
Nouman Butt
 March 2009

Dalarna University Tel: +46(0)23 7780000

Röda vägen 3S-781 88 Fax: +46(0)23 778080

Borlänge Sweden http://www.du.se
- 1 -

MASTER THESIS 2009

BEE COLONIES APPLIED TO
MULTIPROCESSOR SCHEDULING

BY

NOUMAN BUTT

SUPERVISED BY: MR. PASCAL REBREYEND

Nouman Butt
 March 2009

Dalarna University Tel: +46(0)23 7780000

Röda vägen 3S-781 88 Fax: +46(0)23 778080

Borlänge Sweden http://www.du.se
- 2 -

THESIS TITLE

BEE COLONIES APPLIED TO MULTIPROCESSOR
SCHEDULING

NAME OF STUDENT

NOUMAN BUTT

REGISTRATION
NUMBER

EXTENT

15 ECTS

DATE (yyy-mm-dd)

2009-03-05

PROGRAM

APPLIED ARTIFICIAL INTELLIGENCE

SUPERVISOR

MR. PASCAL REBREYEND

EXAMINER

MR. MARK DOUGHERTY

DEPARTMENT

DEPARTMENT OF COMPUTER ENGINEERING,
HÖGSKOLAN DALARNA SWEDEN

Nouman Butt
 March 2009

Dalarna University Tel: +46(0)23 7780000

Röda vägen 3S-781 88 Fax: +46(0)23 778080

Borlänge Sweden http://www.du.se
- 3 -

TABLE OF CONTENTS

ACKNOWLEDGEMENT

1. ABSTRACT ………………………………………………………………………….... 7

2. PREVIOUS WORK ………………………………………………………………...…8

3. INTRODUCTION …………………………………………………………………..…9

4. BEE COLONY …………………………………………………………………….… 10

5. ALGORITHM AND DESIGN ……………………………….…………………… 11

5.1. POTENTIAL CHALLENGES ……………………………………………………. 11
5.2. GREEDY IMPLEMENTATION ………………………………………………..… 11
5.3. BEE COLONY IMPLEMENTATION AND PSEUDO CODE ………………….. 12
5.4. EXPLANATION ………………………………………………………………..… 13

6. IMPLEMENTATION DETAILS ……………………………………………….... 18

7. RESULTS AND ANALYSIS ………………………………………………...…… 19

7.1. GREEDY TIME VS. NUMBER OF TASKS …………………………………..… 23
7.2. BCO TIME VS. NUMBER OF TASKS ……………………………………….…. 24
7.3. BCO TIME AND GREEDY TIME VS. TASK’S COST .. 27
7.4. BCO TIME AND GREEDY TIME VS. TASK’S DATA ……………………....… 28

8. CONCLUSION AND FUTURE RESEARCH ………………………………… 30

REFERENCES ………………………………………………………………..…………. 31

Nouman Butt
 March 2009

Dalarna University Tel: +46(0)23 7780000

Röda vägen 3S-781 88 Fax: +46(0)23 778080

Borlänge Sweden http://www.du.se
- 4 -

LIST OF TABLES

TABLE 1: TASKS AND THEIR EXECUTION TIMES …………………………………... 15

TABLE 2: TASKS AND THEIR EXECUTION TIMES ……………………………...…… 15

TABLE 3: TASKS AND THEIR EXECUTION TIMES ……………………………...…… 16

TABLE 4: TASKS AND THEIR EXECUTION TIMES ……………………………...…… 16

TABLE 5: RESULTS OF MAKE SPANS …………………………………………………. 19

TABLE 6: RESULTS OF MAKE SPANS WITH NO. OF TASKS ………………..……… 20

TABLE 7: COMPARISON B/W RUNNING TIME OF ALGORITHMS ………………… 22

TABLE 8: DESCRIPTIVE STATISTICS B/W GREEDY TIME & NO. OF TASKS …..… 23

TABLE 9: CORRELATION B/W GREEDY TIME & NO. OF TASKS ………………….. 23

TABLE 10: GENERAL STATISTICAL COMPARISON B/W GREEDY TIME & NO. OF
TASKS ……………………………………………………………………………………… 25

TABLE 11: CORRELATION B/W BCO TIME & NO. OF TASKS ……………………… 25

Nouman Butt
 March 2009

Dalarna University Tel: +46(0)23 7780000

Röda vägen 3S-781 88 Fax: +46(0)23 778080

Borlänge Sweden http://www.du.se
- 5 -

LIST OF FIGURES

FIGURE 1: TASKS AND DEPENDENCIES AMONG THEM …………………………… 14

FIGURE 2: GRAPH BETWEEN GREEDY TIME VS. NO. OF TASKS ……………….… 24

FIGURE 3: GRAPH B/W BEE TIME VS. NO. OF TASKS …………………………….… 26

FIGURE 4: GRAPH B/W BEE TIME VS. COST ……………………………………….… 27

FIGURE 5: GRAPH BETWEEN GREEDY TIME VS. COST ………………………….… 27

FIGURE 6: GRAPH B/W BEE TIME VS. DATA ………………………………………… 28

FIGURE 7: GRAPH BETWEEN GREEDY TIME VS. DATA …………………………… 28

Nouman Butt
 March 2009

Dalarna University Tel: +46(0)23 7780000

Röda vägen 3S-781 88 Fax: +46(0)23 778080

Borlänge Sweden http://www.du.se
- 6 -

ACKNOWLEDGMENT

This work is done under the supervision of Mr. Pascal Rebreyend, a professor in Högskolan
Dalarna, whose constructive comments and guidance have led to a substantial improvement in
the presentation of my work and the report as well.

