
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Using ant colonies to solve multiprocessor 
task graph scheduling  

 
 

 

Appah Bremang 

 Master Thesis 
                                                                                                                Computer Engineering 
2006  Nr: E3265D 

 



 
 

 
 
 
 

DEGREE PROJECT  
in Computer Engineering 
 

Programme  Reg number Extent 
International Masters of Science In Computer Engineering   E3265D 30 ECTS 
Name of student  Year-Month-Day 
Appah Bremang  2006-08-25 
Supervisor  Examiner  
Pascal Rebreyend Prof. Mark Dougherty & Ernst 
   
Department of  Computer Engineering  
Title    
Using ant colonies for multiprocessor task graph 
scheduling 

   

Keywords    
Multiprocessor scheduling problems, ant colony 
algorithm, ant system, pheromone trail, makespan. 

   

 

Abstract 

The problem of scheduling a parallel program presented by a weighted directed acyclic 

graph (DAG) to the set of homogeneous processors for minimizing the completion time 

of the program has been extensively studied as academic optimization problem which 

occurs in optimizing the execution time of parallel algorithm with parallel computer.  

 

In this paper, we propose an application of the Ant Colony Optimization (ACO) to a 

multiprocessor scheduling problem (MPSP). In the MPSP, no preemption is allowed and 

each operation demands a setup time on the machines. The problem seeks to compose a 

schedule that minimizes the total completion time.  

We therefore rely on heuristics to find solutions since solution methods are not feasible 

for most problems as such. This novel heuristic searching approach to the multiprocessor 

based on the ACO algorithm a collection of agents cooperate to effectively explore the 

search space.  

 



 

A computational experiment is conducted on a suit of benchmark application. By 

comparing our algorithm result obtained to that of previous heuristic algorithm, it is 

evince that the ACO algorithm exhibits competitive performance with small error ratio. 
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1.0 Introduction 
 

As computing system become more complex, so do the application that can run on them. 

In order to efficiently and effectively map application onto these systems, designers will 

increasingly rely on heuristic tools since it cannot be solved in the traditional way. On 

fundamental process of these heuristics is creating a mapping of a behavioral model 

(ACO) of an application to the computing system. The multiprocessor task schedule 

problem is NP-complete. Although it is possible for formulate and solve the problem 

using heuristics, the feasible solution space quickly becomes intractable for larger 

problem instance. In order to address this problem, a range of heuristic methods with a 

polynomial run time complexity have been proposed. These methods include Ant Colony 

Optimization, Genetic Algorithm, Tabu Search, Simulated Annealing, Graph Theoretic 

and Computational Geometry Approaches. 

Among them, ant colony optimization is considered in this project work due to its 

simplicity of implementation and capability of generating reasonably good results at less 

time.  

 

As the world and therefore all the economic vibrant organizations faces the problem 

(combinational optimization) of optimizing their scare resources in order to attained the 

full utilization of such resources, the MPSP and its varying of other scheduling problems 

addresses such shortfall in the industries. Moreover problems such as this, is hard to be 

solve in the polynomial time since exact solution methods are unfeasible for most 

problem instances and heuristic approaches must therefore be employed to find solutions. 

The developed algorithm can search a wider space for nearly optimal solution to NP-hard 

problems.  

 

The multiprocessor scheduling problem (MPSP) is considered as optimization problem in 

which the MPSP is a set of tasks with a given processing times and has to be assigned to 

a set of identical processors in order to minimizing the execution time (thus the full 

utilization of the time on the processors). This scheduling can be considered as optimal 

allocation of scarce resources to activities (referred to as tasks) over a period of time. 
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However it needs to be stated that the processor being a resource can perform at most a 

activity at any particular time. This problem nature considering are static or in otherwords 

deterministic and so all the necessary information about the tasks and processors are 

assumed to be known. 

 

The basic problem that is encountered in solving MPSP is the delay in communication or 

transmission of data from one task to the other defining a precedence relationship for the 

set of task, being predecessor and successor. Our concern is assumed in the problem of 

scheduling dependencies tasks onto multiprocessor system with processors connected in 

an arbitrary way, while explicitly accounting for the time required to transfer data 

between the tasks allocated to different processors. The delay in communication therefore 

occurs whenever two pair of tasks (predecessor, successor) is assigned to different 

processors. 

 

The communication delay is address by allocation problem as a typical scheduling 

problem. This employs the program graph as a directed acyclic graph (DAG). Here, the 

vertices represent the program modules, but a (directed) arc indicates a direct 1-way 

communication between a predecessor and successor pair of modules. A schedule on the 

other hand is allocating a time interval on one or many processor to a task (modules) such 

that, all being equal, the associated constraints and delays in communication are 

considered with a sole aim of minimizing execution time. This approach is considered in 

this paper, which is used to model the primary computations and their interdependence. 

However, their arcs represent functional dependence among primary computations that 

imply time precedence in parallel scheduling. 

 

In a task graph, a collection of agents cooperate together to search for a good scheduling 

solution. Both global and local heuristics are combined in a stochastic decision making 

process in order to effectively and efficiently explore the search space. The quality of the 

resultant feasible task schedule on the multiprocessor scheduled problem is evaluated 

using an ant colony optimization. 
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The main contribution of this work is the formulation of ant colony optimization 

algorithm that: 

 utilizes a hybrid approach combining multi-processor scheduling problem and the 

developed ant system heuristic; 

 dynamically computes local and global heuristics based on the input application 

to adaptively search the solution space; 

 addresses MPSP in the contextual deterministic machine scheduling theory. 

 generates consistently good scheduling results over all testing cases compared 

with a range of other heuristics and demonstrates stable quality over a variety of 

application benchmark of large size. 

 

In this paper, the investigation of search space characteristics and their relation to the 

algorithm performance may give useful insights as initial step in addressing these issues. 

 

The rest of the paper is organized as follows. The problem description is described in 

section 3, together with the model. Section 4 reviews combinatorial optimization and 

graph problems. Section 5 reviews ant colony optimization. Section 6, discuss basic 

technique. Section 7, presents ACO for multiprocessor scheduling that includes solution 

construction as well as algorithm outline. Section 8, discuss pheromone trail 

reinforcement and pheromone update. Section 9, presents an experimental analysis of 

these sets. Section 10, concludes the paper. 
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2.0 Aim and Objective 

 
The idea of this project is to try how ant colonies can be used to solve the multiprocessor 

task graph scheduling. In this thesis work, an implementation is first done and the 

experimental result compared with other methods for which we have results on the same 

benchmarks. 
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3.0 Problem Description  
 

Considering the following problem; given a set of identical processors, we face a number 

of independent requests for processing tasks. Each request is characterized by a multi-

processor task with (a) its required processing period, (b) required processor for the 

whole period (c) the corresponding time/cost of processing the task. The objective is to 

decide which requests to accept and/or as to minimize the total time/cost subject to the 

constraint that the total number of available processors is fixed. 

For instance, consider a multiprocessor schedule problem (MPSP) with different 

processors but of the same speed and as well as many tasks to be scheduled on the 

processor in order to minimize the execution time of processing the entire task.  

 

3.1 Definition for MPSP 

 
The MPSP could be defined as: a set of n tasks (ti) is to be scheduled on a set of m 

identical processors. Where schedule could be seen as the sequence and time in which the 

tasks (ti) are executed with (i = 0….n). A task graph is a weighted DAG with G = (T , E), 

where the set of nodes (corresponding to processors) and E is a set of communication 

edges. W is the set of node weights, and C is the set of edge weights. Given a task graph 

TG and a number of processors P, whereas MPSP is to distribute tasks (t

T

i) in TG onto m 

computational processors, which is fully connected in order for the precedence 

constraints to be satisfied and the execution time of the task graph minimized. There is no 

preemption or duplication of task in this case. 
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Figure1b: Example of optimal schedule displayed on Gantt chart. 

 

 

3.2 Model: 

 

The following model is considered in this work to define and approach the MPSP: 

 

In this section, it recalls the graph-based combinatorial formulation of the MPSP problem 

and then describes the characteristics of the scheduling heuristics used to evaluate the set 

of test-problem instance. 

 

Let Pi represents the set of processors and T represents the ordered list of tasks which are 

schedule on the processors Pi. Then notation Pi (i = 1,. …,n) refers to the ith processor, P. 

