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Abstract

Condition  monitoring  of  wooden  railway  sleepers applications  are  generally 

carried out by visual inspection and if necessary some impact acoustic examination is 

carried out intuitively by skilled personnel. In this work, a pattern recognition solution 

has been proposed to automate the process for the achievement of robust results. The 

study presents a comparison of several pattern recognition techniques together with 

various  nonstationary  feature  extraction  techniques  for  classification  of  impact 

acoustic emissions. Pattern classifiers such as multilayer perceptron, learning cector 

quantization and gaussian mixture models, are combined with nonstationary feature 

extraction  techniques  such  as  Short  Time Fourier  Transform,  Continuous  Wavelet 

Transform,  Discrete  Wavelet  Transform and Wigner-Ville  Distribution.  Due to  the 

presence  of  several  different  feature  extraction  and  classification  technqies,  data 

fusion  has  been  investigated.  Data  fusion  in  the  current  case  has  mainly  been 

investigated on two levels, feature level and classifier level respectively. Fusion at the 

feature  level  demonstrated  best  results  with  an  overall  accuracy  of  82%  when 

compared to the human operator.
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1 Introduction

Condition monitoring applications in the transportation have great importance in 

ensuring safe operations, since condition monitoring failure can cause serious results. 

Condition  monitoring  applications  extensively  deploy  the  use  of  non-destructive 

testing (NDT) procedures  [1,2]  to  make key assessments  and thereby classify the 

condition of the structure or material  that  is being inspected [3]. Due to the large 

scope  of  condition  monitoring  applications  within  the  transportation  domain, 

emphasis  in  this  thesis  has  only  been  laid  on  condition  monitoring  applications 

involving wooden railway sleepers within the rail transportation domain. Condition 

monitoring of wooden railway sleeper has been investigated in the current work with 

the aim of automating the manual wooden railway sleeper inspection procedures. 

 

Wooden railway sleeper inspections in Sweden are generally carried out manually. 

A human inspector incharge of the maintenance activities walks along the railway 

track  visually  examining  each  sleeper.  Decisions  concerning  the  condition  of  the 

sleeper are given out by the sleeper inspector and are largely based on intution (see 

section 1.2). Such a process of manually inspecting each sleeper is slow and time 

consuming. Human error together with maintaing an even quality standard are other 

serious issues. Hence it is desired to automate manual sleeper inspection procedures 

by deploying automatic procedures with an aim of achieving more reliable and robust 

results with increased speed and accuracy [4]. 

Automating  wooden  railway  sleeper  inspection  procedures  has  already  been 

researched  [4].  Such  work  mainly  investigates  emulation  of  human  behavior  for 

achieving automation. The emulation process is achieved by selecting and evaluating 
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two non-destructive testing methods. The first method (impact acoustic analysis) aims 

to  build  an automatic procedure to replace the usage of an axe for distinguishing 

sounds;  which  can  be  described  qualitatively as  a  crisp  sound in  case  of  a  good 

sleeper and a dull thud on their bad counterparts. The second method (vision analysis) 

is  to  develop  an  appropriate  machine  vision  algorithm  to  replicate  the  visual 

examination.  Data  were  collected  for  each  of  the  above  methods  and  appropriate 

features  were  extracted.  A pattern  recognition  based  approach  was  selected  for 

classifying the condition of the sleeper into classes (good and bad in the current case). 

Results achieved by the work mentioned above demonstrate an overall accuracy of 

about 90% when compared to the human operator. Though good efficiency rates have 

been demonstrated through past work, certain short comings of the work have been 

identified  and  have  been  worked  upon  in  the  current  thesis.  A brief  discussion 

concerning such shortcomings is as follows.

Previous works [4] demonstrate the efficient use of pattern recognition approach 

together  with  stationary  (or  frequency  based)  feature  extraction  techniques  [3]. 

Frequency based feature extraction techniques produce an overall result detailing the 

frequencies in the entire signal,  with no focus on where the frequencies occurred. 

Frequency  extraction  (FE),  Mel-frequency  cepstral  coefficients  (MFCCs), 

Homomorphic cepstral (HCCs) coefficients, Linear predictive coding (LPC) are the 

most popular frequency based techniques. In contrast, time-frequency based feature 

extraction techniques splits the input signal into discrete frames separated by time, 

thereby providing a chance of identifying frequencies that occur in a particular area of 

the signal. Short-time fourier transform (STFT), Discrete wavelet transform (DWT), 

Continuous wavelet transform (CWT) and Wigner-Ville distribution (WVD) are the 

most  popular  time-frequency  based  techniques.  Hence  in  the  current  work,  it  is 

desired to investigate the usage of non stationary frequency extraction techniques with 

an aim of achieving more reliable and robust results. Pattern classifiers such as multi-

layer perceptron, Gaussian mixture models, learning vector quantization are combined 
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with non-stationary feature extraction techniques such as Short time fourier transform, 

Continuous wavelet transform, Discrete wavelet transform, Wigner-Ville distribution. 

Testing  all  possible  combinations  of  four  feature  extraction  techniques  against 

different classifiers were performed to evaluate the techniques. 

The rest of this thesis is organised as follows. Firstly a brief introduction to the 

wood inspection process is presented and the pattern recognition and classification 

system is described providing explanations concerning pattern classifiers. Secondly, 

data  acquisiton  method,  details  concerning  preprocessing,  feature  extraction 

techniques and data reduction are given. Finally, results and discussion concerning the 

techniques are presented. The paper finally presents concluding remarks.

1.1 Wooden railway sleeper inspection

Condition monitoring applications involving wood are generally based on manual 

inspection procedure carried out by a human inspector. The inspector examines each 

structure visually and, if necessary, some deeper inspection may be performed such as 

using an axe to hit and judge the condition of the structure by listening to the sound 

produced. Trained personnel have the ability to intuitively classify the condition of the 

wood based on visual analysis and acoustic signal produced by striking the object that 

is being inspected. The visual intuition is that wooden structures in good condition do 

not bear wide cracks on them indicating good condition and when hit with an axe 

(acoustic examination)  they produce a clear ‘‘crisp’’ sound, whereas rotten or bad 

structures emit a dull sound, indicating bad condition. Automating these intuitions is a 

hard task. However, such manual routines are challenged by several factors such as 

human  error.  There  are  mainly  two  strategies  to  automate  the  human  inspection 

behaviour,  developing an appropriate  machine vision algorithm to compensate  the 

visual examination and building an automatic system to distinguish sounds [5,3].
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Since for visual analysis, the sleeper inspector identifies issues such as number of 

the crack, crack length and the width etc as key for determining the condition of the 

sleepers,  the  knowledge  extracted  from  the  sleeper  inspector  concerning  visual 

analysis is very clear. On the contrary knowledge concerning acoustic examination is 

unclear, since it only explains one property about the sound, the sound being crisp in 

case of good sleeper and a dull sound in case of bad sleeper. Therefore, based on the 

knowledge  that  is  largely  driven  by  intuition  a  pattern  recognition  approach  is 

suitable.  On  the  automatic  interpretation  of  NDT  data  using  AI  techniques, 

classification by neural networks have been the most popular, mainly because other 

techniques such as case based reasoning, fuzzy logic require demand the presence of 

knowledge  in  the  form  of  cases  or  rules.  The  fact  that  knowledge  concerning 

condition monitoring applications is largely intuitive, supports the choice of pattern 

recognition in the current problem [4].
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2 Pattern recognition and classification

Pattern recognition and classification has been used in various applications such 

as face, speech, handwriting recognition with the aim of emulating intuitive human 

skills with increased speed and accuracy. The pattern recognition and classification is 

based on extracting patterns and distributing them into different groups.

In order to perform sound recognition, firstly impact acoustic signals are collected 

by using  impact  acoustics  method  involving  striking  the  material  with  an  impact 

source and recording the acoustic signal based on the sound. Then, the process of 

recognition has mainly two phases, feature extraction and classification respectively. 

Choosing the features and classifiers has a crucial influence on the recognition rates. 

Feature extraction is where a signal is manipulated  in order to produce a set of 

characteristic features for that signal. These features should be chosen in such a way 

that clear groups or classes of data can be identified. Different systems may distinctly 

vary in the features they use. In this work four techniques are used that are commonly 

preferred in nonstationary signal analysis, including  Short Time Fourier Transform, 

Continuous  Wavelet  Transform,  Discrete  Wavelet  Transform  and  Wigner-Ville 

Distribution. These techniques are tested for their ability to classify the condition of 

wooden railway sleepers.

Since using raw acoustic signals does not yield good results, raw acoustic signals 

are preprocessed to present better data and feature extraction techniques are applied to 

them to generate characteristic features. 

Principal Component Analysis (PCA) was used after feature extraction to reduce 

the dimensionality of the resulting data. PCA is a method commonly used for data 

reduction  purposes  and it  finds  a  new coordinate  system with  the  axes,  principal 
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components, are ordered by the variance within the data to compress the data. Namely 

it  decreases  redundant  information  and  input  data  with  high  dimension  can  be 

represented  in  a  lower  dimension  space.  After  applying  PCA to  each  feature  set 

obtained  from  four  feature  extraction  techniques,  several  normalization  steps  are 

followed to be able to present the data into the classifiers in a more efficient form. 

Normalization is to translate input values so that they can be exploitable efficiently. 