Nouman Butt
 March 2009

Dalarna University Tel: +46(0)23 7780000

Röda vägen 3S-781 88 Fax: +46(0)23 778080

Borlänge Sweden http://www.du.se
- 7 -

1.0 ABSTRACT

In order to achieve the high performance, we need to have an efficient scheduling of a parallel
program onto the processors in multiprocessor systems that minimizes the entire execution
time. This problem of multiprocessor scheduling can be stated as finding a schedule for a
general task graph to be executed on a multiprocessor system so that the schedule length can
be minimize [10]. This scheduling problem is known to be NP- Hard.

In multi processor task scheduling, we have a number of CPU’s on which a number of tasks
are to be scheduled that the program’s execution time is minimized. According to [10], the
tasks scheduling problem is a key factor for a parallel multiprocessor system to gain better
performance. A task can be partitioned into a group of subtasks and represented as a DAG
(Directed Acyclic Graph), so the problem can be stated as finding a schedule for a DAG to be
executed in a parallel multiprocessor system so that the schedule can be minimized. This
helps to reduce processing time and increase processor utilization. The aim of this thesis work
is to check and compare the results obtained by Bee Colony algorithm with already generated
best known results in multi processor task scheduling domain.

Nouman Butt
 March 2009

Dalarna University Tel: +46(0)23 7780000

Röda vägen 3S-781 88 Fax: +46(0)23 778080

Borlänge Sweden http://www.du.se
- 8 -

2.0 PREVIOUS WORK

Bee colony optimization is almost a recent technique of optimizing solutions like swarm
intelligence and a lot of work is in progress nowadays. Chin Soon Chong and Malcolm Yoke
Hean Low [13] in their work in "A Bee Colony Optimization Algorithm to Job Shop
Scheduling" have compared bee colony to ant colony algorithms. Again these both scientists
in their work [14] "Using a Bee Colony Algorithm for neighborhood search in Job Shop
Scheduling problems" used self-organization of honey bee colony for solving job shop
scheduling problems and the algorithm was founded on neighborhood search based foraging.
Li-Pei Wong, Malcolm Yoke Hean Low, and Chin Soon Chong in their work in [11] "A Bee
Colony Optimization Algorithm for Traveling Salesman Problem" tried to solve the TSP
using bee colony. Other than these, there are a lot of other scientists too who have contributed
in this domain with excellence.

Nouman Butt
 March 2009

Dalarna University Tel: +46(0)23 7780000

Röda vägen 3S-781 88 Fax: +46(0)23 778080

Borlänge Sweden http://www.du.se
- 9 -

3.0 INTRODUCTION

Scheduling a set of dependent or independent tasks for parallel execution on a set of
processors is an important and computationally complex problem. Parallel program can be
decomposed into a set of smaller tasks that generally have dependencies. The goal of task
scheduling is to assign tasks to available processors such that precedence requirements
between tasks are satisfied and the overall time required to execute all tasks, the make span, is
minimized. There are various variants of this problem, depending on whether we consider
communication delays or not, whether the multiprocessor systems are heterogeneous or
homogeneous and other considerations. Various studies have proven that finding an optimal
schedule is an NP-complete problem even in the simplest forms [3].

Since finding an optimal solution is not feasible, a large number of algorithms were proposed
which attempt to obtain a near-optimal solution for various variants of the multiprocessor task
scheduling problem. These algorithms usually trade the computational complexity of the
scheduling algorithm itself to the quality of the solution. Algorithms based on complex,
iterative search can usually (but not always) outperform simple one-pass heuristics, but their
computational complexity makes them less scalable [3].

Let a (homogeneous) multiprocessor system be a set of 'm' identical processors, m > 1. Each
processor has its own memory and each pair of processors communicate exclusively by
message passing through an interconnection network. Additionally, let a parallel program be a
set of communicating tasks to be executed under a number of precedence constraints. To each
task is associated a cost, representing its execution time. A weighted acyclic task digraph can
be used to represent the tasks and the precedence constraints. In order to be executed, each
task of a given parallel program must be scheduled to some processor of a given
multiprocessor system. Consequently, tasks that communicate in the parallel program may be
scheduled to different processors, which lead these processors to communicate during the
execution of the parallel program. In general, these communications slow down the execution
of the parallel program. Considering these communications and the precedence constraints
between tasks, it follows those different schedules of each task satisfying the precedence
constraints lead to different execution times of the parallel program.

Nouman Butt
 March 2009

Dalarna University Tel: +46(0)23 7780000

Röda vägen 3S-781 88 Fax: +46(0)23 778080

Borlänge Sweden http://www.du.se
- 10 -

4.0 BEE COLONY

According to [11], the foraging behavior in a bee colony remains mysterious for many years
until von Frisch translated the language embedded in bee waggle dances [12]. In his series of
experiments, he also discovered that bees actually own color vision and attracted by scent
deposited by their hive mates.

To examine how bees communicate via waggle dance, suppose a bee has found a rich food
source. Upon its return to the hive, it starts to dance in a figure eight pattern: a straight waggle
run followed by a turn to the right back to the starting point, and then another straight waggle
run followed by a turn to the left and back to the starting point again. The bee usually repeats
these for a few times. Remarkably, via the dance, the bee has actually informed its hive mates
about the direction and distance of the food source. The direction is expressed via the angle of
dance relative to the sun position whereas the distance is expressed through the length of the
straight waggle run. This coding and decoding process will eventually bring more bees
towards the new food discovery.

