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Abstract

Motion analysis deals with determining what and how activities are being per-
formed by a subject, through the use of sensors. The process of answering the
what question is commonly known as classification, and answering the how
question is here referred to as characterization. Frequently, combinations of in-
ertial sensor such as accelerometers and gyroscopes are used for motion analy-
sis. These sensors are cheap, small, and can easily be incorporated into wearable
systems.

The overall goal of this thesis was to improve the processing of inertial sen-
sor data for the characterization of movements. This thesis presents a frame-
work for the development of motion analysis systems that targets movement
characterization, and describes an implementation of the framework for gait
analysis. One substantial aspect of the framework is symbolization, which trans-
forms the sensor data into strings of symbols. Another aspect of the framework
is the inclusion of human expert knowledge, which facilitates the connection
between data and human concepts, and clarifies the analysis process to a hu-
man expert.

The proposed implementation was compared to state of practice gait analy-
sis systems, and evaluated in a clinical environment. Results showed that expert
knowledge can be successfully used to parse symbolic data and identify the dif-
ferent phases of gait. In addition, the symbolic representation enabled the cre-
ation of new gait symmetry and gait normality indices. The proposed symmetry
index was superior to many others in detecting movement asymmetry in early-
to-mid-stage Parkinson’s Disease patients. Furthermore, the normality index
showed potential in the assessment of patient recovery after hip-replacement
surgery. In conclusion, this implementation of the gait analysis system illus-
trated that the framework can be used as a road map for the development of
movement analysis systems.
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Chapter 1
Introduction

1.1 Motivation

Human motion analysis, in this thesis simply referred to as motion analysis,
is a general term regarding the automatic description and/or understanding
of human movements using sensors. From a technological point of view, mo-
tion analysis enables the development of innumerable applications, from com-
puter graphics [92] to human-computer interaction [60] to health-related tele-
monitoring applications [70], [32].

Motion analysis in health-related tele-monitoring applications is typically
concerned with activities of daily living (ADLs), which reflect the functional
status of the patient and his/her ability to care for himself/herself indepen-
dently. ADLs encompass everyday activities including personal hygiene, nu-
trition, leisure, ambulation, work, and homemaking. The ability to walk from
place to place, in particular, greatly influences the quality of life of a subject. In
addition, certain walking characteristics reflect the physical [4] [18] and cog-
nitive [31] [69] condition of patients. Therefore, gait analysis is an important
aspect of motion analysis in health-related applications.

Motion analysis can be achieved through the use of fixed and/or wearable
sensors. Fixed sensors are used to equip objects or structures surrounding the
patient, usually in the patient’s home. Wearable sensors, on the other hand,
can gather information about the subject’s movements independently of the
environment. Most commonly, wearable systems are a combination of inertial
sensors such as accelerometers and gyroscopes. Wearable systems in general,
and inertial sensors in particular, are extremely important tools for motion and
gait analysis, especially in health-related tele-monitoring applications. They are
cheap to produce and maintain, unobtrusive so as not to interfere with daily
life, and non-invasive in terms of privacy.

The main goal of motion analysis systems, in particular for health-related
tele-monitoring applications, is to answer one or both of the following ques-
tions:
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Walking 

Walking slowly holding bag 

Walking briskly 

CLASSIFICATION 

CHARACTERIZATION 

 

CHARACTERIZATION 

Figure 1.1: This figure illustrates the difference between classifying an activity as “walk-
ing”, and characterizing that activity as “walking briskly” or “walking slowly holding
a bag”.

1. What activity is being performed?

2. How is the activity being performed?

The process of answering the what question is commonly known as clas-
sification. Answering the how question will be referred to as characterization.
The main distinction between these two tasks is that classification groups to-
gether different instances of a movement and generalizes them into an activity.
Whereas characterization aims at distinguishing the different instances or per-
formances of one particular activity. Figure 1.1 illustrates how classification
groups together the different performances of the movement under the activity
“walking”. Characterization on the other hand distinguishes between the dif-
ferent instances as, for example, “walking briskly” or “walking slowly holding
a bag”.

Activity classification can give great insight into the overall wellbeing of a
subject. Knowing how long the subject sleeps every night or how often he/she
cooks himself/herself a meal is important when making decisions about care or
treatment. Activity characterization, however, can provide more detailed infor-
mation about the subject’s physical and cognitive condition. A sudden decrease
in walking speed or a shaking hand while cooking may be early symptoms of
more serious health conditions.

Although many works have addressed activity classification, little attention
has been paid to movement characterization. This thesis addresses the gen-
eral problem of movement characterization using inertial sensors. A method
based on symbolization of sensor data and the inclusion of expert knowledge
is proposed. In particular, a gait analysis application is used as a platform for
exploring the characterization problem, the role of expert knowledge in mo-
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tion analysis and the proposed solution. This application was chosen due to its
importance in the assessment of patients.

1.2 Research Questions

1.2.1 Motion Analysis Research Questions

The majority of motion analysis systems target classification, which is typically
achieved using supervised machine learning methods, e.g. [3] [88]. These ap-
proaches have shown excellent results, however, one important characteristic
of supervised learning methods is that only a number of pre-defined activities
can be identified and represented. It is important to guarantee that unknown
activities also receive a representation so that new activities can be incremen-
tally added to the system’s database.

Another drawback of supervised machine learning methods is that the sys-
tem is a “black box” inside which decisions are invisible to the user. Super-
vised machine learning methods only incorporate expert knowledge as labels
in the training set. However, some unsupervised approaches have found that
the inclusion of explicit expert knowledge, in the form of hierarchical decision
structures, can contribute to the development of motion analysis systems [54]
[21].

A few methods have tried to characterize movements using supervised ma-
chine learning methods by creating different activity classes such as walking,
walking ascending stairs, walking slowly [89]. This type of characterization,
however, does not allow for a quantitative comparison of movements between
different subjects or before and after treatment. Another group of methods
uses limb orientation tracking to describe movements in 3D space, and then
compare movement kinematics between different subjects or different perfor-
mances, e.g. [20]. Unfortunately, these methods require several sensor nodes
and their description of movements relies on joint angles and angular veloci-
ties, which are difficult to interpret without visualization. Few efforts have been
directed at creating data representations that facilitate characterization.

Based on the above mentioned issues, the following research questions were
addressed in this thesis:

1. How to organize different approaches to movement analysis, and define
characterization and classification as independent problems?

2. How can symbolization be used as an intermediate representation for
motion data, which facilitates movement characterization?

3. How can expert knowledge be used to parse sensor data and facilitate its
interpretation?
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1.2.2 Gait Analysis Research Questions

Although motion and gait analysis systems are not usually considered side by
side, gait is a typical human motion, and the motion analysis research question
mentioned above also hold for gait analysis system. In addition to those, gait
analysis systems have some specific characteristics that were explored in the
thesis.