The first normalization is based on the eigen values generated through PCA of feature 

sets. In the current work, the combinations of features are tested. Therefore, when 

more  than  one  feature set  are  used,  they are  simply concatenated to  form a long 

feature  vector.  To  make  concatenation  more  reasonable,  it  is  better  for  different 

feature sets to have the same scales in the resulting vector [6]. To achieve this, PCA is 

first applied to each feature set to compute the eigen values  jλ  and eigen vectors 

jU . Then each feature vector  jV  is projected to eigen vectors and normalized by 

the sum of the eigen values as in the following [7]. 

∑
=

j
i

jjj VUV
λ (1)

After this step, each feature set is scaled into the range of [0,1]. This normalization is 

good to improve training characteristics and in this way the effect of each input vector 

is of the same magnitude, making training faster generally. The distribution of the data 

is not changed only the magnitude is scaled into the range of [0,1]. So, the properties 

of the data is  preserved after  the normalization.  And finally,  simple normalization 

which rescales each input feature independently to have a mean of 0 and a variance of 

1.  This  compensates  for  the  differences  in  the  means  and  variances  of  the  input 

dimensions is applied to the feature sets.

Feature extraction is performed to obtain an efficient representation of the data, in 

this  way  unnecessary  data  are  not  sent  to  the  classification  step  (reducing  the 
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computational burden) where the input is separated into suitable categories. The role 

of a classifier is to assign the input data represented by their features to a number of 

different categories.  Classification is used to recognize the signal by cataloguing the 

features of existing signals in some way ( training) and then comparing the test signal 

to  the  database  of  features  (testing)  [8].  The  process  followed  in  the  system  is 

illustrated in the Figure 1.

Figure 1. Classification process

Since feature extraction and classification are both required for a recognition task, 

each classification technique is  tested against  each  feature  extraction  technique to 

determine  the  best  combination.  Three  classification  techniques,  Multilayer 

Perceptron, Learning Vector Quantization and Gaussian Mixture Model, are tested in 

the work. The pattern classification was performed using LNKNET [9]. 

2.1 Multilayer Perceptron

An Artificial Neural Network (ANN) can be defined as a model of reasoning based on the 

human brain. An ANN is a system consisting of a lot of processing units, also called neurons, 

connected with each other. ANNs are developed based on the idea of how biological neurons 
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function and produce results for similar cases learned according to samples provided. The 

neurons are connected by links,  and each link has a numerical  weight  associated with it. 

Weights  are  the  basic  means  of  long-term memory in  ANNs.  A neural  network  “learns” 

through repeated adjustments of  these weights.  In the systems for recognition,  Multilayer 

Perceptron (MLP) which could solve nonlinear problems are preferred. The structure of the 

MLP chosen in this work can be seen in the Figure 25. Information provided to the network 

through the Input layer reach the Output layer passing the Middle layer and the output value 

of the network is computed.

                    

Figure 25. Architecure of MLP
In the training phase of an MLP, input values and the desired output values for these 

inputs are presented to the network together. When the training is completed, the network is 

able to generate correct and approximate values to the desired output values for similar inputs. 

The learning rule of the network has two parts: forward computation, backward computation. 

In the first one, the output of the network is computed. In the second one, the weights in the 

network are updated. The output of the network is compared with the desired output for the 

associated input  and the difference between them is taken as the error value for the associated 
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output neuron. Through the backward computation, the error value is decreased by updating 

the weights of the network.

wji (t) = wji (t-1) + ∆w(t) (21)

 If the total error of all output neurons is less than a specified threshold value, the training 

phase  is  completed.  The  output  of  the  neurons  in  the  network  is  computed  by using  an 

activation function. In this work, sigmoid function is used as the activation function which 

generates values in the range of [0-1]:

y=1/(1+e-x) (22)

The backpropagation algorithm used in the training of the network can be summarized

in the following steps [10]:

 Initialize all weights to random number between 0 and 1.

 Repeat until stopping condition (a given number of epochs are completed or a 

tolerable error value is reached) holds

Present a training sample to the network and compute the output:

(Forward computation)

x: input vector, d: desired output vector; {(x(n),d(n)), n=1,2..N}, 

vj
(l): the output of neuron j in layer l,

wji
(l)(n) : weight of neuron j in layer l that is fed from neuron i in layer l-

1, yi
(l-1): the output of neuron i in the previous layer l-1 at iteration n.

vj
(l)(n)= )n(y)n(w )l(

i

m

i

ji
)l( 1

0

0
−

=
∑ (23)

For i=0,  we have y0
(l-1)(n)=1 and wj0

(l)(n)=bj
(l)(n) is  the bias  applied to 

neuron j in layer l. 

With the sigmoid function, the output of neuron j in layer l:
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            yj
(l)= ))n(v( jjϑ (24)

If neuron j is in the first hidden layer (l=1) then yj
(0)(n)=xj(n)

where xj(n) is the jth element in the input vector x(n). If neuron j is in the 

output layer (l=L:depth of the network)

yj
(L)=oj(n) (25)

error: ej(n)=dj(n)-oj(n)

where oj(n) is the jth element of the output vector

Update each network weight:

(Backward computation)

Compute local gradients of the network:

       







= ∑ ++

k

)l(
kj

)l(
k

)l(
j

'
j

)L(
j

'
j

)L(

j

j )n(w)n())n(v(

))n(v()n(e
)n( 11δϑ

ϑ
δ (26)

                    ))n(y)(n(y))n(v( jjjj
' −= 1ϑ (27)

and weights in layer  l are adjusted according to the generalized delta 

rule:

)n(y)n())n(w()n(w)n(w )l(
i

)l(
j

)l(
ji

)l(
ji

)l(

ji

111 −+−+=+ ηδα (28)

where η is the learning parameter and α  is the momentum constant.

Forward and backward computations are iterated as explained until the stopping 

criterion is met.

2.2 Learning Vector Quantization

The  LVQ  network  uses  both  supervised  and  unsupervised  learning  to  form 

classifications. In the LVQ network, each neuron in the first layer is assigned to a 

class, with several neurons often assigned to same class. Each class is then assigned to 
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one neuron in the second layer.  The number of neurons in the first layer,  S1,  will 

therefore be at least as large as the number of neurons in the second layer, S2, and will 

usually be larger [11]. The architecture of the LVQ network can be seen in the Figure 

26.

Figure 26. he architecture of the LVQ [11]

Aa  with  the  competitive  network,  each  neuron in  the  first  layer  of  the  LVQ 

network learns a prototype vector, which allows it to classify a region of the input 

space. The net input of the first layer of the LVQ is

pwn ii −−= 11 (29)

or, in the vector form
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and the output of the first layer of the LVQ is

)n(competa 11 = , (31)

therefore the neuron whose weight vector is closest to the input vector will output 

a 1, and the other neurons will output 0. The winning neuron indicates a subclass 

rather than a class. There may be several different neurons (subclasses) that make up 

each class. The second layer of the LVQ network is used to combine subclasses into a 

single  class.  This  is  done  with  the  W2 matrix.  The  columns  of  W2 represents 

subclasses, and the rows represent classes. W2 has a single 1 in each column, with the 

other element set to zero. The row in which the 1 occurs indicates which class the 

appropriate subclass belongs to [11].

⇒= )w( ki 12 subclass i is a part of class k (32)
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The process of combining subclasses to form a class allows the LVQ network to 

create  complex  class  boundaries.  The  learning  in  the  LVQ  network  combines 

competitive learning with supervision. As with all supervised learning algorithms, it 

requires a set of examples of proper network behavior:

{ 11 t,p }, { 22 t,p },...{ QQ t,p }. (33)

Each target vector must contain only zeros, except for a single 1. The row in which 

the 1 appears indciates the class to which the input vector belongs. Before learning 

can  occur,  each  neuron  in  the  first  layer  is  assigned  to  an  output  neuron.  This 

generates the matrix W2. Typically, equal numbers of hidden neurons are connected to 

each output neuron, so that each class can be made up of the same number of convex 

regions. All elements of W2 are set to zero, except for the following [11]:

If hidden neuron i is to be assigned to class k, then set 12 =kiw .

Once W2 is defined, it will never be altered. The hidden weights W1 are trained 

with a variation of the Kohonen rule. The LVQ learning rule proceeds as follows. At 

each iteration, an input vector p is presented to the network, and the distance from p to 

each prototype vector is computed. The hidden neurons compete, neuron i* wins the 

competition, and the i*th element of a1 is set to 1. Next, a1 is multiplied by W2 to get 

the final output a2, which also has only one nonzero element, k*, indicating that p is 

being assigned to class k* [11].

The Kohonen rule is used to improve the hidden layer of the LVQ network in two 

ways. First, if p is classified correctly, then the weights  1w*i of the winning hidden 

neuron are moved toward p [11]. 
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)),q(w)q(p()q(w)q(w *** iii
11 111 −−+−= α  if 12 == ** kk

ta (34)

Second, if p was classified incorrectly, then the wrong hidden neuron won the 

competition, and therefore its weights 1w*i are moved away from p [11].

)),q(w)q(p()q(w)q(w *** iii
11 111 −−−−= α  if 012 =≠= ** kk

ta (35)

The result will be that each hidden neuron moves toward vectors that fall into the 

class for which it forms a subclass and away from vectors that fall into other classes 

[11].

2.3 Gaussian Mixture Model

In this model-based approach, certain models for clusters are used attempting to 

optimize the fit between the data and the model. Each cluster can be represented by a 

parametric distribution, Gaussian, so the data set is modelled by a mixture of these 

distributions, considering clusters as Gaussian distributions.

The  Gaussian  Mixture  Model  (GMM)  classifier  belongs  to  the  unsupervised 

classifiers category [11, 13] meaning that the training samples of a classifier are not 

labelled to show their category membership [12]. During the training of the classifier, 

the underlying probablity density functions (pdf’s) of the observations are estimated 

[14].

