterized each function in the source code.

Kontogiannis et al Approach:

 In this approach [30], probable matches were identified by building an abstract pattern

matching tool using Markov model. Initially this approach was used to find the similarities of the

program alone, but not find the copy-pasted code. Later, Kontogiannis suggests two ways to find

clone. The first way deals with the direct comparison of the metrics values that classify a code

fragment in the granularity of begin − end blocks, assuming that two code fragments are similar

if their corresponding metrics values are proximate. The second way uses a dynamic

programming technique for comparing begin − end block in a statement-by-statement basis.

Lanubile and Calefato Approach:

 This approach [31] proposed a semi-automated method for detecting cloned script

functions. In which, potential function clones were detected with an automated approach and

then a visual inspection was employed in the selected script functions. eMetric tool were

employed to retrieve the potential function clones and based on the tool report visual inspection

were carried out on the code of the selected script functions , in order to detect suspect clones.

Advantages:

(1)Similar static HTML pages could be identified by computing the distance between

items in web pages and evaluating their degree of similarity.

Sindhuja Anbalagan Degree Project

 E4015D

2010

Dalarna University Tel: +46(0)23 7780000
Röda vägen 3S-781 88 Fax: +46(0)23 778080
Borlänge Sweden http://www.du.se

34

Disadvantages:

 (1)This method needs a special tool to generate the potential clones associated metrics.

 Human attention is needed for clone refactoring.

4.6 Hybrid Approaches:

Few cases need to explore the advantages of one or more techniques in order to detect the

clone, and then hybrid approach is employed. Hybrid code representation and/or technique is

used by several other detection approaches in detecting clones. This approach is nothing but the

combination of previous discussed techniques.

Detection Tool:

DUP:

 Supporting Language : C,C++, Java.

 Domain : CD/UNIX.

 Approach : Line based/Text based.

 Background : Academic.

 Validation : With two Systems

CCFinder :

 Supporting Language : C, C++, Java,COBOL.

 Domain : CD / Windows / NT.

 Approach : Transformation/Token based technique.

 Background : Academic.

 Validation : With four Systems.

Sindhuja Anbalagan Degree Project

 E4015D

2010

Dalarna University Tel: +46(0)23 7780000
Röda vägen 3S-781 88 Fax: +46(0)23 778080
Borlänge Sweden http://www.du.se

35

Examples:

Koschke et al. Approach:

This approach [32] was based on token and tree based techniques. This aimed at finding

the syntactically similar sequence, this was carried out by serializing the AST nodes in the

preorder traversal, a suffix tree was created for these serialized AST nodes.In resulting

maximally long AST node sequences , syntactic regions were cut so that only syntactically

closed sequences alone remain. This approach compares the tokens of the AST-nodes using a

suffix tree-based algorithm, instead comparing the AST nodes. Thus, this hybrid combination

allows one to detect the clones in linear time and space than the conventional AST-based

approaches.

Microsoft’s new Phoneix Framework:

A function-level clone detection technique was proposed for the Microsoft‟s new

Phoenix framework based on AST and suffix trees [33]. As in Koschkeet, AST nodes were used

to generate a suffix tree, which enables the nodes to detect the clones linear time and space. This

approach also able to detect the exact matching function clones and parameterized clones with

identifier renaming. Greenan proposed a similar approach for finding level clones on

transformed AST using sequence matching algorithm.

Balazinska et al. Approach :

 This hybrid approach [34] was proposed for characterization of metrics and dynamic

pattern matching. Using metric based approach, characteristics metric values were calculated for

each method bodies. Then using Dynamic pattern matching, token sequence for each pair of

similar methods were compared in order to identify clones. Thus this a hybrid approach of metric

and token based techniques.

Advantages:

 (1)Hybrid approach can also be used for LISP – like languages.

 (2)This approach has an additional advantage, that each of its parts is replaceable.

 (3)By specifying their syntax, new languages can be added.

Sindhuja Anbalagan Degree Project

 E4015D

2010

Dalarna University Tel: +46(0)23 7780000
Röda vägen 3S-781 88 Fax: +46(0)23 778080
Borlänge Sweden http://www.du.se

36

 (4)By including new specialized comparison functions, it is possible to explore other

language features.

Disadvantages:

(1)This approach is not fully language independent, it needs parser, classification

algorithm and metrics generator.

Sindhuja Anbalagan Degree Project

 E4015D

2010

Dalarna University Tel: +46(0)23 7780000
Röda vägen 3S-781 88 Fax: +46(0)23 778080
Borlänge Sweden http://www.du.se

37

5.MEASURES FOR AVOIDING CODE DUPLICATION

5.1 Avoidance of clones:

 Clones are regarded as harmful agents in software maintenance, so it should be detected

and removed. It would be even better if there is no clone at all, so that we need not to think either

about detection or removal. The best way to avoid clones in order to maintain clean and efficient

software is to use the preventive approaches or clone detection tool right from the beginning.

 There are two preventive measures [9] in the development process to avoid clones. They

are

(1) Preventive Control

(2) Problem mining.

Preventive Control:

 Whenever adding a new function to a system, it has to be checked well to confirm that,

this new function is not a clone to an existing one or there should be any specific reasons for

adding that new function as a clone to the system.

Problem mining:

 In this any modification to a function must be consistently propagated to all of its similar

functions is a system, so, it reduces the chance of creating clones unnecessarily and the

probabilities of update anomalies are reduced significantly.

5.2 Removal of Code Clones :

 When the preventive measures to avoid the clones fails, clones occur in the system. Then

the next issue, is to remove the clones. Removal of clones from the software system is done

through refactoring. Using clone refactoring it is possible to decrease the complexity, to reduce

the potential source of errors occurring from the duplicated code.

