

Using ant colonies to solve multiprocessor
task graph scheduling

Appah Bremang

 Master Thesis
 Computer Engineering
2006 Nr: E3265D

DEGREE PROJECT
in Computer Engineering

Programme Reg number Extent
International Masters of Science In Computer Engineering E3265D 30 ECTS
Name of student Year-Month-Day
Appah Bremang 2006-08-25
Supervisor Examiner
Pascal Rebreyend Prof. Mark Dougherty & Ernst

Department of Computer Engineering
Title
Using ant colonies for multiprocessor task graph
scheduling

Keywords
Multiprocessor scheduling problems, ant colony
algorithm, ant system, pheromone trail, makespan.

Abstract

The problem of scheduling a parallel program presented by a weighted directed acyclic

graph (DAG) to the set of homogeneous processors for minimizing the completion time

of the program has been extensively studied as academic optimization problem which

occurs in optimizing the execution time of parallel algorithm with parallel computer.

In this paper, we propose an application of the Ant Colony Optimization (ACO) to a

multiprocessor scheduling problem (MPSP). In the MPSP, no preemption is allowed and

each operation demands a setup time on the machines. The problem seeks to compose a

schedule that minimizes the total completion time.

We therefore rely on heuristics to find solutions since solution methods are not feasible

for most problems as such. This novel heuristic searching approach to the multiprocessor

based on the ACO algorithm a collection of agents cooperate to effectively explore the

search space.

A computational experiment is conducted on a suit of benchmark application. By

comparing our algorithm result obtained to that of previous heuristic algorithm, it is

evince that the ACO algorithm exhibits competitive performance with small error ratio.

ACKNOWLEDGEMENTS

I give thanks to God, Who has faithfully called, guided and brought me to an expected

end of this program. To him be All Glory.

I would like to express my sincere gratitude to my Supervisor, Pascal Rebreyend, for

providing a great deal of effort, time, and patient in the completion of this project,

without him, the research could not have been completed.

I give my deepest thanks to Prof. Mark Dougherty and Ernst Nordström for their

invaluable contribution and advice.

My sincere thanks go to all lecturers in Computer Engineering department for their

support in various ways.

Finally to my mother Agnes Gyamena and father R. Adane Appah as well as siblings for

their support during my studies.

Table of Contents

1.0 Introduction --- 1

2.0 Aim and Objective --- 4

3.0 Problem Description --- 5

 3.1 Definition for MPSP -- 5

 3.2 Model -- 6

4.0 Combinatorial Optimization and Graph Problems ---------------------------- 13

5.0 Ant Colony Optimization--- 16

 5.1 Basics of ACO --. 16

 5.2 Ants’ Foraging Behavior and Optimization------------------------------- 18

 5.3 Pheromone Trial Evaporation--- 21

6.0 Basic Technique --- 22

7.0 ACO for Multiprocessor Scheduling --- 25

 7.1 Ants’ Path Searching Behavior -- 25

 7.2 Solution Construction --- 26

 7.3 The Algorithm Outline --- 29

8.0 Reinforcement of Pheromone Trail --- 33

 8.1 Pheromone Updates Based on Solution Quality -------------------------- 34

9.0 Experiment and Analysis --- 36

10. Conclusion and Future Work --- 51

References --- 54

Bremang Appah Degree Project 2006
 E3265D

Högskolan Dalarna TeL: 023 77 8000 1

1.0 Introduction

As computing system become more complex, so do the application that can run on them.

In order to efficiently and effectively map application onto these systems, designers will

increasingly rely on heuristic tools since it cannot be solved in the traditional way. On

fundamental process of these heuristics is creating a mapping of a behavioral model

(ACO) of an application to the computing system. The multiprocessor task schedule

problem is NP-complete. Although it is possible for formulate and solve the problem

using heuristics, the feasible solution space quickly becomes intractable for larger

problem instance. In order to address this problem, a range of heuristic methods with a

polynomial run time complexity have been proposed. These methods include Ant Colony

Optimization, Genetic Algorithm, Tabu Search, Simulated Annealing, Graph Theoretic

and Computational Geometry Approaches.

Among them, ant colony optimization is considered in this project work due to its

simplicity of implementation and capability of generating reasonably good results at less

time.

As the world and therefore all the economic vibrant organizations faces the problem

(combinational optimization) of optimizing their scare resources in order to attained the

full utilization of such resources, the MPSP and its varying of other scheduling problems

addresses such shortfall in the industries. Moreover problems such as this, is hard to be

solve in the polynomial time since exact solution methods are unfeasible for most

problem instances and heuristic approaches must therefore be employed to find solutions.

The developed algorithm can search a wider space for nearly optimal solution to NP-hard

problems.

The multiprocessor scheduling problem (MPSP) is considered as optimization problem in

which the MPSP is a set of tasks with a given processing times and has to be assigned to

a set of identical processors in order to minimizing the execution time (thus the full

utilization of the time on the processors). This scheduling can be considered as optimal

allocation of scarce resources to activities (referred to as tasks) over a period of time.

Röda Vägen 3, 781 88 Fax: 023 77 8050
Borlänge Url: http://www2.du.se

Bremang Appah Degree Project 2006
 E3265D

Högskolan Dalarna TeL: 023 77 8000 2

However it needs to be stated that the processor being a resource can perform at most a

activity at any particular time. This problem nature considering are static or in otherwords

deterministic and so all the necessary information about the tasks and processors are

assumed to be known.

The basic problem that is encountered in solving MPSP is the delay in communication or

transmission of data from one task to the other defining a precedence relationship for the

set of task, being predecessor and successor. Our concern is assumed in the problem of

scheduling dependencies tasks onto multiprocessor system with processors connected in

an arbitrary way, while explicitly accounting for the time required to transfer data

between the tasks allocated to different processors. The delay in communication therefore

occurs whenever two pair of tasks (predecessor, successor) is assigned to different

processors.

The communication delay is address by allocation problem as a typical scheduling

problem. This employs the program graph as a directed acyclic graph (DAG). Here, the

vertices represent the program modules, but a (directed) arc indicates a direct 1-way

communication between a predecessor and successor pair of modules. A schedule on the

other hand is allocating a time interval on one or many processor to a task (modules) such

that, all being equal, the associated constraints and delays in communication are

considered with a sole aim of minimizing execution time. This approach is considered in

this paper, which is used to model the primary computations and their interdependence.

However, their arcs represent functional dependence among primary computations that

imply time precedence in parallel scheduling.

In a task graph, a collection of agents cooperate together to search for a good scheduling

solution. Both global and local heuristics are combined in a stochastic decision making

process in order to effectively and efficiently explore the search space. The quality of the

resultant feasible task schedule on the multiprocessor scheduled problem is evaluated

using an ant colony optimization.

Röda Vägen 3, 781 88 Fax: 023 77 8050
Borlänge Url: http://www2.du.se

Bremang Appah Degree Project 2006
 E3265D

Högskolan Dalarna TeL: 023 77 8000 3

The main contribution of this work is the formulation of ant colony optimization

algorithm that:

 utilizes a hybrid approach combining multi-processor scheduling problem and the

developed ant system heuristic;

 dynamically computes local and global heuristics based on the input application

to adaptively search the solution space;

 addresses MPSP in the contextual deterministic machine scheduling theory.

 generates consistently good scheduling results over all testing cases compared

with a range of other heuristics and demonstrates stable quality over a variety of

application benchmark of large size.

In this paper, the investigation of search space characteristics and their relation to the

algorithm performance may give useful insights as initial step in addressing these issues.

The rest of the paper is organized as follows. The problem description is described in

section 3, together with the model. Section 4 reviews combinatorial optimization and

graph problems. Section 5 reviews ant colony optimization. Section 6, discuss basic

technique. Section 7, presents ACO for multiprocessor scheduling that includes solution

construction as well as algorithm outline. Section 8, discuss pheromone trail

reinforcement and pheromone update. Section 9, presents an experimental analysis of

these sets. Section 10, concludes the paper.

Röda Vägen 3, 781 88 Fax: 023 77 8050
Borlänge Url: http://www2.du.se

Bremang Appah Degree Project 2006
 E3265D

Högskolan Dalarna TeL: 023 77 8000 4

2.0 Aim and Objective

The idea of this project is to try how ant colonies can be used to solve the multiprocessor

task graph scheduling. In this thesis work, an implementation is first done and the

experimental result compared with other methods for which we have results on the same

benchmarks.

Röda Vägen 3, 781 88 Fax: 023 77 8050
Borlänge Url: http://www2.du.se

Bremang Appah Degree Project 2006
 E3265D

Högskolan Dalarna TeL: 023 77 8000 5

3.0 Problem Description

Considering the following problem; given a set of identical processors, we face a number

of independent requests for processing tasks. Each request is characterized by a multi-

processor task with (a) its required processing period, (b) required processor for the

whole period (c) the corresponding time/cost of processing the task. The objective is to

decide which requests to accept and/or as to minimize the total time/cost subject to the

constraint that the total number of available processors is fixed.

For instance, consider a multiprocessor schedule problem (MPSP) with different

processors but of the same speed and as well as many tasks to be scheduled on the

processor in order to minimize the execution time of processing the entire task.

3.1 Definition for MPSP

The MPSP could be defined as: a set of n tasks (ti) is to be scheduled on a set of m

identical processors. Where schedule could be seen as the sequence and time in which the

tasks (ti) are executed with (i = 0….n). A task graph is a weighted DAG with G = (T , E),

where the set of nodes (corresponding to processors) and E is a set of communication

edges. W is the set of node weights, and C is the set of edge weights. Given a task graph

TG and a number of processors P, whereas MPSP is to distribute tasks (t

T

i) in TG onto m

computational processors, which is fully connected in order for the precedence

constraints to be satisfied and the execution time of the task graph minimized. There is no

preemption or duplication of task in this case.

Röda Vägen 3, 781 88 Fax: 023 77 8050
Borlänge Url: http://www2.du.se

Bremang Appah Degree Project 2006
 E3265D

Högskolan Dalarna TeL: 023 77 8000 6

t1

t2

t3

t4

t5

1

2

2

1

2

1

1

2

4

2

1

Fig 1a: Example of DAG

P1 P2

Computer/Processo

 t1 t3

t2

t4

t5

0 1 6 7 8 9 102 3 54

time

P1

P2

Schedule

Figure1b: Example of optimal schedule displayed on Gantt chart.

3.2 Model:

The following model is considered in this work to define and approach the MPSP:

In this section, it recalls the graph-based combinatorial formulation of the MPSP problem

and then describes the characteristics of the scheduling heuristics used to evaluate the set

of test-problem instance.