Gaussian mixture model (GMM) is a mixture of several Gaussian distributions 

and  can  therefore  represent  different  subclasses  inside  one  class.  The  probability 

density function is defined as a weighted sum of Gaussians * [15].
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Given  a  set  of  m  feature  vectors  }x,...,x{X m1= ,  d
i Rx ∈ , assumed  to  be 

statistically  independent  and  identically  distributed,  the  likelihood  that  the  set  is 

produced by class 1C  is [16]

{ }( ) ( )∏
=

==
m,i

im CxpCx,...,xXp
1

111 . (36)

Assuming that  the  likelihood of  a  vector  can  be expressed  with  a  mixture  of 

Gaussian distributions then,

( ) ( ) ( )∑
=

=
K

l
ii C,lxpClPCxp

1
111 (37)

where ( ) ( ) ( )( )
( ) ∑

∑− −−−
=

1

1

1 11

1

2

2
1

,l

d

,l ,li
t

,li

i

xxexp
C,lxp

π

µµ
. (38)

( )1ClP  is the prior probability of Gaussian l  for class  1C  (a weight that changes 

with the class) , and ( )1C,lxp i  is the likelihood of vector ix  produced by Gaussian 

l within class  1C . The parameters of the Gaussian distribution are the mean vector 

1,lµ  and the diagonal covariance matrix ∑ 1,l
. To achieve the classification using 

feature  vectors,  the  GMM  needs  training.  In  training  phase,  parameters  of  the 

Gaussian  mixture,  the  weights,  the  mean  vectors  and  the  diagonal  covariance 

matrices, are determined using the Expectation-Maximization (EM) algorithm which 
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computes  maximum  likelihood  estimates  iteratively  [17].  The  initial  Gaussian 

parameters (means, covariances, and prior probabilities) are generated by using the k-

means method [18]. After finding Gaussian mixture parameters for each class, a test 

vector x  is assigned to the class that maximizes ( )xCp j  , which is equivalent to 

maximizing  ( ) ( )jj CpCxp  using Bayes rule. When each class has equal  a priori 

probability,  the probability measure is   ( )jCxp  .  Namely,  the  test  vector  x  is 

classified into the class jC  that maximizes ( )jCxp  [16]. 

As mentioned, the parameters are estimated by the maximum likelihood criterion 

using the EM algorithm. In the EM, expectation and maximization steps that are seen 

in the following are repeated until GMM likelihood  ( )∏
= m,i

ji Cxp
1

 of the set does 

not change appreciably or limit on number of iterations is reached [19, 20].

In Expectation step,  responsibility  ilp of each component for each data  ix  is 

determined as

( ) ( )
( ) ( )∑

=

=
K

t
jij

jij

il

C,txpCtP

C,lxpClP
p

1

(39)

In Maximization step, component pdfs and weights are re-estimated based on data 

and responsibilities:
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( ) ∑
=

=
m

i
ilj p

m
C,lP̂

1

1
(40)

∑

∑

=

==
m

i
il

m

i
iil

lj

p

xp
ˆ

1

1µ (41)

( )( )

∑

∑

=

=

−−
=

m

i
il

m

i

T
ljiljiil

lj

p

ˆxˆxp
ˆ

1

1

µµ
Σ (42)

The task of training a classifier only needs a good enough approximation of the 

distribution of each class. The number of components, K, is a parameter defining the 

complexity of the approximating distribution. Too small K prevents the classifier from 

learning  the  sample  distributions  well  enough  and  too  large  K  may  lead  to  an 

overfitted classifier. More importantly, too large K will definitely lead to singularities 

when the amount of training data becomes insufficient [15].

The mixture model covers the data well and dominant patterns in the data are 

captured by component distributions. However, because of its greedy nature, the EM 

algorithm has some defects; it is sensitive to the initial cofiguration and usually gets 

stuck  at  local  maxima;  for  mixtures,  it  cannot  choose  the  component  number 

automatically and sometimes converges to the boundary of the parameter space [21].

GMM classifiers have been used in many fields from image pattern recognition 

[22] to text-independent speaker recognition [23, 14].
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3 Data preparation

In this section, with the aim of classifying condition of wooden railway sleepers, 

how data is prepared in order to be able to present them to the mentioned classifiers in 

the best possible way. The data acquisiton, preprocessing, feature extraction and data 

reduction steps are explained below. 

3.1 Data Acquisition

After significant experimentation concerning the data collection methodology, a 
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metal hammer weighing 1.5 kg dropped from a height of 50 cm was used as the 

impact source. Best acoustic emissions have resulted on using such an impact source. 

The resulting impact acoustic emissions have been recorded using a high directional 

microphone and a 16 bit Analog/Digital card with 44,100 Hz sampling rate. All the 

acoustic signals were saved on a computer in a WAV format. The WAV format for 

digital audio is simply the left and the right stereo signal samples. Such an impact 

system  generates  a  sample  input  with  suitable  characteristics  for  further  signal 

interpretation [4].

Based on the methodology above, data collection was carried out on 200 sleepers 

of which 144 were in good condition and 56 in bad condition. Data was collected by 

making impact acoustic tests on both (left and right) ends of the railway sleeper. As a 

result 400 acoustic signals were acquired. Though 200 sleepers is not a huge number, 

the limited number of sleepers tested is due to the operational constraints in the rail 

transportation domain. Since collecting impact acoustic signals of railway sleepers 

demands  re-routing  or  even  cancellation  of  traffic  operations  it  is  an  expensive 

procedure. Moreover, the difference in the number of sleepers in each class (good and 

bad) was due to the fact that only a limited stretch of railway track could be allocated 

for closure, which has minimized the scope for handpicking the number of sleepers in 

each class [4].

3.2 Preprocessing 

Firstly, the raw signal data in time domain was normalized to a peak value of 1. 

Then, the mean has been subtracted to remove any direct current (DC) component. 

The removal of DC component was performed in time domain for two reasons. The 

first  reason is  to  prevent  the  effect  of  smearing  from the  frequency bin  f=0 into 

neighbourig low-frequency bins. And the other is that presence of the DC component 

in the signal results in a high peak at frequency bin f=0 with a high spectral peak 
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value. Since useful data have low spectral peak values in comparison with spectral 

peak of the DC, removing the DC component facilitates easy interpretation of useful 

peaks in the frequency domain [4].

Finally  the  data  were  tapered  with  a  Hamming  window  using  the  standard 

hamming window equation

( ) ( )1
2460540 −−= N

kcos..kh π   N,...,k 1= . (2)

A hamming  window  was  selected  since  it  gave  good  side-lobe  suppression. 

Suppression of side-lobes is considered essential for avoiding ambiguity in detecting 

the important peaks during frequency analysis [4]. 

Preprocessing is illustrated on two sample acoustic signals of sleeper in good and 

bad conditions (Figure 2).   Figure 2.a shows the raw signal from a good sleeper. 

Figure 2.b shows the effect of removing the DC component of that signal. Figure 2.c 

shows the result of applying a hamming window. Figure 2.d, e, f show the same steps 

for the signal from the bad sleeper. As seen, in time domain the waveform of the 

signals demonstrate the differences of the signals from a bad and a good sleeper.

 

                   (a)                                    (d)
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                   (b)                                      (e)

                   (c)                                       (f) 

Figure 2. Preprocessing steps on signals emitted from a good and a bad sleeper

3.3 Feature Extraction

Feature  extraction  is  used  to  obtain  the  most  relevant  information  from  the 

original data to be able to represent the data compactly and efficiently. The goal of the 

feature extractor is to characterize an object to be recognized by measurements whose 

values are very similar for objects in the same category, and very different for objects 

in different categories. This leads to the idea of seeking distinguishing features that 

are  invariant  to  irrelevant  transformations  of  the  input  [24].  Feature  extraction 

techniques are determined based on the nature of the data to be classified.

Feature extraction can be split into two types: stationary (frequency-based) feature 

extraction and non-stationary (time-frequency based)  feature extraction.  Stationary 
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feature extraction produces an overall result detailing the frequencies contained in the 

entire signal. With stationary feature extraction, no distinction is made on where these 

frequencies occurred in the signal. In contrast, non-stationary feature extraction splits 

the  signal  up  into  discrete  time  units.  This  allows  frequency  to  be  identified  as 

occurring in a particular area of the signal, aiding understanding of the signal [8].

The raw signals in practice, are time-domain signals. When we plot time-domain 

signals, we obtain a time-amplitude representation of the signal. This representation is 

not always the best representation of the signal for signal processing. In general, the 

frequency  content  of  the  signal  has  significant  information.  In  other  words,  the 

information  that  cannot  easily  be  seen  in  the  time-domain  can  be  seen  in  the 

frequency  domain.  The  frequency  spectrum  of  a  signal  shows  what  frequency 

components  (spectral  components)  exist  in the signal. The frequency content  of  a 

signal is obtained by applying Fourier Transform (FT). The FT does not provide when 

in  time  the  frequency  components  exist,  no  time  information  is  available  in  the 

Fourier  transformed  signal.  This  information  is  not  required  when  the  signal  is 

stationary.  Signals  whose  frequency  content  do  not  change  in  time  are  called 

stationary signals, meaning that all frequency components exist at all times therefore, 

there is no need to know at what times frequency components exist [25].