T = {t1, t2 t3, t4 …. tn}, represents a set of n-tasks in the system. A task in our case is a job to 

be run on the processors. The precedence constraints between tasks are modeled using a 

task graph. 
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The tasks to be scheduled are represented by a directed acyclic graph (DAG) defined by a 

tuple G = (T, E, C, L), where T = { }ntt ,...,1 denotes a set of tasks; E = { }Ttte jiij ∈,/  

represents the set of precedence/communication edges where each task node in this case 

could define a functional unit for the program, which contains information about the 

computation it needs to perform. However,  and  can be considered as two special 

nodes, which are virtual task nodes. That is they are included for the convenience of 

having a unique starting and ending point of the task graph; C = 

1t nt

{ }Eec ijij ∈/  denotes a 

set of edge communication costs; and L = { }nll ,...,1 represents the set of task computation 

times (execution times, length). The communication cost Ccij ∈ corresponds to the 

amount of data transferred between tasks and when executed on different processor. 

When both tasks are assigned to the same processor, the communication cost equals zero. 

The set E defines precedence relations between tasks  and . For a given scheduling on 

the processor, the execution of a task graph runs in the following way: the task of 

different precedence levels are sequentially executed from top level down, while tasks in 

the same precedence level but allocated on different system component (or processor) can 

run concurrently. A task cannot be executed unless all its predecessors have completed 

their executed and all relevant data is available. Task Preemption and redundant 

executions are not allowed in the problem version considered in this paper. 

it jt

it jt

The multiprocessor system is assumed to contain p identical processors with their own 

local memories. Processors communicate by exchanging messages through bidirectional 

links of equal capacity. The architecture is modeled by a distance matrix. The element (k, 

l) of the distance matrix D = [  equals the minimum number of links connecting the 

nodes and . It is also assumed that each processor constituting the multiprocessor 

system M has I/O processing units for all communication links so that computations and 

communications can be performed simultaneously. 

]kld

kp lp

The scheduling of DAG G  onto multiprocessor system consists in determining a 

processor index and starting-time instant for each task in G  in such a way as to minimize 

a given objective function. An objective function used, represents the completion time of 

the scheduled task graph (also referred to as makespan, response time or schedule 
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length). The starting time of the task  is determined by completion time of its 

predecessors and the amount of time needed to transfer the associated data from 

processors executing these predecessors to the processors and , respectively, may be 

calculated as  

it

kp lp

,ccrdc klij
kl
ij =γ  

Where ccr is architecture-dependent and represents the communication-to-

communication ratio, defined as the ratio between the transfer time of a unit of data and 

the time require to perform a single computational operation. However, when l = k, = 

0 implying that . 

kld

0=kl
ijγ

An edge in E(G) represents a precedence constraint between tasks. It is assured here that 

the n is the number of nodes in T(G). Then for a given edge (s, r) in E(G), s is a 

predecessor of r, and r is a successor of s.  

 

However, for a node r in T (G), there exist an augmented cost (r) representing the 

execution time of task r on a processor, and each edge (r, w) in E(G) is given augmented 

cost c(r, w) representing the time cost of transmitting from r to w (thus length), that is 

communication from r to w. This communication from r to w takes zero step if those 

nodes are assigned to the same processor; otherwise it takes c(r, w) steps if they are 

assigned to different processors. 

 

This algorithm is modeled as a directed acyclic graph set of n tasks {ti1…….. tin} positioned 

at each node while each is associated with a valve which represents the cost of the each 

of the tasks. For each edge or arc (say; {ti1, ti2}) scheduled on the processor or find on the 

directed acyclic graph (DAG) means that the task ti2 must received some information or 

data from ti1 before starting the execution of  ti2. Moreover, ti1 sends this information (or 

data) at the end of its execution. It is however important to state that, like each node2, 

each edge is associated with a valve which represents the communication’s cost (or data 

to be transmitted). If the two corresponding tasks are not on the same processor (for 

                                                 
2 The term ’’node´´ and ’’task´´ is use interchangeably throughtout in the work. 
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instance, ti1 to ti2) then communication time will now be the node valve of ti1, the edge 

valve of data (communication cost{c(i, j)}) to be transmitted and the node valve of ti2.  

 

However if two tasks are scheduled on the same processor (for instance, ti2 to  ti4 ) then the 

communication cost for processing the two tasks will be zero, the addition of the node 

valves (thus the cost of executing (di) a task on any processor) at each of the two tasks 

involve. We can therefore infer that there is no preemption or duplication of task in this 

case of study. The processor could be faced with taking a longer time in executing a task 

in an attempt of solving the problem without applying any heuristics on the problem. This 

is because the problem belongs to a set of NP-hard problems. 

 

The acyclic digraph D shown in figure2 below is composed of six tasks, while the 

multiprocessor system is composed of three processors fully interconnected. Each di 

indicates the cost of ti and each c (i1, i2) represents the communication times associated to 

the arc (ti1, ti2). A diagram representing a schedule S of the tasks of D on the 

multiprocessor system is also shown. In the diagram, the processor, the introduction data 

and the duration of each task according to s are indicated, as well as the vector 

representation of the schedule s. For instance, t1, is scheduled on processor P1 at the time 

interval [0..1], t2 is scheduled on processor P2 at the time interval [3..5], t3 is scheduled on 

processor P3 at the time interval [1..5], and so on. 

 

To describe it further, c(i, j) is the communication cost between task i and j if they are 

allocated on different processors and zero if they are allocated on the same processor. 

di;  the cost of execution of task ti on any processor. 

 

ρS : denotes a partial schedule (where, n≤≤ ρ0 ). A schedule  is a subset of S if the 

tasks that are scheduled in  are scheduled in S on the same processor and with the 

same rank as in . 

ρS

ρS

ρS
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)( ρSNT : denotes a set of non-scheduled tasks of . Given tasks ρS { }ρiiii ttttT .........,, 321=  

and if the set of task { }ρiii ttt ,....,, 21  are partial scheduled in , then the set = T 

\{  is non-scheduled tasks of . 

ρS )( ρSNT

}521 ,....,, iii ttt ρS

 

( ):ρSYT denotes the set of yet to schedule task (or free task) of , thus the non-

scheduled tasks of a given  whose all predecessors have already been scheduled. This 

denotes that, for a specified partial schedule, 

ρS

ρS

( )ρSYT  is a subset of . )( ρSNT

( )rtST : denotes the start time of task . rt

( ) :rtFT denotes the finish time of task . rt

 

A schedule of G onto P is a function f from G(T) to P * I, with I being the set of non-

negative integers representing the start time of the tasks: thus, f(r) is a pair (p, st) which 

implies that task r is executed on processor p from time st. Any task r in V(G) is executed 

on a processor: when f(r) = (p,st), task r is executed on processor p during time interval 

[ ))(, wstst ω+  exactly once without interruption. In the following, we assume that the 

entry node  starts its execution at time zero on processor  and that the execution 

time of entry and exit tasks is zero while the length of the data transmitted from the entry 

node and that received by the exit node are both equal to zero.  

sw 1p

 

 

A scheduled is said to be feasible if and only if, it satisfied the following conditions: 

 

- , if  )(, GVwr ∈∀ ( ) ( )rstprf .=  and ( ) ( )wstpwf .= , then ( ) wr strst ≤+ω  

or ( ) rw stwst ≤+ω ; thus the executions of two tasks assigned to the same processor need 

not to be preempted or overlapped.  

-   For any ( ) , if  Eyw ∈, ( ) ( )ww stpwf ,=  and ( ) ( )yy stpyf ,= , then 

),()( ywwstst wy λω ++≥ , where ),(),( ywcyw =λ if yw pp ≠  and 0),( =ywλ  else the 

assignment must satisfy the precedence constraint. 
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Let denote the time cost or length of the longest path in G, where the length of a path 

from w to y in G is defined as the total amount of execution costs on the path including 

end nodes (the length does not include communication costs). A path with length or time 

cost  is referred to as a critical path of G (Discussed later in this work). 

cpL

)(GLcp

 

In figure 3, an example of MSP represented by the DAG with 6 tasks allocated to 3 

processors is shown. 
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A Partial Schedule S’ is given by: {  when stopped assigning the tasks at this point. In this case 

our non-schedule tasks, NT, are   being the same for yet to schedule tasks, YT (or free tasks). 

}
}

321 ,, ttt
{ 654 ,, ttt

 
Figure2: Example to illustrate a partial schedule. 
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4.0 Overview Combinatorial Optimization and Graph Problems 
 
 
Introduction to Combinatorial Optimization provides a comprehensive overview of basic 

optimization technology from Operations Research and Constraint Programming. 

Concepts covered include: Linear Programming, Duality Theory, Total Unimodularity, 

Backtracking and Branch-and-Bound, Finite Domain Constraint Programming, and Local 

Search. 