Let Pi represents the set of processors and T represents the ordered list of tasks which are

schedule on the processors Pi. Then notation Pi (i = 1,. …,n) refers to the ith processor, P.

T = {t1, t2 t3, t4 …. tn}, represents a set of n-tasks in the system. A task in our case is a job to

be run on the processors. The precedence constraints between tasks are modeled using a

task graph.

Röda Vägen 3, 781 88 Fax: 023 77 8050
Borlänge Url: http://www2.du.se

Bremang Appah Degree Project 2006
 E3265D

Högskolan Dalarna TeL: 023 77 8000 7

The tasks to be scheduled are represented by a directed acyclic graph (DAG) defined by a

tuple G = (T, E, C, L), where T = { }ntt ,...,1 denotes a set of tasks; E = { }Ttte jiij ∈,/

represents the set of precedence/communication edges where each task node in this case

could define a functional unit for the program, which contains information about the

computation it needs to perform. However, and can be considered as two special

nodes, which are virtual task nodes. That is they are included for the convenience of

having a unique starting and ending point of the task graph; C =

1t nt

{ }Eec ijij ∈/ denotes a

set of edge communication costs; and L = { }nll ,...,1 represents the set of task computation

times (execution times, length). The communication cost Ccij ∈ corresponds to the

amount of data transferred between tasks and when executed on different processor.

When both tasks are assigned to the same processor, the communication cost equals zero.

The set E defines precedence relations between tasks and . For a given scheduling on

the processor, the execution of a task graph runs in the following way: the task of

different precedence levels are sequentially executed from top level down, while tasks in

the same precedence level but allocated on different system component (or processor) can

run concurrently. A task cannot be executed unless all its predecessors have completed

their executed and all relevant data is available. Task Preemption and redundant

executions are not allowed in the problem version considered in this paper.

it jt

it jt

The multiprocessor system is assumed to contain p identical processors with their own

local memories. Processors communicate by exchanging messages through bidirectional

links of equal capacity. The architecture is modeled by a distance matrix. The element (k,

l) of the distance matrix D = [equals the minimum number of links connecting the

nodes and . It is also assumed that each processor constituting the multiprocessor

system M has I/O processing units for all communication links so that computations and

communications can be performed simultaneously.

]kld

kp lp

The scheduling of DAG G onto multiprocessor system consists in determining a

processor index and starting-time instant for each task in G in such a way as to minimize

a given objective function. An objective function used, represents the completion time of

the scheduled task graph (also referred to as makespan, response time or schedule

Röda Vägen 3, 781 88 Fax: 023 77 8050
Borlänge Url: http://www2.du.se

Bremang Appah Degree Project 2006
 E3265D

Högskolan Dalarna TeL: 023 77 8000 8

length). The starting time of the task is determined by completion time of its

predecessors and the amount of time needed to transfer the associated data from

processors executing these predecessors to the processors and , respectively, may be

calculated as

it

kp lp

,ccrdc klij
kl
ij =γ

Where ccr is architecture-dependent and represents the communication-to-

communication ratio, defined as the ratio between the transfer time of a unit of data and

the time require to perform a single computational operation. However, when l = k, =

0 implying that .

kld

0=kl
ijγ

An edge in E(G) represents a precedence constraint between tasks. It is assured here that

the n is the number of nodes in T(G). Then for a given edge (s, r) in E(G), s is a

predecessor of r, and r is a successor of s.

However, for a node r in T (G), there exist an augmented cost (r) representing the

execution time of task r on a processor, and each edge (r, w) in E(G) is given augmented

cost c(r, w) representing the time cost of transmitting from r to w (thus length), that is

communication from r to w. This communication from r to w takes zero step if those

nodes are assigned to the same processor; otherwise it takes c(r, w) steps if they are

assigned to different processors.

This algorithm is modeled as a directed acyclic graph set of n tasks {ti1…….. tin} positioned

at each node while each is associated with a valve which represents the cost of the each

of the tasks. For each edge or arc (say; {ti1, ti2}) scheduled on the processor or find on the

directed acyclic graph (DAG) means that the task ti2 must received some information or

data from ti1 before starting the execution of ti2. Moreover, ti1 sends this information (or

data) at the end of its execution. It is however important to state that, like each node2,

each edge is associated with a valve which represents the communication’s cost (or data

to be transmitted). If the two corresponding tasks are not on the same processor (for

2 The term ’’node´´ and ’’task´´ is use interchangeably throughtout in the work.

Röda Vägen 3, 781 88 Fax: 023 77 8050
Borlänge Url: http://www2.du.se

Bremang Appah Degree Project 2006
 E3265D

Högskolan Dalarna TeL: 023 77 8000 9

instance, ti1 to ti2) then communication time will now be the node valve of ti1, the edge

valve of data (communication cost{c(i, j)}) to be transmitted and the node valve of ti2.

However if two tasks are scheduled on the same processor (for instance, ti2 to ti4) then the

communication cost for processing the two tasks will be zero, the addition of the node

valves (thus the cost of executing (di) a task on any processor) at each of the two tasks

involve. We can therefore infer that there is no preemption or duplication of task in this

case of study. The processor could be faced with taking a longer time in executing a task

in an attempt of solving the problem without applying any heuristics on the problem. This

is because the problem belongs to a set of NP-hard problems.

The acyclic digraph D shown in figure2 below is composed of six tasks, while the

multiprocessor system is composed of three processors fully interconnected. Each di

indicates the cost of ti and each c (i1, i2) represents the communication times associated to

the arc (ti1, ti2). A diagram representing a schedule S of the tasks of D on the

multiprocessor system is also shown. In the diagram, the processor, the introduction data

and the duration of each task according to s are indicated, as well as the vector

representation of the schedule s. For instance, t1, is scheduled on processor P1 at the time

interval [0..1], t2 is scheduled on processor P2 at the time interval [3..5], t3 is scheduled on

processor P3 at the time interval [1..5], and so on.

To describe it further, c(i, j) is the communication cost between task i and j if they are

allocated on different processors and zero if they are allocated on the same processor.

di; the cost of execution of task ti on any processor.

ρS : denotes a partial schedule (where, n≤≤ ρ0). A schedule is a subset of S if the

tasks that are scheduled in are scheduled in S on the same processor and with the

same rank as in .

ρS

ρS

ρS

Röda Vägen 3, 781 88 Fax: 023 77 8050
Borlänge Url: http://www2.du.se

Bremang Appah Degree Project 2006
 E3265D

Högskolan Dalarna TeL: 023 77 8000 10

)(ρSNT : denotes a set of non-scheduled tasks of . Given tasks ρS { }ρiiii ttttT,, 321=

and if the set of task { }ρiii ttt ,....,, 21 are partial scheduled in , then the set = T

\{ is non-scheduled tasks of .

ρS)(ρSNT

}521 ,....,, iii ttt ρS

():ρSYT denotes the set of yet to schedule task (or free task) of , thus the non-

scheduled tasks of a given whose all predecessors have already been scheduled. This

denotes that, for a specified partial schedule,

ρS

ρS

()ρSYT is a subset of .)(ρSNT

()rtST : denotes the start time of task . rt

() :rtFT denotes the finish time of task . rt

A schedule of G onto P is a function f from G(T) to P * I, with I being the set of non-

negative integers representing the start time of the tasks: thus, f(r) is a pair (p, st) which

implies that task r is executed on processor p from time st. Any task r in V(G) is executed

on a processor: when f(r) = (p,st), task r is executed on processor p during time interval

[))(, wstst ω+ exactly once without interruption. In the following, we assume that the

entry node starts its execution at time zero on processor and that the execution

time of entry and exit tasks is zero while the length of the data transmitted from the entry

node and that received by the exit node are both equal to zero.

sw 1p

A scheduled is said to be feasible if and only if, it satisfied the following conditions:

- , if)(, GVwr ∈∀ () ()rstprf .= and () ()wstpwf .= , then () wr strst ≤+ω

or () rw stwst ≤+ω ; thus the executions of two tasks assigned to the same processor need

not to be preempted or overlapped.

- For any () , if Eyw ∈, () ()ww stpwf ,= and () ()yy stpyf ,= , then

),()(ywwstst wy λω ++≥ , where),(),(ywcyw =λ if yw pp ≠ and 0),(=ywλ else the

assignment must satisfy the precedence constraint.

Röda Vägen 3, 781 88 Fax: 023 77 8050
Borlänge Url: http://www2.du.se

Bremang Appah Degree Project 2006
 E3265D

Högskolan Dalarna TeL: 023 77 8000 11

Let denote the time cost or length of the longest path in G, where the length of a path

from w to y in G is defined as the total amount of execution costs on the path including

end nodes (the length does not include communication costs). A path with length or time

cost is referred to as a critical path of G (Discussed later in this work).

cpL

)(GLcp

In figure 3, an example of MSP represented by the DAG with 6 tasks allocated to 3

processors is shown.

Röda Vägen 3, 781 88 Fax: 023 77 8050
Borlänge Url: http://www2.du.se

Bremang Appah Degree Project 2006
 E3265D

Högskolan Dalarna TeL: 023 77 8000 12

t1,0

t2,2

3

2

t4,3

3

t6,1

2

t5’3

4

t3,4

5

6

7

P1

P2

P3

Direct Acyclic Graph (DAG(D))

Multiprocessor Graph

Cost in
di=l, for all tiЄ

C(i,j) =l, for all (ti,tj) ЄArc

t6P1

P2

P3

Processor executing task ti

t4 t5

t3

t2

t1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

t1

Time

Schedule S:

{t1, t4, t5, t2, t6, t3 }

18 19 20

A Partial Schedule S’ is given by: { when stopped assigning the tasks at this point. In this case

our non-schedule tasks, NT, are being the same for yet to schedule tasks, YT (or free tasks).

}
}

321 ,, ttt
{ 654 ,, ttt

Figure2: Example to illustrate a partial schedule.

Röda Vägen 3, 781 88 Fax: 023 77 8050
Borlänge Url: http://www2.du.se

Bremang Appah Degree Project 2006
 E3265D

Högskolan Dalarna TeL: 023 77 8000 13

4.0 Overview Combinatorial Optimization and Graph Problems

Introduction to Combinatorial Optimization provides a comprehensive overview of basic

optimization technology from Operations Research and Constraint Programming.

Concepts covered include: Linear Programming, Duality Theory, Total Unimodularity,

Backtracking and Branch-and-Bound, Finite Domain Constraint Programming, and Local

Search.

