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Monotonicity recovering and accuracy preserving
optimization methods for postprocessing finite

element solutions

Oleg Burdakova,1, Ivan Kapyrinb and Yuri Vassilevskib

a Department of Mathematics, Linköping University, Linköping, Sweden

b Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, Russia

Abstract

We suggest here a least-change correction to available finite element (FE) solu-
tion. This postprocessing procedure is aimed at recovering the monotonicity and
some other important properties that may not be exhibited by the FE solution.
Although our approach is presented for FEs, it admits natural extension to other
numerical schemes, such as finite differences and finite volumes. For the postpro-
cessing, a priori information about the monotonicity is assumed to be available,
either for the whole domain or for a subdomain where the lost monotonicity is to
be recovered. The obvious requirement is that such information is to be obtained
without involving the exact solution, e.g., from expected symmetries of this solution.

The postprocessing is based on solving a monotonic regression problem with
some extra constraints. One of them is a linear equality-type constraint that mod-
els the conservativity requirement. The other ones are box-type constraints, and
they originate from the discrete maximum principle. The resulting postprocess-
ing problem is a large scale quadratic optimization problem. It is proved that the
postprocessed FE solution preserves the accuracy of the discrete FE approximation.

We introduce an algorithm for solving the postprocessing problem. It can be
viewed as a dual ascent method based on the Lagrangian relaxation of the equality
constraint. We justify theoretically its correctness. Its efficiency is demonstrated
by the presented results of numerical experiments.

Keywords: Finite element solution, Accuracy analysis, Constrained monotonic regression, Large scale

quadratic optimization, Lagrangian relaxation, Dual ascent method

1 Introduction

In this paper, we consider the following constrained monotonic regression problem. Given:
a vector of positive weights w ∈ Rn, a vector ū ∈ Rn, a monotonicity establishing matrix

1Corresponding author. E-mail address: oleg.burdakov@liu.se
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M ∈ Rl×n, scalars a < b and m. Find u∗ ∈ Rn that solves the least-distance problem:

min 1
2
‖u− ū‖2w

u ∈ Rn subject to:
Mu ≥ 0, (M)
ae ≤ u ≤ be, (B)
wTu = m. (C)

(1)

Here the notations ‖a‖2w =
∑n

i=1 wia
2
i and e = (1, 1, . . . , 1)T ∈ Rn are used. The matrix

M has the structure of an arc-node incidence matrix [1]. This means that each row of
M is composed of zeros, but two elements, one of them being equal to +1 and the other
one to −1. Therefore, each constraint in (M) is of the form ui ≥ uj , and it establishes a
monotonicity relation between components i and j of the vector u.

Problem (1) with the only constraint (M), referred further to as (1M), is a classi-
cal monotonic regression problem [2, 37]. There exist efficient methods for solving this
problem of moderate [5, 33, 36] and very large [7, 8, 9, 10] sizes. To the best of our
knowledge, there are no efficient methods to solving large scale constrained monotonic
regression problems of the form (1). The conventional constrained optimization methods
[19, 20, 35], quadratic optimization methods [17] and constrained least squares meth-
ods [20, 39] require unacceptably too long computational time to solve such large scale
problems. The main aim of this paper is to develop optimization methods for solving
problem (1) which would be efficient in the large scale case, and also to apply them to
postprocessing finite element (FE) solutions.

Our interest to studying problem (1) is motivated by the following reasons.
FE discretizations have become conventional in the computational and engineering

communities due to their theoretical basis and technological capabilities. In addition
to good approximation properties such as the second order accuracy, there may be other
requirements to the FE solution. In many practical cases, it is desirable that the maximum
principle and mass conservation are inherited by the resulting discrete systems. Even for
the FE discretization of a model advection-diffusion equation, an accurate discretization
method that satisfies the discrete maximum principle (DMP) is hard to develop.

In the case of the diffusion equation with full and anisotropic diffusion tensor, nu-
merical solutions often demonstrate nonphysical behavior: they may be negative in large
regions where the continuous solution is strictly positive, or have unwanted spurious os-
cillations. In advection dominated advection-diffusion problems, a continuous solution
may have internal shock and exponential or parabolic boundary layers. The thickness of
these features is small compared to mesh size and hence the layers cannot be resolved
properly. Most of numerical schemes either smear out these layers excessively or violate
the DMP. The design of advanced discretization schemes which eliminate or significantly
reduce these disadvantages is the field of extensive research for more than three decades.

Already in 70’s, P.Ciarlet and P.Raviart [15] presented the theoretical analysis of
sufficient mesh conditions that provides the DMP for piecewise-linear finite element ap-
proximations of the diffusion equation. Later, the validity of DMP has been shown for
weaker mesh conditions [23, 38].

The most popular approach to the stabilization of FE methods for advection-diffusion
equations was proposed by Brooks and Hughes in [6] and is referred to as the streamline
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upwind Petrov-Galerkin (SUPG) method. However, the spurious oscillations along sharp
layers may still appear in the numerical solution stabilized with SUPG. They are caused
by the fact that the SUPG method is not a monotone method. A review of several mod-
ifications and improvements for SUPG method is presented in [21]. Such modifications
aimed at improving the FE methods that satisfy the DMP, at least in some model cases,
are called spurious oscillations at layers diminishing (SOLD) methods. We wish also to
mention here the algebraic flux correction approach [24] to the design of monotone FE
discretization methods. It was noticed in [4, 21] that nonlinear approximations is the key
ingredient and the price which has to be paid to construct monotone and at least the
second order accurate discretization. To guarantee solution monotonicity for arbitrary
meshes, a number of nonlinear methods have been proposed in both FE [12, 32] and finite
volume [4, 16, 22, 25, 26, 28, 29, 30, 34, 40, 41] frameworks.

We present here a procedure for postprocessing non-monotone FE solution which pro-
duces a corrected solution satisfying the monotonicity, conservativity and DMP require-
ments. It also preserves the order of accuracy. It is necessary to emphasize that this will
allow for using already implemented numerical schemes which produce unwanted non-
monotonic features in the discrete solution. Moreover, our approach can naturally be
extended to the case of postprocessing solutions produced by other numerical schemes,
such as finite differences and finite volumes.