 

Finding a solution to large combinatorial problems such as multiprocessor scheduling and 

others is similar in finding a needle in a haystack. A particular class of algorithms, 

commonly labeled meta-heuristics or combinatorial optimization, such as simulated 

annealing and tabu search, has been able to provide good enough solutions in reasonably 

computational time, however ( Lockwood and Moore, 1993; Boston and Bettinger , 1998; 

Baskent and Jordan, 2001). They are designed to solve complex optimization problems 

where traditional methods have fail to be effective or efficient. 

 

Combinatorial optimization is a broad field, and people come to it with many different 

perspectives and techniques. Operations Research folk often think of network flow 

problems and integer programming when they think of combinatorial optimization. 

Computer Science types often think of heuristics like simulated annealing and genetic 

algorithms. Artificial Intelligence folks often think of constraint satisfaction, and so on. 

 

A meta-heuristic or combinatorial optimization is defined as an iterative generation 

process which guides a subordinate heuristic by combining intelligent different concept 

of exploring and exploiting the search space (Baskent and Jordan, 2001; Beasily et al., 

1993). It is based on the idea of making incremental improvements by changing elements 

of a solution iteratively. While multiprocessor scheduling offers a combinatorially large 

number of alternatives, many of them represent infeasible solutions and the feasible 

region is not a continuous space. Thus the strategy is to employ a smart search technique 

over the solution space. Essentially, a meta-heuristic is a hybrid search technique 

involving more than one algorithm, tailored to overcome certain ‘traps’ i.e., local optima, 
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in an extremely large combinatorial solution space. These heuristics have the ability to 

formulate problem, a problem using discretionary rule that would be difficult to 

formulate mathematically (Glover and Laguna, 1997). In meta-heuristics parlance, for 

example, a multiprocessor scheduling designed problem would be represented as either 

minimizing or maximizing an objective function subject to some constraints. 

Meta-heuristics include, but are not limited to: hill climbing or greedy random adaptive 

search procedures, simulated annealing, genetic algorithms and tabu searches and their 

hybrids. They basically differ from each other in the use of a move selection and solution  

mapping procedure.  

 

A graph on the otherhand is a very simple structure consisting of a set of vertices and a 

family of lines (possibly oriented), called edges (undirected) or arcs (directed), each of 

them linking some pair of vertices. An undirected graph may for example model conflicts 

between objects or persons. A directed graph (or digraph) may typically represent a 

communication network, or some domination relation between individuals, etc.  

The famous problem of the bridges of Konigsberg, solved by Euler, is viewed as the first 

formal result in graph theory. This theory has developed during the second half of the 

19th century (with Hamilton, Heawood, Kempe, Kirchhoff, Petersen, Tait), and has 

boomed since the 1930s (with König, Hall, Kuratowski, Whitney, Erdös, Tutte, 

Edmonds, Berge, Lovász, Seymour, and many other people). It is clearly related to 

Algebra, Topology, and other topics from Combinatorics. It applies to, and gets 

motivating new problems from Computer Science, Operations Research, Game Theory, 

Decision Theory.  

The number of concepts that can be defined on graphs is very large, and many generate 

deep problems or famous conjectures (for instance the four colour problem). In fact, 

many of these concepts or theoretical questions arise from practical reasons (and not just 

from the mathematicians' imaginations) for solving real problems modelled on graphs. 

Moreover, researchers in Graph Theory try if possible to find efficient algorithms for 

solving these problems.  

The main classical problems in Graph Theory are: flow and connectivity (network 

reliability), matching (assignment), Eulerian walks (traversing each edge once; more 
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generally, the "Chinese Postman Problem"), Hamiltonian walks (traversing once each 

vertex: the "Travelling Salesman Problem"), vertex- or edge-coloring stable, dominating 

sets. Some of the above (maximum flow, maximum matching, Eulerian walk) can be 

efficiently solved, while the others are very hard ("NP-complete").  

A generalization of the concept of graph, introduced by Claude Berge in 1960, is that of 

hypergraph, where, simply, the edges may have arbitrary size and not only size two.  

 

However, search methods (stochastic) are a class of search methods which includes 

heuristics and an element of nondeterminism in traversing the search space. Unlike the 

search algorithms introduced so far, a stochastic search algorithm moves from one point 

to another in the search space in a nondeterministic manner, guided by heuristics. The 

next move is partly determined by the outcome of the previous move. Stochastic search 

in general, can be said to be incomplete. Stochastic search methods, which although 

normally does not guarantee completeness, may provide an answer to other applications 

on delay in decision or communication. 
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5.0 Overview of Ant Colony Optimization 

5.1 Basics of ACO 

 

The ACO, in short for ant colony optimization was first introduced proposed by Collorni 

et al. (1991) as a meta-heuristic scheme for finding near optimal solutions. It has been 

successfully used to solve many complex problems, such as TSPs, quadratic assignment 

problems, vehicle routing problems and production scheduling problems, just to name a 

few. 

The ACO simulates the behaviors of real ants moving on weighted connected graph and 

is also to solve many complex combinatorial optimization problems. The basic algorithm 

of the ACO introduced by Dorigo et al. (1996 & 1999) is outline (in fig 3) as follows: 

 
Algorithm Ant_Colony_Optimization 

1. Initialize 
          Representing the underlining problem by a weighted connected graph. 
          Set initial pheromone for every edge. 

2. Repeat 
        2.1. For each ant do 

                Randomly select a starting node. 
                Repeat 
                             Move to the next node according to a node transition rule. 
                             Until a complete tour is fulfilled. 
  2.2. For each edge do       
               Update the pheromone intensity using a pheromone updating rule. 
Until the stopping criterion is satisfied. 

3. Output the global best tour. 
 

Fig 3: Outline of Basic ACO algorithm. 

 

 

The ACO was inspired by the ability of real ant colonies to efficiently organize the 

foraging behavior of the colony using pheromone trails that acts as a means of 

communication.  

The ant colony optimization algorithm is a cooperative heuristic searching algorithm 

inspired by the ethological study on the behavior of ants. It was observed that ants - who 

lack sophisticated vision - could manage to establish the optimal path between their 
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colony and the food source within a very short period of time. This is done by an indirect 

communication known as stigmergy via the pheromone (thus, chemical substance), left 

by the ants on the paths. Though any single ant moves essentially at random, it will make 

a decision on its direction biased on the ‘’strength’’ of the pheromone trails that lie before 

it, where a higher amount of pheromone hints a better path. As an ant traverses a path, it 

reinforces that path with its own pheromone. A collective autocatalytic behavior emerges 

as more ants will choose the shortest trails, which in turn creates an even larger amount 

of pheromone on those short trails, which makes those short trails more likely to be 

chosen by future ants. 

The ACO algorithm is inspired by such observation. It is a population based approach 

where a collection of agents cooperate together to explore the search space. They 

communicate via a mechanism imitating the pheromone trails. 

The idea of this algorithm is based on using ant colony optimization on the multi-

processor schedule to minimize the execution time of the total tasks scheduled on the 

number of processors. This algorithm is considered in applying on the multi-processor 

problem because the problem itself is NP-hard which cannot be solved in the traditional 

way, hence ant colony optimization.  

ACO is a population-based algorithm where several artificial ants search for good 

solutions. Every ant builds up a solution step by step thereby going through several 

decisions until a solution is found. Ants that found a good solution mark their paths 

through the decision space by putting some amount of pheromone on the edges of the 

path. The ants of the next generation are attracted by the pheromone so that they will 

search in the solution space near good solutions. 

The ant colony algorithm works in such a way that; individual ants are simple insects 

with limited memory and capable of performing simple actions. However, an ant colony 

expresses a complex collective behavior providing intelligent solutions to problems such 

as carrying large items, forming bridges and finding the shortest routes from the nest to a 

food source.  It must however be stated that a single ant has no global knowledge about 

the task it is performing. The ant’s actions are based on local decisions and are usually 

unpredictable. The intelligent behavior naturally emerges as a consequence of the self-
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organization and indirect communication between the ants. This is what is usually called 

Emergent Behavior or Emergent Intelligence. 

 

The practical example covered in this project involves finding a minimum execution time 

of the tasks scheduled on the processors. In order to solve this problem, two 

characteristics of ant’s colonies will be particularly useful: 

 

• their ability to find the shortest route between the nest and a food source, which 

will be used to find and optimized a path in the task graph. 

•  the simplicity of each individual ant, which will make it easy for us to model the 

ant colony as a multi-agent system. 