The majority of gait analysis systems using inertial sensors have focused
on acquiring spatio-temporal variables such as cadence, stride length, speed,
e.g. [10] [72] [75]. This information can then be used to compute spatio or
temporal characterization variables such as symmetry [66] [91] or stride-to-
stride variability [34]. Although spatio-temporal information is useful, it is not
enough to fully characterize a patient’s gait. It is possible that two subjects
present the same spatio-temporal characteristics but very different kinematic
characteristics.

Another common factor to most inertial gait analysis systems is that they do
not generalize easily to different patient groups or different types of walk. One
simple example relates to peak-detection methods used to detect heel-strike and
toe-off events, e.g. [40] [70]. These methods do not perform well at very slow
walking speeds because the peaks in the sensor data are not as prominent.

Based on the issues identified withing gait analysis applications using inertial
sensors, the following is a list of the gait-related research questions considered
in this thesis.

1. How can symbolization improve the characterization of different gait pat-
terns?

2. Can signal symbolization and the addition of expert knowledge help gen-
eralize gait analysis to different walking patterns?

1.3 Research Approach

This thesis organizes motion analysis methods with respect to data represen-
tation at different abstraction levels, as illustrated in Figure 1.2. At each step
of the information pyramid, the quantity of data decreases and the complexity
of the information increases. At the lowest level of abstraction is the data it-
self, e.g. an acceleration signal. At the information level, the original data may
be represented by certain characteristics of the signal such as frequency con-
tent, peaks, or other features. At the knowledge level, the system can relate
the original data to certain activities or movements, e.g. walking, sleeping. At
the wisdom level, the system can infer abstract concepts about these activities
or movements such as “this relates to the subject’s morning routine” or “the
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Figure 1.2: Data representation at different levels of abstraction. At each layer of the
pyramid, from bottom to top, the complexity of the information increases from data, to
information, to knowledge to wisdom.

patient is not feeling well”. From this perspective, motion analysis systems are
collections of algorithms that transform the data from one abstraction level to
the next. Based on this data representation structure, a framework was created
to address the issues mentioned previously.

The proposed framework is based on symbolization of the sensor signal.
The main idea behind this symbolic approach is that the original signal can be
segmented into building blocks. These building blocks can then be combined
to represent different movements or activities, similarly to how letters in the
alphabet are combined into words.

Potential solutions to the general problems highlighted previously were in-
vestigated within the smaller domain of gait analysis. Gait analysis was chosen
because it is a well-defined task of great importance to health-related applica-
tions. Furthermore, walking is a well-understood movement and the periodicity
of this activity facilitates its analysis.

The steps taken to address the proposed research questions were:

1. Proposal: To create a framework for organizing motion analysis approaches
with respect to different levels of data abstraction, identify the shortcom-
ings of current approaches and position the symbolic approach within the
framework;
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2. Technical assessment: To investigate the feasibility and usefulness of the
proposed approach within the field of gait analysis;

3. Applied assessment: To investigate the expressiveness and usefulness of
the symbolic representation in a clinical environment.

1.4 Contributions

The main contributions of this thesis can be summarized as follows:

1. The introduction of a general framework that organizes and situates dif-
ferent motion analysis methods with respect to data at different levels of
abstraction.

2. The proposal of a symbolic approach for motion analysis within the
framework. The approach enables general representation of movements,
motion characterization independently of classification, as well as the in-
clusion of expert knowledge.

3. A proof of concept implementation of the framework for motion analysis,
which specifically addresses gait analysis. The proposed approach was
used to identify and detect the phases of gait; expert knowledge was used
to parse symbolic sensor data; and walking pattern characterization was
achieved independently of classification or labeled data.

4. The introduction of a symbol-based similarity measure that was used
to assess both movement symmetry and gait normality. This measure of
symmetry was shown more effective than other measures in identifying
Parkinsonian symptoms. The symmetry and normality measures corre-
lated well with 3D kinematic data. The normality measure also showed
potential for assessing patient recovery in a clinical environment.

5. The evaluation and comparison of different symbolization techniques.
Temporal segmentation and quantization methods were evaluated based
on compression capabilities and loss of information. Results indicated
that temporal segmentation methods, if properly initialized, can segment
periodic signals better than quantization methods. However, quantization
is more consistent and reliable on a large variety of signals.
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1.5 Publications

Summary

This thesis is mostly based on five selected publications. The following is a sum-
mary of how the included publications relate to each other and to the research
questions addressed in this thesis.

1. In Paper I the validity of the framework was explored within a gait anal-
ysis application. The symbolic approach was used to identify and detect
gait events and also derive a new measure of gait symmetry. This paper
describes how prior knowledge can be incorporated into the analysis in
order to parse the symbolic data. Furthermore, the proposed measure of
symmetry was shown more informative than traditional spatio-temporal
symmetry measures.

2. Propelled by positive initial results, Paper II further investigated the prop-
erties of the proposed symmetry measure in comparison to six other com-
monly used symmetry indices. The main objective of this study was to
explore the advantages of the symbolic representation for clinical appli-
cations. The chosen application was a measure of movement symmetry
in early Parkinson’s Disease patients. Results showed that, on the data
used in this study, the proposed symmetry measure was more informative
and more sensitive to Parkinsonian symptoms. Another advantage of the
proposed method was that it could be used to describe the symmetry of
both lower and upper limbs during walking.

3. A fundamental aspect of the suggested framework is symbolization. There-
fore, Paper III aimed at answering the question: what is the best way to
symbolize inertial sensor data? A brief comparison of three symbolization
methods on 47 different signals was conducted. Although this study did
not settle the question, it provided valuable insight into the advantages
and disadvantages of different symbolization methods.

4. Inspired by the symmetry measure, a measure of gait normality was cre-
ated based on the same symbol-based representation. This normality in-
dex compares the subject’s data to a reference data set of healthy gait
patterns. The goal of this normality measure was to provide a quality of
gait index that was easy to interpret and helpful in the assessment of pa-
tients. Paper IV reports the evaluation of both symmetry and normality
indices against 3D kinematic data.

5. The natural continuation was to investigate if these measures were in-
deed relevant and helpful in a real clinical environment. The symbolic
measures of symmetry and normality were used to evaluate the quality of
gait of hip-replacement patients. These two measures were also compared
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to quantitative and qualitative measures of patient recovery. This work is
reported in Paper V.

Appended Publications

Table 1.1 lists the five selected publications included in this thesis. The main
author of each paper is underlined.

Table 1.1: List of appended publications

Paper I A. Sant’Anna, and N. Wickström. A symbol-based approach to
gait analysis from acceleration signals: identification and de-
tection of gait events and a new measure of gait symmetry.
IEEE Transactions on Information Technology in Biomedicine,
14(5):1180-1187, 2010.