The postprocessing procedure is based on finding a least-change correction to the
available FE solution determined by the vector of the corresponding FE coefficients ū.
The values of ūi and ui are assumed to be associated with the i-th FE basis function,
and wi be the corresponding weight of this function in the sense of its integral over the
support. If to consider an advection-diffusion process, ūi and ui can have the meaning of
concentrations, original and corrected, respectively. If m is the total mass involved in the
advection-diffusion process, then equation (C) can be viewed as the mass conservativity
requirement. The box-type constraints a ≤ ui ≤ b in (B) may originate from the DMP.
In (M), the inequality constraints of the type ui ≥ uj establish a local monotonic relation
for the corresponding couple of basis functions i and j, typically, with adjacent supports.

We do realize that our approach does not offer a universal tool, because it requires an a
priori knowledge about local monotonicity relations presented by the matrix M . In some
problems, like those used in our numerical experiments, the monotonicity relations can be
obtained by analyzing the equations and boundary conditions that define the problems
(see Section 4). In such problems, it is possible to find locally, without invoking the
exact solution, a set of directions along which the solution, e.g. the concentration, can
not increase. If two adjacent basis functions, say i and j, lie along a direction from the
mentioned local set, this implies a monotonic relation of the form ui ≥ uj. If FE solutions
are expected to be symmetric in some sense, they may naturally suggest such local sets
of directions.

It should be mentioned that if constraint (M) is absent in (1), i.e. no monotonicity
relations are provided, then the postprocessing performs the least-change correction of
the FE solution that assures the mass conservativity and DMP.

The paper is organized as follows. In Section 2, we study postprocessing problem (1).
In particular, we consider how to establish the monotonicity relations and how to define
the constraints (M) in (1). Then we prove that the postprocessed FE solution preserves
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the accuracy of the discrete FE approximation. In the same section, it is shown also how
to use the solution to problem (1M) for obtaining the solution to problem (1M,B). The
postprocessing algorithm aimed at solving large scale constrained monotonic regression
problems of the form (1) is introduced in Section 3. It is based on the Lagrangian relax-
ation of constraint (C) in (1), which implies solving a finite sequence of problems of the
form (1M,B). We show how to avoid solving them by modifying properly the solution to
problem (1M). The results of our numerical experiments are presented and discussed in
Section 4.

2 Postprocessing problem

In the FE method [14], a function Φ : Rd → R1 of the form

Φ(χ) =
n
∑

i=1

uiϕi(χ) (2)

is produced for approximating the exact solution Φ∗(χ) to an original problem to be
solved, e.g. partial differential equations, integral equations etc. Here {ϕi(χ)}

n
i=1 are, for

instance, P0 or P1 FE basis functions, and {ui}
n
i=1 are the corresponding scalar coefficients.

In our postprocessing problem, a discrete FE solution is supposed to be available. It
is determined by a vector of coefficients ū which produces an approximate solution of the
form (2). This approximate solution may not retain some important properties of the
exact solution. In this paper, we focus on the following requirements for the approximate
solution:

• local monotonicity, which means that the approximate solution should not increase
locally along certain directions (modelled in (1) by constraint (M));

• narrowness, e.g. within the bounds determined by the maximum principle [13] (mod-
elled in (1) by constraint (B));

• conservativity (modelled in (1) by constraint (C)).

Our postprocessing problem (1) is aimed at recovering the listed properties by finding
a least-change correction to the coefficients ū. The vector of corrected coefficients u∗ is
required to satisfy the constraints that model these properties.

2.1 Monotonicity constraints

Consider the procedure of generating monotonicity constraints (M). It exploits the fol-
lowing relation between the monotonicity of the coefficients ui and the monotonicity of
the function Φ(χ). Assume, for the moment, that the exact solution Φ∗(χ) is known to
be a non-increasing function of χ, i.e.

χ′ ≤ χ′′ =⇒ Φ∗(χ′) ≥ Φ∗(χ′′).

Here χ′ ≤ χ′′ is a component-wise inequality. Let χi ∈ Rd denote the point of collocation
of the i-th FE basis function. For the P0 FE basis function, χi is a cell barycenter, while
for the P1 FE basis function, χi is a mesh node.
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We assume that the FEs possess the following property.

Assumption. If Φ(χ) is a non-increasing function of χ, then for each pair of basis
functions, i and j, the coefficients ui and uj are such that ui ≥ uj whenever χi ≤ χj

component-wise.

The P0 and P1 FE basis functions meet this requirement due to their property that
Φ(χi) = ui. Generalization of Assumption to higher order finite elements should take into
account that there may be several basis functions contributing to Φ(χi).

Note that Assumption gives only a necessary condition for the monotonicity of the
function Φ(χ). Obviously, the monotonicity of the function values Φ(χi) in a discrete set
of points does not necessarily imply that the function is monotonic. Our postprocessing
makes the corrected function values monotonic, and it does help in practice to recover
the lost monotonicity of the function as well, despite the fact that, in general, this is not
guaranteed.

The monotonic relation that we have just considered is a kind of global monotonicity.
To turn to modeling a local monotonicity, we observe that for establishing the relation
ui ≥ uj we actually required that the vector χj −χi belongs to the positive orthant of Rd

which is a convex cone of all vectors with non-negative components.
In the case of local monotonicity, it may be known for the original problem that its

solution Φ∗(χ) does not increase locally around χi along any vector from an a priori
available convex cone Ki. Here, locally means in a neighborhood Ωi of χi, where Ωi is, for
instance, the union of the supports of basis function i and its adjacent basis functions.
Formally, this means that

Φ∗(χi) ≥ Φ∗(χi + sp)

for any p ∈ Ki and for any positive scalar s such that χi + sp ∈ Ωi. Let FE j be adjacent
to FE i and χj − χi ∈ Ki. Then the considered local monotonicity can be modelled by
the inequality ui ≥ uj.

Of course, such cones may not coincide with the positive orthant and they may depend
on the location of the corresponding FEs. This is well illustrated in Problem 1 considered
in Section 4.

Note that problems may have, in practice, some subdomains in which it is difficult to
draw a priori any conclusion about local monotonicity. In such subdomains, the mono-
tonicity establishing cones Ki should be empty.