Sindhuja Anbalagan Degree Project

 E4015D

2010

Dalarna University Tel: +46(0)23 7780000
Röda vägen 3S-781 88 Fax: +46(0)23 778080
Borlänge Sweden http://www.du.se

38

Exact method refactoring:

 This is simplest way in refactoring of clones [35]. This method, replaces the cloned code

by a function call, to the newly created function which is created from the shared code of clone

fragments. Clones which resulted from exact copies or differ only in identifiers are possible for

such simple functional abstraction.

 Synytskyy and others used traditional reuse techniques of dynamic websites to find and

resolve the clones that occur in web documents. They used a multi pass approach for resolving

clones incrementally, using various different resolution techniques, resolving each clone

encountered with the most suitable resolution method available.

 Clones tend to be refactored generally during the evolution of software. Refactoring of

clones is risky and most potential source of errors. For this reason, code developers are always

reluctant in code refactoring. As an alternative, code refactoring can be optimized with

constraints and conditions applied during refactoring.

5.3 Management of Clones:

 Management of clones in a software system stands far better than removal or avoidance.

Code refactoring is always not possible or practical for some existing clones. Sometimes it is not

cost effective too. But it is always possible to manage or keep track of clones either in their

individual version or in the evolving version of the system.

 Simultaneous Editing:

 This is the first attempt towards the management of clones [36]. The repetitive text

editing task of the system is simplified by this approach. Users provide the regions to be linked

in repetitive text records through selection or through specifying a text pattern. Whenever there

is an edit made to any of the linked records, the user can able to see equivalent edits which are

applied simultaneously to all other records.

Sindhuja Anbalagan Degree Project

 E4015D

2010

Dalarna University Tel: +46(0)23 7780000
Röda vägen 3S-781 88 Fax: +46(0)23 778080
Borlänge Sweden http://www.du.se

39

 The shape of the code varies depending on the variation of the shape of organization.

Hence, it is always beneficial to identify and understand the patterns of the developing team that

deals with the duplicated code. These patterns gives better understanding about both the project

structure and its developing team, thus helps in better management of clones.

Sindhuja Anbalagan Degree Project

 E4015D

2010

Dalarna University Tel: +46(0)23 7780000
Röda vägen 3S-781 88 Fax: +46(0)23 778080
Borlänge Sweden http://www.du.se

40

6.PLAGIARISM

6.1 Introduction to Plagiarism:

 Plagiarism is an act of taking the credit of someone else work. It is also known as the

unauthorized use or close imitation of the language and thoughts of other author and the

representation of those as one‟s own work.

6.2 Detailed Definition:

 As stated earlier, it is an act of taking credit of someone‟s work. In college/universities,

this much involves in writing, but other form of works can also be plagiarized, such as music,

ideas and artwork. Taking credit of someone‟s work is stealing and it is a violation of Intellectual

Property Law. So plagiarism is more than a just violation of teacher‟s trust and school policies. It

is an illegal activity which is not so different from stealing one‟s iPod or wallet.

What actions are considered plagiarism?

 In any time, someone uses another author‟s words or thoughts, without giving a proper

credit to them .Here are some examples [37],

Directly quoting another person’s paper:

 This is the most obvious example, happens all the time. It could be from college essay

plagiarism website that buy and sell term papers, or from a friend.

Directly quoting someone else’s phrase:

 Instead of stealing the whole paper one could steal few paragraph or sentence from a

book or website. If the credit to the original author is not mentioned, then it is known as

plagiarism.

Sindhuja Anbalagan Degree Project

 E4015D

2010

Dalarna University Tel: +46(0)23 7780000
Röda vägen 3S-781 88 Fax: +46(0)23 778080
Borlänge Sweden http://www.du.se

41

Using someone else’s idea:

 This mostly happens in academic work. Usually, the idea‟s from the fellow students are

often stolen and used by others during labs and projects. This is still considered to be plagiarism.

Recycling your old material:

 In some cases, a student wants to expand upon an idea from another paper in another

class, this is not considered to be plagiarism, unless, he/she attempts in tweaking the contents of

one paper or assignment to meet the requirements of another paper or assignments.

Fail to acknowledge the source or failure to put the quote in the quotation mark:

 These are probably not malicious and known to be sloppy errors. But still, in technical

terms they are said to be plagiarized.

6.3 Reasons to avoid plagiarism:

(1) Plagiarism would arrest the discovery of new idea‟s and life time inventions, when

there is no practice of thinking for themselves.

(2) One would completely fail to discover the power of their mind in the creation of

interesting and new ideas.

(3) The greatest of achievement in receiving praise, would not be felt by anyone for their

plagiarized work.

(4) There are more chances to be caught, embarrassed and punished.

(5) Though you have your name on your work, if it is plagiarized, then it is no more your

unique work.

6.4 How to prevent plagiarism?

 By enforcing strict laws and making plagiarism as a serious offense, this could be

avoided. Maintaining an electronic database for previous paper, will be helpful for comparison,

which in turn could prevent plagiarism.

Sindhuja Anbalagan Degree Project

 E4015D

2010

Dalarna University Tel: +46(0)23 7780000
Röda vägen 3S-781 88 Fax: +46(0)23 778080
Borlänge Sweden http://www.du.se

42

 Sincerely speaking, its one‟s dedication, loyalty towards their work, respect for other‟s

idea and proper usage of references could prevent plagiarism.

Sindhuja Anbalagan Degree Project

 E4015D

2010

Dalarna University Tel: +46(0)23 7780000
Röda vägen 3S-781 88 Fax: +46(0)23 778080
Borlänge Sweden http://www.du.se

43

7. SOFTWARE PLAGIARISM DETECTION

7.1 Manual Plagiarism detection:

 The idea is to validate one‟s work by comparing it with the all available sources. The

detection mechanism becomes more complex when human hands are involved. The database

available for comparison is extremely large and it is always not possible for anyone to explore

them completely. Manual plagiarism detection is,

(1) Time consuming.