Paper II A. Sant’Anna, A. Salarian, and N. Wickström. A new measure
of movement symmetry in early Parkinson’s disease patients us-
ing symbolic processing of inertial sensor data. IEEE Transac-
tions on Biomedical Engineering, 58(7):2127-2135, 2011.

Paper III A. Sant’Anna, and N. Wickström. Symbolization of time-series:
an evaluation of SAX, Persist, and ACA. In Proceedings of
the 4th International Congress on Image and Signal Processing
(CISP), 4:2223-2228, 2011.

Paper IV A. Sant’Anna, N. Wickström, R. Zügner, and R. Tranberg. A
wearable gait analysis system using inertial sensors Part I: eval-
uation of measures of gait symmetry and normality against
kinematic data. In Proceedings of the International Joint Con-
ference on Biomedical Engineering Systems and Technologies
(BIOSTEC), 2012 (in press).

Paper V A. Sant’Anna, N. Wickström, H. Eklund, and R. Tranberg. A
wearable gait analysis system using inertial sensors Part II: eval-
uation in a clinical setting. In Proceedings of the International
Joint Conference on Biomedical Engineering Systems and Tech-
nologies (BIOSTEC), 2012 (in press). Received Best Student Pa-
per Award.
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Other Publications

Table 1.2 presents a list of related publications that will not be explicitly in-
cluded in this thesis because they are a subset of the work presented in the five
appended publications.

Table 1.2: List of related publications

A. Sant’Anna, and N. Wickström. A linguistic approach to the analysis of
accelerometer data for gait analysis. In Proceedings of the 7th IASTED
International conference on biomedical engineering, 2010

A. Sant’Anna, and N. Wickström. Developing a motion language: gait
analysis from accelerometer sensor systems. In Proceedings of the 3rd In-
ternational conference on Pervasive computing technologies for health-
care, pages 1-8, 2009

A. Sant’Anna, W. de Morais, and N. Wickström. Gait unsteadiness anal-
ysis from motion primitives. Gerontechnology, 7(2):204, 2008

1.6 Outline

The rest of the thesis is organized as follows. Chapter 2 introduces related
work in motion analysis, the symbolic approach and the proposed framework;
Chapter 3 introduces the gait analysis scenario, related work and the frame-
work implementation; Chapter 4 summarizes each appended paper; Chapter 5
discusses limitations and possible future research directions, summarizes and
concludes the thesis.





Chapter 2
Motion Analysis

Motion analysis is an important component of systems targeting health-related
applications such as assisted physiotherapy at home [78], computer interface
for disabled persons [60], automatic detection of falls in the elderly [85], among
many others. The goals of motion analysis may be generalized as classifying
movements and activities, or characterizing movements and activities.

Inertial sensors such as accelerometers and gyroscopes are a common and
appropriate choice of sensors for motion analysis systems. They are low cost,
small, non-invasive in terms of privacy and can be easily integrated in clothing
or garments such as watches and belts. In addition, most mobile phones are
equipped with a set of inertial sensors that can provide very cheap and ubiqui-
tous motion analysis systems, e.g. [13].

This chapter concerns motion analysis methods using inertial sensors. The
remaining of this chapter will review related works in motion analysis and
identify their shortcomings; discuss how the symbolization of sensor data may
help address such issues; and introduce a framework for motion analysis based
on symbolization.

2.1 Related Work

Inertial sensors such as accelerometers and gyroscopes have been shown ap-
propriate for measuring a variety of human movements, e.g. estimating limb
orientation [38], [20]; measuring body posture [84]; measuring energy expen-
diture [37]; detecting and interpreting gestures [41], [79]; activity and context
recognition [54], [42], [88]; among others.

Many techniques have been used to classify activities using inertial sensors.
The first step is usually feature extraction, where certain temporal and/or fre-
quency characteristics are extracted from the data. These features are then used
to classify activities, mostly based on supervised machine learning methods such

11
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as k-nearest neighbor [3]; hidden Markov models (HMM) [36]; artificial neural
networks (ANN) [3], [88]; support vector machines (SVM) [3], [88]. These ap-
proaches have shown excellent results. However, one important characteristic
of supervised machine learning methods is that the representation of activities
is only possible for a number of pre-defined activities, which have been previ-
ously studied and labeled. In addition, these methods are difficult to modify or
update. The addition of a new class of activities, for example, requires a new
data set and/or retraining of the entire system.

Another characteristic of most supervised machine learning methods is that
they result in a “black box” inside which decisions are made invisible to the
user. This is particularly troublesome for health-related applications, where un-
derstanding the reasoning behind a given decision is extremely important for its
validation. That is, knowing a patient has been judged unwell is not sufficient,
it is important to know that this decision was made based on, for example, lack
of sleep.

A few unsupervised approaches have also been investigated for activity
classification, such as hierarchical methods [54] [21] and self-organizing maps
(SOM) [43]. Hierarchical methods are binary decision structures consisting of
a number of consecutive nodes. These decision structures are designed based
on expert knowledge and manual inspection of training data. The classification
decisions are therefore transparent to the user. Nonetheless, the performance
of the system relies on the human expert who designs the decision tree. SOM
methods analyze and cluster the data based on feature similarities, without the
need for labeled training data. This procedure is useful for exploring and in-
vestigating characteristics of the data set, however, an extra supervised layer
is needed to achieve the complete classification task [43]. Hybrid models that
combine the expert knowledge of hierarchical models and the non-linear clas-
sification process of ANN have been shown to improve the performance of
activity classification systems [21]. A more detailed review of activity classifica-
tion methods can be found in the article by Preece et al. [67].

Some movement characterization has been attempted based on supervised
machine learning methods, by specifying activity classes such as walking, walk-
ing ascending stairs, walking slowly [89]. This type of pseudo-characterization,
however, does not allow for the comparison of movements between different
subjects, or before and after treatment. More accurate characterization may
be achieved by using limb orientation and tracking methods to describe move-
ments in 3D space, and then compare movement kinematics, e.g. [20]. These
methods, however, are relatively complex and make use of several sensor nodes.
In addition, the characterization of movements in the 3D space relies on the de-
scription of angles and velocities, which are difficult to interpret without visual-
ization. There is room for improving movement characterization methods. One
possible way to achieve this is to create a data representation scheme tailored
for characterization tasks, instead of going through 3D space and kinematic
information.
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2.2 Symbolic Approach

One way to address the challenges mentioned previously is to use a different
representation scheme for the data. That is, to transform the original motion
signal into something more versatile. One way to achieve this is through sym-
bolization, that is, to break-down the motion signal into elementary building
blocks. The analysis of the signal then investigates how these building blocks
interact with each other, and how they can be combined to express different
movements, similarly to how letters are combined to form words.