The constraints in (M) are aimed on recovering the expected monotonicity. Therefore,
these constraints should mainly originate from the subdomains, where the FE approxima-
tion produced by ū violates the monotonicity. In the subdomains, where the monotonicity
is safely preserved, it is reasonable to skip generating redundant constraints for (M). This
approach decreases the total number of constraints in (M) and eases the solution process
of postprocessing problem (1).
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2.2 Accuracy analysis

In the accuracy analysis, we do not require that all the cases of violated monotonicity are
corrected by the postprocessing algorithm. Our estimates hold even if (M) consists of only
one constraint, or even if it has no constraints at all. The most important is that each
monotonicity constraint in (M) is consistent with the monotonicity of Φ∗(χ) in the sense
that inequality ui − uj ≥ 0 can belong to constraints (M) only if Φ∗(χi) − Φ∗(χj) ≥ 0.
This requirement refers to M , and it can be written as MΦ∗ ≥ 0, where Φ∗ denotes the
vector with the components Φ∗(χ1), . . . ,Φ

∗(χn).
In this sub-section, we assume that the basis functions are such that

ϕi(χj) =

{

1, if i = j,
0, otherwise.

holds for all 1 ≤ i, j ≤ n. Under this assumption, (2) implies Φ(χi) = ui, which is typical,
e.g., for the P0 and P1 basis functions.

Then the L2 norm of the error of finite element solution may be estimated in terms of
the weighted Euclidean norm ‖ū−Φ∗‖w, where the weight wi is the representative volume
associated with i-th FE basis function. In the case of P0 finite element, wi equals to the
ith cell volume, whereas in the case of P1 finite element, wi is the volume of a cell of the
dual mesh associated with the ith node.

The next result implies that the postprocessed FE solution retains the same order of
accuracy in L2-norm as the original FE solution.

Theorem 1 Let the vector of collocated exact solution Φ∗ satisfy conditions (M), (B),
(C) for given matrix M , vector w and scalars α, β, m. Suppose that vector ū defines a
finite element approximation of Φ∗, and vector u∗ defines the postprocessed finite element
solution, i.e. it solves problem (1) for the same data M , w, α, β, m. Then

‖u∗ − Φ∗‖w ≤ ‖ū− Φ∗‖w. (3)

Proof. The feasible set of points in Rn, i.e. those satisfying conditions (M), (B) and
(C), is a convex set. The postprocessed solution u∗ is the projection of ū onto this set,
which implies that

(Φ∗ − u∗, ū− u∗)w ≤ 0,

where

(u′, u′′)w =
n
∑

i=1

wiu
′

iu
′′

i .

Then

‖ū− Φ∗‖2w = ‖ū− u∗ + u∗ − Φ∗‖2w = ‖ū− u∗‖2w + ‖u∗ − Φ∗‖2w − 2(Φ∗ − u∗, ū− u∗)w

≥ ‖ū− u∗‖2w + ‖u∗ − Φ∗‖2w ≥ ‖u
∗ − Φ∗‖2w.

This proves (3).
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Let uM denote the solution to monotonic regression problem (1M). Like in the proof
of Theorem 1, we can show that

‖u∗ − Φ∗‖w ≤ ‖uM − Φ∗‖w ≤ ‖ū− Φ∗‖w. (4)

This relation between the three errors is illustrated by the results of our numerical exper-
iments presented in Section 4 for a problem whose exact solution is known.

2.3 Features of the postprocessing problem

We assume that the feasible set in problem (1) is not empty. Since it is a polyhedron and
the objective function is the squared weighted Euclidean distance from the point ū to this
polyhedron, the optimal solution u∗ exists and is unique.

Clearly, the solution uM to monotonic regression problem (1M) may violate the con-
straints (B) and (C). But if the discrete FE solution is such that

wT ū = m, (5)

this assures that (C) holds for uM [2, 37]. In this case, uM solves problem (1M,C), however
the constraint (B) may be violated.

Let uMB denote the solution to box-constrained monotonic regression problem (1M,B).
If (5) holds, this does not necessarily imply that uMB satisfies constraint (C).

In Theorem 2, we will show that uMB can be easily obtained from uM . The solution
uMB plays an important role in our postprocessing algorithm, in which uMB is successively
modified until finally the modified solution satisfies (C). This assures that the resulting
modified solution solves postprocessing problem (1).

Let π be the projection operation defined for a scalar v as follows

π(v) =











a, if v ≤ a,
b, if v ≥ b,
v, if a < v < b.

(6)

If u is a vector and π(u) is defined component-wise as above, then π(u) is the orthogonal
projection of the point u on the box determined by constraints (B).

The next result presents a relation between uM and uMB.

Theorem 2 Let uM solve problem (1M). Then uMB = π(uM) solves problem (1M,B).

Proof. Consider the Lagrangian function for problem (1M). It is defined as

LM(u, λ) =
1

2
‖u− ū‖2w − λTMu,

where the vector of the Lagrange multipliers λ has the same number of components as
the number of constraints in (M).
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Since the constraints in (1M) are linear, there exist Lagrange multipliers λM such that
the following Karush-Kuhn-Tucker (KKT) conditions [3] hold for uM :

∇uLM(uM , λM) = 0, (a)
MuM ≥ 0, (b)
λT
MMuM = 0, (c)

λM ≥ 0. (d)

(7)

With the use of the same Lagrangian function, we can present the KKT conditions
for problem (1M,B) in the following form [3]:

∇ui
LM(uMB, λMB) ≥ 0, if (uMB)i = a,

∇ui
LM(uMB, λMB) ≤ 0, if (uMB)i = b,

∇ui
LM(uMB, λMB) = 0, if a < (uMB)i < b,











i = 1, 2, . . . , n, (a)

MuMB ≥ 0, (b)
λT
MBMuMB = 0, (c)

λMB ≥ 0, (d)
ae ≤ uMB ≤ be, (e)

(8)

They are necessary and sufficient optimality conditions for (1M,B), because it is a convex
quadratic programming problem.

We will prove that KKT conditions (8) hold for uMB = π(uM) and λMB = λM .
Indeed, conditions (8d) and (8e) obviously hold.
If (uM)i − (uM)j ≥ 0, then π((uM)i)− π((uM)j) ≥ 0. This implies (8b).
Let (λM)ij stand for the Lagrange multiplier associated in (7) with the constraint

(uM)i − (uM)j ≥ 0. Then the complementarity conditions, which follow from (7), can be
written as

(λM)ij · [(uM)i − (uM)j] = 0.