 

More importantly, the ants’ search experience can be used to influence in a way 

reminiscent of Reinforcement Learning [32] the solution construction in future iterations 

of the algorithm. In addition, the use of a colony of ants give the algorithm increased 

robustness and in this ACO application the collection interaction of a population of 

agents is needed to efficiently solve a problem. 

 

5.2 Ants’ foraging Behavior and Optimization 
 

Firstly, let’s understand the foraging behavior of ants and how they can manage to find 

the shortest path between the nest and a food source using simply local decisions (thus 

shortest execution time, when executing the tasks). 

An important insight of research on ants’ behavior was that most of communication 

among individuals, or between individuals and the environment, is based on the used of 

chemicals, named pheromones produced by the ants. This is different from, for instances, 

what happen in human and in other higher species, whose most important senses are 

visual or acoustic.  Particularly important for the social life of an ants’ is trail pheromone.  
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Trail pheromone is a specific type of pheromone that ants’ use for marking path on the 

ground, for instance, paths from food sources to the nest. By sensing pheromone trails 

foragers can follow the path to food discovered by other ants.  

 

Ants use signaling communication system based on deposition of pheromone over the 

path it follows, marking trail. Pheromone is a hormone produced by ants that establishes 

a sort of indirect communication among them. Basically, an isolated ant moves at 

random, but when it finds a pheromone trail there is a high probability that this ant will 

decide to follow the trail. An ant foraging for food lay down pheromone over its route. 

When this ant finds a food source, it returns to the nest reinforcing its trail. Other ants in 

the proximities are attracted by this substance and have greater probability to start 

following this trail and thereby laying more pheromone on it. This  process works as a 

positive feedback loop system because the higher the intensity of the pheromone over a 

trail, the higher the probability of an ant start traveling through it. This collective trail-

laying and trail-following behavior whereby an ant is influenced by a chemical trail left 

by other ants is the inspiring source of ACO. 

 

The following instance is taken to give insight of how this process leads the colony to 

optimize a route, which in our case finds the less execution time. The figure4 illustrates 

ants foraging behavior and optimization while figure5 demonstrates pheromone 

evaporation. 

 

Suppose some ants were randomly searching for food when they found two different 

routes between the nest and the source. Ant need to pick food when they get to the food 

source and leave food when getting back to the nest. Since for the example route B (with 

a length of say 0.5mm) is shorter, the ants on this path will complete the traveling more 

times and thereby lay more pheromone over it. As the process continues, the pheromone 

concentration on the trial B will increase at a higher rate than on A (with length of say 

1.5mm) and soon, even those ants on the route A will choose to follow the trail B. 

However, since most ants are no longer traveling through route A and also due to the 
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volatile characteristic of the pheromone, the trail A will start evaporating and soon just 

the shortest route will remain (shown at figure5, in the third figure to the right).  

 

  

A 

B 

Figure4: Ants’ foraging Behavior and Optimization. More ants using route B to the food source since route A is as 
double as B. 
 

 

 
Figure5: Illustrates how pheromone trails evaporates 

 
This is because the ants initially picked their route apparently at random and about equal 

proportion of the ants used each way to the food source. However, as pheromone trial 

increases, the ants tended to favor the shortest route to the food. Therefore the pheromone 

trail increases on the shorter route faster than on the any of the routes because the ants 

using the shorter route to gather food would take a shorter time, hence more ants would 

cross that path and so more pheromone would be deposited in order to attract other ants 

on the different routes to the shorter path. This behavior of ants does not allow a single 

ant to derive this information. 
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5.3 Pheromone Trail Evaporation 

 
Pheromone trail evaporation can be seen as an evaporation mechanism that avoids quick 

convergence of all the ants towards a suboptimal path. In fact, the decrease in pheromone 

intensity favors the exploration of different paths during the whole search process. In real 

ants colonies, pheromone trails also evaporate, however, evaporation does not play an 

important role in a real ants’ shortest path finding. The fact that, on the contrary, 

pheromone evaporation seems to be important in artificial ants is probably due to the fact 

that the optimization problems tackled by artificial ants are much more complex than 

those real ants can solve. A mechanism like, evaporation that, by favoring forgetting of 

errors or of poor choice done in the pass, allows a continuous improvement of the 

‘’learned’’ problem structure seems therefore to be necessary for the artificial ants. 

Additionally, artificial pheromone evaporation also plays the important function of 

bounding the less execution time achievable by the pheromone trails. 

Evaporation decreases the pheromone trail with exponential speed. In ACO, the 

pheromone evaporation is interleaved with the pheromone deposit of the ants. After each 

ant k has moved to a next node according to the ants’ search behavior describes, the 

pheromone trails are evaporated by applying the following question to all the arcs. 

 

( ) ijij ττ l−← 1                                                                                                 (1) 

 

When scheduling a task, the agent could initially stores in the pheromone trail, 

information about the favorability of grouping certain jobs together on a processor since 

the only salient information used by the agent about the tasks/jobs is their execution time. 

Thus, scheduling or allocating jobs to processors initially are done at random (or could be 

favored) that are stored in pheromone trail. It must be emphasis that , because the 

utilization of a task is tightly couple with a specific processor, it is to realize that there is 

the need to established a one to one mapping between a pheromone trail and a pair of 

(task, processor). Thus the processor identity and the task identity are needed to index the 

pheromone trail.  
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6.0 Basic Technique 
 
   
The list scheduling, denoted by LS, is a heuristics strategy that is used in solving MPSP. 

It is widely used technique that schedules tasks from top to the bottom of the task graph. 

The idea behind its usage is that it does a topological sort of the dependence DAG and 

considers when an instruction can be scheduled without causing a stall. It as well, 

schedules the instruction if it causes no stall and when all its predecessors are already 

scheduled. One of the critical aspects of a class of scheduling algorithm (LS) is how to 

decide which task is to be scheduled next. This is achieved by assigning priories to the 

nodes or the edges of the input DAG, and thus the task with the highest priority will be 

scheduled next. Conversely, the node (or task) with a highest priority is scrutinized for 

scheduling before a node with a lower priority, however, ties are broken if more than one 

node has the same priority and here some method is used in addressing. One needs to 

notice that it will yield a search space of totally n! possible lists, which is simply all the 

permutations of n instructions. List scheduling for all of the permutations considered 

always yield an optimal solution to MPSP. However, optimal list scheduling is NP-

completed where heuristics are use when necessary. It worth to say that a task is not 

ready for scheduling until all its predecessors are scheduled. 

 

The heuristic method adopted for the task-scheduling are based on some priority-ordering 

scheme, which include two phases: task ordering and task-to-processor allocation. Thus it 

starts by sorting the tasks according to some priority scheme, followed by the second 

phase where each task is assigned to the processor which is selected by some scheduling 

rule. This schedule is referred to as list-scheduling. Task priority here is defined based on 

task execution times, communication requirements, number of successor tasks among 

other considered in this work. While the heuristic task assignment rule that could have 

equally taken into consideration here is breath-first.  

 

 The list-scheduling considered in this work is denoted CPES and is a modification of the 

dynamic level scheduling (DLS) heuristic. The basic idea of DLS is to calculate static task 

priority based on the critical path (CP) method and use them to order the tasks and then, 
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to modify them during the scheduling phase to reflect the partial schedules already 

generated (the best (task, processor) pair is selected for scheduling). It is important to 

notice that the calculation of the critical path does not involve communication times, 

because these depend upon the task-to-processor assignment and schedule. Thus only 

task execution times  are considered. An earliest start (ES) heuristic used for computing 

the start time  for each task and , the task being allocated to the processor 

with the smallest associated time valve [18]. The valves ES (est(v) )can be computed in 

the О(n) time.                                               

il

( ki ptst , ) it kp

 

The dynamic level scheduling (DLS) algorithm are based on the list scheduling approach 

in which the tasks of the DAG are first arranged as a list such that the ordering of the 

tasks in the list preserves the precedence constraints. In DLS, the scheduling tasks are 

constructed by calculating static task priority on the DAG for all the tasks on the top level 

to the root task based on the critical path method. An optimal ordering of tasks were 

putted in accordance to the start time ( )ki ptst ,  for each task and  in order to 

generate an optimal schedule. In the next step, beginning from the first task in the list, 

each task is removed and scheduled to a processor that allows an earliest start time. The 

DLS is a compiled time, static list scheduling heuristic.  

it kp

 

However, it worth mention that employing the idea of CP in the DLS causes the 

algorithm to perform at its best. Although, the algorithm assumes arbitrary computation 

costs, communication among tasks is ignored here and aim at minimize the number of 

processor. 
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Time:=0; 

While L ≠ Ф 

do      for i:=1 to n 

           do let ti be the first ready task in L such that 

                      DAG(predecessor(ti)) ≠ 1 or  

                      (t1,t2,.....,ti-1) does not contain a sibling of ti; 

                 if    such an ti exists 

                 then x(ti):= time; delete ti from L; 

                      DAG(predecessor(ti)) - : 1  

                 endif; 

              enddo ; time := time + 1 

enddo ; Cmax := time 

 

Fig 6. The algorithm assigns schedule times slots to the tasks. 
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7.0 ACO for Multiprocessor Scheduling 

 solving this kind of NP-hard problem being face by the multiprocessor schedule 

tic proposed, thus ACO will try to do a thorough search for solution that will 

.1 Ants’ Path-Searching Behavior 

ased on the Task Graph (TG) model, our goal is to find a feasible scheduling (Gs) for 

e therefore introduced heuristic method for solving the multiprocessor schedule 

 

In

problem, we apply ant colony optimization (ACO) algorithm that can aid in finding better 

minimal execution time and cost effective solutions as fast as possible to resolve possible 

problems. 