In Bee Colony model, the colony consists of three groups of bees: employed bees, onlookers
and scouts. It is assumed that there is only one artificial employed bee for each food source. In
other words, the number of employed bees in the colony is equal to the number of food
sources around the hive. Employed bees goes to their food source and come back to hive and
dance on the dance floor. The employed bee whose food source has been abandoned becomes
a scout and starts to search for finding a new food source. Onlookers watch the dances of
employed bees and choose food sources depending on dances.

In Bee Colony model which is an evolutionary and population based algorithm, the position
of a food source represents a possible solution to the optimization problem and the nectar
amount of a food source corresponds to the quality (fitness) of the associated solution.
The pseudo code for the bee’s algorithm in its simplest form according to [11] is:

1. procedureprocedureprocedureprocedure BCO
a. Initialize_Population ()

i. whilewhilewhilewhile stop criteria are not fulfilled, do
1. whilewhilewhilewhile all bees have not built a complete path, do

a. Observe_Dance ()
b. Forage_ByTransRule ()
c. Perform_Waggle_Dance ()

Nouman Butt
 March 2009

Dalarna University Tel: +46(0)23 7780000

Röda vägen 3S-781 88 Fax: +46(0)23 778080

Borlänge Sweden http://www.du.se
- 11 -

2. end whilewhilewhilewhile
ii. end whilewhilewhilewhile

2. end procedureend procedureend procedureend procedure BCO

5.0 ALGORITHM AND DESIGN

5.1 Potential Challenges

During my work, I came across a lot of challenges regarding the implementation of Bee
Colony in real or my scenario. The main challenge for the person implementing swarm
intelligence algorithms is to understand the algorithm correctly and then map it in his/her own
environment which sometimes is hard to do. Implementing an algorithm in programming
domain gives rise to lot of logical questions which need to be answered before implementing.

5.2 Greedy Implementation

Before implementation of Bee Colony in my work, I scheduled the tasks using Greedy
algorithm and got some results. In this section I’m going to present the pseudo code of greedy
algorithm. The basic idea of greedy algorithm here is to check each task on every CPU and
calculate the time. The CPU producing the least time when a particular task executes on it;
will be the CPU on which the task will be executed finally.
The pseudo code of the algorithm is as follows:

Greedy Pseudo Code:
 1. After reading a file, randomly fill all tasks in an array 2. WHILEWHILEWHILEWHILE all tasks are not scheduled, DODODODO 2.1. Select first task from array, let it be 'Incomp_Task' 2.2. IFIFIFIF 'Incomp_Task' is scheduled, THENTHENTHENTHEN 2.2.1. Select next task from the random array 2.3.2.3.2.3.2.3. ELSEELSEELSEELSE 2.3.1. IFIFIFIF Incomp_Task has a predecessor, THENTHENTHENTHEN 2.3.1.1. IFIFIFIF predecessors of Incomp_Task are complete, THENTHENTHENTHEN 2.3.1.1.1. Compute FORFORFORFOR each CPU, the earliest starting time of Incomp_Task 2.3.1.1.2. IFIFIFIF no. of CPU’s giving least time is more than 1, THENTHENTHENTHEN

Nouman Butt
 March 2009

Dalarna University Tel: +46(0)23 7780000

Röda vägen 3S-781 88 Fax: +46(0)23 778080

Borlänge Sweden http://www.du.se
- 12 -

2.3.1.1.2.1. Execute Incomp_Task randomly on any CPU giving least time 2.3.1.1.3.2.3.1.1.3.2.3.1.1.3.2.3.1.1.3. ELSEELSEELSEELSE 2.3.1.1.3.1. Execute Incomp_Task on CPU giving least starting time 2.3.1.1.4.2.3.1.1.4.2.3.1.1.4.2.3.1.1.4. END IFEND IFEND IFEND IF 2.3.1.1.5. Go to step (2.1.) 2.3.1.2.2.3.1.2.2.3.1.2.2.3.1.2. ELSEELSEELSEELSE 2.3.1.2.1. Get all predecessors of Incomp_Task 2.3.1.2.2. Select a new Incomp_Task from all predecessors 2.3.1.2.3. Go to step (2.3.1.) 2.3.1.3.2.3.1.3.2.3.1.3.2.3.1.3. END IEND IEND IEND IFFFF 2.3.2.2.3.2.2.3.2.2.3.2. ELSEELSEELSEELSE 2.3.2.1. Go to step (2.3.1.1.1.) 2.3.3.2.3.3.2.3.3.2.3.3. END IFEND IFEND IFEND IF 2.4.2.4.2.4.2.4. END IFEND IFEND IFEND IF 3.3.3.3. END WHILEEND WHILEEND WHILEEND WHILE
4. Compute make span

5.3 Bee Colony Implementation and Pseudo Code

The algorithm shown below is just the Bee Colony part i.e. the re-ordering of the array of
random tasks used in greedy part to know which tasks to schedule first and which in the last.
The difference between this Bee Colony algorithm and the above Greedy algorithm is that the
Greedy algorithm selected tasks randomly to schedule while this Bee Colony will select on
tasks on the basis of some criteria. The least make span selected at the last step of the
algorithm below, will be the make span of the final selected order of tasks produced by Bee
algorithm and also this order of tasks will be the output to greedy.