Hence, as it can be easily verified, the equality

(λM)ij · [π((uM)i)− π((uM)j)] = 0

holds for each constraint in (M). This proves (8c).
We observe that

∇uLM(uMB, λMB) = ∇uLM(uM , λM) + diag(w)∆u, (9)

where ∆u = uMB − uM . By the definition of the projection operation π(·), we have

(∆u)i ≥ 0, if (uMB)i = a,
(∆u)i ≤ 0, if (uMB)i = b,
(∆u)i = 0, if a < (uMB)i < b,











i = 1, 2, . . . , n, (10)

Due to relations (7a) and (10) along with the inequality w ≥ 0, equation (9) gives (8a).
Thus, the optimality conditions hold for π(uM). This finally proves that uMB = π(uM)

solves problem (1M,B).
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3 Postprocessing algorithm

Our postprocessing algorithm is based on the Lagrangian relaxation [3] of the linear
equality constraint (C). Consider the corresponding Lagrangian function

LC(u, µ) =
1

2
‖u− ū‖2w + µ(m− wTu), (11)

where the scalar µ is the Lagrange multiplier.
The corresponding Lagrangian dual function ϕ(µ) is given by

ϕ(µ) = min LC(u, µ)
u ∈ Rn subject to:

Mu ≥ 0,
ae ≤ u ≤ be.

(12)

As with all Lagrangian dual functions, ϕ(µ) is a concave function of µ [3].
Since LC(u, µ) is a strictly convex function of u, and since the constraints in (12) are

linear, the solution to the minimization problem in (12) is unique for any µ. We denote
it by u(µ). Then

ϕ(µ) = LC(u(µ), µ) =
1

2
‖u(µ)− ū‖2w + µ(m− wTu(µ)).

Consider the dual problem
max
µ∈R1

ϕ(µ). (13)

We denote its optimal solution by µ∗.
Due to the uniqueness of u(µ), the dual function ϕ(µ) is continuously differentiable,

and its derivative has the form (see, e.g., [3]):

ϕ′(µ) = m− wTu(µ). (14)

From the necessary and sufficient optimality conditions for problem (13), we have
ϕ′(µ∗) = 0. Thus, the solution µ∗ can be obtained by solving the scalar equation

m− wTu(µ) = 0 (15)

in µ (see Fig. 1), where the function u(µ) is implicitly given by (12). The duality theory
[3, Theorem 6.5.1] implies that u(µ∗) solves our postprocessing problem (1). Our postpro-
cessing algorithm is based on solving equation (15), which we shall refer to as the main
equation.

3.1 Properties of the main equation

Since the function ϕ(µ) is concave, its derivative ϕ′(µ) is a monotonically non-increasing
function of µ. Due to (14), the same refers to the left-hand side function of the main
equation. It will be explained below why m − wTu(µ) is even strictly decreasing with µ
in a large neighborhood of µ∗.
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Figure 1: Derivative of the dual function

This property, of course, eases the process of solving the main equation, but it still
looks necessary to generate u(µ) by repeatedly solving problem (12) for each iterate µ.

For µ = 0, problem (12) is equivalent to (1M,B). By Theorem 2, u(0) can be easily
obtained from the solution to the standard monotonic regression problem (1M) by virtue
of a simple orthogonal projection (6) of uM onto the box defined by (B) in (1).

We will show that, for getting u(µ), it is sufficient to solve problem (12) only once,
namely for µ = 0. We will show also how to obtain u(µ), in an efficient way, from uM for
any given µ without resolving problem (12). The key observation here is the following.

The Lagrangian function LC(u, µ) defined by (11) can be presented equivalently as

LC(u, µ) =
1

2
‖u− ūµ‖

2
w + q(µ), (16)

where
ūµ = ū+ µe,

and

q(µ) = µ(m− wT ū)−
1

2
µ2wT e.

This can be verified by the direct substitution of ūµ and q(µ) into (16).
Since q(µ) does not depend on u, formula (16) allows for rewriting problem (12)

equivalently as
ϕ(µ) = q(µ) + min 1

2
‖u− ūµ‖

2
w

u ∈ Rn subject to:
Mu ≥ 0,
ae ≤ u ≤ be.

(17)

This presentation of the dual function enables establishing a useful relation between
u(µ) and uM , which can be formulated as follows.

Theorem 3 Let uM solve problem (1M). Then

u(µ) = π(uM + µe) (18)

solves the minimization problem in (17) for any value of µ.
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The proof of this theorem immediately follows from Theorem 2 combined with the
following result.

Lemma 4 Let uM solve problem (1M). Then uM + µe solves the problem

min 1
2
‖u− ūµ‖

2
w

u ∈ Rn subject to:
Mu ≥ 0.

(19)

Proof. Consider the new variables v = u − µe. Note that Mµe = 0. Then, the
substitution of u = v+µe into (19) gives an equivalent problem, which has the same form
as (1M) with the only difference that the variables v are used instead of u. Thus, v = uM

solves the monotonic regression problem for the new variables. This proves that uM + µe
solves problem (19).

In formula (18), the operation of adding the scalar µ to each component of the vector
uM is used. We shall call it the µ-shift of uM . Theorem 3 allows us to avoid direct solving
problem (12) whenever it is necessary to find u(µ). Formula (18) offers the following
computationally efficient way of finding u(µ).

First, we solve problem (1M). Then for any given µ, the value of u(µ) is obtained by
the µ-shift of uM with subsequent orthogonal projection of uM + µe by formula (6) onto
the box defined by (B) in (1). It is necessary to emphasize that the major computational
burden of finding u(µ) is associated with problem (1M) which is to be solved only once.

In the next subsection, the further reduction of the computational burden will be
based on the observation that in the process of solving equation (15), it is not necessary
to construct explicitly the vector u(µ). It is sufficient to manipulate with the value of the
scalar product wTu(µ) instead.

In what follows, we assume that the components of the vector uM are sorted in in-
creasing order, i.e. (uM)i ≤ (uM)i+1. Obviously, both the µ-shift and the subsequent
orthogonal projection (6) retain the same increasing order of the components.

We shall use the notations:

α−(µ) = max{i : (uM)i + µ < a, 1 ≤ i ≤ n},
α+(µ) = min{i : (uM)i + µ > a, 1 ≤ i ≤ n},
β−(µ) = max{i : (uM)i + µ < b, 1 ≤ i ≤ n},
β+(µ) = min{i : (uM)i + µ > b, 1 ≤ i ≤ n}.