Symbolization is an efficient way of extracting information about the un-
derlying dynamics of time-series. Symbolic interval time-series, for example,
has been shown an appropriate data format for discovering temporal knowl-
edge that can be easily communicated to humans through linguistic expres-
sions [83], [59]. An important practical advantage of working with symbols
is that the efficiency of numerical computations is greatly improved through
compression. Furthermore, symbolic data is often less sensitive to noise in mea-
surements [19]. Another advantage of using time-series symbolization is that it
widens the pool of available data mining and analysis methods to include the
fields of text processing, bioinformatics, knowledge representation, among oth-
ers. In addition, there are many techniques that are only defined for symbolic
data such as Markov models, suffix trees, and decision trees [51].

Some works have already considered the use of symbolization for motion
analysis. Fihl et al. [24] represented video sequences of arm movements as
strings of primitive motion symbols. A probabilistic edit distance was then
used to measure the difference between a given string and known motion se-
quences. Guerra-Filho and Aloimonos [30] symbolized joint angle displacement
signals and created a context-free grammar for describing different activities
using symbols. Mörchen and Ultsch [59] measured a combination of symbol-
ized electromyography, inertial sensors and foot contact sensor signals from a
subject during in-line skating. The temporal relations between symbols were
characterized and a meta rule was derived to express, in words, what actions
were involved in the activity, based on the symbolized sensor data. So far, ex-
cept for the work described in this thesis, no symbolic approaches have been
introduced for movement analysis using only inertial sensors.

2.3 Framework

As mentioned previously, data may be represented at different levels of abstrac-
tion. One way to visualize the different abstraction levels is with the informa-
tion pyramid shown in Figure 1.2, where the refinement of the information
increases at each step, from data to information to knowledge to wisdom. The
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Figure 2.1: This figure illustrates how the sensor data may be manipulated in the framework from
one level of abstraction to the next, and how it corresponds to different abstraction levels in the
information pyramid. The framework consists of four general processes: symbolization, context
analysis, expert system and characterization.

framework described here is a suggestion on how to transform the data from
one level to the next, as illustrated in Figure 2.1.

The proposed framework consists of four general processes: symbolization,
context analysis, expert system and characterization. Symbolization creates an
intermediate data representation: symbols. The relationships between symbols
are investigated through context analysis. These relations may be expressed
through patterns, sequences of symbols, or rules. The expert system is respon-
sible for mapping patterns or symbols to human concepts or linguistic descrip-
tions of the system. Symbols and patterns can also be directly used to charac-
terize different aspects of the movement, independently of expert knowledge.

This thesis will focus on the first two layers of the framework pyramid in
Figure 2.1. The top two layers in the framework pyramid are only examples of
how the highest abstraction levels may be achieved. The purpose of this figure
is to provide a slightly more concrete visualization of how different framework
processes relate to each other and to the different abstraction levels of the in-
formation pyramid.
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2.3.1 Example

The following is a very simple example illustrating the different processes in the
framework. Imagine that a patient’s activities are to be monitored after surgery
in order to determine how active the patient is during recovery. The patient
can be monitored using a 1-axis accelerometer attached to a belt. The static
posture of the subject can be easily extracted from the accelerometer based on
whether the gravitational acceleration component is parallel or perpendicular
to the accelerometer axis [81].

The sensor data is therefore an acceleration signal. The symbolization of
the signal can be achieved by segmenting the signal into static and dynamic
activity periods, and identifying moments when the patient is lying down. The
original acceleration signal can then be converted into a temporal sequence of
symbols relating to “lying-in-bed” or “out-of-bed”. This corresponds to the
bottom layer in the framework pyramid in Figure 2.1.

The second layer in the framework pyramid in Figure 2.1 can be divided
in two. The right side relates to processes that incorporate expert knowledge,
namely context analysis and expert system, whereas the left side deals with
characterization.

Context analysis identifies patterns or structures in the symbolic data. In
this example, patterns may be certain sequences of “lying-in-bed” and “out-of-
bed” that repeat daily. Perhaps the symbolic data reveals that there is always at
least one instance of “out-of-bed” after 9 am, and at least one long instance of
“laying-in-bed” after 1 pm.

Now that certain patterns of interest have been identified, their meaning
may be determined by including expert knowledge. It may be known for exam-
ple, that the patient normally has lunch some time between 11:30 am and 1 pm.
It may also be known that a nurse or family member visits the patient for at
least one hour every afternoon. The expert system is the process that makes the
connection between patterns in the symbolic data and expert knowledge. This
connection may result in detecting “out-of-bed” symbols that indicate “lunch”
or “with-carer”. At this level of abstraction the data conveys information about
the patient’s daily activities.

The left side of the second layer in the framework pyramid in Figure 2.1 con-
verts symbols to information through characterization. This process typically
quantifies certain aspects of the symbolic data. In this example, characterization
could be a simple accumulation of the time spent “out-of-bed” to determine on
average how many hours the patient is active every day. This characterization
of the patient’s activities can be used to compare the patient’s well-being before
and after treatment, or determine the rate of recovery of the patient.

The third layer in the information pyramid in Figure 2.1 is concerned with
converting information into knowledge. One common way to achieve this is
through classification. In this example, one possibility would be to determine
whether or not the patient is in good health. This could be decided based on
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how much time he/she spends out of bed or how far from a typical day he/she
is having.

The last layer in the information pyramid in Figure 2.1 transforms knowl-
edge into expertise. One possible way to achieve this is through data mining.
In this example, data mining could be used to determine how active the patient
must be in order to recover as soon as possible. This level of understanding
uncovers certain basic principles or properties of the system under study.

2.3.2 Discussion

Note that in this framework, as opposed to previous motion analysis methods,
both classification and characterization may be achieved independently. The
position of these two tasks within the framework reflect the abstraction level of
the information they produce. That is, characterization conveys more detailed
information compared to classification, which in turn generalizes activities to a
higher level of abstraction. This does not mean that characterization is a sub-
problem of classification, nor that classification depends on characterization.
They are, in reality, two different and independent problems.

One of the most sensitive points of the framework is symbolization. It is the
basis for the framework, and it affects all subsequent steps. An ill-chosen sym-
bolization technique may cause chain reactions or accumulated errors through-
out the processes. Similarly to symbolization, a poorly constructed expert sys-
tem will not add any value to the framework.

Another important characteristic of the framework is that any signal can
receive a symbolic representation, independently of pre-defined features or ac-
tivities. The interpretation of symbols and refinement of information relies on
expert information. However, the absence of expert knowledge does not pre-
vent the characterization of movements nor the representation of movements
as symbolic strings.

The modular nature of the framework allows for several different imple-
mentations and combinations of methods. The overall system may be improved
incrementally by adding new methods or making small modifications. The ex-
pert system, in particular, can be incrementally grown to incorporate newly
discovered or more complex rules. The addition of expert knowledge means
that basic knowledge about the system does not have to be extracted from
data, but it can be directly incorporated by a human expert, without the need
to collect new data. Another advantage of the expert system is that it provides
an intuitive way to match sensor data to human concepts.
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2.4 Summary

The research gaps in motion analysis using inertial sensors can be summarized
as follows:

1. The majority of motion analysis methods deals with classification only;

2. Most motion analysis systems, based on supervised machine learning
methods, are difficult to modify or update, and result in “black-box”
systems;

3. Characterization methods, based on reconstructing 3D kinematics, re-
quire many sensor nodes and are difficult to visualize and quantify.