(2) Very low in efficiency,

(3) Lacks in accuracy.

For example,

 Manual plagiarism detection in colleges can cross check the reports of the fellow students

alone, but not against the all available sources. So, there are more chances of lack in efficiency.

 So, in this paper Software plagiarism detection tool has been used.

7.2 Software plagiarism detection:

 Software plagiarism detection is more efficient and accurate than manual plagiarism

detection method.

 Ephorus software [38] is used for detecting the percentage of plagiarism.

7.3 Ephorus:

 In this paper, Ephorus anti-plagiarism software is used to detect the percentage and

sources of plagiarism. Ephorus is based on text based detection method.

Sindhuja Anbalagan Degree Project

 E4015D

2010

Dalarna University Tel: +46(0)23 7780000
Röda vägen 3S-781 88 Fax: +46(0)23 778080
Borlänge Sweden http://www.du.se

44

 Let‟s look into detail, how does plagiarism detection works? What type of documents

could it process? How could it process? What are the sources that are checked for possible

plagiarism? How the results are evaluated?

Working of Plagiarism Detection:

 Whenever a student submits their documents, teachers hand in the documents in the

Ephorus software for plagiarism check. This is done as figure represented below [39]. Detailed

explanation is given in the following part.

 Figure 3: Working of Plagiarism detection[39].

Sources for plagiarism detection:

Ephorus will automatically compare all work handed into the system with [39]:

(1) Documents found on the Internet.

(2) Other documents handed in by fellow students.

(3) Documents handed in by other institutions using Ephorus.

Sindhuja Anbalagan Degree Project

 E4015D

2010

Dalarna University Tel: +46(0)23 7780000
Röda vägen 3S-781 88 Fax: +46(0)23 778080
Borlänge Sweden http://www.du.se

45

7.4 Ephorus and its Clone detection tool:

Ephorus is based on JPlag tool.

JPlag:

 JPlag is a system that finds similarity among multiple set of source code files. It employs

text based detection approach,this way it can detect software plagiarism. JPlag does not merely

compares bytes of text, but is aware of programming language syntax and program structure and

hence is robust against many kinds of attempts to disguise similarities between plagiarized files.

JPlag currently supports Java, C#, C, C++, Scheme and Natural language (NL) text. JPlag is

typically used to detect and thus discourage the disallowed copying of student exercise programs

in programming education.

 But in principle it can also be used to detect stolen software parts among large amounts of

source text or modules that have been duplicated(and only slightly modified). JPlag has already

played a part in several intellectual property cases where it has been successfully used by expert

witnesses. JPlag has a powerful graphical interface for presenting its results.

Allowed Document types:

 Only the following documents could be handed in Ephorus for plagiarism detection [39].

 FILE TYPE ABBREVIATION

Microsoft word *.doc

Rich text format *.rtf

Htm *.htm

Html *.html

Adobe Acrobat *.pdf

Open office *.sxw

Plain text *.txt

 Table 1 : Allowed document types in Ephorus [39].

Sindhuja Anbalagan Degree Project

 E4015D

2010

Dalarna University Tel: +46(0)23 7780000
Röda vägen 3S-781 88 Fax: +46(0)23 778080
Borlänge Sweden http://www.du.se

46

Allowed File size:

 Ephorus accepts documents upto a maximum file size of 16MB.

ZIP files can have a maximum size of 4MB.

Possible check for plagiarism:

Default check:

Document will be checked for plagiarism, and used as reference material for future

checks.

Reference material:

Document will not be checked for plagiarism, but saved as reference material for future

checks.

Private check:

Document will be checked for plagiarism, but will not be used as reference material for

future checks

Two types of Results :

Summary:

 Gives the overall percentage of plagiarism and percentage level of various source

contributions. The document in orange color is the original document and document in black

color is possible plagiarism.

Detailed report:

 The detailed report zooms in on the results and compares the submitted document and

individual sources side-by-side.

Sindhuja Anbalagan Degree Project

 E4015D

2010

Dalarna University Tel: +46(0)23 7780000
Röda vägen 3S-781 88 Fax: +46(0)23 778080
Borlänge Sweden http://www.du.se

47

 Final results are calculated after cross checking the software results manually in order to

avoid the false positives.

7.5 Other Software Plagiarism detection systems:

Turnitin Plagiarism prevention:

 Turnitin is a plagiarism prevention tool from iParadigms.

iParadigms:

 The iParadigm team is a group of dedicated professionals that includes award winning

teachers, graphic designers, computer scientists and business professionals working together to

stop the spread of internet plagiarism and promote new technologies in education.

Turnitin Description:

 Turnitin allows educators to check students work for improper citation or potential

plagiarism by comparing it against continuously updated database. Every originality report

provides instructors with the opportunity to teach their students proper citation methods as well

as to safeguard their institutions academic integrity.

Features and Benefits:

(1) Scans 3 extensive databases.

(2) 13.5 + billion web pages.

(3) 130 + million student papers

(4) Thousands of newspapers , magazines , books and scholarly journals.

(5) Encourage proper citation.

(6) Shows side by side comparison with colour coded matches.

Sindhuja Anbalagan Degree Project

 E4015D

2010

Dalarna University Tel: +46(0)23 7780000
Röda vägen 3S-781 88 Fax: +46(0)23 778080
Borlänge Sweden http://www.du.se

48

Urkund Plagiarism detection system:

 It is possible for a teacher , to check for plagiarism with Urkund plagiarism detection

system.

Urkund Description:

 Urkund is owned and developed by PrioInfo AB. PrioInfo is a company with over 25

years of experience of the requirements and needs of information intensive organization.

PrioInfo is an agent for net based services from a multitude of International information

providers and publishers. It also delievers a licensed ebook platform to corporations , publishers

and libraries as well as universities.