(20)

These indices are presented in the example shown in Fig. 2. For simplicity, we consider
only those values of µ for which these indices exist. Note that if α−(µ)+ 1 < α+(µ), than
(uM)i + µ = a for all i such that α−(µ) < i < α+(µ). Similarly, if β−(µ) + 1 < β+(µ),
than (uM)i + µ = b for all i such that β−(µ) < i < β+(µ). Denote also

W (µ) =
β−(µ)
∑

i=α+(µ)

wi.

For a given µ, consider how the left-hand side of the main equation depends on the
perturbed value µ + ∆µ. We assume that the perturbation ∆µ ∈ [∆µ−(µ),∆µ+(µ)],

11



Figure 2: The µ-shift of uM with the components (uM)i sorted in increasing order.

where the scalars ∆µ−(µ) < 0 and ∆µ+(µ) > 0 are defined by the formulas:

∆µ−(µ) = max{a− (uM)α+(µ), b− (uM)β+(µ)} − µ,

∆µ+(µ) = min{a− (uM)α−(µ), b− (uM)β−(µ)} − µ.

It can be easily verified that, for any ∆µ of the mentioned interval, the equality

ϕ′(µ+∆µ) = ϕ′(µ) + ∆µ ·

{

ϕ
′′

−(µ), if ∆µ ∈ [∆µ−(µ), 0],
ϕ

′′

+(µ), if ∆µ ∈ [0,∆µ+(µ)]
(21)

holds, where the notations

ϕ
′′

−(µ) = −W (µ)−
β+(µ)−1
∑

i=β−(µ)+1

wi, ϕ
′′

+(µ) = −W (µ)−
α+(µ)−1
∑

i=α−(µ)+1

wi (22)

are used. Equality (21) implies that ϕ
′′

−(µ) and ϕ
′′

+(µ) are, respectively, the left and right
derivatives of ϕ′(µ).

By the formulas in (22), the points µ in which ϕ′(µ) is not differentiable, i.e. ϕ
′′

−(µ) 6=
ϕ

′′

+(µ), are among those for which there exists, at least one, i such that either µ = a−(uM)i
or µ = b− (uM)i. They correspond to the jog points on the graph in Fig. 1. For all other
values of µ, the left-hand side of the main equation is differentiable, and its derivative is
equal to W (µ).

We have W (µ) > 0 for all values of µ such that the set {i : a < (uM)i + µ < b} is not
empty. This typically holds in the problems of practical interest within a wide interval
around the optimal value µ∗. On this interval, the left-hand side of the main equation is
strictly monotonically decreasing with µ.
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3.2 Implementation issues

Here we present an algorithm for solving the main equation (15). Its main feature is that
it avoids explicit calculation of the vector u(µ), except u(0) which, as noticed above, can
be easily calculated by projecting uM on the box.

Since the sign of ϕ
′

(0) = m−wTu(0) determines the sign of µ∗, one can decide whether
to increase µ if ϕ

′

(0) > 0, or to decrease it if ϕ
′

(0) < 0. Depending on this, the µ-shifted
components of uM move with µ up or down in Fig. 2.

It is typical for the solution to monotonic regression problem (1M) that a few compo-
nents of uM have the same value. In the case of the FE problem, this means that some
of the adjacent cells in the areas, where the monotonicity is violated, may have the same
value of (uM)i. It can be easily verified that, if two components of uM are of the same
value then the values of these components in π(uM + µe) remain equal for any µ.

We take this observation into account in our algorithm, and we assume that the
components of uM with the same value are represented in the new vector uM by only one
component of this value. The weight corresponding to the new component is assumed to
be equal to the sum of weights wi of the components which are represented by the new
component. For the sake of simplicity, we shall continue using the same notations uM

and w for the new vectors. Furthermore, n will also denote the number of components of
the new vectors, although these vectors may be shorter. The further assumption that the
components of the new (shortened) vector uM are sorted in increasing order implies that
(uM)i < (uM)i+1.

The basic idea is the following. Suppose that ϕ
′

(0) > 0. Then starting from µ = 0,
the value of µ is increased, step by step, by adding ∆µ+(µ). As the result, every new
value of µ is equal to

min{a− (uM)α−(µ), b− (uM)β−(µ)}.

The value of ϕ
′

(µ) is updated by formula (21). The values of µ generated in this way
correspond to the jog points. This procedure terminates when ϕ

′

(µ) becomes negative.
The root µ∗ belongs to the interval between the final value of µ and the previous one. Since
the function ϕ

′

(µ) is linear on this interval, one Newton step gives µ∗ = µ−ϕ
′

(µ)/ϕ
′′

−(µ).
The outlined idea is formally presented by Algorithm 1. The input parameters of this

algorithm are a, b, m, shortened uM and w. It returns µ∗.

13



Algorithm 1.

µ← 0
Compute α−, α+, β− and β+ by (20) for µ = 0

ϕ
′

← m− a
∑α−

i=1 wi −
∑β−

i=α−+1(uM)iwi − b
∑n

i=β−+1 wi

if ϕ
′

= 0 then

µ∗ ← 0 and stop
if ϕ

′

> 0 then

α← α−, β ← β−, W ←
∑β

i=α+1 wi

while ϕ
′

> 0 do

µa ← a− (uM)α, µb ← b− (uM)β
if µa < µb then

∆µ← µa − µ, µ← µa, ∆W ← wα, α← α− 1
else

∆µ← µb − µ, µ← µb, ∆W ← −wβ, β ← β − 1
ϕ

′′

← −W , ϕ
′

← ϕ
′

+ ϕ
′′

∆µ, W ← W +∆W
if ϕ

′

< 0 then

α← α+, β ← β+, W ←
∑β−1

i=α wi

while ϕ
′

< 0 do

µa ← a− (uM)α, µb ← b− (uM)β
if µa < µb then

∆µ← µb − µ, µ← µb, ∆W ← wβ, β ← β + 1
else

∆µ← µa − µ, µ← µa, ∆W ← −wα, α← α + 1
ϕ

′′

← −W , ϕ
′

← ϕ
′

+ ϕ
′′

∆µ, W ← W +∆W
µ∗ ← µ− ϕ

′

/ϕ
′′

So far, it was assumed that the indices in (20) exist for all values of µ generated by
Algorithm 1. For the case when α− or β+ may not exist, we recommend to introduce two
extra components:

(uM)0 = (uM)1 − 2(b− a) and (uM)n+1 = (uM)n + 2(b− a)

with w0 = wn+1 = 0. Any upper estimate for |µ∗| can be used here instead of b− a.
The value of µ∗ returned by Algorithm 1 is used for producing the solution vector

u∗ = π(uM + µ∗e) by formula (18). The projection can be easily obtained with the use
of the final values of indices α and β generated by Algorithm 1 and with consideration of
whether µa < µb or not. This information facilitates the identification of those components
of u∗ which are equal to a or b. The rest of the components are simple shifts of the form
(uM)i + µ∗.