Accurate signal analysis  and processing require meaningful representations of 

the  signals  involved.  Since  most  real  signals  are  typically nonstationary and  their 

statistical  characteristics  are  changing  with  time,  time  varying  frequency content, 

traditional time or frequency analysis is not sufficient.  The spectral nature of such 

signals can not be illustrated by a function, which depends only on one argument, 

frequency.  Instead,  the non-stationary signal  has  to  be illustrated by a  joint  time-

frequency  representation  [26].  So,  a combined  time-frequency  representation  is 

needed due to the inadequacy of either time domain or frequency domain analysis to 

describe  the  nature  of  non-stationary  signals  completely.  Time-frequency 
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representations are of great interest when analyzing and classifying acoustic signals. A 

time-frequency representation of a signal provides information about how the spectral 

content  of  the  signal  evolves  with  time  to  interpret  non-stationary  signals.  One 

dimensional  signal  in  the  time  domain  is  mapped  into  a  two  dimensional  time-

frequency representation of the signal by using four different techniques, Short Time 

Fourier  Transform,  Continuous  Wavelet  Transform,  Discrete  Wavelet  Transform, 

Wigner-Ville Distribution.  These techniques have been successfully used in speech 

recognition and music instrument recognition.

3.3.1 Frequency Analysis

In  order  to  point  out  the  properties  of  signals  obtained  from  bad  and  good 

sleepers, frequency analysis is examined in this subsection.

The Fourier theory is based on the idea that any function can be composed of 

sines and cosines of different frequencies. In other words, any space or time varying 

data can be transformed into a different domain called the frequency space. For many 

signals, Fourier analysis is very useful because the frequency content of the signal is 

of great importance. Fourier transform (FT) of a function is a summation of sine and 

cosine  terms  of  different  frequency [27].  FT  decomposes  a  signal  to  complex 

exponential  functions  of  different  frequencies,  defined  by  the  following  [25]: 

(considering that exponential term can also be written as )ftsin(j)ftcos( ππ 22 + )

∫
∞

∞−

−= dte).t(x)f(X ftjπ2 (3)

where t  stands for time, f  stands for frequency, and x  denotes the signal in time 
domain and the  X  denotes the signal in frequency domain.  )f(X  is the  Fourier 
transform  of  )t(x . So,  )f(X ’ s  are  the  data  in  the  frequency  space  and  its 
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magnitude is called Fourier spectrum of )t(x . The Fourier spectrum is often plotted 
against values of f .

FT shows how much of each frequency exists in the signal (the spectral content), 

providing the frequency-amplitude representation of that signal. But time information 

is lost, it does not provide information about where in time the spectral components 

appear. Therefore, FT is not a suitable technique for nonstationary signal in terms of 

time localization of the spectral components. To illustrate this situation, two example 

signals, )t(x4 (stationary) and )t(x5 (nonstationary) are analyzed by FT below. 

The Figure 3 and 4 show the signals in time and the FT of the signals. As seen, 

they constitute of the same frequency components but for the nonstationary signal 

they  occur  at  different  times.  FT  results  are  nearly  the  same,  the  major  peaks 

correspond  to  the  same  frequencies  (the  other  peaks  for  the  nonstationary  signal 

appear  because  of  the  sudden  change  between  the  frequencies).  But  there  is  no 

information about where these frequencies are located in time, hence the FT can not 

provide  distinctive  information  in  terms  of  time  localization  of  the  spectral 

components for a stationary and a nonstationary signal having the same frequency 

components. FT cannot distinguish the two signals very well, hence FT is not suitable 

for analyzing nonstationary signals.
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Figure 3. Signal )t(x4  and its FT

Figure 4. Signal )t(x5  and its FT [28]
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The FTs of two example signals from a bad and a good sleeper are given in the Figure 

5 (Figure 6 shows the results by zooming into a small range of frequency). As seen, a 

resonance behavior in spectrum is available in case of the good sleeper.

Figure 5. Frequency spectrum from good and bad wooden sleepers

Figure 6. the results by zooming into a small range of frequency
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3.3.2 Short Time Fourier Transform

To overcome the deficiency of FT which was mentioned, the Fourier transform is 

adapted to analyze only a small section of the signal at a time, windowing the signal. 

This adaptation, the Short-Time Fourier Transform (STFT), maps a signal into a two-

dimensional function of time and frequency. It provides some information about both 

when and at what frequencies a signal event occurs [29]. 

In STFT, the signal is divided into small enough segments. These segments of the 

signal can be assumed to be stationary. Therefore, a window function is used. The 

width of this window must be equal to the segment of the signal where its stationarity 

is valid, windows should be narrow enough that the portion of the signal seen from 

these  windows are  indeed  stationary.  The  window function  is  first  located  to  the 

beginning of the signal. The window function and the signal are then multiplied. By 

doing this, only a part of the signal is being chosen, with the appropriate weighting of 

the window. Then this product is assumed to be just another signal, FT of this product 

is taken. After that,  the window is shifted to a new location,  multiplying with the 

signal, and taking the FT of the product. This procedure is followed, until the end of 

the signal is reached by shifting the window [25]. Because the window function has a 

short time duration, the FT of the product result reflects the signal’s local frequency 

properties. Finally a rough idea of how the signal’s frequency contents evolve over 

time  is  obtained.  The  following  definition  of  the  STFT  summarizes  the  above 

explanations: 

[ ]∫ −−=
t

tjW
x dte.)t(W).t(x),(STFT ωΓωΓ (4)

where x(t) is the signal to be processed, w(t) is the window function. As seen from 

the equation, the STFT of the signal is the FT of the signal multiplied by a window 
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function, windowed version of the FT, resulting in a two-dimensional representation 

of the signal.

In order to obtain the stationarity, a short enough window is used, in which the 

signal is stationary. The width of the windowing function relates to how the signal is 

represented.  It  determines  whether  there  is  good  frequency  resolution  (frequency 

components  close together  can be separated)  or  good time resolution (the time at 

which frequencies change). A wide window gives better frequency resolution but poor 

time  resolution  and  wide  windows  may  violate  the  condition  of  stationarity.  A 

narrower window gives good time resolution and better the assumption of stationarity, 

but poor frequency resolution [25]. Too short window may miss lower frequencies 

while too long  window may miss any frequency changes in time.  If the frequency 

components are well separated from each other in the original signal, than we may 

sacrifice some frequency resolution and go for good time resolution [25]. Therefore, 

the information obtained through STFT is with limited precision which is determined 

by the size of the window [29].  Empirical testing showed that a window size of the 

sample frequency scaled by 100 produced the most accurate results [8]. The drawback 

of this approach is that the window is the same for all frequencies, the same window 

is used in the entire analysis. Many signals require a more flexible approach varying 

the window size to  determine more accurately either  time or  frequency [29].  The 

trade-off between time and frequency resolution in the STFT has motivated a number 

of other time-frequency methods. 

When discussing the joint time-frequency resolution, a time-frequency resolution 

rectangle,  defined  as  tf∆∆  is  widely used.  The  resolution  rectangle  satisfies  the 

Heisenberg uncertainty principle [30]

π∆∆ 4
1≥tf (5)
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which means that an increase in time resolution results in a decrease in frequency 

resolution, and vice versa [31] (Time resolution t∆ : How well two spikes in time can 

be separated from each other in the transform domain;  Frequency resolution  f∆ : 

How well two spectral components can be separated from each other in the transform 

domain) . Therefore, good resolutions both in the time and frequency domains cannot 

be  achieved at  the same time.  We cannot  precisely know at what  time instance a 

frequency component is located. We can only know what interval of frequencies are 

present in which time intervals.

To sum up, this method yields which frequencies are present over the span of time 

defined by the window, computed by FFTs of overlapping windowed signal segments.

The magnitude of the Short Time Fourier Transform is called the  spectrogram. 

2 dimensional plots of the spectrogram with time on the horizontal axis, frequency on 

the vertical axis and amplitude given by a color can be made (an example in Figure 

7). Alternately  3 dimensional plots where we plot amplitude on the third axis can be 

made. Often, the spectrogram uses dB as unit on the coloring.

Figure 7. Example spectrogram [32]

Figure  8  illustrates  the  computations  for  STFT.  The  signal  is  sectioned  into 

overlapping,  equal-length frames,  with a window applied to each frame [33].  The 

spectra  of  each  of  these  is  calculated  and  the  results  are  combined  into  a  2 

dimensional plot.
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Figure 8 The way to compute STFT [33,34]

Figure  10  and  11  depicts  the  results  of  computing  the  STFT of  preprocessed 

signals from a good and a bad sleeper in Figure 9 that are available in the data set 

used in the work. Results are displayed in spectrograms with frequency extending 

vertically, window time location running horizontally, and spectral magnitude color-

coded. Frames were 300 samples long and a Hamming window was applied with a 

half-frame overlap. 
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                      (a)                                     (b)

Figure 9. Preprocessed signals from a good and a bad sleeper

                      (a)                                       (b)
Figure 10. Spectrogram in 2D of signals from good and bad sleepers

                 (a)                                    (b)

Figure 11. Spectrogram in 3D of signals from good and bad sleepers

3.3.3 Continuous Wavelet Transform

The continuous wavelet transform (CWT) is  an alternative approach to STFT to 
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overcome  the  resolution  problem.  The  wavelet  analysis  is  similar  to  the  STFT 

analysis, in the way that the signal is multiplied with a function (the wavelet) like the 

window function in the STFT, and the transform is computed for different segments 

of the time domain signal[25].