Finding a solution to large combinatorial problems such as multiprocessor scheduling and

others is similar in finding a needle in a haystack. A particular class of algorithms,

commonly labeled meta-heuristics or combinatorial optimization, such as simulated

annealing and tabu search, has been able to provide good enough solutions in reasonably

computational time, however (Lockwood and Moore, 1993; Boston and Bettinger , 1998;

Baskent and Jordan, 2001). They are designed to solve complex optimization problems

where traditional methods have fail to be effective or efficient.

Combinatorial optimization is a broad field, and people come to it with many different

perspectives and techniques. Operations Research folk often think of network flow

problems and integer programming when they think of combinatorial optimization.

Computer Science types often think of heuristics like simulated annealing and genetic

algorithms. Artificial Intelligence folks often think of constraint satisfaction, and so on.

A meta-heuristic or combinatorial optimization is defined as an iterative generation

process which guides a subordinate heuristic by combining intelligent different concept

of exploring and exploiting the search space (Baskent and Jordan, 2001; Beasily et al.,

1993). It is based on the idea of making incremental improvements by changing elements

of a solution iteratively. While multiprocessor scheduling offers a combinatorially large

number of alternatives, many of them represent infeasible solutions and the feasible

region is not a continuous space. Thus the strategy is to employ a smart search technique

over the solution space. Essentially, a meta-heuristic is a hybrid search technique

involving more than one algorithm, tailored to overcome certain ‘traps’ i.e., local optima,

Röda Vägen 3, 781 88 Fax: 023 77 8050
Borlänge Url: http://www2.du.se

Bremang Appah Degree Project 2006
 E3265D

Högskolan Dalarna TeL: 023 77 8000 14

in an extremely large combinatorial solution space. These heuristics have the ability to

formulate problem, a problem using discretionary rule that would be difficult to

formulate mathematically (Glover and Laguna, 1997). In meta-heuristics parlance, for

example, a multiprocessor scheduling designed problem would be represented as either

minimizing or maximizing an objective function subject to some constraints.

Meta-heuristics include, but are not limited to: hill climbing or greedy random adaptive

search procedures, simulated annealing, genetic algorithms and tabu searches and their

hybrids. They basically differ from each other in the use of a move selection and solution

mapping procedure.

A graph on the otherhand is a very simple structure consisting of a set of vertices and a

family of lines (possibly oriented), called edges (undirected) or arcs (directed), each of

them linking some pair of vertices. An undirected graph may for example model conflicts

between objects or persons. A directed graph (or digraph) may typically represent a

communication network, or some domination relation between individuals, etc.

The famous problem of the bridges of Konigsberg, solved by Euler, is viewed as the first

formal result in graph theory. This theory has developed during the second half of the

19th century (with Hamilton, Heawood, Kempe, Kirchhoff, Petersen, Tait), and has

boomed since the 1930s (with König, Hall, Kuratowski, Whitney, Erdös, Tutte,

Edmonds, Berge, Lovász, Seymour, and many other people). It is clearly related to

Algebra, Topology, and other topics from Combinatorics. It applies to, and gets

motivating new problems from Computer Science, Operations Research, Game Theory,

Decision Theory.

The number of concepts that can be defined on graphs is very large, and many generate

deep problems or famous conjectures (for instance the four colour problem). In fact,

many of these concepts or theoretical questions arise from practical reasons (and not just

from the mathematicians' imaginations) for solving real problems modelled on graphs.

Moreover, researchers in Graph Theory try if possible to find efficient algorithms for

solving these problems.

The main classical problems in Graph Theory are: flow and connectivity (network

reliability), matching (assignment), Eulerian walks (traversing each edge once; more

Röda Vägen 3, 781 88 Fax: 023 77 8050
Borlänge Url: http://www2.du.se

Bremang Appah Degree Project 2006
 E3265D

Högskolan Dalarna TeL: 023 77 8000 15

generally, the "Chinese Postman Problem"), Hamiltonian walks (traversing once each

vertex: the "Travelling Salesman Problem"), vertex- or edge-coloring stable, dominating

sets. Some of the above (maximum flow, maximum matching, Eulerian walk) can be

efficiently solved, while the others are very hard ("NP-complete").

A generalization of the concept of graph, introduced by Claude Berge in 1960, is that of

hypergraph, where, simply, the edges may have arbitrary size and not only size two.

However, search methods (stochastic) are a class of search methods which includes

heuristics and an element of nondeterminism in traversing the search space. Unlike the

search algorithms introduced so far, a stochastic search algorithm moves from one point

to another in the search space in a nondeterministic manner, guided by heuristics. The

next move is partly determined by the outcome of the previous move. Stochastic search

in general, can be said to be incomplete. Stochastic search methods, which although

normally does not guarantee completeness, may provide an answer to other applications

on delay in decision or communication.

Röda Vägen 3, 781 88 Fax: 023 77 8050
Borlänge Url: http://www2.du.se

Bremang Appah Degree Project 2006
 E3265D

Högskolan Dalarna TeL: 023 77 8000 16

5.0 Overview of Ant Colony Optimization

5.1 Basics of ACO

The ACO, in short for ant colony optimization was first introduced proposed by Collorni

et al. (1991) as a meta-heuristic scheme for finding near optimal solutions. It has been

successfully used to solve many complex problems, such as TSPs, quadratic assignment

problems, vehicle routing problems and production scheduling problems, just to name a

few.

The ACO simulates the behaviors of real ants moving on weighted connected graph and

is also to solve many complex combinatorial optimization problems. The basic algorithm

of the ACO introduced by Dorigo et al. (1996 & 1999) is outline (in fig 3) as follows:

Algorithm Ant_Colony_Optimization

1. Initialize
 Representing the underlining problem by a weighted connected graph.
 Set initial pheromone for every edge.

2. Repeat
 2.1. For each ant do

 Randomly select a starting node.
 Repeat
 Move to the next node according to a node transition rule.
 Until a complete tour is fulfilled.
 2.2. For each edge do
 Update the pheromone intensity using a pheromone updating rule.
Until the stopping criterion is satisfied.

3. Output the global best tour.

Fig 3: Outline of Basic ACO algorithm.

The ACO was inspired by the ability of real ant colonies to efficiently organize the

foraging behavior of the colony using pheromone trails that acts as a means of

communication.

The ant colony optimization algorithm is a cooperative heuristic searching algorithm

inspired by the ethological study on the behavior of ants. It was observed that ants - who

lack sophisticated vision - could manage to establish the optimal path between their

Röda Vägen 3, 781 88 Fax: 023 77 8050
Borlänge Url: http://www2.du.se

Bremang Appah Degree Project 2006
 E3265D

Högskolan Dalarna TeL: 023 77 8000 17

colony and the food source within a very short period of time. This is done by an indirect

communication known as stigmergy via the pheromone (thus, chemical substance), left

by the ants on the paths. Though any single ant moves essentially at random, it will make

a decision on its direction biased on the ‘’strength’’ of the pheromone trails that lie before

it, where a higher amount of pheromone hints a better path. As an ant traverses a path, it

reinforces that path with its own pheromone. A collective autocatalytic behavior emerges

as more ants will choose the shortest trails, which in turn creates an even larger amount

of pheromone on those short trails, which makes those short trails more likely to be

chosen by future ants.

The ACO algorithm is inspired by such observation. It is a population based approach

where a collection of agents cooperate together to explore the search space. They

communicate via a mechanism imitating the pheromone trails.

The idea of this algorithm is based on using ant colony optimization on the multi-

processor schedule to minimize the execution time of the total tasks scheduled on the

number of processors. This algorithm is considered in applying on the multi-processor

problem because the problem itself is NP-hard which cannot be solved in the traditional

way, hence ant colony optimization.

ACO is a population-based algorithm where several artificial ants search for good

solutions. Every ant builds up a solution step by step thereby going through several

decisions until a solution is found. Ants that found a good solution mark their paths

through the decision space by putting some amount of pheromone on the edges of the

path. The ants of the next generation are attracted by the pheromone so that they will

search in the solution space near good solutions.

The ant colony algorithm works in such a way that; individual ants are simple insects

with limited memory and capable of performing simple actions. However, an ant colony

expresses a complex collective behavior providing intelligent solutions to problems such

as carrying large items, forming bridges and finding the shortest routes from the nest to a

food source. It must however be stated that a single ant has no global knowledge about

the task it is performing. The ant’s actions are based on local decisions and are usually

unpredictable. The intelligent behavior naturally emerges as a consequence of the self-

Röda Vägen 3, 781 88 Fax: 023 77 8050
Borlänge Url: http://www2.du.se

Bremang Appah Degree Project 2006
 E3265D

Högskolan Dalarna TeL: 023 77 8000 18

organization and indirect communication between the ants. This is what is usually called

Emergent Behavior or Emergent Intelligence.

The practical example covered in this project involves finding a minimum execution time

of the tasks scheduled on the processors. In order to solve this problem, two

characteristics of ant’s colonies will be particularly useful:

• their ability to find the shortest route between the nest and a food source, which

will be used to find and optimized a path in the task graph.

• the simplicity of each individual ant, which will make it easy for us to model the

ant colony as a multi-agent system.

More importantly, the ants’ search experience can be used to influence in a way

reminiscent of Reinforcement Learning [32] the solution construction in future iterations

of the algorithm. In addition, the use of a colony of ants give the algorithm increased

robustness and in this ACO application the collection interaction of a population of

agents is needed to efficiently solve a problem.

5.2 Ants’ foraging Behavior and Optimization

Firstly, let’s understand the foraging behavior of ants and how they can manage to find

the shortest path between the nest and a food source using simply local decisions (thus

shortest execution time, when executing the tasks).

An important insight of research on ants’ behavior was that most of communication

among individuals, or between individuals and the environment, is based on the used of

chemicals, named pheromones produced by the ants. This is different from, for instances,

what happen in human and in other higher species, whose most important senses are

visual or acoustic. Particularly important for the social life of an ants’ is trail pheromone.

Röda Vägen 3, 781 88 Fax: 023 77 8050
Borlänge Url: http://www2.du.se

Bremang Appah Degree Project 2006
 E3265D

Högskolan Dalarna TeL: 023 77 8000 19

Trail pheromone is a specific type of pheromone that ants’ use for marking path on the

ground, for instance, paths from food sources to the nest. By sensing pheromone trails

foragers can follow the path to food discovered by other ants.

Ants use signaling communication system based on deposition of pheromone over the

path it follows, marking trail. Pheromone is a hormone produced by ants that establishes

a sort of indirect communication among them. Basically, an isolated ant moves at

random, but when it finds a pheromone trail there is a high probability that this ant will

decide to follow the trail. An ant foraging for food lay down pheromone over its route.