Note that for running Algorithm 1, it is not necessary to sort all components of uM in
increasing order. Suppose that, in the case of ϕ

′

(0) > 0, the optimal shift µ∗ is known to
be bounded above by µ̄, i.e. µ∗ < µ̄. Then it is sufficient to sort in increasing order only
two subsets of components of uM , namely, those for which a − µ̄ < (uM)i < a and those
for which b− µ̄ < (uM)i < b. The other components, if shifted by Algorithm 1, would not
cross the boundaries defined by a and b.
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It is necessary to emphasize that the computational burden of Algorithm 1 grows with
n not faster than linearly. For producing a sufficiently accurate solution to monotonic
regression problem (1M), i.e. an approximation to uM , we suggest to use the GPAV
algorithm [7, 8, 9, 10, 11]. Although the worst case complexity of the GPAV algorithm is
estimated as O(n2), its computational time grows in practice just a bit faster than linearly
with n. Moreover, the solution uM produced by this algorithm is in a form close to the
shortened version required for running Algorithm 1.

All these considerations of the computational burden allow us to conclude that the
postprocessing of FE solution is a relatively inexpensive procedure. In our numerical
experiments, the postprocessing time was significantly shorter than the time of producing
the FE solution, and this difference was growing with n.

4 Numerical experiments

For each of the two problems presented below, we produce a FE solution that is subse-
quently postprocessed. This solution gives the value of m in constraint (C) of problem
(1). At the first stage of the postprocessing, the GPAV algorithm [7, 8, 9, 10, 11] is ap-
plied to solving problem (1M) for producing a monotonicity recovering solution. At the
final stage, this monotone solution is used by Algorithm 1, as described in Section 3, for
producing a postprocessed solution that solves problem (1) comprising all the constraints.

Problem 1 [27]. Given a positive scalar T , a domain Ω = (0;+∞)× (−∞; +∞), a diag-

onal diffusion tensor D and a divergence-free vector field ~b, find the solute concentration
C(x, y, t) that solves the two-dimensional non-stationary advection-diffusion problem:

∂C

∂t
−∇D∇C +~b∇C = 0 in Ω× [0;T ]

with the following initial and boundary conditions. Initial conditions:

C(x, y, 0) = 0 in Ω.

Neumann boundary conditions:

∂C

∂x

∣

∣

∣

∣

∣

x→+∞

= 0 y ∈ (−∞; +∞), t > 0,

∂C

∂y

∣

∣

∣

∣

∣

y→±∞

= 0 x ∈ (0; +∞), t > 0.

Non-homogeneous Dirichlet boundary conditions:

C(0, y, t) =

{

1, if |y| < 0.25,
0, otherwise.

This problem is widely used for testing numerical algorithms. Its exact solution is
given, e.g., in [27]. The one presented by Fig. 3 (top left) corresponds to t = 0.5, the
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Figure 3: Solutions to Problem 1: exact (top left), SUPG for ∆t = 0.02 (top right),
monotonicity recovering (bottom left), postprocessed for 0 ≤ C ≤ 1 (bottom right).
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Figure 4: The computational grid in Problem 1 (left) and a node from Ω1 whose mono-
tonicity cone {(x, y)T : x ≥ 0, y ≥ 0} contains no adjacent nodes (right).

simplest advection field ~b = (1, 0) and the scalar diffusion tensor

D =

(

10−4 0
0 10−4

)

.

In Problem 1, we denote χ = (x, y)T . The features of the equations and boundary
conditions that define this problem allow for drawing some useful conclusions about the
monotonicity of its solution for any fixed value of t ∈ (0;T ], without invoking the exact
solution.

A simple analysis of the problem formulation shows that the solution C(x, y, t) is
monotonically non-increasing in x and y in the subdomain Ω1 = [0;+∞)× [0; +∞). This
means that

C(x′, y′, t) ≥ C(x′′, y′′, t) (23)

for all χ′ = (x′, y′)T ∈ Ω1 and χ′′ = (x′′, y′′)T ∈ Ω1 such that χ′ ≤ χ′′.
In the subdomain Ω2 = [0;+∞)× (−∞; 0], the solution C(x, y, t) is non-increasing in

x and non-decreasing in y. This implies that inequality (23) holds for all χ′, χ′′ ∈ Ω2 such
that x′ ≤ x′′ and y′ ≥ y′′.

Thus, depending on the location χi of node i, the convex cone of the directions of local
decrease (non-increase) is defined as follows:

Ki =

{

{(x, y)T : x ≥ 0, y ≥ 0}, if χi ∈ Ω1,
{(x, y)T : x ≥ 0, y ≤ 0}, if χi ∈ Ω2.

This a priori available information about the local monotonicity can be used, com-
pletely or partially, for generating constraints of the form (M). In our simplest procedure
it is used partially. Namely, for each node i of the mesh and for each of its adjacent nodes
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Figure 5: SUPG solution to Problem 1 for ∆t = 0.02 (left) and its postprocessed ver-
sions: with the non-negativity constraint C ≥ 0 (center) and with the maximum principle
constraint 0 ≤ C ≤ 1 (right).

j, we check if χj − χi ∈ Ki. If so, we add the inequality ui − uj ≥ 0 to those already
generated. The computational burden of this procedure grows linearly with the number
of nodes. We also consider below its extension that allows for taking into account the
local monotonicity more completely.

The postprocessing was applied to a FE solution to Problem 1 for t = 0.5. For
producing this solution, the unstructured quasi-uniform mesh shown in Fig. 4 (left) was
generated by the software Ani2D [31], and then the streamline upwinding Petrov-Galerkin
(SUPG) method was applied for two different time steps, ∆t = 0.02 and ∆t = 0.005. Fig. 3
(top right) shows 2D plot of the resulting numerical solution for ∆t = 0.02 represented
by a piecewise-linear function. The white lines are concentration isolines corresponding
to the range [0; 1] with the step 0.2. One can observe unwanted features, like negative
concentrations and numerous spurious oscillations presented by the isolines C = 0 and
C = 1. The exact solution is, of course, free of such features (see Fig. 3 (top left)).