As seen in the following equation, the continuous wavelet transform is defined as 

the  sum over  all  time  of  the  signal  multiplied  by scaled,  shifted  versions  of  the 

wavelet function. The results of the CWT are many wavelet coefficients C, which are 

functions  of  position  and  scale,  τ  and  s.  Multiplying  each  coefficient  by  the 

appropriately scaled and shifted wavelet yields the constituent wavelets of the original 

signal[29]. )t(ψ  is the transforming function called the mother wavelet. 

dt
s

t
)t(x

s
)s,(CWT *

x ∫ 




 −= τψτψ 1

(6)

The result  is multiplied by the constant number  
s

1
 for energy normalization 

purpose so that the transformed signal will have the same energy at every scale. The 

position is related to the location of the window, corresponding to time information, 

as the window is shifted through the signal.  The term wavelet means a  small wave, 

implying that this (window) function is of finite length, the wave implies that this 

function is oscillatory and the term mother implies that other window functions are 

derived from one main function, the mother wavelet [25].

A wavelet is a waveform of effectively limited duration that has an average value 

of zero. Comparing wavelets with sine waves, which are the basis of Fourier analysis, 

sinusoids do not have limited duration, they extend from minus to plus infinity. And 

where  sinusoids  are  smooth  and  predictable,  wavelets  tend  to be  irregular  and 

asymmetric [29].
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Figure 12 example wavelet [29]

Wavelet analysis is the breaking up of a signal into shifted and scaled versions of 

the original (or mother) wavelet. Intuitively, it is seen from the above figure (Figure 

12) that signals with sharp changes might be better analyzed with an irregular wavelet 

than with a  smooth sinusoid,  and also local  features  can be described better  with 

wavelets that have local extent[29].

All the windows that are used are the dilated (or compressed) and shifted versions 

of  the  mother  wavelet.  Scaling  a  wavelet  indicates  stretching  or  compressing  it. 

Larger  scales  correspond  to  stretched  wavelet  and  small  scales  correspond  to 

compressed wavelet.  The more stretched the wavelet, the longer the portion of the 

signal with which it is being compared, and thus the coarser the signal features being 

measured  by  the  wavelet  coefficients  (slowly  changing  coarse  features,  low 

frequency). Smaller scales correspond to higher frequencies, frequency decreases as 

scale increases. So, the scale is related to the frequency of the signal [25,29].

Once the mother wavelet is chosen the computation starts with first scale and the 

continuous wavelet transform is computed for all values of s. Generally the signals are 

band-limited therefore, computation of the transform for a limited interval of scales is 

usually adequate. The procedure starts from the smallest scale (high frequency)  and 

continues for the increasing values of  s (low frequencies). This first value of  s  will 

correspond  to  the  most  compressed  wavelet.  As  the  value  of  s  is  increased,  the 

wavelet will dilate. By shifting the wavelet in time, the signal is localized in time, and 

by changing the value of s , the signal is localized in scale (frequency) [25].

The wavelet compared to a section at the start of the original signal. A coefficient 

is  calculated  representing  how  closely  correlated  the  wavelet  is  with  the  present 

section of the signal. Higher coefficient means more similarity. Then the wavelet is 

_______________________________________________________________________________
Högskolan Dalarna Tel: +46-23-778800
Röda Vägen 3, 781 88 Fax: +46-23-778050
Borlänge, Sweden Http://www.du.se

36



Yasemin Bekiroglu Degree projectJune 2008

shifted to  the right  and another  coefficient  is  calculated,  this  is  repeated until  the 

whole signal is covered. Finally the wavelet is scaled (stretched) and all the steps are 

repeated for the new scale.  Scaling and shifting is  illustrated in Figure 13.  When 

calculations are performed for all scales, coefficients produced at different scales by 

different sections of the signal are obtained [29].

The  definition  of  the  CWT shows  that  the  wavelet  analysis  is  a  measure  of 

similarity between the basis functions (wavelets) and the signal itself. The similarity 

is based on frequency content. The calculated CWT coefficients refer to the closeness 

of the signal to the wavelet at the current scale. If the signal has a major component of 

the frequency corresponding to the current scale, then the wavelet at the current scale 

will be similar to the signal at the particular location where this frequency component 

occurs. Therefore, the CWT coefficient computed at this point in the time-scale plane 

will be a relatively large number. As the window width increases, the transform starts 

picking up the lower frequency components [25].

  

 Figure 13 (a). the beginning, (b). first shift, (c). the beginning with the second scale 
[29]

When the process is completed for all desired values of s, the CWT of the signal 

has been calculated. As a result, for every scale and for every time (interval),  one 

point of the time-scale plane is computed. The computations at one scale construct the 

rows of the time-scale plane, and the computations at different scales construct the 

columns of the time-scale plane[25].

Unlike the STFT which has a constant resolution at all times and frequencies, the 

WT has a good time and poor frequency resolution at high frequencies, and good 

frequency and poor time resolution at low frequencies. The illustration in Figure 14 is 
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commonly used to explain how time and frequency resolutions should be interpreted. 

Every box in the figure corresponds to a value of the wavelet transform in the time-

frequency plane. All the points in the time-frequency plane that falls into a box  is 

represented by one value of the WT [25].

Figure 14. Resolution of WT and STFT [29,25]

Although  the  widths  and  heights  of  the  boxes  change,  the  area  is  constant 

(determined by Heisenberg's inequality,  all areas are lower bounded by 1/4π  ). So, 

each box represents an equal portion of the time-frequency plane, but giving different 

proportions to time and frequency. At low frequencies, the height of the boxes are 

shorter  (which  corresponds  to  better  frequency  resolutions,  since  there  is  less 

ambiguity regarding the value of the exact frequency),  but their  widths are longer 

(which correspond to poor time resolution, since there is more ambiguity regarding 

the value of the exact time). At higher frequencies the width of the boxes decreases, 

the time resolution gets better, and the heights of the boxes increase, the frequency 

resolution gets poorer. In STFT the time and frequency resolutions are determined by 

the width of the analysis window, which is selected once for the entire analysis, both 

time  and  frequency  resolutions  are  constant.  Therefore  the  time-frequency  plane 

consists of squares in the STFT [25]. 

What distinguishes CWT from the discrete wavelet transform is the set of scales 

and positions at which it operates. Unlike the discrete wavelet transform, the CWT 

can operate at every scale, from that of the original signal up to some maximum scale 

that  is  determined  by  trading  the  need  for  detailed  analysis  with  available 

computational power. The CWT is also continuous in terms of shifting, the analyzing 
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wavelet is shifted over the full domain of the analyzed function [29].

For the CWT, the discretized CWT algorithm from Matlab’s toolbox was used and 

Morlet mother wavelet [35] was chosen to be used in the work and it is defined as

s

t
jat ee)t( 2

2−

=ψ (7)

where a is a modulation parameter and s again represents scale. This mother wavelet 

has been used for recognition tasks and produced acceptable results [36, 37].

On the plot providing the time-scale view of the signal, x-axis represents position 

along the signal (time), the  y-axis represents scale, and the color at each  x-y  point 

represents the  magnitude of the wavelet coefficient C. These coefficient plots were 

generated by the graphical tools in Matlab. Inspection of the CWT coefficients plot 

for this signal reveals patterns among scales [29].

Below, results of applying CWT with 66 scales ([0.5,1,2,...,128]) to preprocessed 

signals from a good and a bad sleeper in Figure 15 are seen indicating the difference 

characteristics at different frequencies and times (Figure 16).

                   (a)                                  (b)

Figure 15. Preprocessed signals from a good and a bad sleeper
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    (a)                                   (b)

Figure 16. CWT with 66 scales of signals from good and bad sleepers

3.3.4 Discrete Wavelet Transform

By  using  scales  and  positions  based  on  powers  of  two,  dyadic  scales  and 

positions, the wavelet analysis become more efficient and just as accurate rather than 

calculating wavelet coefficients at every possible scale and also the amount of data 

and work are  reduced in  this  way.  Such an analysis  is  obtained from the  discrete 

wavelet transform  (DWT). An efficient way to implement this scheme using filters 

was developed in 1988 by Mallat [37] by passing the signal through a series of low-

pass and high-pass filter pairs.

In the filtering process, the original signal, S, passes through two complementary 

filters and emerges as two signals (Figure 17)[29]. So,  DWT enables decomposition 

of the input signal into two signals - Approximation A (The high-scale, low-frequency 

components  of  the  signal)  and  Details  D  (low-scale,  high-frequency  component). 

Details are obtained when the signal is passed through the half band high-pass filter, 

(impulse response represents the wavelet function) Approximation is obtained if the 

signal is passed through the half band low-pass filter. 
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Figure 17. Filtering in wavelet analysis [29]

The main idea is the same as it is in the CWT. A time-scale representation of a 

digital signal is obtained using digital filtering techniques. The CWT is a correlation 

between a wavelet at different scales and the signal with the scale (or the frequency) 

used as a measure of similarity. The continuous wavelet transform was computed by 

changing the scale of the analysis window, shifting the window in time, multiplying 

by the signal, and integrating over all times. In the discrete case, filters of different 

cutoff  frequencies are  used to  analyze the signal  at  different  scales.  The signal  is 

passed through a series of high pass filters to analyze the high frequencies, and it is 

passed through a series of low pass filters to analyze the low frequencies[25].

The procedure starts with passing the signal through a half band digital lowpass 

filter with impulse response h[n]. Filtering a signal corresponds to the mathematical 

operation of convolution of the signal with the impulse response of the filter.  The 

convolution operation in discrete time is defined as follows [25]:

[ ] [ ] [ ] [ ]∑
∞

−∞=

−=
k

knh.kxnh*nx (8)

A half  band lowpass  filter  removes  all  frequencies  that  are  above half  of  the 

highest frequency in the signal. After passing the signal through a half band lowpass 

filter,  half  of  the  samples  can  be  eliminated  according  to  the  Nyquist’s  rule 

(subsampling the signal by two, since half of the number of samples are redundant). 