Plagiarism control with Urkund:

 Urkund deliver plagiarism control that checks learner assignments with the internet,

published material and our archive of previously submitted student documents. A Urkund report

presents the teacher with the information required to determine whether or not plagiarism is the

case.

Sindhuja Anbalagan Degree Project

 E4015D

2010

Dalarna University Tel: +46(0)23 7780000
Röda vägen 3S-781 88 Fax: +46(0)23 778080
Borlänge Sweden http://www.du.se

49

8.APPLICATION OF CLONE DETECTION TECHNIQUES

8.1 Plagiarism detection among Swedish universities:

Determining the extent of plagiarism among Swedish universities using Ephorus software.

 In order to find the plagiarism among Swedish universities following steps were

followed:

Step 1: Collecting Computer Science Master Thesis report (samples) across

 Swedish universities .

Step 2: Processing the documents in Ephorus software to find the possible sources

 of plagiarism.

Step 3: Cross checking the matched sources manually in order to avoid false

 Positives which incorporates HUMAN INTELLIGENCE TECH IQUE.

Step 4: Once the percentage of plagiarism has been found, STATISTICAL

 DATA ANALYSIS is carried out using Minitab software.

Each step has been in detailed has follows:

Step 1: Collecting Computer Science Master thesis report (samples) across Swedish universities.

Samples from ten universities across Sweden are collected. Most recent documents were

given more importance.

8.2 Data Analysis:

 Analysis of data is a process of inspecting, cleaning, transforming, and modeling data

with the goal of highlighting useful information, suggesting conclusions, and supporting decision

Sindhuja Anbalagan Degree Project

 E4015D

2010

Dalarna University Tel: +46(0)23 7780000
Röda vägen 3S-781 88 Fax: +46(0)23 778080
Borlänge Sweden http://www.du.se

50

making. Data analysis has multiple facets and approaches, encompassing diverse techniques

under a variety of names, in different business, science, and social science domains.

The process of data analysis consists of three stages:

(1) Initial Exploration

(2) Model building or pattern identification with verification/validation.

(3) Deployment (i.e.) the application of the model to new data in order to generate

predictions.

Stage 1: Exploration.

 This stage usually starts with data preparation which may involve cleaning data, data

transformations, selecting subsets of records in case of data sets with large number of variables

(fields) performing some preliminary feature selection operations to bring the number of

variables to a manageable range(depending on the statistical methods which are being

considered).

 In this paper, data exploration starts with collecting the thesis samples from the large

relational database. The feature selection depends on collecting the most recent Master level

Computer Science samples from various universities across Sweden.

Stage 2 : Model Building and Validation.

 This stage involves considering various models and choosing the best one based on their

predictive performance. This may sound like a simple operation , but in fact , it sometimes

involves a very elaborate process.

 There are variety of techniques developed to achieve that goal many of which are based

on so called “Competitive evaluation of models”, that is applying different models to the same

data set and then comparing their performance to choose the best.

Sindhuja Anbalagan Degree Project

 E4015D

2010

Dalarna University Tel: +46(0)23 7780000
Röda vägen 3S-781 88 Fax: +46(0)23 778080
Borlänge Sweden http://www.du.se

51

 Based on this stage, Ephorus anti plagiarism software which is based on text based

detection technique is used to carried out the analysis of plagiarism extent among the Swedish

Universities.

Stage 3: Deployment.

 The final stage involves using the model selected as best in the previous stage and

applying in to new data in order to generate predictions or estimations of the expected outcomes.

 The data collected from the first stage and the detection model selected from the second

stage are used to test the data to find the possible plagiarism extent.

Sl.No Name of the Universities Number of Samples

1 Linköping [41] 32

2 Dalarna [42] 29

3 Halmstad [43] 29

4 Skövde [44] 29

5 Umeå [45] 22

6 Uppsala [46] 30

7 BTH [47] 12

8 KTH [48] 4

9 Linnaeus [49] 21

10 Mälardalen [50] 12

 Total 220

 Table 2 : Swedish Universities and Samples.

Selection of above samples :

 The documents were selected from the respective university websites. Mode of selection

is based on the recent Computer science Master‟s thesis report, for example papers belong to

Sindhuja Anbalagan Degree Project

 E4015D

2010

Dalarna University Tel: +46(0)23 7780000
Röda vägen 3S-781 88 Fax: +46(0)23 778080
Borlänge Sweden http://www.du.se

52

2010, 2009, 2008 mostly, but in some cases recent papers were not available in the university

websites, so the next available computer science Master‟s thesis reports were taken. The

maximum possible samples from Master level computer science domain is taken across Swedish

Universities and processed in the Ephorus anti-plagiarism software. For example, 32 samples

were taken from Linkoping university, but only 4 documents were available in the kth university.

Step 2: Processing the documents in Ephorus software to find the possible sources of plagiarism.

The collected documents are then uploaded in Ephorus software, and

the initial percentage of plagiarism was found.

 Figure 4: Ephorus homepage with Swedish university documents

Sindhuja Anbalagan Degree Project

 E4015D

2010

Dalarna University Tel: +46(0)23 7780000
Röda vägen 3S-781 88 Fax: +46(0)23 778080
Borlänge Sweden http://www.du.se

53

Step 3:

 In order to avoid the false positives, human intelligence is used to find out the final

percentage of plagiarism. Each Ephorus document results is analyzed by human in order to

remove the false positives, this will greatly helpful in finding the exact percentage of plagiarism.

The final plagiarism percentage for each sample is given as follows.