Symbolization methods may help address the above mentioned issues by
providing a more versatile representation for the sensor data. Symbolization
may also help reduce the effect of noise and facilitate the recovery of important
movement dynamics from the data [19]. Symbolic representations of movement
have been successfully used for mocap [30], video [24], and electromyography
(EMG) [59] data. The framework proposed here concerns the use of a symbolic
representation for inertial sensor data.

The main characteristics of the proposed framework are summarized bel-
low:

1. The framework can characterize different movements independently of
classification;

2. The representation of data in the framework is not limited to pre-defined
activities;

3. The framework takes advantage of expert knowledge to parse the data
and extract relevant information;

4. The framework facilitates the interface between sensor data analysis and
human experts, by identifying the meaning of different symbols and by
making the decision process transparent.





Chapter 3
Gait Analysis

Walking is an important activity and can reflect several aspects of a patient’s
cognitive and physical health. Gait analysis is recognized as an essential part
of medical assessment for a number of conditions. However, it is not routine
practice due to costs involved in creating and using gait labs. Alternatively,
inertial sensors can be used in the development of cheap and wearable gait
analysis systems. Inertial sensors are cheap, and easy to embed into garments
such as shoes. They provide means for unobtrusive and continuous acquisition
of important gait information.

This chapter starts by illustrating the importance of quantitative gait anal-
ysis as a patient outcome. Then, background and related work are discussed.
Finally, an implementation of the proposed framework for gait analysis is pre-
sented.

3.1 Scenario

Imagine that the orthopedic ward of a hospital would like to quantitatively and
objectively measure the improvement of patients after hip-replacement surgery.
A quantitative measure of improvement enables, for example, the optimization
of resources on a patient by patient basis. The development of reliable patient
outcome indicators is also important for assessing the quality of care provided
at the ward [53]. In addition, this type of measurement supports patient em-
powerment [6], enabling patients to make decisions about their post-operative
treatment based on objective information.

Patient outcomes in hip replacement are usually measured with self-reported
questionnaires such as the SF-12 and the Oxford Hip Score [63]. These ques-
tionnaires subjectively evaluate the patient’s health status with respect to pain,
physical and mental condition. Many of the questions relate to mobility and
the ability to perform normal daily activities. Although pain and mental condi-
tion are subjective by nature, an objective outcome measure of mobility can be
developed using motion analysis.

19
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The level of mobility of a patient may be inferred from the activities he/she
performs or it may be derived from how well the patient walks. The first option
infers the level of mobility of the patient by monitoring, for example, how
many minutes the patient walks per day, or how much time the patients spends
in bed. This type of activity monitoring can help determine empirically the
level of mobility and the quality of life of the patient. The second option is to
assess the quality of the patient’s walk from more specific characteristics such
as speed, symmetry, balance, among others. This process is generally referred
to as gait analysis. The advantage of gait analysis over activity monitoring is
that it provides not only general information about how mobile the patient is
but also specific information on how the surgery has affected the patient’s gait.

Generally speaking, the goal of gait analysis can be to determine if a sub-
ject’s gait is pathological or normal. Or to assess how different a subject’s gait
is from a given reference, be that reference a previous assessment or a reference
of normality. These two tasks will be referred to as classification and character-
ization respectively.

3.2 Related work

3.2.1 Gait Analysis

Gait is usually studied in three different domains: kinetic, kinematic and spatio-
temporal. Kinetics investigates the forces involved in producing the movements
necessary for walking. These are usually calculated from ground-reaction forces
that are mapped upwards through lower limbs and joints based on biomechan-
ical models. Kinematics investigates the movement of the body through space.
The position and movement of each body segment is usually transformed into
angular displacements of joints over time. Spatio-temporal methods are based
on temporal variables such as cadence, and spatial variables such as stride
length. One can imagine that spatio-temporal variables can be acquired from
foot prints over time. Figure 3.1 illustrates the three different feature domains
for gait analysis.

The state of the art in gait analysis involves a combination of motion cap-
ture (mocap) system and force plates, which can measure kinematic and ki-
netic variables respectively during walking. From this dataset other kinetic,
kinematic and spatio-temporal variables may be calculated with the help of
biomechanical models. Unfortunately, such systems are expensive, difficult to
interpret, and cannot be made available to all patients [77]. As an alternative,
inertial sensors may be used to create cheaper, wearable gait analysis systems.
Inertial systems are relatively cheap, and can be easily deployed independently
of the environment. They are not as accurate as mocap systems but can provide
valuable quantitative information to aid patient assessment. In addition, they
may be used to continuously monitor patients at home.
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Figure 3.1: The different feature domains for gait analysis: kinetic, kinematic and spatio-
temporal domains.

3.2.2 Inertial Sensors Systems

The several different approaches to gait analysis using inertial sensors may be
organized according to the type of information they convey: spatio-temporal or
kinematics. Kinetic information cannot be acquired with inertial sensors.

The most common inertial gait analysis systems described in the literature
aim at recording spatio-temporal variables. Many studies have found that in-
ertial sensors can provide valid and reliable measures of phases of gait [45]
[29]; walking speed, cadence, stride length and other spatio-temporal parame-
ters [72] [16]; as well as symmetry and stride-to-stride regularity [75]. Although
spatio-temporal information can be very useful, it does not represent the sub-
ject’s gait pattern as a whole [17].

The second group of inertial systems encompasses those that are able to ex-
tract kinematic information such as joint angle progressions, segment rotations
and accelerations, e.g. [20], [25], [23]. These systems can provide an inexpen-
sive alternative to in-lab 3D gait analysis. However, proper training and experi-
ence are required for interpreting this kinematic information. In addition, these
systems require a larger number of sensors and are too cumbersome to be used
for extended periods of time.

Alternatively, less obtrusive systems have been developed for measuring the
kinematics of the body’s center of gravity instead of the kinematics of lower
limbs. These systems directly measure more general characteristics of gait such
as gait symmetry [28], gait regularity [57], and balance [2], [55]. These general
characteristics of gait are usually not enough for determining the cause of a
subject’s gait abnormality, but they are easy to interpret and can be used to
monitor the subject’s progress and recovery.



22 CHAPTER 3. GAIT ANALYSIS

A factor common to most of these methods is that they are tailored to
specific applications and do not generalize easily. For example, many spatio-
temporal methods use peak detection for determining heel-strike and toe-off,
e.g. [70], [40]. This works very well when subjects walk at normal speeds, how-
ever, this method might not be appropriate for measuring frail elderly subjects
or surgical patients who walk very slowly and shuffle their feet. Another ex-
ample can be found among kinematic methods that combine acceleration and
gyroscope data to determine the angular position of limbs, e.g. [20]. These
techniques are constrained to moments when the acceleration is low, normally
during stance. This works well for walking but might not work for running.