When this ant finds a food source, it returns to the nest reinforcing its trail. Other ants in

the proximities are attracted by this substance and have greater probability to start

following this trail and thereby laying more pheromone on it. This process works as a

positive feedback loop system because the higher the intensity of the pheromone over a

trail, the higher the probability of an ant start traveling through it. This collective trail-

laying and trail-following behavior whereby an ant is influenced by a chemical trail left

by other ants is the inspiring source of ACO.

The following instance is taken to give insight of how this process leads the colony to

optimize a route, which in our case finds the less execution time. The figure4 illustrates

ants foraging behavior and optimization while figure5 demonstrates pheromone

evaporation.

Suppose some ants were randomly searching for food when they found two different

routes between the nest and the source. Ant need to pick food when they get to the food

source and leave food when getting back to the nest. Since for the example route B (with

a length of say 0.5mm) is shorter, the ants on this path will complete the traveling more

times and thereby lay more pheromone over it. As the process continues, the pheromone

concentration on the trial B will increase at a higher rate than on A (with length of say

1.5mm) and soon, even those ants on the route A will choose to follow the trail B.

However, since most ants are no longer traveling through route A and also due to the

Röda Vägen 3, 781 88 Fax: 023 77 8050
Borlänge Url: http://www2.du.se

Bremang Appah Degree Project 2006
 E3265D

Högskolan Dalarna TeL: 023 77 8000 20

volatile characteristic of the pheromone, the trail A will start evaporating and soon just

the shortest route will remain (shown at figure5, in the third figure to the right).

A

B

Figure4: Ants’ foraging Behavior and Optimization. More ants using route B to the food source since route A is as
double as B.

Figure5: Illustrates how pheromone trails evaporates

This is because the ants initially picked their route apparently at random and about equal

proportion of the ants used each way to the food source. However, as pheromone trial

increases, the ants tended to favor the shortest route to the food. Therefore the pheromone

trail increases on the shorter route faster than on the any of the routes because the ants

using the shorter route to gather food would take a shorter time, hence more ants would

cross that path and so more pheromone would be deposited in order to attract other ants

on the different routes to the shorter path. This behavior of ants does not allow a single

ant to derive this information.

Röda Vägen 3, 781 88 Fax: 023 77 8050
Borlänge Url: http://www2.du.se

Bremang Appah Degree Project 2006
 E3265D

Högskolan Dalarna TeL: 023 77 8000 21

5.3 Pheromone Trail Evaporation

Pheromone trail evaporation can be seen as an evaporation mechanism that avoids quick

convergence of all the ants towards a suboptimal path. In fact, the decrease in pheromone

intensity favors the exploration of different paths during the whole search process. In real

ants colonies, pheromone trails also evaporate, however, evaporation does not play an

important role in a real ants’ shortest path finding. The fact that, on the contrary,

pheromone evaporation seems to be important in artificial ants is probably due to the fact

that the optimization problems tackled by artificial ants are much more complex than

those real ants can solve. A mechanism like, evaporation that, by favoring forgetting of

errors or of poor choice done in the pass, allows a continuous improvement of the

‘’learned’’ problem structure seems therefore to be necessary for the artificial ants.

Additionally, artificial pheromone evaporation also plays the important function of

bounding the less execution time achievable by the pheromone trails.

Evaporation decreases the pheromone trail with exponential speed. In ACO, the

pheromone evaporation is interleaved with the pheromone deposit of the ants. After each

ant k has moved to a next node according to the ants’ search behavior describes, the

pheromone trails are evaporated by applying the following question to all the arcs.

() ijij ττ l−← 1 (1)

When scheduling a task, the agent could initially stores in the pheromone trail,

information about the favorability of grouping certain jobs together on a processor since

the only salient information used by the agent about the tasks/jobs is their execution time.

Thus, scheduling or allocating jobs to processors initially are done at random (or could be

favored) that are stored in pheromone trail. It must be emphasis that , because the

utilization of a task is tightly couple with a specific processor, it is to realize that there is

the need to established a one to one mapping between a pheromone trail and a pair of

(task, processor). Thus the processor identity and the task identity are needed to index the

pheromone trail.

Röda Vägen 3, 781 88 Fax: 023 77 8050
Borlänge Url: http://www2.du.se

Bremang Appah Degree Project 2006
 E3265D

Högskolan Dalarna TeL: 023 77 8000 22

6.0 Basic Technique

The list scheduling, denoted by LS, is a heuristics strategy that is used in solving MPSP.

It is widely used technique that schedules tasks from top to the bottom of the task graph.

The idea behind its usage is that it does a topological sort of the dependence DAG and

considers when an instruction can be scheduled without causing a stall. It as well,

schedules the instruction if it causes no stall and when all its predecessors are already

scheduled. One of the critical aspects of a class of scheduling algorithm (LS) is how to

decide which task is to be scheduled next. This is achieved by assigning priories to the

nodes or the edges of the input DAG, and thus the task with the highest priority will be

scheduled next. Conversely, the node (or task) with a highest priority is scrutinized for

scheduling before a node with a lower priority, however, ties are broken if more than one

node has the same priority and here some method is used in addressing. One needs to

notice that it will yield a search space of totally n! possible lists, which is simply all the

permutations of n instructions. List scheduling for all of the permutations considered

always yield an optimal solution to MPSP. However, optimal list scheduling is NP-

completed where heuristics are use when necessary. It worth to say that a task is not

ready for scheduling until all its predecessors are scheduled.

The heuristic method adopted for the task-scheduling are based on some priority-ordering

scheme, which include two phases: task ordering and task-to-processor allocation. Thus it

starts by sorting the tasks according to some priority scheme, followed by the second

phase where each task is assigned to the processor which is selected by some scheduling

rule. This schedule is referred to as list-scheduling. Task priority here is defined based on

task execution times, communication requirements, number of successor tasks among

other considered in this work. While the heuristic task assignment rule that could have

equally taken into consideration here is breath-first.

 The list-scheduling considered in this work is denoted CPES and is a modification of the

dynamic level scheduling (DLS) heuristic. The basic idea of DLS is to calculate static task

priority based on the critical path (CP) method and use them to order the tasks and then,

Röda Vägen 3, 781 88 Fax: 023 77 8050
Borlänge Url: http://www2.du.se

Bremang Appah Degree Project 2006
 E3265D

Högskolan Dalarna TeL: 023 77 8000 23

to modify them during the scheduling phase to reflect the partial schedules already

generated (the best (task, processor) pair is selected for scheduling). It is important to

notice that the calculation of the critical path does not involve communication times,

because these depend upon the task-to-processor assignment and schedule. Thus only

task execution times are considered. An earliest start (ES) heuristic used for computing

the start time for each task and , the task being allocated to the processor

with the smallest associated time valve [18]. The valves ES (est(v))can be computed in

the О(n) time.

il

(ki ptst ,) it kp

The dynamic level scheduling (DLS) algorithm are based on the list scheduling approach

in which the tasks of the DAG are first arranged as a list such that the ordering of the

tasks in the list preserves the precedence constraints. In DLS, the scheduling tasks are

constructed by calculating static task priority on the DAG for all the tasks on the top level

to the root task based on the critical path method. An optimal ordering of tasks were

putted in accordance to the start time ()ki ptst , for each task and in order to

generate an optimal schedule. In the next step, beginning from the first task in the list,

each task is removed and scheduled to a processor that allows an earliest start time. The

DLS is a compiled time, static list scheduling heuristic.

it kp

However, it worth mention that employing the idea of CP in the DLS causes the

algorithm to perform at its best. Although, the algorithm assumes arbitrary computation

costs, communication among tasks is ignored here and aim at minimize the number of

processor.

Röda Vägen 3, 781 88 Fax: 023 77 8050
Borlänge Url: http://www2.du.se

Bremang Appah Degree Project 2006
 E3265D

Högskolan Dalarna TeL: 023 77 8000 24

Time:=0;

While L ≠ Ф

do for i:=1 to n

 do let ti be the first ready task in L such that

 DAG(predecessor(ti)) ≠ 1 or

 (t1,t2,.....,ti-1) does not contain a sibling of ti;

 if such an ti exists

 then x(ti):= time; delete ti from L;

 DAG(predecessor(ti)) - : 1

 endif;

 enddo ; time := time + 1

enddo ; Cmax := time

Fig 6. The algorithm assigns schedule times slots to the tasks.

Röda Vägen 3, 781 88 Fax: 023 77 8050
Borlänge Url: http://www2.du.se

Bremang Appah Degree Project 2006
 E3265D

Högskolan Dalarna TeL: 023 77 8000 25

7.0 ACO for Multiprocessor Scheduling

 solving this kind of NP-hard problem being face by the multiprocessor schedule

tic proposed, thus ACO will try to do a thorough search for solution that will

.1 Ants’ Path-Searching Behavior

ased on the Task Graph (TG) model, our goal is to find a feasible scheduling (Gs) for

e therefore introduced heuristic method for solving the multiprocessor schedule

In

problem, we apply ant colony optimization (ACO) algorithm that can aid in finding better

minimal execution time and cost effective solutions as fast as possible to resolve possible

problems.

This heuris

be near optimal in solving the problem that may arise from the delay in communication

(the execution time) of executing the tasks scheduled on the processors. Again, this

algorithm is proposed in helping the ant system to make decisions in solving the delays

that may arise from executing the tasks in order to give fast and cost effective solution in

less time.

7

B

task graph, which provides the optimal performance subject to the predefined constraints

associated to the various node (or tasks).

W

problem using the ACO algorithm. Essentially, this ACO algorithm is a multi-agent

stochastic decision making process that combines local and global heuristics during the

searching process. Each agent traverses and attempts to create a feasible scheduling by

selecting the next move probabilistically according to the combined heuristics. The

quality of the solution is measured by the overall execution time (or makespan) of the

tour, from t1 and tn, together with the consideration of the predefined constraints, such as

execution cost and edge data to be transmitted (communication cost) and process by the

tasks. The quality measurement is used to reinforce the good solutions. The global

heuristic information is distributed as pheromone trails on the edges (or E (G)).

Röda Vägen 3, 781 88 Fax: 023 77 8050
Borlänge Url: http://www2.du.se

Bremang Appah Degree Project 2006
 E3265D

Högskolan Dalarna TeL: 023 77 8000 26

However, formulation in a search framework requires the following basic components:

• Representation state: it describes how a search state represents a partial solution.

•

st of ready

• al state is a solution state and hence the terminating point of a

.2 Solution Construction
and asynchronously moves through adjacent states of the

hus, each ant builds, starting from the source node (or task), a solution to the problem

representation state, initial state, expansion and goal state with each explained below;

A state in the search space for the scheduling problem is a partial schedule in

which a sub-graph of DAG is assigned to a certain number of processor.