Linköping % Of

P

Dalarna % of

P

Halmstad % of

P

Skövde % of

P

Umeå % of

P

Link 1 2 D 1 0 Ham1 6 Skv1 1 Ume1 1

Link 2 6 D 2 12 Ham 2 1 Skv2 4 Ume2 1

Link 3 4 D 3 29 Ham3 1 Skv3 1 Ume3 0

Link 4 3 D 4 1 Ham4 1 Skv4 1 Ume4 1

Link 5 3 D 5 1 Ham5 2 Skv5 1 Ume5 1

Link 6 1 D 6 3 Ham6 2 Skv6 1 Ume6 1

Link 7 3 D 7 1 Ham7 1 Skv7 3 Ume7 1

Link 8 2 D8 3 Ham8 2 Skv8 3 Ume8 1

Link 9 2 D9 1 Ham9 3 Skv9 1 Ume9 0

Link 10 1 D10 1 Ham10 1 Skv10 0 Ume10 2

Link 11 0 D11 3 Ham11 1 Skv11 2 Ume11 1

Link 12 5 D12 1 Ham12 2 Skv12 1 Ume12 3

Link 13 9 D13 0 Ham13 1 Skv13 1 Ume13 4

Link 14 2 D14 1 Ham14 1 Skv14 1 Ume14 0

Link 15 4 D15 1 Ham15 1 Skv15 1 Ume15 1

Link 16 4 D16 1 Ham16 1 Skv16 3 Ume16 3

Link 17 2 D17 1 Ham17 1 Skv17 2 Ume17 1

Sindhuja Anbalagan Degree Project

 E4015D

2010

Dalarna University Tel: +46(0)23 7780000
Röda vägen 3S-781 88 Fax: +46(0)23 778080
Borlänge Sweden http://www.du.se

54

Link 18 1 D18 0 Ham18 1 Skv18 0 Ume18 5

Link 19 5 D19 1 Ham19 1 Skv19 3 Ume19 1

Link 20 4 D20 3 Ham20 1 Skv20 1 Ume20 3

Link 21 4 D21 3 Ham21 2 Skv21 1 Ume21 1

Link 22 2 D22 0 Ham22 1 Skv22 0 Ume22 1

Link 23 2 D23 7 Ham23 2 Skv23 2

Link 24 4 D24 3 Ham24 8 Skv24 2

Link 25 15 D25 1 Ham25 1 Skv25 2

Link 26 4 D26 7 Ham26 1 Skv26 1

Link 27 2 D27 8 Ham27 2 Skv27 0

Link 28 3 D28 2 Ham28 8 Skv28 1

Link 29 1 D29 7 Ham29 1 Skv29 1

Link 30 17

Link 31 4

Link 32 1

 Table 3(i): Swedish Universities and Percentage of Plagiarism.

Uppasala % of

P

BTH % of

P

KTH % of

P

Linnaeus % of

P

Malardalen % of

P

Upp1 0 BTH1 1 KTH1 3 Line1 3 Malar1 3

Upp2 0 BTH2 9 KTH2 1 Line2 1 Malar2 1

Upp3 1 BTH3 4 KTH3 2 Line3 0 Malar3 1

Upp4 0 BTH4 1 KTH4 2 Line4 1 Malar4 3

Upp5 0 BTH5 1 Line5 5 Malar5 1

Upp6 0 BTH6 4 Line6 2 Malar6 2

Upp7 2 BTH7 1 Line7 1 Malar7 2

Upp8 2 BTH8 4 Line8 1 Malar8 3

Upp9 10 BTH9 2 Line9 1 Malar9 0

Sindhuja Anbalagan Degree Project

 E4015D

2010

Dalarna University Tel: +46(0)23 7780000
Röda vägen 3S-781 88 Fax: +46(0)23 778080
Borlänge Sweden http://www.du.se

55

Upp10 1 BTH10 1 Line10 2 Malar10 1

Upp11 1 BTH11 1 Line11 1 Malar11 1

Upp12 1 BTH12 2 Line12 1 Malar12 7

Upp13 1 Line13 10

Upp14 2 Line14 1

Upp15 2 Line15 2

Upp16 2 Line16 1

Upp17 2 Line17 2

Upp18 2 Line18 1

Upp19 0 Line19 11

Upp20 8 Line20 3

Upp21 3 Line21 2

Upp22 3

Upp23 2

Upp24 1

Upp25 2

Upp26 2

Upp27 2

Upp28 2

Upp29 2

Upp30 1

 Table 3(ii):Swedish Universities and Percentage of Plagiarism.

From the above table, only 5 documents out of total 220 (2 from Linkoping , 2 from Dalarna and

1 from Uppasala) has plagiarism percentage more than 10%. The manual anlaysis of these

documents shows that they were plagiarized against the internet sources and not with the fellow

students.

Sindhuja Anbalagan Degree Project

 E4015D

2010

Dalarna University Tel: +46(0)23 7780000
Röda vägen 3S-781 88 Fax: +46(0)23 778080
Borlänge Sweden http://www.du.se

56

8.3 Threshold Setting

Example for threshold setting in the Academic Plagiarism detection:

 The following is an example for determining the quality of thesis work , based on the

final percentage of plagiarism. The threshold is user defined.

 Threshold 1 T1 = <5 % - Ok.

 Threshold 2 T2 = 5 to 20 % - Questionable.

 Threshold 3 T3 = > 20% - Reject.

 Based on this threshold levels, it is possible to assess the quality of the document.

From the above samples,

 UNIVERSITY

 COUNT

 T 1 = < 5 %

 OK

T2 = 5 – 20 %

QUESTIONABLE

T 3 = > 20 %

REJECT

Linköping 26 6 -

Dalarna 23 5 1

Halmstad 26 3 -

Skövde 29 - -

Umeå 21 1 -

Uppsala 28 2 -

BTH 11 1 -

Sindhuja Anbalagan Degree Project

 E4015D

2010

Dalarna University Tel: +46(0)23 7780000
Röda vägen 3S-781 88 Fax: +46(0)23 778080
Borlänge Sweden http://www.du.se

57

KTH 4 - -

Linnaeus 18 3 -

Mälardalen 11 1 -

 Table 4: Threshold and Counts.