1. procedure BCOBCOBCOBCO
1.1. randomly fill all tasks in an array
1.2. select employed bees i.e. no. of employed bees equals to the no. of tasks

Nouman Butt
 March 2009

Dalarna University Tel: +46(0)23 7780000

Röda vägen 3S-781 88 Fax: +46(0)23 778080

Borlänge Sweden http://www.du.se
- 13 -

1.3. select tasks having no predecessor from all tasks in list ‘AAAA’
1.4. count all tasks of list ‘AAAA’, let count be ‘xxxx’
1.5. FORFORFORFOR i = 1 to x,

1.5.1. after observing waggle dance by onlooker bees, chose a
task to execute from list ‘AAAA’

1.5.2. execute task of list ‘AAAA’ i.e. A [i]th task
1.5.3. WHILEWHILEWHILEWHILE all tasks are not scheduled, DODODODO

1.5.3.1. update list ‘AAAA’ with tasks whose predecessors are either
scheduled or not exist

1.5.3.2. execute the task from list ‘AAAA’ having least execution time
1.5.3.3. Go to step (1.5.2.)

1.5.4.1.5.4.1.5.4.1.5.4. END WHILEEND WHILEEND WHILEEND WHILE

1.5.5. compute make span of this iteration and save it in list ‘BBBB’
1.5.6. perform waggle dance by employed bees
1.5.7. i = i + 1

1.6.1.6.1.6.1.6. END END END END FORFORFORFOR

1.7. select the least make span from list 'B’B’B’B’
1.8. select the order of tasks producing the least make span. This order of tasks

will be the input of greedy part.
2. end procedure BCOBCOBCOBCO

5.4 Explanation

When greedy algorithm was implemented, the order of tasks was taken as random. Now the
only thing left is just to re-order the tasks by using Bee Colony algorithm so that we could
generate a set of feasible solutions rather than using a pseudorandom approach and also we
could know which tasks to execute first and which in the last.

Nouman Butt
 March 2009

Dalarna University Tel: +46(0)23 7780000

Röda vägen 3S-781 88 Fax: +46(0)23 778080

Borlänge Sweden http://www.du.se
- 14 -

Each time the algorithm runs, it runs or starts from a task having no predecessors among other
tasks because it’s impossible to start from a task having predecessors. Hence the stopping
criteria of the above Bee Colony algorithm is when all independent tasks or tasks having no
predecessors are not finished or when the no. of iterations exceeds the no. of tasks having no
predecessors. There are a lot of ways to implement Bee Colony algorithm among which I
made an attempt to implement it by taking help from [15]. In [15], the no. of bees recruited by
authors are equal to the no. of cities to visit. In the same way, I have recruited the no. of bees
equal to the no. of tasks I have. In order to understand the implementation of Bee Colony
optimization, the writers Li-Pei Wong, Malcolm Yoke Hean Low, and Chin Soon Chong in
their article “Bee colony optimization with local search for TSP” [15] have used two basic
parameters in order to visit from city 1 to city 2. These two parameters are:

• Arc fitness

• Distance

The above writers used two sets of tables, one containing the preferred path of cities and the
other containing the next city to visit. In their article, the table containing the preferred path is
obtained after the communication among bees after a series of waggle dance performed. The
more the arc fitness and the less the distance between two cities, the highest is the priority of a
particular city to visit. On the basis of this strategy, I have tried to develop a strategy based on
the above article and also on Bee Colony. Since I have tasks to schedule on a number of
CPU’s and unlike cities in TSP of [15], tasks are dependent on each other, so I have made the
following parameters from which a bee will decide or prioritize which task to visit first. Those
three parameters are:

1. Look for independent tasks
2. Tasks with less execution time
3. Tasks with dependencies

Since it is impossible to start a tour of tasks from a dependent task, therefore the priority of
independent tasks are a bit higher than the dependent tasks that’s why I put priority of
independent tasks on top. The priority function in my problem is based on the above three
parameters. Allow me to explain it with an example.

Suppose I have nine tasks with dependencies among them with execution time shown below
in figure 1. Here the circles represent the task name and the numbers in the brackets represent
the execution time of each task. The arrows are representing that the task is sending data to
other task, for e.g. task ‘A’ has an execution time of ‘7’ and is sending data to ‘D’ or ‘D’ is
dependent on task ‘A’.

Nouman Butt
 March 2009

Dalarna University Tel: +46(0)23 7780000

Röda vägen 3S-781 88 Fax: +46(0)23 778080

Borlänge Sweden http://www.du.se
- 15 -

Fig. 1: Tasks and dependencies among them

Since in the above case, there are nine tasks therefore there will be nine employed bees that
will search for the path. After returning to its hive, the bees will perform a waggle dance to
show the other Onlooker bees which task to chose first. The onlooker bee will then be
equipped with a set of moves to start, which are observed from the dance. These set of moves
are shown below in table 1. According to the above three strategies I mentioned, the bee will
look for the independent tasks first because it’s not possible to execute a task if its
predecessor isn’t scheduled yet. So in order to avoid this situation, the bee will look for the
independent tasks first. After getting all the independent tasks, the new table will look like
this:

Table 1:

FREE TASKS EXECUTION TIME

A 7
B 5
F 3
H 6

Nouman Butt
 March 2009

Dalarna University Tel: +46(0)23 7780000

Röda vägen 3S-781 88 Fax: +46(0)23 778080

Borlänge Sweden http://www.du.se
- 16 -

The Free Tasks column is the same as independent tasks column but with a different name
just for the ease of understanding. In the above table, the free tasks column contains all the
tasks which are not dependent on any other task or whose predecessors don’t exist. Since it is
the first iteration, therefore the bee will choose the first free task to execute or add in its
memory and this task will be the task “A”. After executing task “A”, a new table is created
i.e. table 2 and the bee will be left with the following situation:

Table 2:

FREE TASKS EXECUTION TIME

B 5
D 4
F 3
H 6

As can be seen in table 2, a new task is added in free tasks column i.e. task “D”, because after
execution of task “A”, task “D” is now available to execute. From this point and on, the bee
will look for the tasks having less execution time because of our defined strategy. The task
with less execution time is task “F”. This task will be now executed on a CPU giving the least
time. After the execution of task “F”, table 2 will be updated again and will be looking like
this:

Table 3:

FREE TASKS EXECUTION TIME

B 5
D 4
H 6
E 5
G 8

The new added tasks are “E” and “G” as can be seen in table 3. Now again the bee will look
for the task with less execution time and now it will be task “D”. Now task “D” will be
executed and this process will go on until all the tasks are completed.

After execution of every task, this one iteration is completed and the bee has developed the
following order or sequence of execution of tasks:

Nouman Butt
 March 2009

Dalarna University Tel: +46(0)23 7780000

Röda vägen 3S-781 88 Fax: +46(0)23 778080

Borlänge Sweden http://www.du.se
- 17 -

A --> F --> D --> B --> E --> H --> I --> G --> C

After execution of every task, the make span of the above order and other orders will be
calculated and let suppose the total make span after execution of all tasks in the first iteration
is ‘x1’. In the same way, bees will again perform an iteration starting from table 1. This
iteration will again start after performing the waggle dance by employed bees and observing
dance by onlooker bees. In the beginning of the first iteration, the bees executed task “A”, so
now in the second iteration the bees will execute or select the second task in table ‘1’ i.e. task
“B”. After executing task “B” from the figure shown above, the new table will look like this:

Table 4:

FREE TASKS EXECUTION TIME
A 7
C 9
F 3
H 6

As can be seen in table 4, after executing task “B”, a new task is ready to execute i.e. task
“C”. In the same way, the bees will again make tables like they did before and will create an
order of tasks and calculate the make span after execution of every task. Let the make span of
this second iteration is ‘x2’.

In the above mentioned example, bees will have maximum four iterations because in table 1,
there are four independent or free tasks to start with, hence bees will get a total of four make
spans i.e. ‘x1’, ‘x2’, ‘x3’, and ‘x4’. After getting all the make spans, we will select the least
make span among those four make spans and let suppose that make span is ‘x3’. This order of
tasks executed in the case of make span ‘x3’ will be our order of tasks to schedule tasks using
Bee Colony on CPU’s.

Nouman Butt
 March 2009

Dalarna University Tel: +46(0)23 7780000

Röda vägen 3S-781 88 Fax: +46(0)23 778080

Borlänge Sweden http://www.du.se
- 18 -

6.0 IMPLEMENTATION DETAILS

This work of mine is developed in Visual C++ in a .net 2005 environment as a development
tool. A list of tour or order of tasks created in the beginning symbolizes the dances by bees.
After each waggle dance, a new table is created for bees containing the new set or tasks to
complete.

My implementation contains three basic parameters as discussed above, by which a bee
selects a task to complete or execute first.

As stated above, before implementing Bee Colony, I’ve implemented and checked the results
using greedy algorithm. The greedy algorithm is used in a way such that I selected each task
among whole tasks, and executed it on every processor. The processor which is giving the
least starting time of the selected task will be the processor on which the selected task will be
scheduled. In this way all of the tasks were scheduled using this least starting time technique
and calculated the make span.

Nouman Butt
 March 2009

Dalarna University Tel: +46(0)23 7780000

Röda vägen 3S-781 88 Fax: +46(0)23 778080

Borlänge Sweden http://www.du.se
- 19 -

7.0 RESULTS AND ANALYSIS

In order to evaluate the performance of the Bee Colony algorithm, I used some 32 benchmark
files for testing. Also, to compare the results obtained by Bee Colony, I have made use of
some best known results already generated by some other methods used by different authors.
Below is the table of the results I’ve got from both Greedy and Bee Colony:

Table 5: Results of make spans

GRAPH

BEST KNOWN

RESULTS

GREEDY

BEE COLONY

m 71 936 050 101 720 650 100 402 450 Bellford
l 193 794 250 326 431 650 297 577 300

m 131 940 750 131 940 750 134 422 800 Diamond-1
l 276 758 950 269 700 750 275 520 000