Initial state: Thus the starting state and it is an empty partial schedule.

• Expansion: For expanding a search-state, the first node from the li

nodes (the nodes whose predecessors have been scheduled) is selected. The

selected node is considered for assignment to each of the available processors.

The next node from the list is then selected, and states expansion continues in a

similar fashion. The state stops when all of the ready nodes have been considered

for assignment.

Goal state: A go

search. In this scheduling problem however, it is a complete schedule.

7
A colony of ants concurrently

problem by building paths on TG. They move by applying a stochastic local decision

policy that makes use of pheromone trail and heuristic information. They move by

applying a stochastic local decision policy that makes use of pheromone trail and

heuristic information. By moving, ants incrementally build solutions to the optimization

problem. Once an ant has built a solution, or while the solution is being built, the ant

evaluates the (partial) solution and deposits pheromone trails on the components or

connections it used. This pheromone information will direct the search of the future ants.

T

by applying a step-by-step decision policy. At each node, local information stored on the

node itself or on its outgoing arcs is read (sensed) by the ant and used in a stochastic way

to decide which node to move to next. At the beginning of the search process, a constant

Röda Vägen 3, 781 88 Fax: 023 77 8050
Borlänge Url: http://www2.du.se

Bremang Appah Degree Project 2006
 E3265D

Högskolan Dalarna TeL: 023 77 8000 27

amount of pheromone is assigned to all the arcs [Eq1]. When located at node i an ant k

uses the pheromone trails ijτ to compute the probability of choosing j as next node.

An ant repeatedly hops from node to node using this decision policy until it eventually

reaches the destination node. Due to differences among the ants’ paths, the time step at

which ants reach the destination node may differ from ant to ant (ants traveling on the

shorter paths will reach their destinations faster.

 t1 P1

t2 P1 t2 P2 t3 P1 t3 P2

t3 P1 t3 P2
t2 P1 t2 P2

t4 P1 t4 P2

t5 P1 t5 P2

t3 P1 t3 P2

t4 P1 t4 P2

Complete schedule

Figure7. The search tree for scheduling the example task graph shown in Fig. 1a, to the 2-processor connected.

On solution construction, assembled set of ready tasks is to be put on the ready

processors available. Therefore, the artificial ant stochastically assign the assembled set

of ready tasks one by one to the ready processors available, until either all tasks are

assigned to some processor, or none of the remaining tasks can be assigned to any

processor without exceeding its spare computing capacity. It must however be stated that

if an ant stops with at least one unassigned task, the resulted tour is called an infeasible

tour. On the otherhand if no stop condition is met, the current tour is called a partial tour.

Röda Vägen 3, 781 88 Fax: 023 77 8050
Borlänge Url: http://www2.du.se

Bremang Appah Degree Project 2006
 E3265D

Högskolan Dalarna TeL: 023 77 8000 28

Once the task to be scheduled next, , has been selected, the set of idle processors rt M is

established, a processor p from this set to which will be scheduled is selected

probabilistically with respect to the pheromone between and it, as shown in (equation

4) below;

rt

rt

()[]
()[]

Mp
tp

tppob in

i
ri

r ∈∀=

∑
=1

,

,)(Pr
α

α

τ

τ (4)

However, if no idle processor is available the algorithm simply waits until one becomes

available. This process is then repeated until all the tasks, , have been scheduled. it

Based on the proceeding observation; an agent3 in a processor executes each scheduled

task in turn until it has completed executing all tasks. Once a task had been fully

executed, the next task on the same processor but next on the scheduled is executed by

the agent. The agent will repeat this process until it finds the last on the scheduled

executed, where it will process and then considered the lowest processing or execution

time as solution. In addition, the agent will leave the task it had finished processing and

then proceed to the next task based on the intensity of the information stored in the

pheromone trail.

Back in the processor, the agent will leave the task scheduled in the first processor and

then starts the whole process again on the second processor. However, the two

processors’ execute its tasks scheduled on it by the agent simultaneously without one

preempting the other but along the scheduled. It is however noted that, these actions

require only local information and a short memory allowing the agent to recognize its

own trial and executes the task next on the scheduled.

3 The term ‘’agent’’ and ´´ant’’ is use interchangeably in this work.

Röda Vägen 3, 781 88 Fax: 023 77 8050
Borlänge Url: http://www2.du.se

Bremang Appah Degree Project 2006
 E3265D

Högskolan Dalarna TeL: 023 77 8000 29

7.3 The algorithm outline

1. Initially, let be the cumulated weight of the complete tour fulfilled by ant k,

which has selected node k as its starting node. Then associated each augmented

edge

kW

ije is initialized by a quantity of pheromone, ijτ , defined by

 (5) ∑
=

Δ=
n

k

k
ijij

1

ττ

 where

 =Δ k
ijτ ,

kW
Q if belongs to the tour performed by ant k; (6) ije

 0, otherwise;

 and Q is a fixed constraint to control the delivery rate of the pheromone.

 the valve of the pheromone on each augmented edge is initially set at the valve 0τ ;

2. Put n ants on task node t0 (thus starting task).

3. Each ant crawls over the TG to create a feasible scheduling , where l = 1……n; lS

4. Evaluate the schedules generated by each of the n ants. The quality of a particular

scheduling is measured by the overall execution time. lS

5. Update the pheromone trails on the edges as follows:

 (7) () ∑
=

Δ+−←
n

k

l
ijijij

1

1 ττρτ

 where 0 < ρ < 1 is the pheromone trail evaporation ratio and n is the number of

distributed ants. The parameter ρ is used to avoid unlimited accumulation of the

pheromone trails and enables the algorithm to ´´forget ´´ previously done bad decisions

(thus implementing the mean that ´’forgetting´´ solutions which are not reinforced often).

On arcs which are not chosen by the ants, the associated pheromone strength decreases

exponentially with the number of iterations. is the amount of pheromone currently

laid by ant k on the arcs is calculator by Eq(6).

)(tk
ijτΔ

Röda Vägen 3, 781 88 Fax: 023 77 8050
Borlänge Url: http://www2.du.se

Bremang Appah Degree Project 2006
 E3265D

Högskolan Dalarna TeL: 023 77 8000 30

6. If the ending condition is reached, stop and report the best solution found,

otherwise go to stop 2.

Step 3 is an important part in the proposed algorithm. It describes how an individual ant

‘’crawls’’ over the TG and generates a solution. In step 3 each ant traverses the graph in

the topologically sorted manner in order to satisfy the precedence constraints of task

nodes. The trip of an ant starts from t0 and ends at tn, the two virtual nodes serving as the

nest and the food source respectively. By visiting the nodes in the topologically sorted

order, we insured that every predecessor node is visited before we visit the current node

and that every incoming edge to the current node has been evaluated.

At each task node ti where i ≠ n, the ant makes a probabilistic decision on the allocation

for each of its successor task node tj based on the pheromone on the edge. The

pheromone is manipulated by the distributed global heuristic (ijτ) and a local heuristic

such as the execution time and the area cost (i.e. communication time of getting a data

from one node to its successor node) for a specific assignment of the successor node.

Node transition rule

Moreover, during the running session, the ants moving on the graph travels from node to

node through the edges. Because no node can be visited twice, we put the nodes that are

already visited in a list and mark them as inaccessible to prohibit the ants from

visiting any node more than once. For the k-th ant on node i, the selection of next node j

to follow is probabilistically determined according to the node transition probability,

ktabu

 () ()βα ητ ijij if ktabuj∉ ;

 =k
ijφ () ()βα ητ ijihtabuh k∑ ∉ (8)

 0, otherwise;

where ijτ is the currently pheromone intensity on edge (i, j), ijη is the valve of visibility,

defined by 1/w(i, j), α and β are parameters controlling the relative importance of

Röda Vägen 3, 781 88 Fax: 023 77 8050
Borlänge Url: http://www2.du.se

Bremang Appah Degree Project 2006
 E3265D

Högskolan Dalarna TeL: 023 77 8000 31

global and local preference for edge (i, j), and tabu indicates the current set of tasks

inaccessible from ant k. The visibility is a short-term memory that reflects the local

preference for edge (i, j), it is simply determined in a greedy fashion taking into account

the local information about the weight w(i, j) on edge (i, j) only. The probability strategy

adopted for ACO to determine the next node to transit to first; the algorithm draws a

random number from the interval [0, 1]. Depending on a threshold parameterλ , the

algorithm triggers either exploitation or biased exploration strategy. In exploitation

(where the random number generated is smaller than or equal toλ), ant k will select from

the accessible neighbors the node with the largest valve of . In biased exploration

(where the random number generated is greater than

k
ijφ

λ), the probability of selecting node

j out of the accessible neighborhood of node i is given in Eq.(8). Therefore another

random number is generated from the interval [0, 1] to determine, in roulette wheels,

which accessible node to visit next.

Here 1/ilk ijdη = is local heuristic (heuristic information), If α = 0, the selection

probability is proportional to and the nearest node will more likely be selected; in

this case the ant system corresponds to a stochastic classical greedy search. If β = 0, only

pheromone amplification is at work and it leads to the rapid emergence of a stagnation

situation with the corresponding generation of tours that is strongly suboptimal. Search

stagnation is defined as situation whereby all the ants follow the same path and construct

the same solution.

[]βη ij

It is intuitive to notice that the probability favors an assignment and a route that yields

small execution time, and assignment and route that corresponds with stronger

pheromone.

k
ijφ

The above decision making process is carried on by the ant until all the task nodes in the

graph have been allocated. At the end of the each iteration, the pheromone trails on the

edges are updated according to step 5. First, a certain amount of pheromone is

evaporated. From optimization point of view, the evaporation step helps to escape from

local minimums. Secondly, the good edges are reinforced. This reinforcement creates

Röda Vägen 3, 781 88 Fax: 023 77 8050
Borlänge Url: http://www2.du.se

Bremang Appah Degree Project 2006
 E3265D

Högskolan Dalarna TeL: 023 77 8000 32

additional pheromone on the edges that are included on the scheduling solutions that

provide shortest execution time for the task graph. In each run of the algorithm, multiple

iterations of the above steps are conducted until we reach the ending condition

predefined. It worth to state that a schedule s is feasible if and only if the algorithm that

constructs s finishes at iteration k = n. This means that all tasks could be scheduled since

exactly one task is scheduled at each iteration. The complexity of the algorithm is

O(n2.m) if we stop the algorithm after iteration.