One reason why most methods cannot be easily generalized is because they
incorporate expert knowledge implicitly as ad hoc processing or in biomechan-
ical models. It is possible that by explicitly incorporating expert knowledge, the
system can automatically adapt to new data sets or new applications.

Incorporating expert knowledge explicitly can also make systems more trans-
parent to clinicians. Very often the decisions taken by classification systems, or
the variables used to characterize gait patterns, are only understood by the cre-
ator of the system or clinicians experienced in gait analysis. The acceptance of
new gait analysis systems, by healthcare staff and patients, will be greater if
they are intuitive to use and if results are easy to understand.

3.3 Implementation

Motivated by the scenario presented at the beginning of this chapter, the pro-
posed framework was used to create a gait analysis system. In addition to the
general issues explored by the framework; i.e. the characterization of move-
ments independently of classification, and the use of expert knowledge to im-
prove data analysis and interface with the user; the gait analysis system was
also concerned with characterizing gait with information additional to spatio-
temporal variables, and generalizing its analysis to very different walking pat-
terns.

Another requirement was that the system should contain the minimum
number of sensors possible, which should be quick and easy to wear. A small
number of sensors is important in order not to interfere with the patient’s be-
havior. It also facilitates usage and ensures better compliance from both patient
and staff undertaking the analysis. Ease of use is important to ensure that the
operating staff does not require complex additional training.

Throughout the five appended papers, three sensor positions were investi-
gated: the outside of each shin just above the ankle, Figure 3.2; the waist line
immediately below the navel, Figure 3.3; and the dorsum of each wrist, Fig-
ure 3.4. The waist sensor could have been placed on the patient’s lower back.
However, due to a parallel study where patients wore one sensor node continu-
ously throughout the day, it was determined that the frontal position was more
comfortable for the patients, who spent a lot of time in bed.
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Figure 3.2: Ankle sen-
sor position

Figure 3.3: Waist sensor posi-
tion

Figure 3.4: Wrist sen-
sor position

In addition, different combinations of inertial sensors were used. The sensor
nodes varied from 3-axis accelerometers, to combinations of 3-axis accelerom-
eters and 3-axis gyroscopes, to combinations of 1-axis and 2-axis gyroscopes.
In order to cope with eventual changes in sensor orientation, and to make the
analysis of the sensor data more uniform, sensors with more than one axis
had their data combined into a resultant signal. That is, each 3-axis sensor, ac-
celerometer and gyroscope alike, had its data converted into a unidimensional

signal according to the formula Sres =
√
S2
axis1 + S2

axis2 + S2
axis3. Similarly,

each 2-axis sensor had its data converted to Sres =
√
S2
axis1 + S2

axis2. These
resultant signals were then used in the data analysis.

The remaining of this section discusses how the different parts of the pro-
posed framework were implemented in the gait analysis system, namely sym-
bolization, context analysis, expert system, and characterization.

3.3.1 Symbolization

Symbolization of the continuous sensor data is the foundation for the proposed
framework. This is the process represented at the bottom of the framework
pyramid, as illustrated in Figure 3.5.

An unavoidable part of the symbolization process is the segmentation of the
signal. Time-series segmentation can take place in two domains: the amplitude
or the temporal domain. We will refer to the former as quantization, and to
the latter as temporal segmentation. Figure 3.6 shows a very simple example
of each type of segmentation. Symbolization after quantization is very straight
forward, an unique symbol is assigned to the segments in each quantization
interval. Symbolization after temporal segmentation involves clustering similar
segments into classes, which are then assigned a symbol.
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Figure 3.5: The symbolization process within the framework. Symbolization depends on
segmentation, which can be achieved through temporal segmentation or quantization.

Several segmentation methods were investigated during the course of this
research. In Paper I, a temporal segmentation method was used. The resultant
acceleration signal was segmented according to a piecewise linear approxima-
tion. Each linear segment was identified by a group of features and these feature
vectors were k-means clustered into symbol classes. Although this approach
presented good results, the clustering method was too dependent on initializa-
tion and hard to replicate.

In Paper II, a quantization approach was chosen in order to overcome the
clustering issue. The Symbolic Aggregate Approximation (SAX) method [51]
was used with good results. The issue with SAX is that it assumes that the
signal is normally distributed, and the quantization breakpoints were chosen
based on equiprobable partitions of a normal distribution.
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Figure 3.6: This simple example illustrates the main differences between quantization
(A) and temporal segmentation (B). The breakpoints of quantization are in the ampli-
tude domain, and each interval may be assigned a symbol. The breakpoints of temporal
segmentation are in the temporal domain, and similar segments must be clustered before
they can be assigned a symbol.

In order to investigate the properties of quantization and temporal segmen-
tation methods, a comparative study was undertaken, and reported in Paper
III. The hypothesis was that periodic signals were better segmented along the
temporal domain whereas random signals were better segmented along the am-
plitude domain. Two quantization methods and one temporal segmentation
method, developed by other research groups, were investigated on 47 distinct
signals.

In addition to SAX, PERSIST was chosen as a quantization method [58].
PERSIST tries to identify different states of the system under observation and
assign them different symbols. This is achieved by segmenting the signal so
as to optimize the persistence of the resulting symbols. This measure of per-
sistence is based on the Kullback-Leibler divergence [44] of the marginal and
self-transition probability distributions of the resulting symbols.

The temporal segmentation method chosen for comparison was the Aligned
Cluster Analysis (ACA) [90]. This is a method for unsupervised clustering of
temporal patterns in mocap data. ACA is an extension of kernel k-means clus-
tering [73] that allows for variable numbers of features in each observation. In
addition it uses a distance metric based on Dynamic Time Alignment Kernel
(DTAK) [76], which is robust to noise and invariant to the speed of the action.

As suggested by the hypothesis, ACA performed extremely well on certain
periodic signals. However, its overall performance was inconsistent due to large
variability in the segmentation and clustering parts of the method. Similarly,
SAX outperformed the other methods on some low periodicity signals, but not



26 CHAPTER 3. GAIT ANALYSIS

on all signals of the same group. SAX and PERSIST performed very similarly
but SAX presented slightly better results overall.

Based on SAX, a new quantization method was introduced in Paper IV
and again used in Paper V. Similarly to SAX, the breakpoints were chosen so
as to produce equiprobable symbols. However, the signal distribution was not
considered Gaussian but estimated based on the a posteriori distribution of the
signal. The motivation for introducing this new segmentation method was that,
although SAX presented some clear advantages over the other methods, the dis-
tributions of the sensor signals were very different from a Normal distribution.