The scale of the signal is then doubled (because of subsampling). Resolution is related 

to the amount of information in the signal, it is halved after the filtering operation. 
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The  subsampling  (downsampling)  operation  after  filtering  does  not  affect  this 

resolution, since removing half of the spectral components from the signal makes half 

the number of samples redundant. Half the samples can be discarded without any loss 

of information. This procedure can mathematically be expressed as [25]

[ ] [ ] [ ]∑
∞

−∞=

−=
k

knx.khny 2 (9)

The  resolution  of  the  signal,  which  is  a  measure  of  the  amount  of  detail 

information  in  the  signal,  is  changed by the  filtering  operations,  and  the  scale  is 

changed by  subsampling operation. Subsampling a signal corresponds to reducing the 

sampling  rate,  or  removing  some  of  the  samples  of  the  signal.  For  example, 

subsampling by two refers to dropping every other sample of the signal. Subsampling 

by a factor n reduces the number of samples in the signal n times.

The  DWT  analyzes  the  signal  at  different  frequency  bands  with  different 

resolutions  by  decomposing  the  signal  into  a  coarse  approximation  and  detail 

information. The decomposition of the signal into different frequency bands is simply 

obtained by successive highpass and lowpass filtering of the time domain signal. The 

original  signal  x[n]  is  first  passed  through  a  halfband highpass  filter  g[n]  and  a 

lowpass filter h[n]. After the filtering, half of the samples can be eliminated according 

to the Nyquist’s rule, since the highest frequency of the signal is halved. The signal 

can therefore be  subsampled by 2,  simply by discarding every other sample.  This 

constitutes  one  level  of  decomposition  and  can  mathematically  be  expressed  as 

follows:

[ ] [ ] [ ]∑ −=
n

high nkg.nxky 2 (10)

[ ] [ ] [ ]∑ −=
n

low nkh.nxky 2 (11)
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where  yhigh[k]  and  ylow[k]  are  the  outputs  of  the  highpass  and  lowpass  filters, 

respectively, after subsampling by 2. 

 The process  produces  DWT coefficients,  two sequences called cA and cD in 

Figure 18 [29].

Figure 18. DWT process [29]

This decomposition halves the time resolution since only half the number of samples 

now  characterizes the entire signal and doubles the frequency resolution, since the 

frequency  band  of  the  signal  now  spans  only  half  the  previous  frequency  band, 

effectively reducing the uncertainty in the frequency by half. The procedure can be 

repeated for further decomposition (the lowpass filter output is filtered again) [25]. At 

each step of the decomposition process, the frequency resolution is doubled through 

filtering and the time resolution is halved through subsampling [38]. So one signal is 

broken down into many lower resolution components [29]. This is called the wavelet 
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decomposition tree. Figure 19 illustrates this procedure. 

Figure 19. Wavelet decomposition [29]

The detail  coefficients  cD consist  mainly of a  high-frequency noise,  while  the 

approximation coefficients cA contain much less noise than does the original signal 

[29].  The DWT of the original signal is obtained by concatenating all coefficients 

starting from the last level of decomposition [25].

Carrying out the decomposition not only on the lowpass side but on both sides can 

also be applied, namely zooming into both low and high frequency bands of the signal 

separately,  known as the  wavelet  packages which can be visualized as having both 

sides of the tree structure. For many signals, the low-frequency content is the most 

important  part,  while  the  high-frequency  content  imparts  flavor  or  nuance,  so 

zooming into low frequency bands is generally enough.

The frequencies that are most prominent in the original signal will appear as high 

amplitudes in that region of the DWT signal that includes those particular frequencies. 

the  time  localization  of  these  frequencies  will  not  be  lost.  However,  the  time 

localization will  have a resolution that depends on which level they appear.  If the 

main information of the signal lies in the high frequencies, the time localization of 

these frequencies will be more precise, since they are characterized by more number 
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of  samples.  If  the  main  information  lies  only  at  very  low  frequencies,  the  time 

localization will not be very precise, since few samples are used to express signal at 

these frequencies. This procedure offers a good time resolution at high frequencies, 

and good frequency resolution at low frequencies[25]. 

The frequency bands that are not very prominent in the original signal will have 

very low amplitudes, and that part of the DWT signal can be discarded without any 

major  loss  of  information,  allowing  data  reduction.  Figure  20  and  21  illustrate 

examples of how how data reduction is provided. Figure 20.a  shows a preprocessed 

signal from a good sleeper. The horizontal axis is the number of samples, whereas the 

vertical axis is the amplitude. Figure 20.b shows the 5 level DWT of the signal (with 

db10) in. The last samples in this signal correspond to the highest frequency band in 

the signal first coeffcieints carry relevant information and the rest has virtually no 

information. Therefore, thresholding can be applied (Fig 20.c) and small values can 

be  discarded  without  any  loss  of  information.  In  Fig  20.d,  zero  values  after 

thresholding are removed, in this result, even the last values which are relatively small 

than the first  ones can be discarded. The same process is seen for a preprocessed 

signal  from a  bad  sleeper  in  Figure  21.  from This  is  how DWT provides  a  very 

effective data reduction scheme [25]. 

                (a)                                         (b)
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               (c)                                          (d)

Figure 20. DWT of a signal from a good sleeper

             (a)                                        (b)
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(c) (d)

Figure 21. DWT of a signal from a bad sleeper

The type of mother wavelet chosen for the analysis and the number of the levels 

of decomposition are the parameters to be defined. In the work the decomposition was 

based on db10 (Daubechies 10) wavelet and 5 levels of analysis. As filters (h and g) 

the  Daubechies [39] filters were applied to the signal.  Among the several  wavelet 

functions that were mentioned in the literature, the Daubechies family of wavelets are 

the  most  widely used.  The family of  Daubechies  wavelets  was  chosen because it 

consists of biorthogonal, compactly supported wavelets, satisfactorily regular and not 

symmetrical.  These  attributes  were  considered  very  important  for  the  analysis  of 

transient  signals  [40].  Daubechies  filters  allow for  the  perfect  reconstruction  of  a 

signal from the DWT [8].  The number of vanishing moments of a wavelet indicates 

the  smoothness  of  the  wavelet  function  as  well  as  the  flatness  of  the  frequency 

response of the wavelet filters (filters used to compute the DWT) [41].  A vanishing 

moment  variable  can  be  set  for  the  filters;  however  the  value  of  this  coefficient 

seemed to make little difference to the classification rate [8]. A suitable criterion used 

by  [42]  for  selecting  optimal  wavelets,  is  the  energy  retained  in  the  first  N/2 

coefficients.  Based  on  this  criterion  alone  the  Daubechies  10  wavelet  preserves 

perceptual information well [43]. Additionally, the db10 is a very good compromise of 

smooth function, without sharp edges and not too difficult to create numerically [40].

The decomposition can only proceed until the individual details consist of a single 

sample. The length of the signal determines the number of levels that the signal can be 

decomposed to.  However  there is  little  or no advantage gained in  decomposing a 

signal beyond a certain level (less is insufficient and more is redundant). 

Choosing a decomposition level for the DWT usually depends on the type of signal 

being analysed or some other suitable criterion such as entropy [43] to determine if a 
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decomposition is sufficient or more levels are needed. For each node is calculated 

entropy, based on the values of coefficients belong to that node. If the entropy of the 

originating node is less than the sum of entropies of successor nodes, decomposition 

of that node is not performed. By pruning the tree with respect to the entropy criteria, 

the best tree is obtained [44, 45]. Based on this calculation on the data set, on average 

5 levels was found suitable for the decomposition. The number of levels within the 

decomposition depends on both the size of the data and the resolutions of interest. 

Increasing the number of levels to a large number has an effect of creating very low 

frequency DC-like waveforms in the highest scales and do not tell anything useful. On 

the other hand having a very low number of levels in the decomposition, would not 

give  the  decomposition  sufficient  frequency  resolution  [46].  The  fact  that  the 

decomposition up to scale 5 is adequate [42], with no further advantage gained in 

processing beyond scale 5 is mentioned in many sources for signal processing [40, 43, 

46, 47]. 

3.3.5 Wigner-Ville Distribution

As  one  of  the  methods  enabling  simultaneous  signal  analysis  in  time  and 

frequency domain, the Wigner-Ville distribution has been drawing a lot of attention 

lately. This distribution was first introduced by E. Wigner in the context of quantum 

mechanics [48], and later independently developed by J. Ville who applied the same 

transformation  to  signal  processing and spectral  analysis  [49,  50].  A Wigner-Ville 

function is derived from computing the Fourier transform of a correlation function 

[51]. Wigner Ville Distribution (W) of signal x (t) is given by the following

( ) ∫
+∞

∞−

−




 −





 += τττω ωτ detxtx,tW j*

22
(12)
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where  τω,,t represents  the  time,  the  angular  frequency,  the  time  delay  and 














 −





 +

22

ττ
txtx * is  the  instantaneous  autocorrelation  function.  From  the  above 

equation, the Wigner-Ville distribution is regarded as Fourier transform for the time 

delay  τ of  












 −





 +

22

ττ
txtx * which is a time-dependent autocorrelation function, 

and  represents  the  distribution of  power on the  time-frequency plane.  In  order  to 

calculate the Wigner-Ville distribution from a signal data of limited record length, an 

approximate discrete  value  of  the  equation  must  be calculated  [52].  The  complex 

conjugate (indicated by *) is introduced to generalise the analysis to complex signals. 

The  result  is  a  function  of  both  frequency  and  time  [53].  The  Wigner–Ville 

distribution provides a high resolution of instantaneous energy density both in time 

and frequency domains [54]. 