Röda Vägen 3, 781 88 Fax: 023 77 8050
Borlänge Url: http://www2.du.se

Bremang Appah Degree Project 2006
 E3265D

Högskolan Dalarna TeL: 023 77 8000 33

8.0 Reinforcement of Pheromone Trail

In the second stage of our algorithm, the lists constructed by the ants are evaluated and

the best solutions after ants had completed traversing the paths are reinforce with

pheromone trail in order to generate an optimal solution. Based on this evaluation, the

pheromones are adjusted to favor better solution schedules. The hope is that further

iterations will benefit from the adjustment and come up with better solution schedule. In

generating an optimal solution, the ants were allowed again to traverse. The quality of the

scheduling result from ant h is judged by the schedule latency Lh. Upon finishing of each

iteration, the pheromone trail is updated according to the quality of schedule lists. In the

mean time, a certain amount of it will be evaporated.

Thus to make the ants search more competitive, we introduce the elitist strategy in order

to improve upon the solution quality. It consists in giving the best schedules/tour

(called gbT , where gb stands for global-best) a strong additional weight. That is each time

the pheromone trails are updated, those belonging to the edges of the global best

schedule/tour get an additional amount of pheromone. For these edges, the equation in

step 5 of the algorithm above becomes;

 if arc e/ ()gbe L t (),i jt t ∈ gbT

()gb
ij tτΔ = 0 otherwise (9)

The arcs of gbT are therefore reinforced with a quantity of 1/ gbe L⋅ , where gbL is the length

of gbT and e is a positive integer.

The two important operations are taken in this pheromone trail updating process. The

evaporation operation is necessary for ACO to be effective and diversified to explore

different parts of the search space, while the reinforcement operation ensures that the

favourable instruction orderings receive a higher volume of pheromone and will have

Röda Vägen 3, 781 88 Fax: 023 77 8050
Borlänge Url: http://www2.du.se

Bremang Appah Degree Project 2006
 E3265D

Högskolan Dalarna TeL: 023 77 8000 34

better chance to be selected in the future iterations of the algorithm. The above process is

repeated multiple times until ending condition is reached.

In this extended algorithm, scheduling optimization is formulated as an iterative

searching process. Each iteration consists of two stages. First, AS algorithm is applied in

which a collection of ants traverse on the DAG with best solutions while it has been

reinforce with pheromone to construct instruction lists using global and local heuristics

associated with the DAG nodes. Here, to exploit the ant’s search experiences the

pheromone update is made a function of the solution quality achieved by each particular

ant. In this ACO algorithm an elitist strategy whereby the best solutions found during the

search strongly contributes to pheromone trail updating.

8.1. Pheromone Updates based on solution quality

 In ACO, the ants memorize the nodes they visited during the search path, as well as the

cost of the arcs traversed on the weighted graph. They can therefore evaluate the cost of

the solutions they generate and use this evaluation to modulate the amount of pheromone

they deposit while traversing it. However, making pheromone update a function of the

generated solution quality helped in directing future ants more strongly toward better

solutions. Further, each ant deposits or removes some amount of pheromone on the

visited arcs. This mechanism provides a way of the indirect communications to share the

knowledge about searching for good solutions amongst the colony. We prefer the arcs

that constitute minimum cost path derived thus far. Therefore at the end of each iteration,

we undertake a global pheromone update on the arcs of the best path derived in the most

recent iteration. We called such path for simplicity as global-best or iteration-best path.

However, to keep away from early convergence (also called stagnation), a situation in

which all the ants reconstruct the same solution and stop exploring new possibility before

some satisfactory solution is found, we perform a local (step-by-step) pheromone update.

The local pheromone updating rule is defined as;

Röda Vägen 3, 781 88 Fax: 023 77 8050
Borlänge Url: http://www2.du.se

Bremang Appah Degree Project 2006
 E3265D

Högskolan Dalarna TeL: 023 77 8000 35

0)1(ϕττϕτ +−= ijij , if has been selected by some ant,),(ji

where 10(≤< ϕϕ) is the parameter controlling the degree of the pheromone decay. The

valve of 0τ is set to be the same as initial pheromone valve of the pheromone trail.

Röda Vägen 3, 781 88 Fax: 023 77 8050
Borlänge Url: http://www2.du.se

Bremang Appah Degree Project 2006
 E3265D

Högskolan Dalarna TeL: 023 77 8000 36

 9.0 Experiment and Analysis

This section of the report looks into the evaluating the effectiveness and performance by

analysis of the proposed Ant Colony Optimization algorithm. This algorithm was coded

in C and compiled with linux. This is employed to develop scheduling algorithms suitable

for benchmark applications.

9.1 The testbench
We use as testbench synthetics digraphs generated with ANDES-Synth. The benchmark

contains direct acyclic graphs generated from;

1. Bellford 2. Diamond1 3. Diamond2 4. Diamond3 5. Diamond4 6. Gauss

7. Iterative 8. MS-Gauss 9. Prolog 10.fft2-b 11.Gauss 12. Divconq

13.Celbow 14.Cstanford 15.ms-gauss 16.qcd2-b 17.SSC2 18.SSC3

19. SSC4 20. SSC5 21. SSC6 22. SSC7 23.SSC8 24. SSC9

Table1, Digraphs generated with ANDES-Synth used as a test for this algorithm

(A)

1) Bellford: it solves the shortest path problem from all nodes to a single destination in a

weighted directed graph. The graph represents the algorithm called Bellman-Ford.

2) Diamond1: thus know as a space-time digraph representing a systolic computation

[26].

3) Diamond2: this digraph is known as a systolic matrix multiplication [27].

4) Diamond3: the systolic computation of the transitive closure of a relation on a set of

elements is this digraph [28].

5) Diamond4: it’s the systolic computation of the transitive closure of a relation on a set

of elements [29].

Röda Vägen 3, 781 88 Fax: 023 77 8050
Borlänge Url: http://www2.du.se

Bremang Appah Degree Project 2006
 E3265D

Högskolan Dalarna TeL: 023 77 8000 37

6) Iterative: it’s generic iterative algorithm with each iteration being represented in the

same level of the digraph. Concerning the next iteration, the immediate successors of a

task ti at kth position are tasked at (k+1)th position.

7) FFT: that’s Unidimentional fast fourier transform.

8) Divconq: This stands for divide and conquer algorithm. The digraph has a tree shape.

9) Prolog: The structure of this digraph is obtained at random and corresponds to the

resolution of a logic program.

10) MS-Gauss: represents a computation containing successive resolutions of linear

systems by Gaussian elimination.

11) Gauss: the task digraph describes the execution of a Gaussian elimination used in the

resolution of linear systems.

12) qcd: thus gradient method for linear systems [30].

(B)

13) SSC, Celbow and cstanford: comes from a controller.

Röda Vägen 3, 781 88 Fax: 023 77 8050
Borlänge Url: http://www2.du.se

Bremang Appah Degree Project 2006
 E3265D

Högskolan Dalarna TeL: 023 77 8000 38

Diagram Number of Cost of a task it Weight of the arc ()ji tt ,

 tasks
bellford l 992 10000 400
 m 354 10000 400
diamond1 l 1026 10000 400
 m 258 10000 400
diamond2 l 1227 5000 2000//50000
 m 486 5000 2000//50000
diamond3 l 1002 10000 400//800
 m 731 10000 400//800
diamond4 l 1002 5000 2000
 m 731 5000 2000
divconq l 766 10000
 m 382 10000

40//80//160//320//640//1280//2560//5120//10240//20480
40//80//160//320//640//1280//2560//5120

fft l 1026 5000 800
 m 194 5000 800
prolog l 1313 10000 4000
 m 214 10000 4000
iterative l 938 2500 100//25600
 m 262 2500 100//25600
gauss l 1227 10000 4000
 m 782 10000 4000
qcd l 1026 100000 4000
 m 326 100000 4000
ms-gauss l 1482 1000//128000 400//51200
 m 768 1000//68000 400/51200
celbow - 103 10//100//320//360//400 25
 280//440//350//120//50
 230//240
cstanford - 90 1//5//10//28//57//66/38 25//10
 15//24//40//32//53//12
 39//4//6//111//84//28
 29//0
ssc 5 200 1 25
 6 288 1 25
 7 392 1 25
 9 648 1 25

Table2: This summarizes the features of each DAG

Röda Vägen 3, 781 88 Fax: 023 77 8050
Borlänge Url: http://www2.du.se

Bremang Appah Degree Project 2006
 E3265D

Högskolan Dalarna TeL: 023 77 8000 39

The table 2 above shows the size of these graphs, given by the number of tasks, as well as

their normalized execution and communication time. The tasks execution times

corresponds to the number of integer operations executed, and the communication times

corresponds to the number of integers transferred. In order to obtain the actual

executions, we multiply the valves in the table by 287μ s. Therefore the communication

of L integers cost (129 + 2430450L)μ s being result of simulating a IBM SP-1[24][25].

The actual communication times can be obtained by replacing L by the edges’ weights.

The digraphs were used with two sizes, given as –m for middle size while –l for the

largest size. The tested PC configuration is: Intel Pentium IV, 1.65MHZ and 512M RAM

machine running Linux.

9.1.1 Results

The following figures illustrate the evaluation of the performance of most DAG in the

suites in 10000seconds. However, due to a limit set, near optimal solution might have

arrived with small deviation or error from the optimal.

fig10 fig11

Röda Vägen 3, 781 88 Fax: 023 77 8050
Borlänge Url: http://www2.du.se

Bremang Appah Degree Project 2006
 E3265D

Högskolan Dalarna TeL: 023 77 8000 40

fig12 fig13

fig14 fig15

fig16 fig17

Röda Vägen 3, 781 88 Fax: 023 77 8050
Borlänge Url: http://www2.du.se

Bremang Appah Degree Project 2006
 E3265D

Högskolan Dalarna TeL: 023 77 8000 41

fig18 fig19

´fig20 fig21

fig22 fig23

Röda Vägen 3, 781 88 Fax: 023 77 8050
Borlänge Url: http://www2.du.se

Bremang Appah Degree Project 2006
 E3265D

Högskolan Dalarna TeL: 023 77 8000 42

fig24 fig25

fig26 fig27

fig28 fig29

Röda Vägen 3, 781 88 Fax: 023 77 8050
Borlänge Url: http://www2.du.se

Bremang Appah Degree Project 2006
 E3265D

Högskolan Dalarna TeL: 023 77 8000 43

fig30 fig31

fig32 fig33

fig34 fig35

Röda Vägen 3, 781 88 Fax: 023 77 8050
Borlänge Url: http://www2.du.se

Bremang Appah Degree Project 2006
 E3265D

Högskolan Dalarna TeL: 023 77 8000 44

fig36 fig37

fig38 fig39

9.1.2 Result Analysis

From the figures, ACO algorithm found the near optimal execution time throughout in

the search. Base on this, the probability of finding the solution with this algorithm for

these task graphs is 86.44%. Related to this, we found that for 18 testing examples, or

78% of the testing set, our algorithm discovers the optimal schedule every time in the 10

runs. This indicates that the proposed algorithm is statistically robust in finding close to

optimal solution. Also over 90% of the solutions found by the ACO algorithm are within

20% of all possible schedules. The number of solutions drops quickly showing that the

ACO algorithm finds very good solutions in almost every run.