The solution to problem (1M) depicted in Fig. 3 (bottom left) shows that if nothing
more than an incomplete monotonicity is invoked, the monotonicity recovering stage of the
postprocessing allows for eliminating most of the oscillations, i.e. it performs a monotonic
smoothing. The final stage of the postprocessing that additionally involves constraints
(B) and (C) is aimed at eliminating the remaining oscillations as shown in Fig. 3 (bottom
right) for 0 ≤ C ≤ 1 in (B). The shift performed in the postprocessing was of a relatively
small value, µ∗ = 0.0046.

We will study now how the incompleteness of the information used in monotonicity
constraints (M) and box constraints (B) affects the quality of the resulting monotonicity
recovering and postprocessed solutions.

The completeness of information about the bounds in (B) is of no less importance for
the postprocessing than the completeness of the exploited monotonicity. This is illustrated
in Fig. 5 showing how the quality of the postprocessed solution deteriorates when the
incomplete information about the bounds, C ≥ 0, is used instead of the complete one,
0 ≤ C ≤ 1. The same figure shows the ability of the complete information used in
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Table 1: Problem 1: solution minima and maxima excluding the boundary.

SUPG for monotonicity postprocessed postprocessed
∆t = 0.02 recovering (C ≥ 0) (0 ≤ C ≤ 1)

min -8.71E-2 -1.00E-2 0.00E+0 0.00E+0
max 1.17E+0 1.11E+0 1.10E+0 1.00E+0

(B) to repair the incompletely recovered monotonicity, cf. (center) and (right) in Fig. 5.
The violations of the maximum principle are summarized for the generated solutions in
Table 1. Note that the monotonicity recovering stage reduces the most severe violation
of the non-negativity condition by one order of magnitude.

The quality of monotonicity recovering depends on how completely the monotonicity
relations are presented by constraints (M). As it is apparent from Figs. 3 (bottom left) and
5 (center), the monotonicity was restored incompletely. This is caused by the incomplete
use of the a priori available information about the monotonicity.

The complete use implies, in particular, that uj−ui ≥ 0 must hold for all nodes i and
j such that

χj − χi ∈ Ki, (24)

but not only for those adjacent, like in the simplest procedure. In some cases, the use
of only adjacent nodes guarantees complete monotonicity recovering. An example is the
case of the regular grid used for solving Problem 2 below. This is not the case in Problem
1 because of the unstructured mesh. Some nodes i of this mesh, like the one in Fig. 4
(right), have no adjacent nodes j for which (24) holds. For such ‘orphaned’ nodes, the
value of ui does not impose any upper bound on uj for the distant nodes j satisfying (24).
This may result in an incomplete monotonicity recovering. There exist orphaned nodes
of another type. Such nodes j have no adjacent nodes i for which (24) holds.

The deficiency of monotonic relations in (M) caused by the orphaned nodes can be
compensated by extending the set of nodes for which (24) is verified from adjacent to
more distant couples. To emphasize the importance of using more complete information
about the monotonicity, we conduct the following experiments.

For generating monotonicity relations (M), we now verify (24) for j from two layers
of i’s neighbours. The resulting postprocessed solution for C ≥ 0 is presented in Fig. 6
(left). One can see that, in comparison with the one layer case in Fig. 5 (center), the crest
on the top looks more localized (see the corresponding zooms on Fig. 7), and the bottom
part looks better smoothed.

The presence of the mentioned crest indicates that the monotonicity was still recovered
incompletely. This is due to the remaining orphaned nodes located in the vicinity of the
line y = 0 that is the interface between the subdomains Ω1 and Ω2. To eliminate the
crest, we exploit the fact that the solution does not increase with x along that line. Based
on this a priori available information about the local monotonicity, we generate extra
constraints of the form (M) as follows. We introduce additional monotonicity relations
for the cells crossed by the line y = 0, even though the central nodes of such couples of
cells may belong to different subdomains. Note that this interface line crosses cell i if at
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Figure 6: Solutions to Problem 1 with two layers of neighbours. Monotonicity recovering
solution without supplementary monotonicity constraints along the line y = 0 (left).
Solutions with such constraints: monotonicity recovering (center) and postprocessed with
0 ≤ C ≤ 1 (right).

Figure 7: Zoomed and scaled (3 times) areas of C ≥ 0.95 of the monotonized solutions
obtained using one layer (left) and two layers (right) of adjacent cells.

least one of the nodes adjacent to i belongs to the subdomain that is different from the one
containing i. We call them interface cell and node. In our implementation, if two interface
nodes i and j are such that xi < xj and j belongs to the two layer neighbourhood of i,
then we add the inequality ui−uj ≥ 0 to those already generated. The resulting solution
presented in Fig. 6 (center) demonstrates substantial improvement in the monotonicity
recovering in comparison with the other solution Fig. 6 (left). Some further smoothing
is performed at the final stage of the postprocesing, see Fig. 6 (right). In this solution
the spurious oscillations are removed more completely than in the postprocessed solution
that is based on the less complete information about the monotonicity, cf. Figs. 6 (right)
and 5 (right) in the areas close to C = 0.

Note that in the case of ∆t = 0.02 the major part of the spurious oscillations is
removed by the postprocessing based on the narrowest set of the considered monotonicity
relations (one layer). For the smaller time step ∆t = 0.005, the result is different: only
the use of the widest set of the relations (two layers and supplementary constraints along
y = 0) allows to get rid of the oscillations. The original SUPG solution for ∆t = 0.005

20



a) b)

c) d)

Figure 8: a) SUPG solution to Problem 1 for ∆t = 0.005; and its postprocessed versions:
b) with one layer of neighbours; c) with two layers of neighbours; d) with two layers of
neighbours and supplementary monotonicity constraints along the line y = 0.
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Table 2: Errors with respect to the collocated exact solution to Problem 1.

monotonicity
solution

error value
relations ∆t = 0.005 ∆t = 0.02

no relations SUPG 9.12E − 2 9.90E − 2

one layer
monotonicity recovering 8.47E − 2 9.67E − 2

postprocessed 8.06E − 2 9.63E − 2

two layers
monotonicity recovering 8.43E − 2 9.65E − 2

postprocessed 8.05E − 2 9.62E − 2
two layers monotonicity recovering 8.42E − 2 9.64E − 2
& line y = 0 postprocessed 8.05E − 2 9.30E − 2

and its postprocessed versions obtained for different monotonicity relations are shown in
Fig. 8.