Step 4: Once the percentage of plagiarism has been found, STATISTICAL

 DATA ANALYSIS is carried out using Minitab software.

8.4 Minitab software:

 Minitab software is used for statistical analysis [51].

8.5 Working on Minitab :

 The percentage of Plagiarism for each universities(data values) is uploaded in the

software.

The mean , standard deviation, variance, minimum percentage value of plagiarism,

maximum percentage value of plagiarism and range is calculated for each university.

8.6 Software Sensitivity Test:

 The following tests were carried out in order to find the sensitivity of Ephorus software.

Test 1:

 Processing my own thesis documents with references unremoved.

Test Result : Percentage of Plagiarism : 3%

Test 2:

 Processing my own thesis document with references removed.

Sindhuja Anbalagan Degree Project

 E4015D

2010

Dalarna University Tel: +46(0)23 7780000
Röda vägen 3S-781 88 Fax: +46(0)23 778080
Borlänge Sweden http://www.du.se

58

Test Result : Percentage of Plagiarism : 16%

Test 3:

 Processing a document from internet without references.

Test Result : Percentage of Plagiarism : 100%

Test 4:

 Processing the same document from internet with a change in synonyms.

Test Result : Percentage of Plagiarism : 100 %

Inference about the sensitivity test:

 Test 1 result shows an example for accidental cloning and failure to cite the references.

Test 2 result shows an example for person‟s true work in their thesis, in this case 16% is used or

referred from other‟s work. Test 3 shows the performance and efficiency of software when a

document is stolen from internet and used as if one‟s own, here it detects completely 100%,

which shows high efficiency of Ephorous anti plagiarism software. Test 4 , checks for the

consistency in efficiency, when there is a change in the synonyms , which again proves the

efficiency (100%)of Ephorus anti plagiarism software. From the test 4, it could be said that,

Ephorus is not only based on detecting the clones, but it also has some kind of intelligence

techniques which could find the duplicated clone with change in synonyms.

Sindhuja Anbalagan Degree Project

 E4015D

2010

Dalarna University Tel: +46(0)23 7780000
Röda vägen 3S-781 88 Fax: +46(0)23 778080
Borlänge Sweden http://www.du.se

59

9.Results

9.1 Results:

 After uploading the data values (i.e percentage of plagiarism for each university)

The following calculations are carried out [51].

Variable Mean St Dev Variance Minimum Maximum Range

Linköping 3.813 3.677 13.448 0.000 17.000 17.000

Dalarna 3.52 5.69 32.40 0.000 29.00 29.00

Hamstard 1.966 1.955 3.820 1.000 8.00 7.000

Skövde 1.414 1.018 1.037 0.000 4.000 4.000

Umeå 1.500 1.300 1.690 0.000 5.000 5.000

Uppsala 1.900 2.139 4.576 0.000 10.000 10.000

Bth 2.583 2.392 5.720 1.000 9.000 8.000

Kth 2.000 0.816 0.667 1.000 3.000 2.0

Linnaeus 2.476 2.874 8.262 0.000 11.000 11.000

Mälardalen 2.000 1.809 3.273 0.000 7.000 7.000

 Table 5: Statistical Output.

Sindhuja Anbalagan Degree Project

 E4015D

2010

Dalarna University Tel: +46(0)23 7780000
Röda vägen 3S-781 88 Fax: +46(0)23 778080
Borlänge Sweden http://www.du.se

60

9.2 Graphical Representation :

 Fig:5(i) Graphical Representations

Scale:

 X-axis : Percentage of Plagarism

 Y-axis : Number of Plagarised Documents

Sindhuja Anbalagan Degree Project

 E4015D

2010

Dalarna University Tel: +46(0)23 7780000
Röda vägen 3S-781 88 Fax: +46(0)23 778080
Borlänge Sweden http://www.du.se

61

 Fig:5(ii) Graphical Representations

Scale:

 X-axis : Percentage of Plagarism

 Y-axis : Number of Plagarised Documents

Sindhuja Anbalagan Degree Project

 E4015D

2010

Dalarna University Tel: +46(0)23 7780000
Röda vägen 3S-781 88 Fax: +46(0)23 778080
Borlänge Sweden http://www.du.se

62

9.3 Conclusion:

 The first part of the paper gives the detailed idea about the software clones. The choice

among the six clone detection techniques largely depend on the problem domain.The Academic

text based plagiarism detection is based on various factors like scope of search, analysis time,

document capacity/batch processing, check intensity , precision and recall, so among various

detection techniques Text based detection technique is highly efficient for plagiarism detection

among the thesis report.

 The later part of the paper , detects the plagiarism extent among Swedish Universities

using Ephorus software which depends mainly on text based and some hybrid based detection

techniques. The preventive measures are helpful in avoiding the clones. Exact refactoring is

used to remove the clones. Simultaneous Editing is used to manage the clones.

 From the above results, the overall percentage of plagiarism occurrence among Swedish

universities is 2.3%(SE of the mean 0.253, confidence interval (1.8,2.8)) Out of the 220 thesis

documents only 5 documents were above or equal to 10% of plagiarized content, and the manual

analysis shows that they were plagiarized against the internet sources and not with the fellow

students . The threshold setting shows that majority of documents(197 samples) falls under T1

class, very few documents(22 samples) falls under T2 class and only one document falls under

T3 class. This could be either intentional or accidental. The main reason could be lack of citing

the references.

The result gives that the plagiarism occurrence among Swedish universities is very low,

which shows that Plagiarism is not a threat to Sweden‟s education in Master level Computer

Science department. Moreover, Software sensitivity analysis shows the efficiency of the Ephorus

software plagiarism detection, and the important point to be noted is that Ephorus is not just

doing clone detection it also has an intelligence technique that could find the change in

synonyms, which is an added advantage. So Ephorus should be based on Jplag and other

intelligence techniques for detecting the clones.