Röda Vägen 3, 781 88 Fax: 023 77 8050
Borlänge Url: http://www2.du.se

Bremang Appah Degree Project 2006
 E3265D

Högskolan Dalarna TeL: 023 77 8000 45

For each of the benchmark samples, the proposed algorithm was run with the following

parameter choice of the local heuristics. For the choice, we perform 10 runs where in

each run, the algorithm is set to iterate for 10000 seconds as stopping condition.

In all the experiment, we test ACO by using different parameter to determine the most

advantageous setting as well as to justify the performance of the artificial ants in search

for good solution. These settings were obtained from pre-knowledge as well as tuning.

The number of ants per iteration set to 6. The evaporation rate, ρ , is configured to be

0.98. The scaling parameters for global and local heuristic are set to be 1== βα , the

delivery rate Q = 10 and 2500 =τ . The solution with the best execution time found by

the ants is reported as the result of each run.

Among the instances that could not be work out within a shorter time due to a continual

decreasing/diminishing at an increasing rate at that stages to get close to an optimal

solution, it was work out when the execution time was extended to 10000 seconds after

which it start converging. It was therefore realized that, finding close to optimal

makespan after the algorithm had iterates within 10000seconds, it start to converge.

Concerning a search for optimal solution, the final result is within 87.14% of the initial

look up result. We can as well observe from the graphs (figure 10-37) that the search at

all time shows improvement till the ‘good’ solution is found in most cases around 90%

through of the calculation.

Röda Vägen 3, 781 88 Fax: 023 77 8050
Borlänge Url: http://www2.du.se

Bremang Appah Degree Project 2006
 E3265D

Högskolan Dalarna TeL: 023 77 8000 46

The table 3 summarized the results for the ACO algorithm comparing with other best

known result for benchmarking with running times given in seconds. The meaning of the

representation on the table 3, Hybrid Genetic Algorithm (GA) is as follows:

GA is search technique that is designed based on the concept of evolution. A GA is

applied with its three genetic search operators – Selection, Crossover and Mutation

(explained below) – to transform a population (thus set of individual) of chromosomes

(individual) with the objective of improving the quality of the chromosomes. A genetic

algorithm is usually employed to determine the optimal solution of specific objective

function.

The search space therefore is defined as the solution space so that each feasible solution

is represented by a distinct chromosome. Before the search starts a set of chromosomes is

randomly chosen from the search space to form the initial population. The three genetic

search operations are then applied one after the other to obtain a new generation of

chromosomes in which the expected quality over all the chromosomes is better than that

of the previous generation. This process is repeated until the stopping criterion is met and

the best chromosome of the last generation is reported as the final solution.

Worth to mention that in order to solve a problem with GA, we must know how to

generate a solution, to modify it, to mix two solutions and to estimate its quality.

However, this is done by applying the following three operations to the population:

• The selection operator: this favors ‘’good’’ individual. It is done by duplicating

‘’good’’ individual in the population in order to suppress ‘’bad’’ ones. The fitness

function is employed to compute the quality of an individual.

• The Crossover operator: The aim of this crossover is to mix individual (thus

solutions). It is employed with an idea that mixing two good individual might

result in generating a better individuals.

• The mutation operator: This is modification of a solution in order to explore all

the search space and avoid keeping in a neighborhood of the solution space.

Röda Vägen 3, 781 88 Fax: 023 77 8050
Borlänge Url: http://www2.du.se

Bremang Appah Degree Project 2006
 E3265D

Högskolan Dalarna TeL: 023 77 8000 47

 Diagram

ACO

Hybrid GA

c\o change
from GA

bellford2 l 199355100 193794250 2.86 1 m 74231330 71936050 3.19
diamond1 l 283205116 276758950 2.32 2 m 136667210 131940750 3.58
diamond2 l 226689430 218954400 3.53 3 m 129123060 127224450 1.49
diamond3 l 231439840 228590500 1.24 4 m 180333810 176982100 1.89
diamond4 l 172451790 164264000 4.98 5 m 137950660 132875550 3.81
divconq l 170342660 169043350 0.76 6 m 100156230 97307880 2.92
fft1 l 107711210 102647300 4.93 7 m 30173540 29888250 0.95
gauss l 321135200 307395800 4.49 8 m 229344410 226882900 1.08
iterative1 l 48212350 47936700 0.57 9 m 17072370 16733350 2.02
ms_gauss l 2567661200 2559388750 0.32 10 m 4674566400 4598559550 1.65
prolog l 261845600 258529350 1.28 11 m 61322350 60499350 1.36
qcd2 l 2075873960 2038576050 1.82 12 m 1204561020 1173100600 2.68

13 celbow 6637 6630 0.10
14 cstanford 663 627 5.74
15 5 78 74 5.40
16 6 81 77 5.19
17 7 85 82 3.65
18

ssc

 9 91 89 2.24

 Table 3: A benchmark of the ACO algorithm (Parallel Solution)

Röda Vägen 3, 781 88 Fax: 023 77 8050
Borlänge Url: http://www2.du.se

Bremang Appah Degree Project 2006
 E3265D

Högskolan Dalarna TeL: 023 77 8000 48

9.2 Discussion

As seen from the table (a percentage change from GA), the ACO demonstrated

competitive results as compared to the best know solution from GA for both large and

medium digraphs. The difference of ACO best makespan is not much from the GA and

the difference can be attributed to parameter settings, maximum time to iterate and

margin of error, evidence by a much smaller deviation over the results.

ACO/TG model makes effective use of the core structural information of the problem.

The autocatalytic nature of how the pheromone trails are updated and utilized makes it

more attractive in discovering ‘’ideal’’ solutions with short computing time, this very

behavior raises stagnation problem. For instance, it is observed that allowing extra

computing time after enough iterations of ACO algorithm does not have significant

benefit regarding to the solution quality.

The ACO approach which combines a probabilistic search guided by heuristic problem

specific information and a simply form of information sharing about good solutions, with

global and local heuristic performs creditably in generating the parallel solution. The ants

essentially perform an adaptive greedy search of the solution space.

The very important choice when applying ACO is the definition of the intended meaning

of the pheromone trails. Explaining these issues with an example, when applying ACO to

the MPSP competitive results were obtained when used the absolute position

interpretation of the pheromone trails, where ijτΔ is the desirability of putting task j on the

ith position. The best solution found so far and the best solution found in the current

iteration is then used to update the pheromone. But before that some of the old

pheromone on all the edges according to ijij τρτ •−=)1(. The result for this is that the

old pheromone should not have a too strong influence on the future. Then for every

activity some amount of pheromone is added to element (i, j) of the pheromone Jj∈

Röda Vägen 3, 781 88 Fax: 023 77 8050
Borlänge Url: http://www2.du.se

Bremang Appah Degree Project 2006
 E3265D

Högskolan Dalarna TeL: 023 77 8000 49

where i is the place of activity j in the best solution found so far. This is an elitist strategy

that leads ants to search near the best found solution.

However, with effect of pheromone update, the pheromone trails on the arcs of the best

path evaporates regularly in each iteration and receive additional pheromone whenever

ants visit them again. Ants’ rapid concentration upon the best path with a large possibility

and average pheromone intensity in this case is a compromised result among the

evaporation and reinforcement from global updates as well as the decay via local updates.

This effect of decay in local pheromone trail update process is to reduce the risk that an

ant might mostly follow the same path traverse by its predecessors. Whenever an ant

moves along an arc, decay occurs on the traverse arc.

In balancing the exploitation and exploration as any metaheuristic algorithm has to

achieve an appropriate balancing between the exploitation of the search experience gather

so far and the exploration of unvisited or relatively unexplored search spaces. In ACO, it

is typically through the management of the pheromone trails; the pheromone trail induce

a probability distribution over the search space and determine which parts of the search

space are effectively sampled, that is, in which part of the search space the constructed

solutions are located with higher frequency. In line with this, the elitist strategy is

enforcing whereby the best solutions found during the search strongly contribute to

pheromone trail updating. Also important for the role in the balancing of exploration and

exploitation is that of parameters α andβ , which determine the relative influence of the

pheromone trail and heuristics information. Considering the influence of parameterα ,

thus the larger the valve of α (α >0) the stronger the exploitation of the search

experience. However the pheromone trail is not taken into account when α =0 whereas

for α <0, most probable choices done by the ants are those that are less desirable from

the point of view of the pheromone trails. Therefore varying α is used to shift from

exploration to exploitation and vice visa. The parameter β determines the influence of

the heuristic information in a similar way and systematic variation of α andβ is useful

strategies to balance the exploration and exploitation.

Röda Vägen 3, 781 88 Fax: 023 77 8050
Borlänge Url: http://www2.du.se

Bremang Appah Degree Project 2006
 E3265D

Högskolan Dalarna TeL: 023 77 8000 50

On the part of importance of heuristic information to direct the ants’ probabilistic

solution construction is important because it gives the possibility of exploiting problem

specific knowledge. In this static problem, the heuristic information η is computed once

at the initialization time and then is the same throughout the whole algorithm’s run. An

instance is use in this work (MPSP) application, of the length of the arc connecting

tasks i and j to define heuristic information

ijd

=ijη 1/ . This static heuristic information

has merits as such (i) easy to compute (ii) it has to be computed only once at the

initialization time and (iii) in each iteration of the ACO algorithm, it is pre-computed

with the valves of , which result in a significant saving of computation time.

ijd

βητ ijij t •)(

The time complexity of this scheduling under the ACO algorithm is O(mn2) and requires

O(mn) storage space. Thus precedence constraints between jobs (tasks) that have to be

respected in every feasible schedule generally increase the computational complexity of a

scheduling problem. However, it worth mention that occasionally, their introduction may

turn a problem that is solvable within a polynomial time into an NP-complete one, on

which a good algorithm is highly unlikely to exist.

Röda Vägen 3, 781 88 Fax: 023 77 8050
Borlänge Url: http://www2.du.se

Bremang Appah Degree Project 2006
 E3265D

Högskolan Dalarna TeL: 023 77 8000 51

10.0 Conclusion and Future Work

In this work, we present a novel heuristic searching method for the resource constrained

instruction scheduling problem based on the ant colony optimal algorithm. This algorithm

works as a collection of agents collaborate to explore the search space. A stochastic

decision making strategy is proposed in order to combine global and local heuristics to

effectively conduct this exploration. As the algorithm proceeds in finding better quality

solution, dynamically computed local heuristics are utilized to better guide the searching

process.