J.  Ville  [49]  proposed  the  use  of  the  analytic  signal  in  time-frequency 

representations of a real signal. An analytic signal is a complex signal which contains 

both  real  and imaginary components. The advantage of using the analytic signal is 

that in the frequency domain the amplitude of negative frequency components are 

zero. This satisfies mathematical completeness of the problem by accounting for all 

frequencies, yet does not limit the practical application since only positive frequency 

components have a practical interpretation. The imaginary part is obtained by Hilbert 

transform [55]. If x(t) is a real signal, the analytic signal is defined as follows:

)t(jx)t(xx ht+= (13)

where )t(xht  is the Hilbert transform of )t(x , which is shown as [56]
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∫
+∞

∞− −
= τ

τ
τ

π
d

t
)(x)t(xht

11
(14)

The  Wigner-Ville  distribution  has  high  time-frequency  resolution.  A  major 

drawback  of  the  Wigner-Ville  distribution,  reported  by  Cohen  [57],  is  that  this 

distribution propagates noise.  It has been shown that if there is noise present in a 

small section of the signal, it will appear again within the distribution. This effect is a 

general property of the Wigner-Ville distribution, and is related to the interference 

caused by cross-terms which appear when the cross-correlation of the two signals is 

non-zero. In this case, part of the data of one shift is repeated in the following one, 

causing redundant information. To reduce this problem, windows can be applied in 

the time and frequency domains, and it has then been known as the ‘pseudo-Wigner-

Ville' distribution (PWVD)[57,58,59]. 

An analytic signal is a complex signal that contains only positive frequencies. It is 

associated with a real signal by the removal of the real signals negative frequencies 

and doubling the value of its positive frequencies [60]. Since the spectral domain is 

divided by two, the number of interference terms decreases (If the real signal is used 

then both the positive and negative spectral terms produce them). The interferences 

are caused by the fact that the Wigner-Ville Distribution is quadratic in x, so if x is a 

sum (a + b), the Wigner-Ville distribution of  x contains an interference term 2ab in 

addition  to  the desired value  (a2 + b2).  Normally,  if  we have  two points  on the 

diagram, we will receive interferences in the middle of the distance between them. To 

avoid this inconvenience a suitable choice of smoothing factors can be applied which 

can dramatically reduce the interference terms by smoothing in time and frequency 

[61, 62, 63]. 

Additionally, for real-time computations or for long time series, the computation 

time for WVD is an important practical problem [51,64].
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Below,  on  preprocessed  signals  from a  good and  a  bad  sleeper  in  Figure  22, 

Wigner-Ville distribution results can be seen with real (Figure 23.a, 23.c) and analytic 

signal (Figure 23.b, 23.d).

Figure 22. Preprocessed signals from a good and a bad sleeper

                  (a)                                     (b)

_______________________________________________________________________________
Högskolan Dalarna Tel: +46-23-778800
Röda Vägen 3, 781 88 Fax: +46-23-778050
Borlänge, Sweden Http://www.du.se

51



Yasemin Bekiroglu Degree projectJune 2008

                  (c)                                      (d)

Figure 23. WVD of signals from a good an a bad sleeper

3.4 Dimension Reduction using Principal Component Analysis

PCA [65, 66, 67, 68] provides an orthogonal projection basis leading to dimensionality 

reduction and feature selection. PCA involves the calculation of the eigenvalue decomposition 

of a data covariance matrix, usually after mean centring the data for each attribute. The data 

to which PCA is to be applied contains the extracted features. The data matrix is constructed 

by placing feature vectors into the columns. Namely, if there are M samples of size N, then 

the matrix X has the size of N*M, 

X = [ x1 x2 ... xM ], xi = [ d1 d2 ... dN ]T, i=1,2,..., M. (15)

The data, Q, is prepared for the covariance matrix calculation by subtracting the mean,

 avr = ∑
=

M

i
ix

M 1

*
1

,   qi = xi – avr. (16)

The data,  Q, is to be transformed by using the eigenvectors of the covariance matrix of 

the data. Since the size of the covariance matrix, Cov(Q) = QQT , is N*N and the number of 

eigenvectors of this matrix is N, generating these eigenvectors, (ui), has a high computational 

burden 

Cov(Q) = =∑
=

M

i

T
iiqq

M 1

*
1

QQT , (N*N). (17)
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If the number of samples is less than the dimesion of the data (M<N), there will be only 

M-1 meaningful eigenvectors. The remaining eigenvectors will have associated eigenvalues 

of zero [66]. Therefore, the eigenvectors are derived from the eigenvectors of the matrix QTQ, 

QTQ vi = iµ vi, where vi is the eigenvectors and iµ  is the eigenvalues of QTQ. 

The size of QTQ is M*M and it has M eigenvectors with M components. When both sides 

of the equation are multiplied by Q, 

Q QTQ vi = iµ Qvi (18)

is obtained where ui = Qvi  is the eigenvector of QQT  (Qvi  is normalized in order to have 

||  Qvi ||=  1)  and  iµ  is  the  eigenvalue.  The  data  is  to  be  expressed  in  terms  of  these 

eigenvectors.  Eigenvectors  are  ordered  by  eigenvalue  from highest  to  lowest  to  get  the 

components  in  order  of  significance.  x<<M<<N eigenvectors  are  chosen  and  the  data  is 

transformed by using them,

 

yi = ui
Tqj , i=1, ... , x;  j=1,..., M, Yj=[y1 y2 ... yx]T ,Y = [Y1, Y2, ...YM]. (19)

 yi is the i th component of the transformed data Yj . Small eigenvalues and their associated 

eigenvectors are ignored using a threshold value, 

(∑
=

χ

λ
1i

i /∑
=

M

i
i

1

λ )>0.95. (20)

The lower dimensional vector u captures the most expressive features of the original data. 

In this way, the data is compressed by reducing the number of dimensions without much loss 
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of information. 

In the following Figure 24, it is seen that 40 eigenvectors are chosen to transform the data 

obtained from STFT of signals from bad and good sleepers, since their eigenvalues were big 

enough according to the above criterion.  

(a)
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(b)

Figure 24. Eigen values obtained to reduce STFT results

4 Results and Discussion

In this work, a comparison of multilayer perceptron, learning vector quantization 

and gaussian mixture model classification techniques combined with nonstationary 

feature extractions for condition monitoring of wooden railway sleepers is presented.

Each classification technique is tested against different combinations of feature 

extraction techniques to determine the best combination of these two techniques. The 

implementation details of the classifiers used in the tests are as follows: A three layer 

backpropagation network (MLP) with 35 hiden nodes and 2 output nodes, using step 

size 0.7 was used for classification. LVQ using k-means clustering with k=17 was 

used.  And  a  GMM  trained  with  EM  algorithm  was  used.  The  parameters  were 

initialized by k-means clustering algorithm with k=33 and a diagonal matrix for all 

the mixture components.

The  data  set  were split  into  training  and test  sets  for  classifiers.  In  the  work, 

impact acoustic signals were collected by making experiments on  200 sleepers [4]. 

The data obtained from these signals were divided into training (75%) and test (25%) 
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sets as seen in the following table (Table 1).

 

Table 1. Partition of data into training and test sets [4]
Clas
s

Training 
(75%)

Testing 
(25%)

Tota
l

Goo
d

108 36 144

Bad 42 14 56
Tota
l

150 50 200

In  feature  extraction  process,  in  STFT  for  each  signal  1650  features  were 

generated since 11 frame with 300 length were used without symmetrical FFT results, 

in CWT 66 scales were used so for each signal 66*1800 features were generated, in 

DWT in decomposition process 1892 coefficients were generated for each signal and 

in WVD on 129 points calculations were done ommitting half of the FFT results and 

finally having 129*900 features for each signal. WVD was demanding great deal of 

computational resources hence it has not been investigated on all points which would 

yield a 1800*1800 features for each signal. But still WVD provided very satisfactory 

results.  As  mentioned  previously,  dimension  reduction  was  applied  after  feature 

extraction. And the final number of features after this process are given below (Table 

2):

Table 2. The number of features before and after reduction
 RIGHT LEFT FLF
 direct with PCA direct with PCA direct with PCA
STFT 1650 40 1650 40 1650 80
CWT 66*1800 24 66*1800 27 66*1800 51
DWT 1892 51 1892 53 1892 104
WVD 129*900 73 129*900 59 129*900 132

The results from different classifiers can be combined by a rule such as majority 

voting  between  the  classifiers  to  achieve  better  results.  It  is  possible  that  more 

classifiers would increase performance of majority voting.
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The  data  are  collected  from both  ends  of  the  inspected  sleepers  to  get  more 

reliable results. The tests were performed on the data from each end seperately and 

also by using the obtained data from both ends. To be able to use the data from both 

ends  features  which  are  obtained  from  both  ends  need  to  be  combined  in  an 

appropriate way. Therefore,  feature fusion was applied in two levels,  feature level 

fusion  and  classifier  level  fusion.  In  feature  level  fusion  extracted  features  from 

signals obtained from both ends were concatenated and again different combinations 

of  resulting  features  were  tested  against  classifiers.  In  classifier  level  fusion 

classification results  obtained for extracted features  from left  and right  ends  were 

combined by an “and” operation.

Several tests were done and results are demonstrated in tables.  The best results 

were obtained when feature level fusion was used. Below, the classification rates for 

all combined features against each classifier are seen (Table 3, 4), the majority voting 

(MV) approach unites the decisions and gives the best rate as 82% classifying 41 of 

50 test samples correctly. In feature level fusion, firsly all extracted features from both 

ends of the same sleepers are combined in the same vectors.