This heuris

be near optimal in solving the problem that may arise from the delay in communication 

(the execution time) of executing the tasks scheduled on the processors. Again, this 

algorithm is proposed in helping the ant system to make decisions in solving the delays 

that may arise from executing the tasks in order to give fast and cost effective solution in 

less time. 

 

7
 

B

task graph, which provides the optimal performance subject to the predefined constraints 

associated to the various node (or tasks).  

 

W

problem using the ACO algorithm. Essentially, this ACO algorithm is a multi-agent 

stochastic decision making process that combines local and global heuristics during the 

searching process. Each agent traverses and attempts to create a feasible scheduling by 

selecting the next move probabilistically according to the combined heuristics. The 

quality of the solution is measured by the overall execution time (or makespan) of the 

tour, from t1 and tn, together with the consideration of the predefined constraints, such as 

execution cost and edge data to be transmitted (communication cost) and process by the 

tasks. The quality measurement is used to reinforce the good solutions. The global 

heuristic information is distributed as pheromone trails on the edges (or E (G)). 
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However, formulation in a search framework requires the following basic components: 

• Representation state: it describes how a search state represents a partial solution. 

• 

st of ready 

• al state is a solution state and hence the terminating point of a 

 

.2 Solution Construction 
and asynchronously moves through adjacent states of the 

hus, each ant builds, starting from the source node (or task), a solution to the problem 

representation state, initial state, expansion and goal state with each explained below; 

 

A state in the search space for the scheduling problem is a partial schedule in 

which a sub-graph of DAG is assigned to a certain number of processor. 

Initial state: Thus the starting state and it is an empty partial schedule. 

• Expansion: For expanding a search-state, the first node from the li

nodes (the nodes whose predecessors have been scheduled) is selected. The 

selected node is considered for assignment to each of the available processors. 

The next node from the list is then selected, and states expansion continues in a 

similar fashion. The state stops when all of the ready nodes have been considered 

for assignment.  

Goal state: A go

search. In this scheduling problem however, it is a complete schedule. 

7
A colony of ants concurrently 

problem by building paths on TG. They move by applying a stochastic local decision 

policy that makes use of pheromone trail and heuristic information. They move by 

applying a stochastic local decision policy that makes use of pheromone trail and 

heuristic information. By moving, ants incrementally build solutions to the optimization 

problem. Once an ant has built a solution, or while the solution is being built, the ant 

evaluates the (partial) solution and deposits pheromone trails on the components or 

connections it used. This pheromone information will direct the search of the future ants. 

 

T

by applying a step-by-step decision policy. At each node, local information stored on the 

node itself or on its outgoing arcs is read (sensed) by the ant and used in a stochastic way 

to decide which node to move to next. At the beginning of the search process, a constant 
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amount of pheromone is assigned to all the arcs [Eq1]. When located at node i an ant k 

uses the pheromone trails ijτ  to compute the probability of choosing j as next node. 

An ant repeatedly hops from node to node using this decision policy until it eventually 

reaches the destination node. Due to differences among the ants’ paths, the time step at 

which ants reach the destination node may differ from ant to ant (ants traveling on the 

shorter paths will reach their destinations faster. 

 

 

 t1 P1

t2  P1 t2  P2 t3 P1 t3  P2

t3  P1 t3  P2
t2 P1 t2 P2

t4 P1 t4  P2

t5 P1 t5 P2

t3  P1 t3 P2

t4  P1 t4 P2

Complete schedule 

Figure7. The search tree for scheduling the example task graph shown in Fig. 1a, to the 2-processor connected. 
 

 

On solution construction, assembled set of ready tasks is to be put on the ready 

processors available. Therefore, the artificial ant stochastically assign the assembled set 

of ready tasks one by one to the ready processors available, until either all tasks are 

assigned to some processor, or none of the remaining tasks can be assigned to any 

processor without exceeding its spare computing capacity. It must however be stated that 

if an ant stops with at least one unassigned task, the resulted tour is called an infeasible 

tour. On the otherhand if no stop condition is met, the current tour is called a partial tour.  
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Once the task to be scheduled next, , has been selected, the set of idle processors rt M  is 

established, a processor p from this set to which  will be scheduled is selected 

probabilistically with respect to the pheromone between and it, as shown in (equation 

4) below; 

rt

rt

 

 

 

 

                               
( )[ ]
( )[ ]

Mp
tp

tppob in

i
ri

r ∈∀=

∑
=1

,

,)(Pr
α

α

τ

τ                                               (4)                                    

However, if no idle processor is available the algorithm simply waits until one becomes 

available. This process is then repeated until all the tasks, , have been scheduled.  it

 

Based on the proceeding observation; an agent3 in a processor executes each scheduled 

task in turn until it has completed executing all tasks. Once a task had been fully 

executed, the next task on the same processor but next on the scheduled is executed by 

the agent. The agent will repeat this process until it finds the last on the scheduled 

executed, where it will process and then considered the lowest processing or execution 

time as solution. In addition, the agent will leave the task it had finished processing and 

then proceed to the next task based on the intensity of the information stored in the 

pheromone trail. 

Back in the processor, the agent will leave the task scheduled in the first processor and 

then starts the whole process again on the second processor. However, the two 

processors’ execute its tasks scheduled on it by the agent simultaneously without one 

preempting the other but along the scheduled. It is however noted that, these actions 

require only local information and a short memory allowing the agent to recognize its 

own trial and executes the task next on the scheduled. 

 

                                                 
3 The term ‘’agent’’ and ´´ant’’ is use interchangeably in this work. 
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7.3 The algorithm outline 

 

1. Initially, let  be the cumulated weight of the complete tour fulfilled by ant k, 

which has selected node k as its starting node. Then associated each augmented 

edge 

kW

ije  is initialized by a quantity of pheromone, ijτ , defined by  

                                                                                                    (5) ∑
=

Δ=
n

k

k
ijij

1

ττ

      where 

                   =Δ k
ijτ ,

kW
Q      if   belongs to the tour performed by ant k;             (6)                ije

              0,         otherwise; 

 

  

            and Q is a fixed constraint to control the delivery rate of the pheromone.  

      the valve of the pheromone on each augmented edge is initially set at the valve 0τ ; 

2. Put n ants on task node t0 (thus starting task). 

3. Each ant crawls over the TG to create a feasible scheduling , where l = 1……n; lS

4. Evaluate the schedules generated by each of the n ants. The quality of a particular 

scheduling  is measured by the overall execution time. lS

5. Update the pheromone trails on the edges as follows: 

                                                                                            (7) ( ) ∑
=

Δ+−←
n

k

l
ijijij

1

1 ττρτ

                             

             where 0 < ρ  < 1 is the pheromone trail evaporation ratio and n is the number of 

distributed ants. The parameter ρ is used to avoid unlimited accumulation of the 

pheromone trails and enables the algorithm to ´´forget ´´ previously done bad decisions 

(thus implementing the mean that ´’forgetting´´ solutions which are not reinforced often). 

On arcs which are not chosen by the ants, the associated pheromone strength decreases 

exponentially with the number of iterations. is the amount of pheromone currently 

laid by ant k on the arcs is calculator by Eq(6). 

)(tk
ijτΔ
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6. If the ending condition is reached, stop and report the best solution found, 

otherwise go to stop 2. 