The study of software clones , clone detection methodologies, working on Ephorus and

Minitab were really interesting and I prefer that awareness on anti plagiarism should be

encouraged among students in order to respect other‟s work and to discover new innovative

ideas.

Sindhuja Anbalagan Degree Project

 E4015D

2010

Dalarna University Tel: +46(0)23 7780000
Röda vägen 3S-781 88 Fax: +46(0)23 778080
Borlänge Sweden http://www.du.se

63

10.Discussion and Future Work

 The use of DUP tool, which has a high efficiency in memory handling and recall

precision will improve the results of the software plagiarism detection. Moreover the DUP clone

detector appears to be more suitable for refactoring activities since it respects both syntactic

integrity and include context dependencies in its clone. Its better to explore additional anti

software plagiarism detection softwares like Turnitin and Urkund .

This paper is based only on Computer Science domain, when we extend the plagiarism

check to other departments as well, we can get the exact figure of plagiarism occurrence among

Swedish Universities..

 Moreover, the figure 2.3% should be compared to other Computer science departments

across the world to have a clear insight about the research.

Sindhuja Anbalagan Degree Project

 E4015D

2010

Dalarna University Tel: +46(0)23 7780000
Röda vägen 3S-781 88 Fax: +46(0)23 778080
Borlänge Sweden http://www.du.se

64

 11. References

11.1 References:

[1] B.Baker on finding duplication and near- duplication in large software systems , In WRCE ,

pp 86-95,1995.

[2] C.K.Roy and J.R.Cordy. An Empirical study of function clones in open source software. In

WRCE 2008, pp 81-90, 2008.

[3]M.Kim and G.Murphy. An Empirical study of code clones in Genealogies. In FSE,pp 187-

196,2005.

[4] L.Aversano , L.Cerulo and Massimiliano Di Penta. How clones are maintained : An

Empirical study. In CSMR, pp 81-90,2001.

[5] C.Kapser and M.Godfrey. “Cloning considered harmful” Considered harmful. In WCRE,pp

19-28,2006.

[6] J.Haward Johnson. Identifying redundancy in source code using fingerprints.In proceeding of

the 1993 conference of the centre for advanced studies conference (cascon‟ 93) pp 171-183,

Toronto, Canada, October 1993.

[7] A.Chou, J.Yang, B.Cherf, S.Hallem and D.R.Engler. An Empirical study of Operating system

errors. In proceeding of the 18
th

 ACM symposium on Operating system principles (SOSP‟ 01).

Pp 7388, Banff, Alberta, Canada, October 2001.

[8] M.Fowler. Refactoring : Improving the design of Existing code, Addison –Wesley, 2000.

[9] Bruno Lague, Daniel Proulx, Jean Mayrand, Ettore M.Merlo and John Hudeponl. Assessing

the benefits of Incorportating function clone detection in a Development process. In proceeding

of the 13
th

 International conference on software maintenance (ICSM‟ 97), pp 314-321, Bari,

Italy, October 1997.

[10] Ira Baxter, Andrew Yahin, Leonardo Moura, Marceto Sant Anna, ssClone detection using

Abstract syntax trees.In proceedings of the 14
th

 International conference on software

maintenance (ICSM‟ 98), pp 368-377 , Bethesda, Maryland, November 1998.

[11] Mirybang Kim, Gail Murphy. An Empirical study of code clone Genealogies. In

proceedings of the 10
th

 European software engineering conference held jointly with 18
th

 ACM

Sindhuja Anbalagan Degree Project

 E4015D

2010

Dalarna University Tel: +46(0)23 7780000
Röda vägen 3S-781 88 Fax: +46(0)23 778080
Borlänge Sweden http://www.du.se

65

SINSOFT International symposium on foundation of software engineering(ESEC/SINGSOFT

CSE 2005‟ 05) pp 187-196, Lisbon, Portugal, September 2005.

[12] Mattias Rieger, Stephane Ducasse, Michele Lanza. Insights into system- wide code

duplication. In proceedings of the 11
th

 IEEE working conference on Reverse engineering

(WCRE‟ 04), pp 100-109, Derf University of Technology. Netherland, November 2004.

[13] A Mutation/Injection – based Automatic framework for evaluating code clone detection

tools – Chanchal K.Roy and James R.Cordy, School of Computing, Queen‟s University

Kingston, ON, Canada K7L 3N6 {cordy,cordy}@cs.queensu.ca

[14] Cory Kapser and Michael W.Godfrey “clones considered harmful”. In proceedings of the

13
th

 working conference on Reverse engineering(WCRE „ 06) pp 19-28, Benevento, Italy,

October 2006.

[15] James.J. Hunt and Walter .F.Tichy. Extensible language aware merging. In proceedings of

the International conference on software maintenance (ICSM‟ 02), pp 511-520, Montreal,

Canada, October 2002.

[16] Mathias Rieger. Effective clone detection without language barriers Ph.D thesis, University

of Bern, Switzerland, June 2005.

[17] Toshihiro Kamiya, Shinji Kusumoto, Katsuro Inoue. CC Finder : A Multilinguistic token

based on code clone detection system for large scale source code. Transactions on software

engineering Vol. 28(7): 654-670, July 2002.

[18] Brenda Baker. On finding duplication and near duplication in large software systems. In

proceedings of the second working conference on Reverse engineering (WCRE „ 95), pp 86-95,

Toronto, Ontorio, Canada. July 1995.

[19] W.K.Chen, B.Li and R.Gupta. Code compaction of matching single-entry multiple exit

regions. In proceedings of the 10
th

 Annual International static analysis symposium(SAS „ 03), pp

401-417, San Diego, USA, June 2003.

[20] Chanchal kumar Roy and James R.Cordy . A Survey on software clone detection research

,Queen‟s University at Kingston, Ontario, Canada, 2007.