Table 3. Best classification rates with combined features
ALLfeatures

MLP 82
GMM 80
LVQ 80
MV 82

Table 4. The number of correctly classified samples with MV
MV on ALLfeatures 

correct bad 6
correct  good 35
Overall 41

Below,  the  number  of  incorectly  classified  samples  in  classification  based  on 

feature level fusion are seen (Table 5). 
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Table 5. The number of incorrectly classified samples
  MLP GMM LVQ
 Pattern

s
No of Errors No of Errors No of Errors

Bad 14 7 10 5
Good 36 2 0 5
Overall 50 9 10 10

When features are compared alone WVD gives the best classification rate with the 

features  of  the  different  ends  of  the same sleepers  combined before  classification 

(feature-level fusion) as seen from the following table (Table 6).

Table 6. Classification rates on separeate features
 STFT DWT CWT WVD
MLP 74 72 72 80
GMM 74 72 70 80
LVQ 58 40 56 66
MV 74 72 72 82

The other  combinations  of  features  used  in  feature  level  fusion  tests  are  seen 

below (Table 7, 8). Different characteristics can be seen from the results such as when 

WVD is used the rates seemed to increase and GMM clasifier provide better results 

than the others on these combinations of features.

Table 7. Combinations with 2 features used in feature level-fusion tests

 STFT,DWT STFT,CWT STFT,WVD DWT,CWT DWT,WVD CWT,WVD

MLP 72 72 66 66 70 62
GMM 72 74 80 70 78 80
LVQ 68 68 72 52 62 68
MV 72 74 78 66 74 70

Table 8. Combinations with 3 features used in feature level-fusion tests

 STFT,CWT
DWT

STFT,CWT
WVD

CWT,DWT
WVD

STFT,DWT
WVD

MLP 74 78 68 72
GMM 72 80 80 80
LVQ 60 72 64 78
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MV 74 76 76 74

These recognition rates encourages the use of fusion for better results.  When the 

classifier-level fusion was applied by combining classfication results obtained for the 

data set from different ends of the sleepers, the results were not as good as feature- 

level fuison as seen below (Table 9, 10, 11). And it did not improve much the results 

before this kind of fusion. (The results by using other combinations of features used in 

tests for classifier-level fusion are in appendix.) The reason for this is for feature level 

fusion, the classifiers were fed with complete data for sleepers and the classification 

became more efficient.

Table 9. classification rates of classifier-level fusion
 ALL features
MLP 74
GMM 64
 LVQ 66
ALL 74

Table 10. the number of correctly classified samples with MV
 MV on ALLfeatures
correct bad 7
correct good 30
Overall 37

Table 11. the number of incorrectly classified samples
  MLP GMM LVQ
 Pattern

s
No of Errors No of Errors No of Errors

Bad 14 7 11 4
Good 36 6 7 13
Overall 50 13 18 17

The other tests on the data obtained from the left and right ends of the sleepers 

seperately can be found in appendix. To sum up, feature-level fusion provided the best 

recognition rates. The results can be improved by using more classifiers.

Machine vision techniques can be applied to improve the system when fed with 

suitable visual input. In the proposed approach there are many parameters to be tuned 
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such as number of features, window size for STFT, number of scales for CWT to be 

able to get better results and it is technology-driven since the only characteristic of 

being a good sleeper is that it produces a “crisp” sound as suggested by the inspector. 

So to get good results heavily relies on the feature extraction techniques providing 

good results. The obtained signals are evaluated based on a very detailed processing 

and  testing  procedure  by  tuning  many  parameters  to  be  able  to  reach  a  good 

judgement of the inputs since the extracted features need to provide rich characteristic 

properties  of  the  data  which  can  not  be  defined  by the  inspector.  However,  in  a 

machine vision approach a possible solution would be knowledge driven, since the 

visual input data for classifiers can be identified easily for being classified as good or 

bad  and to  have  a  good classification  results  does  not  heavily depend on  feature 

extraction process. Therefore, machine vision techniques can be expected to provide 

better results.
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5 Conclusion

For automating the process of condition monitoring of wooden sleeper inspection 

problem,  a  classification  based  approach  was  examined  in  the  work.  The  use  of 

nonstationary  feature  extraction  techniques  as  a  means  of  classifying  condition 

monitoring  of  wooden  railway  sleepers  were  discussed.  Nonstationary  feature 

extraction  techniques  were  considered  suitable  since  the  characteristics  of  impact 

acoustic signals  are changing with time, time varying frequency content, traditional 

time or frequency analysis is not sufficient. The spectral nature of such signals can not 

be  illustrated  by  considering one  argument,  frequency,  to  interpret  these  signals 

efficiently. Instead for this kind of nonstationary signals  a combined time-frequency 

representation is needed due to the inadequacy of either time domain or frequency 

domain analysis to describe the nature of non-stationary signals completely. Hence, 

time-frequency representation of the signals were generated by using four different 

techniques,  Short Time Fourier Transform, Continuous Wavelet Transform, Discrete 

Wavelet  Transform,  Wigner-Ville  Distribution.  The  techniques  ara  analyzed  and 

results  are  presented  for  testing  them  in  combination  with  several  classification 

techniques, Gaussian Mixture Model, Learning Vector Quantization and Multilayer 

Perceptron, including majority voting evaluation and feature fusion experiments as 

well. As expected the nonstationary techniques provided better results than stationary 

feature extraction techniques. Experimental results on an example dataset demonstrate 
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the  validity  of  the  approach  and  relevant  results  were  presented.  In  experiments, 

feature  fusion  were  applied  in  two ways,  feature  level  fusion  and classifier  level 

fusion.  Feature  level  fusion  provided  the  best  recognition  rates,  although  the 

computational  complexity for  classifiers  were increased since  the total  number  of 

features used in this case were increased. The reason why the feature level fusion 

provided better results than classifier level fusion can be explained in a way that in the 

presence  of  feature  level  fusion  the  classifiers  were  fed  with  more  complete  and 

supporting descriptions of the sleepers thanks to the combined extracted features. The 

system can be improved by including more classifiers and supporting with machine 

vision techniques.  
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6 Appendix

6.1 Results by using the data from right ends of the sleepers

Table 12. Classification rates on separeate features
 STFT DWT CWT WVD
MLP 72 72 72 74
GMM 74 72 68 78
LVQ 64 46 42 62
ALL 74 72 70 74

Table 13. 2-features combinations against classifiers

 STFT,DWT STFT,CWT STFT,WVD DWT,CWT DWT,WVD CWT,WVD

MLP 72 72 66 68 72 72
GMM 72 72 76 70 74 76
LVQ 60 60 74 46 66 62
ALL 74 72 74 68 74 72

Table 14. 3-features combinations against classifiers

 STFT,CWT
DWT

STFT,CWT
WVD

CWT,DWT
WVD

STFT,DWT
WVD

MLP 74 72 70 72
GMM 72 76 72 76
LVQ 52 72 56 78
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ALL 74 74 70 74

Table 15. Classification rates with all features
 ALL features
MLP 74
GMM 72
LVQ 74
ALL 78

Table 16. the number of incorrectly classified samples
  MLP GMM LVQ
 Patterns No of Errors No of Errors No of Errors

Bad 14 7 12 6
Good 36 6 2 7
Overall 50 13 14 13

Table 17. the number of correctly classified samples with MV
 MV on ALL features
correct bad 7
correct good 32
overall 39

6.2 Results by using the data from left ends of the sleepers

Table 18 Classification rates on separeate features
 STFT DWT CWT WVD
MLP 72 72 28 72
GMM 72 68 70 60
LVQ 62 64 46 70
ALL 72 70 44 72

Table 19. 2-features combinations against classifiers

 STFT,DWT STFT,CWT STFT,WVD DWT,CWT DWT,WVD CWT,WVD

MLP 66 68 72 72 72 64
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GMM 62 68 64 70 62 64
LVQ 70 60 58 68 68 66
ALL 68 68 66 72 64 66

Table 20. 3-features combinations against classifiers

 STFT,CWT
DWT

STFT,CWT
WVD

CWT,DWT
WVD

STFT,DWT
WVD

MLP 54 72 72 72
GMM 64 62 62 62
LVQ 72 66 74 70
ALL 70 68 70 72

Table 21. Classification rates with all features
 ALL features
MLP 76
GMM 64
LVQ 66
ALL 72

Table 22. The number of incorrectly classified samples
  MLP GMM LVQ
 Patterns No of Errors No of Errors No of Errors

Bad 14 12 13 10
Good 36 0 5 7
Overall 50 12 18 17

Table 23. The number of correctly classified samples with MV
 MV on ALL features
correct bad 2
correct good 34
Overall 36

6.3 Results by classifier-level feature fusion

Table 24. Classification rates on separeate features
 STFT DWT CWT WVD
MLP 72 72 28 74
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GMM 74 68 66 66
LVQ 54 44 38 58
ALL 74 70 44 74

Table 25. 2-features combinations against classifiers

 STFT,DWT STFT,CWT STFT,WVD DWT,CWT DWT,WVD CWT,WVD

MLP 66 68 66 68 72 64
GMM 62 68 66 68 62 68
LVQ 56 52 58 44 62 58
ALL 70 70 68 68 66 68

Table 26. 3-features combinations against classifiers

 STFT,CWT
DWT

STFT,CWT
WVD

CWT,DWT
WVD

STFT,DWT
WVD

MLP 54 72 70 72
GMM 64 66 62 64
LVQ 42 62 56 78
ALL 70 72 68 74
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