 

Step 3 is an important part in the proposed algorithm. It describes how an individual ant 

‘’crawls’’ over the TG and generates a solution. In step 3 each ant traverses the graph in 

the topologically sorted manner in order to satisfy the precedence constraints of task 

nodes. The trip of an ant starts from t0 and ends at tn, the two virtual nodes serving as the 

nest and the food source respectively. By visiting the nodes in the topologically sorted 

order, we insured that every predecessor node is visited before we visit the current node 

and that every incoming edge to the current node has been evaluated. 

At each task node ti where i ≠ n, the ant makes a probabilistic decision on the allocation 

for each of its successor task node tj based on the pheromone on the edge. The 

pheromone is manipulated by the distributed global heuristic ( ijτ ) and a local heuristic 

such as the execution time and the area cost (i.e. communication time of getting a data 

from one node to its successor node) for a specific assignment of the successor node.  

 

Node transition rule 

Moreover, during the running session, the ants moving on the graph travels from node to 

node through the edges. Because no node can be visited twice, we put the nodes that are 

already visited in a  list and mark them as inaccessible to prohibit the ants from 

visiting any node more than once. For the k-th ant on node i, the selection of next node j 

to follow is probabilistically determined according to the node transition probability, 

ktabu

      ( ) ( )βα ητ ijij                             if ktabuj∉ ; 

  =k
ijφ ( ) ( )βα ητ ijihtabuh k∑ ∉                                          (8)                 

 0,                                        otherwise; 

 

where ijτ  is the currently pheromone intensity on edge (i, j), ijη is the valve of visibility, 

defined by 1/w(i, j), α  and β  are parameters controlling the relative importance of 
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global and local preference for edge (i, j), and tabu indicates the current set of tasks 

inaccessible from ant k.  The visibility is a short-term memory that reflects the local 

preference for edge (i, j), it is simply determined in a greedy fashion taking into account 

the local information about the weight w(i, j) on edge (i, j) only. The probability strategy 

adopted for ACO to determine the next node to transit to first; the algorithm draws a 

random number from the interval [0, 1]. Depending on a threshold parameterλ , the 

algorithm triggers either exploitation or biased exploration strategy. In exploitation 

(where the random number generated is smaller than or equal toλ ), ant k will select from 

the accessible neighbors the node with the largest valve of . In biased exploration 

(where the random number generated is greater than

k
ijφ

λ ), the probability of selecting node 

j out of the accessible neighborhood of node i is given in Eq.(8). Therefore another 

random number is generated from the interval [0, 1] to determine, in roulette wheels, 

which accessible node to visit next. 

 

Here 1/ilk ijdη =  is local heuristic (heuristic information), If α = 0, the selection 

probability is proportional to and the nearest node will more likely be selected; in 

this case the ant system corresponds to a stochastic classical greedy search. If β = 0, only 

pheromone amplification is at work and it leads to the rapid emergence of a stagnation 

situation with the corresponding generation of tours that is strongly suboptimal. Search 

stagnation is defined as situation whereby all the ants follow the same path and construct 

the same solution.  

[ ]βη ij

It is intuitive to notice that the probability  favors an assignment and a route that yields 

small execution time, and assignment and route that corresponds with stronger 

pheromone. 

k
ijφ

          
The above decision making process is carried on by the ant until all the task nodes in the 

graph have been allocated. At the end of the each iteration, the pheromone trails on the 

edges are updated according to step 5. First, a certain amount of pheromone is 

evaporated. From optimization point of view, the evaporation step helps to escape from 

local minimums. Secondly, the good edges are reinforced. This reinforcement creates 
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additional pheromone on the edges that are included on the scheduling solutions that 

provide shortest execution time for the task graph. In each run of the algorithm, multiple 

iterations of the above steps are conducted until we reach the ending condition 

predefined. It worth to state that a schedule s is feasible if and only if the algorithm that 

constructs s finishes at iteration k = n. This means that all tasks could be scheduled since 

exactly one task is scheduled at each iteration. The complexity of the algorithm is 

O(n2.m) if we stop the algorithm after iteration. 
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8.0 Reinforcement of Pheromone Trail 

 
In the second stage of our algorithm, the lists constructed by the ants are evaluated and 

the best solutions after ants had completed traversing the paths are reinforce with 

pheromone trail in order to generate an optimal solution. Based on this evaluation, the 

pheromones are adjusted to favor better solution schedules. The hope is that further 

iterations will benefit from the adjustment and come up with better solution schedule. In 

generating an optimal solution, the ants were allowed again to traverse. The quality of the 

scheduling result from ant h is judged by the schedule latency Lh. Upon finishing of each 

iteration, the pheromone trail is updated according to the quality of schedule lists. In the 

mean time, a certain amount of it will be evaporated.  

 

Thus to make the ants search more competitive, we introduce the elitist strategy in order 

to improve upon the solution quality. It consists in giving the best schedules/tour 

(called gbT , where gb stands for global-best) a strong additional weight. That is each time 

the pheromone trails are updated, those belonging to the edges of the global best 

schedule/tour get an additional amount of pheromone. For these edges, the equation in 

step 5 of the algorithm above becomes; 

 

                                   if arc e/ ( )gbe L t ( ),i jt t ∈ gbT  

( )gb
ij tτΔ =   0                          otherwise                                                                  (9) 

 

The arcs of gbT are therefore reinforced with a quantity of 1/ gbe L⋅ , where gbL is the length 

of gbT and e is a positive integer. 

      

The two important operations are taken in this pheromone trail updating process. The 

evaporation operation is necessary for ACO to be effective and diversified to explore 

different parts of the search space, while the reinforcement operation ensures that the 

favourable instruction orderings receive a higher volume of pheromone and will have 
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better chance to be selected in the future iterations of the algorithm. The above process is 

repeated multiple times until ending condition is reached.  

                                                                                                            

In this extended algorithm, scheduling optimization is formulated as an iterative       

searching process. Each iteration consists of two stages. First, AS algorithm is applied in 

which a collection of ants traverse on the DAG with best solutions while it has been  

reinforce with pheromone to construct instruction lists using global and local heuristics 

associated with the DAG nodes. Here, to exploit the ant’s search experiences the 

pheromone update is made a function of the solution quality achieved by each particular 

ant. In this ACO algorithm an elitist strategy whereby the best solutions found during the 

search strongly contributes to pheromone trail updating.  

 

 

8.1. Pheromone Updates based on solution quality 

 

 In ACO, the ants memorize the nodes they visited during the search path, as well as the 

cost of the arcs traversed on the weighted graph. They can therefore evaluate the cost of 

the solutions they generate and use this evaluation to modulate the amount of pheromone 

they deposit while traversing it. However, making pheromone update a function of the 

generated solution quality helped in directing future ants more strongly toward better 

solutions.  Further, each ant deposits or removes some amount of pheromone on the 

visited arcs. This mechanism provides a way of the indirect communications to share the 

knowledge about searching for good solutions amongst the colony. We prefer the arcs 

that constitute minimum cost path derived thus far. Therefore at the end of each iteration, 

we undertake a global pheromone update on the arcs of the best path derived in the most 

recent iteration. We called such path for simplicity as global-best or iteration-best path. 

 

However, to keep away from early convergence (also called stagnation), a situation in 

which all the ants reconstruct the same solution and stop exploring new possibility before 

some satisfactory solution is found, we perform a local (step-by-step) pheromone update. 

The local pheromone updating rule is defined as; 
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0)1( ϕττϕτ +−= ijij ,        if has been selected by some ant, ),( ji

 

where 10( ≤< ϕϕ ) is the parameter controlling the degree of the pheromone decay. The 

valve of 0τ  is set to be the same as initial pheromone valve of the pheromone trail. 
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 9.0 Experiment and Analysis 

 

This section of the report looks into the evaluating the effectiveness and performance by 

analysis of the proposed Ant Colony Optimization algorithm. This algorithm was coded 

in C and compiled with linux. This is employed to develop scheduling algorithms suitable 

for benchmark applications. 

 

9.1 The testbench 
We use as testbench synthetics digraphs generated with ANDES-Synth. The benchmark 

contains direct acyclic graphs generated from;  

 

1. Bellford 2. Diamond1 3. Diamond2 4. Diamond3 5. Diamond4 6. Gauss 

7. Iterative 8. MS-Gauss 9. Prolog 10.fft2-b 11.Gauss 12. Divconq 

13.Celbow 14.Cstanford 15.ms-gauss 16.qcd2-b 17.SSC2 18.SSC3 

19. SSC4 20. SSC5 21. SSC6 22. SSC7 23.SSC8 24. SSC9 

 
Table1, Digraphs generated with ANDES-Synth used as a test for this algorithm 

 

 

(A) 

1) Bellford: it solves the shortest path problem from all nodes to a single destination in a 

weighted directed graph. The graph represents the algorithm called Bellman-Ford. 