Diamond-2 m 127 224 450 184 456 550 228 420 450

Nouman Butt
 March 2009

Dalarna University Tel: +46(0)23 7780000

Röda vägen 3S-781 88 Fax: +46(0)23 778080

Borlänge Sweden http://www.du.se
- 20 -

l 218 954 400 333 438 400 345 007 300
m 176 982 100 189 753 550 191 047 350 Diamond-3
l 228 590 500 256 848 600 252 454 000

m 132 875 550 126 227 800 156 345 400 Diamond-4
l 164 264 000 150 804 350 182 521 100

m 97 307 880 136 341 910 150 908 180 Divconq
l 169 043 350 240 759 590 287 153 410

m 29 888 250 37 489 200 39 260 550 Fft
l 102 647 300 138 297 600 134 239 350

m 226 882 900 254 241 900 248 501 900 Gauss
l 307 395 80 345 623 200 345 699 650

m 16 733 350 23 961 200 33 722 500 Iteratif
l 47 936 700 65 576 200 79 642 500

m 4 598 550 4 605 112 750 4 605 112 750 ms-gauss
l 2 559 388 750 2 567 263 050 2 572 987 200

m 60 499 350 83 841 600 66 086 450 prolog
l 258 529 350 380 674 800 261 475 800

m 1 173 100 600 1 176 047 050 1 176 047 050 qcd
L 2 038 576 050 2 041 522 500 2 041 522 500

elbow m 6630 6734 6708
stanford m 627 703 686

5 74 169 144
6 77 196 146
7 82 194 149
8 86 213 183

ssc

9 89 264 213

In the table above, the ‘Graph’ column is containing the names of the benchmark files
provided to me by my supervisor. The column ‘Best Known Results’ is containing the results
obtained by different scientists in their respective work and are the best optimized results so
far in this particular problem domain. The other two columns are ‘Greedy’ and ‘Bee Colony’
respectively containing the results I’ve got after implementing both algorithms as discussed
earlier.

Unfortunately, the results obtained from Bee Colony are not very promising when compared
to the best known results as can be seen from the table above, but when it comes to the
comparison between Bee Colony and Greedy results, both algorithms have produced good
results in some of their respective benchmark files or in other words we cannot say for sure
that any particular algorithm is producing good results. The shaded boxes in the ‘Greedy’ and
‘Bee Colony’ columns are containing the best result when both algorithms were compared.

Nouman Butt
 March 2009

Dalarna University Tel: +46(0)23 7780000

Röda vägen 3S-781 88 Fax: +46(0)23 778080

Borlänge Sweden http://www.du.se
- 21 -

From the above table, we have found an important finding that in some of the benchmark
files, Greedy algorithm has outperformed the best known results, and while on the other hand,
Bee Colony didn’t. These outperformed results can be seen in the ‘Greedy’ column with red
colored values.

For analysis purposes, we compared both results obtained from both algorithms with the
number of tasks or jobs we have in our bench mark files, the table below shows the results we
got:

Table 6: Results of make spans with no. of Tasks

GRAPH

NO. OF TASKS

GREEDY

BEE COLONY

m 354 101 720 650 100 402 450 Bellford

l 992 326 431 650 297 577 300

m 258 131 940 750 134 422 800 Diamond-1

l 1026 269 700 750 275 520 000

m 262 184 456 550 228 420 450 Diamond-2

l 1227 333 438 400 345 007 300

m 731 189 753 550 191 047 350 Diamond-3

l 1002 256 848 600 252 454 000

m 731 126 227 800 156 345 400 Diamond-4

l 1002 150 804 350 182 521 100

m 382 136 341 910 150 908 180 Divconq

l 766 240 759 590 287 153 410

m 194 37 489 200 39 260 550 Fft

l 1026 138 297 600 134 239 350

m 782 254 241 900 248 501 900 Gauss

l 1227 345 623 200 345 699 650

m 262 23 961 200 33 722 500 Iteratif

l 938 65 576 200 79 642 500

m 768 4 605 112 750 4 605 112 750 ms-gauss

l 1482 2 567 263 050 2 572 987 200

m 214 83 841 600 66 086 450 prolog

l 1313 380 674 800 261 475 800

m 326 1 176 047 050 1 176 047 050 qcd

L 1026 2 041 522 500 2 041 522 500

elbow m 103 6734 6708

Nouman Butt
 March 2009

Dalarna University Tel: +46(0)23 7780000

Röda vägen 3S-781 88 Fax: +46(0)23 778080

Borlänge Sweden http://www.du.se
- 22 -

stanford m 90 703 686

5 288 169 144

6 392 196 146

7 512 194 149

8 648 213 183

ssc

9 200 264 213

As seen from the above table, number of tasks isn’t playing any significant role in the time
span of both the algorithms except that the Bee Colony algorithm is mostly producing a bit
good results as compared to Greedy when the number of tasks is less.

After calculating the running time of each algorithm, we have also compared the times in
milliseconds of both the algorithms after scheduling all the tasks. The table below shows the
results:

Table 7: Comparison b/w running time of algorithms

GRAPH

GREEDY TIME
(in milliseconds)

BEE COLONY

TIME
(in milliseconds)

m 0.015 0.078 Bellford
l 0.531 0.875

m 0.016 0.031 Diamond-1
l 2.25 2.5

m 0.094 0.172 Diamond-2
l 3.0 3.53

m 0.25 0.375 Diamond-3
l 0.781 1.093

m 0.344 0.344 Diamond-4
l 1.031 0.938

Divconq m 0.031 0.047

Nouman Butt
 March 2009

Dalarna University Tel: +46(0)23 7780000

Röda vägen 3S-781 88 Fax: +46(0)23 778080

Borlänge Sweden http://www.du.se
- 23 -

l 0.11 0.172
m 0 0.016 Fft
l 0.344 0.516

m 0.906 1.047 Gauss
l 3.484 3.98

m 0.016 0.016 Iteratif
l 1.219 0.25

m 0.26 0.678 ms-gauss
l 1.735 3.578

m 0 0.015 prolog
l 0.562 0.718

m 0.047 0.063 qcd
L 1.67 0.703

elbow m 0 0
stanford m 0 0

5 0 0
6 0 0.016
7 0 0.031
8 0.016 0.063

ssc

9 0.015 0.11

From the above table, we can see that the BCO is taking a bit longer time to schedule all tasks
when compared to the Greedy one, which was obvious because BCO adds the time of re-
ordering the tasks to complete. To find out the dependency of “Time” of both algorithms, we
have done some of the statistical analysis shown below:

7.1 GREEDY TIME vs. NUMBER OF TASKS

For this analysis, following measures are used:

• Standard Deviation

• Variance

• Correlation Analysis

The following outputs are obtained using SPSS 15.0.