The work concerns scheduling tasks on multiprocessors whereby more processors are

involved for a single program execution. The goal or aid is to enhance the fastest of the

execution of a DAG or program by allotting various tasks to different processors

concurrently in order to balance the assignment to each processor so that they can obtain

a minimal makespan in completing their processing.

A best found solution that was stable for many iteration has a great influence on the

pheromone valves since applying the an elitist strategy when doing the pheromone

update, that is pheromone is added after every iteration along the best found solution.

Thus, during long runs it can happen that the algorithm converges too early to the best

found solution.

The definition of the pheromone trails is crucial and poor choice at this stage of the

algorithm design will probably result in poor performance. Fortunately, for many

problem instances as this, the intuitive choice is also a very good one.

The parameter settings in ACO is quiet tricky, it means that ACO needs to be tuned, in

accordance with the characteristics of the studied problem, to establish the appropriate

search strategy. When tuning the parameters, we examine the behaviour of ACO in

optimizing the problem. These experiences might however encourage to use the ACO

algorithms to deals with other combinatorial optimization problems.

Röda Vägen 3, 781 88 Fax: 023 77 8050
Borlänge Url: http://www2.du.se

Bremang Appah Degree Project 2006
 E3265D

Högskolan Dalarna TeL: 023 77 8000 52

A relative order of the solution components is important due to the role that permutations

}.......2,1{ n=π have in the problem. This makes the absolute position based pheromone

trail appropriate. Further, the considered algorithm is more effective in finding the near

optimal solutions and scales well irrespective of the problem size. It is also shown that

with substantial less execution time the proposed method achieve a competitive solution.

10.1 Future Work

Future work needs to be bordered on how ACO can be applied on dynamic and undefined

combinational optimization problem. Currently, the large parts around 96% of problems

attacked by ACO are static and well-defined combinational optimization problem, that is,

problems for which all the necessary information is available and does not change during

problem solution.

As a second future finding, an investigation into the effect of α to the stagnation

behaviour would interest in order to have a good selection of the trail. Thus, it was

observed that for high valves of α the algorithm enters stagnation behaviour very

quickly without finding very good solution. We also realised that a highβ valve though

provide good solutions quickly, but a lower valve provide better results with a longer

period of time as a price for the choice. There is a need therefore to experiment with

changing large range valves of α andβ in order to ascertain which work best for the

problem types. However, from the proceeding observations, the issue that deals with the

setting of parameter in ACO algorithms must be thoroughly be scrutinized. In our

experiement, the parameters given here performed well over a wide range of instances

however the solution stands a better chance of improves further when the parameter

setting is well addressed. Nevertheless, in other applications adaptive versions which

dynamically tune the parameters during algorithm execution may increase algorithm

robustness.

Röda Vägen 3, 781 88 Fax: 023 77 8050
Borlänge Url: http://www2.du.se

Bremang Appah Degree Project 2006
 E3265D

Högskolan Dalarna TeL: 023 77 8000 53

Finally, we definitely need a more thorough understanding of the features the successful

application of ACO algorithm depend on and how ACO algorithm should be configured

for specific problems. Particularly, the following questions need to be examined as future

work: The solution components that will yield a better result for the problem instance.

What best way the pheromone can be managed. For instance, incorporating different

styles of convergence, pheromone updating rules and colony relationship are worthy of

further research.

Röda Vägen 3, 781 88 Fax: 023 77 8050
Borlänge Url: http://www2.du.se

Bremang Appah Degree Project 2006
 E3265D

Högskolan Dalarna TeL: 023 77 8000 54

Reference:

[1] H. Kasahara and S. Narita. ‘’Practical multiprocessor scheduling algorithms for
 efficient parallel processing’’, IEEE Trans. Comput., C-33(11):1023-1023-1029,
 Nov. 1985.

[2] D.Merkle, M. Middendorf and H. Schmeck. Ant Colony optimization for
 resource-constrainted project scheduling. In Proceedings of the Genetic and
 Evolutionary Computation Conference (GECCO-2000), page 893-900.
 Morgan Kaufmann Publishers, San Francisco, CA, 2000.

[3] R. Michel and M. Middendorf. An ACO algorithm for the shortest supersequence
 Problem. In D. Corne, M. Dorigo and F. Glover, editors, new ideas in optimization,
 Pages 51-61. McGraw Hill, London, UK, 1999.

[4] T. Stutzle and M. Dorigo. ACO algorithms for the quadratic assignment problem .
 In D. Corne, M. Dorigo and F. Glover, editors, new ideas in optimization,
 Pages 33-50. McGraw Hill, London. UK, 1999.

[5] M. Dorigo and T. Stutzle, Ant Colony Optimization, MIT Press, 2004.

[6] S. Baruah, Task partitioning upon heterogeneous multiprocessors, RTAS, 2004.

[7] Gang Wang, Wenrui Gong and Ryan Kastner In Instruction scheduling Using Max -
 Min Ant System Optimization.Universty of California at Santa Barbara,
 CA 93106-9560.

[8] T. Stutzle and H. H. Hoos. Max – Min Ant System. Future Generation Computer
 Systems, 16(8):889-914, 2000.

[9] G. Navarro Varela and M. C. Sinclair. Ant Colony optimization for virtual-
 wavelength-path routing and wavelength allocation. In proceedings of the 1999
 congress on Evolutionary Computation (CEC’99), pages 1809-1816. IEEE Press,
 Piscataway, NJ, 1999.

[10] J. D. Ullman. ‘’NP-complete scheduling problems’’, Journal of Computer and
 System Sciences, 10(3): 384-393, Jun. 1975.

[11] T. Yang and A. Gerasoulis. ‘’ DSC: Scheduling parallel tasks on an unbounded
 number of processors’’, IEEE Trans. Parallel and distributed Systems,
 5(9):951-967, sep. 1994.

Röda Vägen 3, 781 88 Fax: 023 77 8050
Borlänge Url: http://www2.du.se

Bremang Appah Degree Project 2006
 E3265D

Högskolan Dalarna TeL: 023 77 8000 55

[12] H. Kasahara and S. Narita. ‘’Practical multiprocessor scheduling algorithms for
 efficient parallel processing’’, IEEE Trans. Comput., C-33(11):1023-1029,
 Nov 1985.
[13] K. M. Chandy, C. V. Ramamoorthy and M. J. Gonzalez Jr. ‘’Optimal Scheduling
 strategies in a multiprocessor systems’’, IEEE Trans. Comput., C-21(2):137-146,
 1973.

[14] E. G. Coffman, ‘’ Computer and Job-Shop Scheduling Theory’’, Wiley, New York,
 1976.

[15] Marco Dorigo, ‘’ Ant Colony Optimization Metaheuristic: Algorithm, Applications,
 and advances’’. Technical Report IRIDIA-2000-32.

[16] Hoogeveen, J. Lenstra, B. Veltman, ‘’Three, four, five, six or the complexity of
 scheduling with communication delays’’, IEEE Transactions on computers
 16(1994) 129-137.

[17] T. L. Adam, K. M. Chandy and J. R. Dickson, ‘’A comparison of list schedules
 for parallel processing systems’’, communication of the ACM 17 17 (1974)
 685-690.

[18] Ahmad and Y-K Kwok, ‘’A new approach to scheduling parallel programs using
 task duplication’’, Proc. Of Int’l Conf. Parallel Processing, vol. II, pp. 47-51,
 Aug. 1994.

[19] J.Y. Colin and P. Chretienne, ‘’C.P.M. Scheduling with small computation delay
 and task duplication’’, operation research, pp 680-684, 1991.

[20] H.H Ali and H. El-Rewini, ‘’The Time Complexity of Scheduling interval Orders
 with Communication Polynomial, ‘’ Parallel Processing Letters, vol. 3, no. 1,
 1993, pp. 53-58.

[21] Graham Ritchie, ‘’Static Multi-processor Scheduling with Ant Colony
 Optimization and Local Search’’, School of Informatics, University of Edinburgh.

[22] M. Fox and D. Long, ‘’Multi-processor scheduling problems in planning.
 International Conference on AI, IC-AI’01, Las Vegas, 2001.

[23] F. Ducatelle, ‘’Ant Colony Optimisation for bin packing and cutting stock
 problems. Master’s thesis, University of Edinburgh.

[24] B. Chamaret and P. Rebreyend, ‘’ Static Multiprocessor Task Graph
 Scheduing: A comparison of several hybrid Genetic Algorithm’’.

[25] R.C.Correa, F. Afonso and P. Rebreyend, ‘’Integration list heuristics
 into genetic algorithms for multiprocessor scheduling’’.

Röda Vägen 3, 781 88 Fax: 023 77 8050
Borlänge Url: http://www2.du.se

Bremang Appah Degree Project 2006
 E3265D

Högskolan Dalarna TeL: 023 77 8000 56

 [26] O. Ibarra and S. Sohn. ‘’ On mapping systolic algorithms onto the hypercube’’,

 IEEE Transactions on Parallel and Distributed systems, vol. 1, no. 1, pp. 48-63, Jan.
 1990.

[27] P.-Z. Lee and Z. Kedam, ‘’Mapping nested loop algorithms into multidimensional
 systolic array’’, IEEE Transactions on Parallel and Distributed Systems, vol. 1, no.
 1, pp. 64-76, Jan. 1990.

[28] C.-T. King and W.-H. Chou, L. Ni, ‘’Pipelined data-parallel algorithms: Part II –
 design’’, IEEE Transactions on Parallel and Distributed Systems, vol. 1, no. 1, pp.
 486-499, Oct. 1990.

[29] C. Scheiman and P. Cappello, ‘’A processor-time-minimal systolic array for
 transitive closure’’, IEEE Transactions on Parallel and Distributed Systems, vol. 3,
 no. 3, pp. 257-269, May. 1992.

[30] D. Bertsekas and J. Tsitsiklis, Parallel and Distributed Computation: Numerical
 Methods, Prentice-Hall International Editions, 1989.

[31] Y. Zinder, V. H. Do and C. Oguz, Computational Complexity of some scheduling
 problems with multiprocessor tasks. Doi:10.1016/j.disopt.2005.08.001, august 10,
 2005.
[32] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press,

 Cambridge, MA, 1998.

Röda Vägen 3, 781 88 Fax: 023 77 8050
Borlänge Url: http://www2.du.se