Table 2 presents errors with respect to the collocated exact solution Φ∗, namely:
‖ū−Φ∗‖w for the SUPG, ‖uM−Φ

∗‖w for the monotonicity recovering stage, and ‖u∗−Φ∗‖w
for the final stage of the postprocessing with 0 ≤ C ≤ 1. The numerical values of
these errors are in a good agreement with inequalities (4), whatever the monotonicity
relations are used. One can observe also the decrease of the errors ‖uM −Φ∗‖w and ‖u∗−
Φ∗‖w when the set of the monotonicity relations enlarges. The numerically demonstrated
validity of inequalities (4) shows how the postprocessing improves the accuracy with
respect to the exact solution. This improvement means that the postprocessing preserves
the approximation accuracy.

In the case of Problem 1, we saw that unstructured grids and mesh skewness may
require extra efforts for establishing monotonicity relations. Regular meshes, like the one
in the next problem, make this process easier.

Problem 2. Consider the following stationary diffusion problem:

−∇D∇C = 0 in Ω ∈ R2,

where
D = QDQT ,

Q =

(

cos π
4

sin π
4

− sin π
4

cos π
4

)

and D =

(

1 0
0 10−2

)

.

The domain Ω is a square with a square hole: Ω = Ω′ \ Ω′′, where Ω′ = [−0.5, 0.5]2 and
Ω′′ = (− 1

18
, 1
18
)2. Let Γ0 = ∂Ω′ and Γ1 = ∂Ω′′ denote the external and internal boundaries

of Ω, respectively, see Fig. 9. The boundary conditions are of the Dirichlet type:

C = 0 on Γ0,

C = 2 on Γ1.

Taking into account the symmetry of the problem, we introduce four cones:

Ω1 = {(x, y)T : −x ≤ y ≤ x},
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Table 3: Problem 2: solution minima and maxima excluding the boundary.

FE monotonicity postprocessed
recovering

min -0.309 -0.027 0
max 1.83 1.83 1.67

Ω2 = {(x, y)T : −y ≤ x ≤ y},

Ω3 = {(x, y)T : x ≤ y ≤ −x},

Ω4 = {(x, y)T : y ≤ x ≤ −y}.

They cover the domain Ω. Note that the lines y = x and y = −x that define the
boundaries of the cones are parallel to the main axes of the diffusion tensor.

It can be easily derived from the formulation of Problem 2, without invoking its exact
solution, that if χ′ belongs to a subdomain Ω ∩ Ωk for some 1 ≤ k ≤ 4, then

C(χ′) ≥ C(χ′′), ∀χ′′ ∈ Ω ∩ Ωk such that χ′′ − χ′ ∈ Ωk. (25)

This means that the solution C(x, y) is monotonically non-increasing along any of such
directions χ′′ − χ′. Relation (25) allows for defining in Problem 2, for any node χi, its
monotonicity cone Ki as follows: if node χi ∈ Ωk for some 1 ≤ k ≤ 4, then Ki = Ωk.

Like in the simplest procedure presented above for Problem 1, only the adjacent nodes
are involved here in the construction of monotonicity constraints (M) for Problem 2. In
contrast to Problem 1, the simplest procedure guarantees now the complete monotonicity
recovering. This is assured by the 36 × 36 triangular grid of a regular structure used
for solving Problem 2, see Fig. 9 (right). To show the completeness, consider any node
j′ ∈ Ki which is not adjacent to node i. Due to the grid structure, there exists a node
j ∈ Ki adjacent to i and such that j′ ∈ Kj. The spatial relation between these three
nodes implies three monotonic relations of which ui − uj′ ≥ 0 is redundant, because it
follows from the other two relations: ui−uj ≥ 0 and uj−uj′ ≥ 0. Therefore, one can skip
including ui − uj′ ≥ 0 in (M) without any loss of the monotonicity. The same refers to
uj−uj′ ≥ 0 if nodes j and j′ are not adjacent. Thus, any monotonicity relation ui−uj′ ≥ 0
between non-adjacent nodes, although not included in (M), is implicitly presented in (M)
by a chain of constraints involving adjacent nodes only.

Fig. 10 (left) depicts the solution produced by the hybrid mixed finite element method
(HMFEM). This figure shows spurious oscillations resulting in negative values of C, see
Fig. 11 (left). The minimal value is close to −0.31, see Table 3. The same table presents
the minimal and maximal values for all the produced solutions. The solution to problem
(1M) recovers the monotonicity completely and removes the oscillations. However, it still
contains negative values, see Fig. 11 (right). Table 3 shows that, at the monotonicity
recovering stage, the most severe violation of the non-negativity condition is reduced by
one order of magnitude. The postprocessed solution shown in Fig. 10 (right) is non-
negative, meets the conservativity requirement and retains the recovered monotonicity.

23



Γ1 Γ0

Figure 9: Computational domain and grid for Problem 2.

Figure 10: Solutions to Problem 2: HMFEM (left), monotonicity recovering (center),
postprocessed (right).

Table 4: CPU time in seconds for HMFEM and the postprocessing.

number of HMFEM postprocessing
unknowns time time
10240 0.37 0.03
40960 1.51 0.15
163840 7.20 0.50
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Figure 11: Location of negative concentrations in the solutions to Problem 2: HMFEM
(left) and monotonicity recovering (right).

Table 4 enables comparison of the CPU time required for running the HMFEM solver
and the postprocessing algorithm. It shows how the time scales with the number of un-
knowns. One can see that the postprocessing is much faster than HMFEM. Moreover,
the postprocessing grows almost linearly with the number of unknowns, and it is approx-
imately one order faster than HMFEM.

5 Conclusions

We have developed a computationally efficient procedure of postprocessing FE solutions.
It is aimed at recovering the monotonicity that may be partially lost in the available FE
solution. The postprocessed solution satisfies the maximum principle and the conserva-
tivity condition. As it has been shown, it also retains the accuracy of the discrete FE
approximation. The quality of the recovered monotonicity depends on how completely
constraints (M) model the monotonicity. Our examples show how some properties of
the original problem, like a symmetry of the expected solution, can be exploited for con-
structing constraints (M), but we can not offer any universal procedure. Nevertheless, our
monotonic smoothing can be applied in subdomains where it is still possible to establish
monotonicity relations.
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