Descriptive Statistics:

Table 8:

Nouman Butt
 March 2009

Dalarna University Tel: +46(0)23 7780000

Röda vägen 3S-781 88 Fax: +46(0)23 778080

Borlänge Sweden http://www.du.se
- 24 -

MEAN

STD. DEVIATION

N

Greedy Time

0.603613

0.9251031

31

Correlations:

Table 9:

GREEDY

TIME

TASKS

GREEDY TIME: Pearson
Correlation

 Sig. (2-tailed)

 N

1 0.736

0.000

31

TASKS: Pearson Correlation

 Sig. (2-tailed)

0.736

0.000

1

Nouman Butt
 March 2009

Dalarna University Tel: +46(0)23 7780000

Röda vägen 3S-781 88 Fax: +46(0)23 778080

Borlänge Sweden http://www.du.se
- 25 -

Fig. 2: Graph between Greedy Time vs. no. of Tasks

The above analysis is showing clear picture of relation between Greedy Time and number of
tasks. The positive correlation (r = 0.736) is giving clear indication that there is precisely
high relation between these two variables, here relation is obtained using time dependency on
number of tasks, this value is showing that the shift rate is almost 73.6% with respect to the
change in number of tasks. The graph above between “Greedy Time vs. Tasks” is giving
almost the same picture i.e. the low number of tasks have no clear pattern, while on the other
hand, when the number of tasks increased, time also increased.

The other factor of variation is the possible variation in data set. The following descriptive
summary also proves the same result.

Descriptive Statistics:

Nouman Butt
 March 2009

Dalarna University Tel: +46(0)23 7780000

Röda vägen 3S-781 88 Fax: +46(0)23 778080

Borlänge Sweden http://www.du.se
- 26 -

Table 10:

N

MEAN

STD.

DEVIATION

VARIANCE

Data files

Greedy time

Valid N (list
wise)

31

31

31

0.603613

0.9251031

0.856

It is clearly visible from the above table that high variation in independent variable (i.e. task)
is very high; ultimately having impact on the results of correlation, but still results can be used
just for the sake of analysis.

7.2 BCO TIME vs. NUMBER OF TASKS

Correlations:

Table 11:

BCO TIME

TASKS

BCO TIME: Pearson
Correlation

 Sig. (2-tailed)

 N

1 0.744

0.000

31

TASKS: Pearson Correlation

 Sig. (2-tailed)

0.744

0.000

1

Nouman Butt
 March 2009

Dalarna University Tel: +46(0)23 7780000

Röda vägen 3S-781 88 Fax: +46(0)23 778080

Borlänge Sweden http://www.du.se
- 27 -

Fig. 3: Graph between Bee Time vs. no. of Tasks

Both the results and some parts of analysis of “Greedy Time vs. Tasks” and “Bee Time vs.

Tasks” are same, but it gives very important information. On the basis of study of sample data
(only), it can be concluded that there is no major difference between both types of approaches
because there is only some minor differences in correlation coefficient, might because of
number of tasks. It is quite possible that in future if some researcher comes up with the task
having very low variation, then it might affect the results obtained in this work. But right now
from the above analysis, it is easy to conclude that there is no significant difference in these
two approaches.

This is an open ended question for further research to draw the line between these two
approaches. It will help future research.

The results shows the same picture as got in greedy approach i.e. as number of task increases,
it gives rise to the time but not all the times; rather 74% correlation shows their high positive
relation but not 100%.

7.3 BCO TIME AND GREEDY TIME vs. TASK’S COST

Nouman Butt
 March 2009

Dalarna University Tel: +46(0)23 7780000

Röda vägen 3S-781 88 Fax: +46(0)23 778080

Borlänge Sweden http://www.du.se
- 28 -

BEE TIME vs. COST

Fig. 4: Graph between Bee Time vs. Cost

GREEDY TIME vs. COST

Fig. 5: Graph between Greedy Time vs. cost

Above are the two graphs for analysis purpose, i.e. ”Bee Time vs. Cost” and ”Greedy Time

vs. Cost”. The x-axis is containing the cost of task of each benchmark file and the y-axis is
containing the respective algorithm’s time in milli seconds. According to the graphs obtained,
we can say that the cost of each task isn’t making much difference on the running time of both
algorithms because both graphs are almost same with some minor differences.