[21] Brenda S. Baker. A Program for Identifying Duplicated Code. In Proceedings of Computing

Science and Statistics: 24th Symposium on the Interface, Vol. 24:4957, March 1992.

Sindhuja Anbalagan Degree Project

 E4015D

2010

Dalarna University Tel: +46(0)23 7780000
Röda vägen 3S-781 88 Fax: +46(0)23 778080
Borlänge Sweden http://www.du.se

66

[22] Raghavan Komondoor and Susan Horwitz. Using Slicing to Identify Duplication in Source

Code. In Proceedings of the 8th International Symposium on Static Analysis (SAS‟01), Vol.

LNCS 2126, pp. 40-56, Paris, France, July 2001.

[23] Brenda S. Baker. Parameterized diff. In Proceedings of the 10th ACM-SIAM Symposium

on Discrete Algorithms (SODA‟99), pp. 854-855, Baltimore, Maryland, USA, January 1999.

[24] Wuu Yang. Identifying syntactic differences between two programs. In SoftwarePractice

and Experience, 21(7):739755, July 1991.

[25] V. Wahler, D. Seipel, Jurgen Wolff von Gudenberg, and G. Fischer. Clone detection in

source code by frequent itemset techniques. In Proceedings of the 4th IEEE International

Workshop Source Code Analysis and Manipulation (SCAM‟04), pp. 128135, Chicago, IL, USA,

September 2004.

[26] Williams Evans, and Christopher Fraser. Clone Detection via Structural Abstraction. In

Proceedings of the 14th Conference on Reverse Engineering (WCRE‟07), Vancouver, BC,

Canada, October 2007(to appear, available as Technical Report since August 2005).

[27] Raghavan Komondoor. Automated Duplicated-Code Detection and Procedure

Extraction.Ph.D. Thesis, 2003.

[28] Jens Krinke. Identifying Similar Code with Program Dependence Graphs. In Proceedings of

the 8th Working Conference on Reverse Engineering (WCRE‟01), pp. 301-309, Stuttgart,

Germany, October 2001.

[29] Jean Mayrand, Claude Leblanc, Ettore Merlo. Experiment on the Automatic

Detection of Function Clones in a Software System Using Metrics. In Proceedings of the 12th

International Conference on Software Maintenance (ICSM‟96), pp. 244-253, Monterey, CA,

USA, November 1996.

[30] K. Kontogiannis, M. Galler, and R. DeMori. Detecting code similarity using patterns. In

Working Notes of 3rd Workshop on AI and Software Engineering, 6pp., Montreal, Canada,

August 1995.

[31] Filippo Lanubile, and Teresa Mallardo. Finding Function Clones in Web Applications. In

Proceedings of the 7th European Conference on Software Maintenance and Reengineering

(CSMR‟03), pp. 379-386, Benevento, Italy, March 2003.

[32] Rainer Koschke, J.-F. Girard, M. Wrthner. An Intermediate Representation for Reverse

Engineering Analyzes. In Proceedings of the 5th Working Conference on Reverse Engineering

(WCRE‟98), pp. 241-250, Honolulu, Hawai, USA, October 1998.

Sindhuja Anbalagan Degree Project

 E4015D

2010

Dalarna University Tel: +46(0)23 7780000
Röda vägen 3S-781 88 Fax: +46(0)23 778080
Borlänge Sweden http://www.du.se

67

[33] Robert Tairas, Jeff Gray. Phoenix-Based Clone Detection Using Suffix Trees. In

Proceedings of the 44th annual Southeast regional conference (ACM-SE‟06), pp. 679- 684,

Melbourne, Florida, USA, March 2006.

[34] Magdalena Balazinska, Ettore Merlo, Michel Dagenais, Bruno Lague, Kostas Kontogiannis.

Measuring Clone Based Reengineering Opportunities. In Proceedings of the 6th International

Software Metrics Symposium (METRICS‟99), pp. 292-303, Boca Raton, Florida, USA,

November 1999.

[35] Yasushi Ueda, Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue.

Gemini:Maintenance support environment based on code clone analysis. In Proceedings of the

8th IEEE Symposium on Software Metrics (METRICS‟02), pp. 6776, Ottawa, Canada, June

2002.

[36] Yasushi Ueda, Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. Gemini:

Maintenance support environment based on code clone analysis. In Proceedings of the 8th IEEE

Symposium on Software Metrics (METRICS‟02), pp. 6776, Ottawa, Canada, June 2002.

[37] http://www.suite101.com/content/a-definition-for-plagiarism-a10232

[38] http://www.ephorus.com/home

[39] http://www.ephorus.com/media/88699/it's%20learning%20manual.pdf

[40]http://www.anderson.ucla.edu/faculty/jason.frand/teacher/technologies/palace/datamining.ht

m

[41]http://liu.divaPortal.org/smash/searchlist.jsf?searchtype=simple&freetext=Computer%20scie

nce%20thesis%20report

[42] http://dalea.du.se/theses/default.aspx

[43] http://hh.diva-portal.org/smash/searchlist.jsf?searchId=1

[44] http://his.diva-portal.org/smash/searchlist.jsf?searchId=2

[45] http://umu.diva-portal.org/smash/searchlist.jsf?searchId=1

[46] http://uu.diva-portal.org/smash/searchlist.jsf?searchId=2

[47] http://www.bth.se/fou/cuppsats.nsf/$$Search

[48] http://kth.diva-portal.org/smash/searchlist.jsf?searchId=1

[49] http://lnu.diva-portal.org/smash/searchlist.jsf?searchId=1

Sindhuja Anbalagan Degree Project

 E4015D

2010

Dalarna University Tel: +46(0)23 7780000
Röda vägen 3S-781 88 Fax: +46(0)23 778080
Borlänge Sweden http://www.du.se

68

[50] http://mdh.diva-portal.org/smash/searchlist.jsf?searchId=1

[51] http://www.minitab.com/en-US/default.aspx