Although several techniques have been investigated, by no means have all
options been exhausted. Many other symbolization techniques are possible,
such as quantization method based on signal statistics, or temporal segmenta-
tion methods based on motif discovery.

3.3.2 Context Analysis

Context analysis is one of the processes represented on the right side of the
framework pyramid as shown in Figure 3.7. This part of the framework in-
vestigates, guided by expert knowledge, how symbols or sequences of symbols
relate to other symbols. The development of this part of the framework is re-
ported in Paper I, where three known aspects of gait were used for this analysis:
periodicity, the relative duration of stance, and the right-side-left-side relations
in walking.

Periodicity was used to identify potentially interesting symbols that corre-
sponded to certain events in the signal. The hypothesis was that symbols that
occur approximately once every cycle have a higher chance of corresponding
to relevant aspects of gait. Based on the overall periodicity of the signal and
symbols, relevant symbols were identified.

The following step was to determine whether any of these relevant sym-
bols could correspond to heel-strike (HS) or toe-off (TO) events. For that, pairs
of relevant symbols were created as potential HS and TO representatives. For
each pair, stance times and stride times were calculated throughout the signal
as if these symbols really corresponded to HS and TO. If the calculated av-
erage stance time was more than half of the average stride time, the pair was
considered a plausible candidate for HS and TO.

The right-side and left-side context analysis investigated if these plausible
pairs of symbols also fulfilled the requirement that swing on one foot can only
be accompanied by stance in the opposite foot. The pairs of symbols for which
this rule held, were considered good candidates and fed into the expert system.

A similar approach to context analysis was also explored in another article
[71]. The difference to this previous work is that the context analysis described
in Paper I was done automatically. Guerra-Filho and Aloimonos [30] also ex-
plored relationships between symbols by looking at the frequency with which
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Figure 3.7: Context analysis and expert system processes within the framework. Context
analysis uses expert knowledge to identify relevant symbols in the data. The expert
system relates these symbols to gait events such as heel-strike and toe-off.

certain sequences appeared. These are only some examples of the many possible
approaches to context analysis.

3.3.3 Expert System

The expert system is the second process along the right side of the framework
pyramid in Figure 3.7. Although some expert knowledge can be used to guide
context analysis, the expert system is the process that explicitly incorporates
expert rules and helps link certain symbols or patterns to human concepts.

In Paper I, the knowledge reflected in the expert system was based on the
following known facts about gait:

1. Approximately 60% of stride time corresponds to stance, the remaining
40% corespond to swing;
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2. Toe-off events are reflected in the resultant acceleration as peaks;

3. Heel-strike events are reflected in the resultant acceleration as a valley
and large variance;

4. The foot moves the least at mid-stance.

Each of these rules was coded as fuzzy membership functions that repre-
sented the degree to which the rule holds for each pair of potential HS and TO
symbols [27]. Each possible combination of HS and TO symbols was evaluated
with respect to all rules using the corresponding fuzzy membership functions.
Results were multiplied to give an estimate of how well a particular combina-
tion of HS and TO symbols held for all rules. The combination with the highest
value was chosen as the most adequate symbolic representation for HS and TO.
It is worth noting that this same implementation successfully detected HS and
TO on very distinct walking patterns; i.e. normal walk, slow walk and limping.

The expert system approach explored here is very simplistic. Commonly
expert systems are a collection of if-then rules, e.g. [86]. Fuzzy logic can be
used to incorporate uncertainty into the rules [62]. The reader is referred to the
article by Liao [50] for an review of expert systems.

3.3.4 Characterization

Characterization is the process represented on the left side of the framework
pyramid as illustrated in Figure 3.8. This is the general process of extracting
movement information from the symbolic data. In gait analysis, characteriza-
tion may involve aspects of coordination, stride-to-stride variability, gait sta-
bility, gait symmetry, among other measurements. In this thesis, gait symmetry
and gait normality were investigated.

In Papers II, IV, and V, a measure of similarity between two symbolic strings
was used. This similarity measure was based on histogram distributions of sym-
bol periods or symbol transition periods. Symbol (transition) period histograms
capture the frequency with which two consecutive occurrences of the same sym-
bol take place x seconds apart, for many values of x. Symbol (transition) period
distributions are different from signal distributions, which capture the proba-
bility of a particular symbol S occurring in the symbolic string.

This similarity measure was used to calculate gait symmetry and normality.
Symmetry is the comparison between the movements of the right and left limbs.
It is an important measure of gait and can be used to assess several physical and
cognitive conditions, e.g. stroke [1] [64]; degenerative diseases [49]; prosthetics
[80]; injury [4] among others. Normality, by contrast, is the comparison of
a subject’s gait against an external reference. And it is a general indicator of
the general quality of gait of a patient [9] [74]. Very few methods have been
developed for the quantitative assessment of normality, and even fewer using
inertial sensors.
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Paper II describes how the histogram similarity measure provided a measure
of symmetry very sensitive to Parkinsonian symptoms, and more informative
than traditional temporal methods. In Paper IV, both symmetry and normality
indices were compared to 3D kinematic data. The same measures were then
used to estimate quality of gait for hip-replacement patients and compared to
quantitative and qualitative measures of patient recovery. This study is reported
in Paper V. In Papers IV and V, the proposed measures performed very well
with respect to the reference variables.

One of the advantages of this similarity measure is that the statistical nature
of the histogram representation helps cope with step to step variability [15]. In
addition, these symmetry and normality measures can be computed for any
gait patterns, independently of identifying gait events or other spatio-temporal
parameters. As a result, they can also be computed for upper limb movements
during walking.

3.4 Summary

Quantitative gait analysis can be used as a measure of recovery after surgery.
Quantitative patient outcome measures such as this are important for assessing
the quality of service at health care institutions, as well as empowering patients
to take control over their own health.

Many inertial sensor systems for gait analysis have been described in the
literature, their main shortcomings can be summarized as follows.

1. Methods are tailored to specific applications and cannot be generalized
easily;

2. Systems that use a small number of sensors typically only measure spatio-
temporal information or general center of mass kinematics;

3. Expert knowledge is only incorporated implicitly as biomechanical mod-
els or ad hoc data processing;

4. Results are frequently incomprehensible for clinicians not experienced in
gait analysis;

In order to address these issues, the proposed framework was implemented
targeting a gait analysis application. The implementation explored the pro-
cesses of symbolization, context analysis, expert system and characterization.
Some of the results achieved with this implementation are summarized below.

1. The symbolic approach and the framework were successfully used to
identify and detect the phases of gait;

2. Expert knowledge about gait was used to parse symbolic sensor data;
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Figure 3.8: The characterization process within the framework. Characterization was
achieved with a similarity measure based on histogram representations of symbol peri-
ods.