2) Diamond1: thus know as a space-time digraph representing a systolic computation 

[26]. 

3) Diamond2: this digraph is known as a systolic matrix multiplication [27]. 

4) Diamond3: the systolic computation of the transitive closure of a relation on a set of 

elements is this digraph [28]. 

5) Diamond4: it’s the systolic computation of the transitive closure of a relation on a set 

of elements [29]. 
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6) Iterative: it’s generic iterative algorithm with each iteration being represented in the 

same level of the digraph. Concerning the next iteration, the immediate successors of a 

task ti at kth position are tasked at (k+1)th position. 

7) FFT: that’s Unidimentional fast fourier transform. 

8) Divconq: This stands for divide and conquer algorithm. The digraph has a tree shape. 

9) Prolog: The structure of this digraph is obtained at random and corresponds to the 

resolution of a logic program. 

10) MS-Gauss: represents a computation containing successive resolutions of linear 

systems by Gaussian elimination. 

11) Gauss: the task digraph describes the execution of a Gaussian elimination used in the 

resolution of linear systems. 

12) qcd: thus gradient method for linear systems [30]. 

(B) 

13) SSC, Celbow and cstanford: comes from a controller. 
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Diagram  Number of Cost of a task  it Weight of the arc ( )ji tt ,  

    tasks     
bellford l 992 10000 400 
 m 354 10000 400 
diamond1 l 1026 10000 400 
 m 258 10000 400 
diamond2 l 1227 5000 2000//50000 
 m 486 5000 2000//50000 
diamond3 l 1002 10000 400//800 
 m 731 10000 400//800 
diamond4 l 1002 5000 2000 
 m 731 5000 2000 
divconq l 766 10000 
 m 382 10000 

40//80//160//320//640//1280//2560//5120//10240//20480
40//80//160//320//640//1280//2560//5120 

fft l 1026 5000 800 
 m 194 5000 800 
prolog l 1313 10000 4000 
 m 214 10000 4000 
iterative l 938 2500 100//25600 
 m 262 2500 100//25600 
gauss l 1227 10000 4000 
 m 782 10000 4000 
qcd l 1026 100000 4000 
 m 326 100000 4000 
ms-gauss l 1482 1000//128000 400//51200 
 m 768 1000//68000 400/51200 
celbow - 103 10//100//320//360//400 25 
   280//440//350//120//50  
   230//240  
cstanford - 90 1//5//10//28//57//66/38 25//10 
   15//24//40//32//53//12  
   39//4//6//111//84//28  
   29//0  
ssc 5 200 1 25 
 6 288 1 25 
 7 392 1 25 
  9 648 1 25 
 
Table2: This summarizes the features of each DAG 
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The table 2 above shows the size of these graphs, given by the number of tasks, as well as 

their normalized execution and communication time. The tasks execution times 

corresponds to the number of integer operations executed, and the communication times 

corresponds to the number of integers transferred. In order to obtain the actual 

executions, we multiply the valves in the table by 287μ s. Therefore the communication 

of L integers cost (129 + 2430450L)μ s being result of simulating a IBM SP-1[24][25]. 

The actual communication times can be obtained by replacing L by the edges’ weights. 

The digraphs were used with two sizes, given as –m for middle size while –l for the 

largest size. The tested PC configuration is: Intel Pentium IV, 1.65MHZ and 512M RAM 

machine running Linux. 

 

9.1.1 Results 
  

The following figures illustrate the evaluation of the performance of most DAG in the 

suites in 10000seconds. However, due to a limit set, near optimal solution might have 

arrived with small deviation or error from the optimal. 

 

 

          
fig10                                                                                     fig11 
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fig30                                                                                    fig31 
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fig36                                                                                  fig37 

 

      
fig38                                                                                 fig39 

 

9.1.2 Result Analysis 
 

From the figures, ACO algorithm found the near optimal execution time throughout in 

the search. Base on this, the probability of finding the solution with this algorithm for 

these task graphs is 86.44%. Related to this, we found that for 18 testing examples, or 

78% of the testing set, our algorithm discovers the optimal schedule every time in the 10 

runs. This indicates that the proposed algorithm is statistically robust in finding close to 

optimal solution. Also over 90% of the solutions found by the ACO algorithm are within 

20% of all possible schedules. The number of solutions drops quickly showing that the 

ACO algorithm finds very good solutions in almost every run.  
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For each of the benchmark samples, the proposed algorithm was run with the following 

parameter choice of the local heuristics. For the choice, we perform 10 runs where in 

each run, the algorithm is set to iterate for 10000 seconds as stopping condition.  

 

 

In all the experiment, we test ACO by using different parameter to determine the most 

advantageous setting as well as to justify the performance of the artificial ants in search 

for good solution. These settings were obtained from pre-knowledge as well as tuning. 

The number of ants per iteration set to 6. The evaporation rate, ρ , is configured to be 

0.98. The scaling parameters for global and local heuristic are set to be 1== βα , the 

delivery rate Q = 10 and 2500 =τ  . The solution with the best execution time found by 

the ants is reported as the result of each run.  

 

Among the instances that could not be work out within a shorter time due to a continual 

decreasing/diminishing at an increasing rate at that stages to get close to an optimal 

solution, it was work out when the execution time was extended to 10000 seconds after 

which it start converging. It was therefore realized that, finding close to optimal 

makespan after the algorithm had iterates within 10000seconds, it start to converge. 

 

Concerning a search for optimal solution, the final result is within 87.14% of the initial 

look up result. We can as well observe from the graphs (figure 10-37) that the search at 

all time shows improvement till the ‘good’ solution is found in most cases around 90% 

through of the calculation. 
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The table 3 summarized the results for the ACO algorithm comparing with other best 

known result for benchmarking with running times given in seconds. The meaning of the 

representation on the table 3, Hybrid Genetic Algorithm (GA) is as follows: 

 

GA is search technique that is designed based on the concept of evolution. A GA is 

applied with its three genetic search operators – Selection, Crossover and Mutation 

(explained below) – to transform a population (thus set of individual) of chromosomes 

(individual) with the objective of improving the quality of the chromosomes. A genetic 

algorithm is usually employed to determine the optimal solution of specific objective 

function.  

The search space therefore is defined as the solution space so that each feasible solution 

is represented by a distinct chromosome. Before the search starts a set of chromosomes is 

randomly chosen from the search space to form the initial population. The three genetic 

search operations are then applied one after the other to obtain a new generation of 

chromosomes in which the expected quality over all the chromosomes is better than that 

of the previous generation. This process is repeated until the stopping criterion is met and 

the best chromosome of the last generation is reported as the final solution. 

 

Worth to mention that in order to solve a problem with GA, we must know how to 

generate a solution, to modify it, to mix two solutions and to estimate its quality. 

However, this is done by applying the following three operations to the population: 

 

• The selection operator: this favors ‘’good’’ individual. It is done by duplicating 

‘’good’’ individual in the population in order to suppress ‘’bad’’ ones. The fitness 

function is employed to compute the quality of an individual. 

• The Crossover operator: The aim of this crossover is to mix individual (thus 

solutions). It is employed with an idea that mixing two good individual might 

result in generating a better individuals. 

• The mutation operator: This is modification of a solution in order to explore all 

the search space and avoid keeping in a neighborhood of the solution space. 
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                 Diagram 

 
ACO 

 
Hybrid GA 

 

c\o change 
from GA 

bellford2 l 199355100 193794250 2.86 1  m 74231330 71936050 3.19 
diamond1 l 283205116 276758950 2.32 2  m 136667210 131940750 3.58 
diamond2 l 226689430 218954400 3.53 3  m 129123060 127224450 1.49 
diamond3 l 231439840 228590500 1.24 4  m 180333810 176982100 1.89 
diamond4 l 172451790 164264000 4.98 5  m 137950660 132875550 3.81 
divconq l 170342660 169043350 0.76 6  m 100156230 97307880 2.92 
fft1 l 107711210 102647300 4.93 7  m 30173540 29888250 0.95 
gauss l 321135200 307395800 4.49 8  m 229344410 226882900 1.08 
iterative1 l 48212350 47936700 0.57 9  m 17072370 16733350 2.02 
ms_gauss l 2567661200 2559388750 0.32 10  m 4674566400 4598559550 1.65 
prolog l 261845600 258529350 1.28 11  m 61322350 60499350 1.36 
qcd2 l 2075873960 2038576050 1.82 12  m 1204561020 1173100600 2.68 

13 celbow 6637 6630 0.10 
14 cstanford 663 627 5.74 
15 5 78 74 5.40 
16 6 81 77 5.19 
17 7 85 82 3.65 
18 

ssc 
 
 
 9 91 89 2.24 

 
  Table 3: A benchmark of the ACO algorithm (Parallel Solution) 
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9.2 Discussion 
 

As seen from the table (a percentage change from GA), the ACO demonstrated 

competitive results as compared to the best know solution from GA for both large and 

medium digraphs. The difference of ACO best makespan is not much from the GA and 

the difference can be attributed to parameter settings, maximum time to iterate and 

margin of error, evidence by a much smaller deviation over the results. 