7.4 BCO TIME AND GREEDY TIME vs. TASK’S DATA

Nouman Butt
 March 2009

Dalarna University Tel: +46(0)23 7780000

Röda vägen 3S-781 88 Fax: +46(0)23 778080

Borlänge Sweden http://www.du.se
- 29 -

BEE TIME vs. DATA

Fig. 6: Graph between Bee Time vs. Data

GREEDY TIME vs. DATA

Fig. 7: Graph between Greedy Time vs. Data

The above two graphs are for the analysis of both algorithms with the data sent or received by
the task. Again, y-axis is containing the running time of each algorithm in milli seconds and
x-axis is containing the data of task in each benchmark file. The above two graphs are again
showing almost the same result as it was in the previous graphs i.e. ”BCO TIME AND

GREEDY TIME vs. TASK’S COST”. Here, both graphs again are almost same and aren’t
making any noticeable curves. From the above graphs, we might conclude that the data sent or
received by any task during scheduling in both algorithms, don’t make any major difference
with respect to the time.

All in all, there might be lot of possibilities of BCO not giving the promising results, some of
them are mentioned below:

Nouman Butt
 March 2009

Dalarna University Tel: +46(0)23 7780000

Röda vägen 3S-781 88 Fax: +46(0)23 778080

Borlänge Sweden http://www.du.se
- 30 -

• Since it is impossible to try every possible combination of tasks to execute, therefore I
had to rely on the results obtained which might not be the best, but at least optimized.

• The three basic parameters which I stated above for choosing a task to schedule might
not be very efficient way to deal with this kind of problem. These three basic
parameters were deduced by me after reading some articles on TSP solved by Bee
Colony Optimization.

8.0 CONCLUSION AND FUTURE RESEARCH

Nouman Butt
 March 2009

Dalarna University Tel: +46(0)23 7780000

Röda vägen 3S-781 88 Fax: +46(0)23 778080

Borlänge Sweden http://www.du.se
- 31 -

I have implemented a BCO algorithm based on the bee’s collective foraging behavior for
solving multi-task scheduling problem. Since not many articles have published on BCO
especially, it was very hard for me to gather exact information and help I needed to support
the way I implemented the algorithm, therefore I believe there is much room for
improvement.

Although Greedy algorithm’s results have outperformed some of the best known results, we
cannot say for sure that Greedy is the best solution to these kinds of problems because in most
of the cases Greedy use to stick in local minima.

For future enhancements, I think if I keep on trying solving the same problem with other
swarm intelligence algorithms, I might be able to get some promising results. Since there are a
lot of ways to implement a Bee Colony algorithm, one has to try every possible way to
implement it in order to get good results but due to the lack of time, I couldn’t do it. Also, in
order to select the task to schedule, one has to go through the articles written on waggle dance
of bees because waggle dance is the most important factor by which bees decide what to do
next.

REFERENCES

Nouman Butt
 March 2009

Dalarna University Tel: +46(0)23 7780000

Röda vägen 3S-781 88 Fax: +46(0)23 778080

Borlänge Sweden http://www.du.se
- 32 -

[1] "A Comparison of List Schedules for Parallel Processing Systems" by G.Bell,
D.Siewiorek, and S.H.Fuller.

[2] "A Genetic Algorithm For Multi-Layer Multiprocessor Task Scheduling" by Ceyda Oguz
and M.Fikret Ecran

[3] "A performance study of multiprocessor task scheduling" by Shiyuan Jin, Guy Schiavone,
and Damla Turgut.

[4] "An Incremental Genetic Algorithm Approach to Multiprocessor Scheduling" by Annie
S.Wu, Han Yu, Shiyuan Jin, Kuo-Chi Lin, and Guy Schiavone, Member, IEEE.

[5] " DSC - Scheduling Parallel Tasks on an Unbounded Number of Processors" by Tao Yang
and Apostolos Gerasoulis.

[6] "General Multiprocessor Task Scheduling" by Jianer Chen and Chung-Yee Lee.

[7] "Multiprocessor Task Scheduling" by Mumin Kurtulus.

[8] "Scheduling multiprocessor tasks on dedicated processors" by Andreas Krämer.

[9] "Scheduling Multiprocessor Tasks with Genetic Algorithms" by Ricardo C. CorreÃ a,
Member, IEEE, Afonso Ferreira, Member, IEEE, and Pascal Rebreyend.

[10] "Task Scheduling For Multiprocessor Systems Using Memetic Algorithms" by Prof.
Sanjay Sutar, Jyoti P.Sawant, and Jyoti R.Jadhav.

[11] "A Bee Colony Optimization Algorithm for TSP" by Li-Pei Wong, Malcolm Yoke Hean
Low, and Chin Soon Chong.

[12] "Decoding the language of the bee" by K. von Frisch, Decoding the language of the bee,
Science, vol. 185, no. 4152, pp. 663-668, 1974.

[13] "A Bee colony optimization algorithm to job shop scheduling" by Chin Soon Chong, and
Malcolm Yoke Hean Low.

[14] "Using a Bee Colony Algorithm for neighborhood search in Job Shop Scheduling
problems" by Chin Soon Chong, and Malcolm Yoke Hean Low.

[15] "Bee colony optimization with local search for TSP" by Li-Pei Wong, Malcolm Yoke
Hean Low, and Chin Soon Chong.

Nouman Butt
 March 2009

Dalarna University Tel: +46(0)23 7780000

Röda vägen 3S-781 88 Fax: +46(0)23 778080

Borlänge Sweden http://www.du.se
- 33 -

[16] "The Bees Algorithm – A Novel Tool for Complex Optimisation Problems" D.T. Pham,
A. Ghanbarzadeh, E. Koç, S. Otri , S. Rahim , M. Zaidi