 

ACO/TG model makes effective use of the core structural information of the problem. 

The autocatalytic nature of how the pheromone trails are updated and utilized makes it 

more attractive in discovering ‘’ideal’’ solutions with short computing time, this very 

behavior raises stagnation problem. For instance, it is observed that allowing extra 

computing time after enough iterations of ACO algorithm does not have significant 

benefit regarding to the solution quality. 

 

The ACO approach which combines a probabilistic search guided by heuristic problem 

specific information and a simply form of information sharing about good solutions, with 

global and local heuristic performs creditably in generating the parallel solution. The ants 

essentially perform an adaptive greedy search of the solution space.  

 

The very important choice when applying ACO is the definition of the intended meaning 

of the pheromone trails. Explaining these issues with an example, when applying ACO to 

the MPSP competitive results were obtained when used the absolute position 

interpretation of the pheromone trails, where ijτΔ  is the desirability of putting task j on the 

ith position. The best solution found so far and the best solution found in the current 

iteration is then used to update the pheromone. But before that some of the old 

pheromone on all the edges according to ijij τρτ •−= )1( . The result for this is that the 

old pheromone should not have a too strong influence on the future. Then for every 

activity some amount of pheromone is added to element (i, j) of the pheromone Jj∈
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where i is the place of activity j in the best solution found so far. This is an elitist strategy 

that leads ants to search near the best found solution.  

 

However, with effect of pheromone update, the pheromone trails on the arcs of the best 

path evaporates regularly in each iteration and receive additional pheromone whenever 

ants visit them again. Ants’ rapid concentration upon the best path with a large possibility 

and average pheromone intensity in this case is a compromised result among the 

evaporation and reinforcement from global updates as well as the decay via local updates. 

This effect of decay in local pheromone trail update process is to reduce the risk that an 

ant might mostly follow the same path traverse by its predecessors. Whenever an ant 

moves along an arc, decay occurs on the traverse arc.  

 

In balancing the exploitation and exploration as any metaheuristic algorithm has to 

achieve an appropriate balancing between the exploitation of the search experience gather 

so far and the exploration of unvisited or relatively unexplored search spaces. In ACO, it 

is typically through the management of the pheromone trails; the pheromone trail induce 

a probability distribution over the search space and determine which parts of the search 

space are effectively sampled, that is, in which part of the search space the constructed 

solutions are located with higher frequency. In line with this, the elitist strategy is 

enforcing whereby the best solutions found during the search strongly contribute to 

pheromone trail updating.  Also important for the role in the balancing of exploration and 

exploitation is that of parameters α  andβ , which determine the relative influence of the 

pheromone trail and heuristics information. Considering the influence of parameterα , 

thus the larger the valve of α  (α >0) the stronger the exploitation of the search 

experience. However the pheromone trail is not taken into account when α =0 whereas 

for α <0, most probable choices done by the ants are those that are less desirable from 

the point of view of the pheromone trails. Therefore varying α is used to shift from 

exploration to exploitation and vice visa. The parameter β  determines the influence of 

the heuristic information in a similar way and systematic variation of α andβ  is useful 

strategies to balance the exploration and exploitation. 
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On the part of importance of heuristic information to direct the ants’ probabilistic 

solution construction is important because it gives the possibility of exploiting problem 

specific knowledge. In this static problem, the heuristic information η is computed once 

at the initialization time and then is the same throughout the whole algorithm’s run. An 

instance is use in this work (MPSP) application, of the length  of the arc connecting 

tasks i and j to define heuristic information 

ijd

=ijη 1/ . This static heuristic information 

has merits as such (i) easy to compute (ii) it has to be computed only once at the 

initialization time and (iii) in each iteration of the ACO algorithm, it is pre-computed 

with the valves of , which result in a significant saving of computation time. 

ijd

βητ ijij t •)(

 

The time complexity of this scheduling under the ACO algorithm is O(mn2) and requires 

O(mn) storage space. Thus precedence constraints between jobs (tasks) that have to be 

respected in every feasible schedule generally increase the computational complexity of a 

scheduling problem. However, it worth mention that occasionally, their introduction may 

turn a problem that is solvable within a polynomial time into an NP-complete one, on 

which a good algorithm is highly unlikely to exist. 
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10.0 Conclusion and Future Work 
 

In this work, we present a novel heuristic searching method for the resource constrained 

instruction scheduling problem based on the ant colony optimal algorithm. This algorithm 

works as a collection of agents collaborate to explore the search space. A stochastic 

decision making strategy is proposed in order to combine global and local heuristics to 

effectively conduct this exploration. As the algorithm proceeds in finding better quality 

solution, dynamically computed local heuristics are utilized to better guide the searching 

process.  

 

The work concerns scheduling tasks on multiprocessors whereby more processors are 

involved for a single program execution. The goal or aid is to enhance the fastest of the 

execution of a DAG or program by allotting various tasks to different processors 

concurrently in order to balance the assignment to each processor so that they can obtain 

a minimal makespan in completing their processing. 

 

A best found solution that was stable for many iteration has a great influence on the 

pheromone valves since applying the an elitist strategy when doing the pheromone 

update, that is pheromone is added after every iteration along the best found solution. 

Thus, during long runs it can happen that the algorithm converges too early to the best 

found solution.  

 

The definition of the pheromone trails is crucial and poor choice at this stage of the 

algorithm design will probably result in poor performance. Fortunately, for many 

problem instances as this, the intuitive choice is also a very good one. 

 

The parameter settings in ACO is quiet tricky, it means that ACO needs to be tuned, in 

accordance with the characteristics of the studied problem, to establish the appropriate 

search strategy. When tuning the parameters, we examine the behaviour of ACO in 

optimizing the problem. These experiences might however encourage to use the ACO 

algorithms to deals with other combinatorial optimization problems.  
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A relative order of the solution components is important due to the role that permutations 

}.......2,1{ n=π have in the problem. This makes the absolute position based pheromone 

trail appropriate. Further, the considered algorithm is more effective in finding the near 

optimal solutions and scales well irrespective of the problem size. It is also shown that 

with substantial less execution time the proposed method achieve a competitive solution. 

 

 

10.1 Future Work 
 

Future work needs to be bordered on how ACO can be applied on dynamic and undefined 

combinational optimization problem. Currently, the large parts around 96% of problems 

attacked by ACO are static and well-defined combinational optimization problem, that is, 

problems for which all the necessary information is available and does not change during 

problem solution. 

 

As a second future finding, an investigation into the effect of α  to the stagnation 

behaviour would interest in order to have a good selection of the trail. Thus, it was 

observed that for high valves of α  the algorithm enters stagnation behaviour very 

quickly without finding very good solution. We also realised that a highβ  valve though 

provide good solutions quickly, but a lower valve provide better results with a longer 

period of time as a price for the choice. There is a need therefore to experiment with 

changing large range valves of α  andβ   in order to ascertain which work best for the 

problem types. However, from the proceeding observations, the issue that deals with the 

setting of parameter in ACO algorithms must be thoroughly be scrutinized. In our 

experiement, the parameters given here performed well over a wide range of instances 

however the solution stands a better chance of improves further when the parameter 

setting is well addressed. Nevertheless, in other applications adaptive versions which 

dynamically tune the parameters during algorithm execution may increase algorithm 

robustness. 
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Finally, we definitely need a more thorough understanding of the features the successful 

application of ACO algorithm depend on and how ACO algorithm should be configured 

for specific problems. Particularly, the following questions need to be examined as future 

work: The solution components that will yield a better result for the problem instance. 

What best way the pheromone can be managed. For instance, incorporating different 

styles of convergence, pheromone updating rules and colony relationship are worthy of 

further research. 
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