3. Walking pattern characterization was achieved independently of classifi-
cation;

4. The proposed method was able to generalize the data analysis to different
types of walk, namely normal walk, slow walk and limping;

5. A symbolic similarity measure was created to assess gait symmetry and
gait normality;

6. The gait analysis system showed good results when evaluated against 3D
kinematic data and when evaluated in a real clinical environment.



Chapter 4
Summary of Appended Papers

This section introduces the motivation, objectives and results of each individual
paper, and how they relate to the overall objectives of this thesis.

4.1 Paper I - A symbol-based approach to gait
analysis from acceleration signals: Identification
and detection of gait events and a new measure
of gait symmetry

Gait analysis can be used to help diagnose and assess the severity of neurolog-
ical conditions such as Parkinson’s disease [26], stroke [18] and cerebral palsy
[14]. It can also help predict the risk of developing dementia and mild cognitive
impairment in old age [11], or measure the recovery of a patient after trauma
[4]. Unfortunately, gait analysis labs are rarely available in underprivileged ar-
eas; and when available, are not used in the treatment of most patients due to
economic constraints [77]. In addition, in lab assessment cannot be used for
continuous day to day monitoring. The creation of cheaper, wearable gait anal-
ysis systems using inertial sensors can help fill these gaps and enable the routine
use of gait analysis for all patients.

The goal of Paper I was to propose a new method for processing inertial sen-
sor data in order to improve the performance of wearable gait analysis systems.
This method, based on the proposed framework, was used to detect the phases
of gait and determine gait symmetry. Gait-phase results were compared to a
peak-detection method, and symmetry results were compared to a traditional
temporal symmetry measure and a cross correlation symmetry measure.

The proposed method was based on symbolization of the sensor signal fol-
lowed by an analysis of the context and distribution of each symbol, see Ap-
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pendix A for more details. The data used in this study was collected using two
Shimmer® 3-axis accelerometer sensor nodes and a GaitRite pressure sensitive
mat [56]. Six healthy subjects were equipped with one sensor node attached to
each shin and asked to walk along the GaitRite in three different ways: nor-
mally, slowly, and with the right knee immobilized to simulate limping.

Results showed that the proposed method performed similarly to the refer-
ence method in detecting heel-strike and toe-off for normal and limp walk data.
However, the proposed method considerably outperformed the peak-detection
method for the slow walk data. This was probably due to the fact that accelera-
tion peaks are not as prominent during slow walking. The proposed symmetry
index outperformed the reference temporal symmetry measure and performed
similarly to the cross-correlation method. This is probably explained by the fact
that both the proposed symmetry measure and the cross-correlation method
make use of the entire acceleration signal, instead of only temporal informa-
tion.

Paper I contributed to this thesis by illustrating one possible implementation
of the framework applied to gait analysis. It showed how expert knowledge can
be used to parse and process the symbolic data, and that the proposed symbolic
approach is potentially more informative than previous methods.

4.2 Paper II - A new measure of movement
symmetry in early Parkinson’s Disease patients
using symbolic processing of inertial sensors
data

There is evidence that movement asymmetry is commonly observed in con-
junction with a decline in health status [87]. Parkinson’s Disease (PD) patients,
in particular, may exhibit very asymmetrical gait [8], and asymmetrical hand
movements [39]. Although many symmetry measures have been suggested in
the literature, there is still no accepted standard, which suggests that each ap-
plication may require a different optimal measure.

The objective of Paper II was to introduce, evaluate and benchmark a new
measure of movement symmetry based on inertial sensor data, appropriate for
early-to-mid-stage PD patients. The proposed method was compared to six
other symmetry measures.

The proposed symmetry measure was based on symbolization of the sensor
data and description of the signal in terms of period histograms, see Appendix
B for more detailed information. The data used in this study was acquired
using a portable data-logger (Physilog TM from BioAGM, Switzerland) with
four inertial sensors. Eleven subjects with idiopathic PD and 15 control subjects
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wore a 1-axis gyroscope attached to the anterior shank of each limb and a 2-
axis gyroscope attached to the dorsum of each wrist along pitch and roll axes.
Subjects walked up and down a 30-meter hallway for two minutes. All seven
symmetry measures were calculated for upper and lower limbs.

Upper limb symmetry results were more useful than lower limb results for
differentiating controls from patients. The proposed symmetry measure pre-
sented higher sensitivity and specificity than the other six methods. The pro-
posed method also showed better test-retest reliability, 55% better than second
best method.

Paper II showed that a symbolic representation of the data can potentially
improve the analysis of movement symmetry for early PD patients. This illus-
trates the usefulness of the proposed symmetry measure for clinical applica-
tions.

4.3 Paper III - Symbolization of time-series: An
evaluation of SAX, Persist, and ACA

Symbolic time-series analysis has been successfully used in many different ap-
plication areas to identify temporal patterns in experimental data. It can reduce
sensitivity to noise and greatly improve computational efficiency [19]. Symbol-
ization of time-series also enables the use of techniques developed for symbolic
data, e.g. data mining in databases [12], data mining on DNA sequences [48],
text mining [22], knowledge representation and reasoning [46], and compu-
tational linguistics [61]. An unavoidable part of the symbolization process is
segmentation. Time-series segmentation can be described in two domains: the
amplitude or the temporal domain. We refer to the former as quantization, and
to the latter as temporal segmentation.

The goal of Paper III was to determine if symbolization methods can be
chosen based on a priori signal characteristics; and test the hypothesis that
temporal segmentation is more appropriate for symbolizing periodic signals,
whereas quantization is better for segmenting random signals.

Two quantization methods, SAX and PERSIST, and one temporal segmen-
tation method, ACA, were investigated. These methods were used to symbolize
47 different unidimensional signals extracted from several public databases.
Signals were divided into four groups according to a measure of periodicity
based on auto-correlation. The symbolization methods were evaluated based
on information loss and compression factor for each of the four groups.

ACA considerably outperformed the quantization methods on one highly
periodic signal. However, results were less consistent for the remaining signals
in the same group. Similarly, SAX outperformed the other two methods on
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some non-periodic signals, but not on all signals in the same group. As a result,
the hypothesis was not confirmed statistically.

Paper III compared three different approaches to symbolization. It was evi-
dent from this study that the comparison of temporal segmentation and quan-
tization methods for symbolization is not trivial. Symbolization is normally ac-
companied by further analysis, and the evaluation of symbolization methods in
isolation might not reflect their behavior within the framework. Furthermore,
other signal characteristics and other performance variables may be more suc-
cessful in unveiling the characteristics of symbolization methods.

4.4 Paper IV - A wearable gait analysis system using
inertial sensors Part I: Evaluation of measures
of gait symmetry and normality against
kinematic data

Gait symmetry and normality are important measures that can aid the clinical
assessment of patients. Symmetry can be used to assess several physical and
cognitive conditions, e.g. stroke [1] [64]; degenerative diseases [49]; prosthetics
[80]; injury [4] among others. Whereas, normality is a general indicator of the
general quality of gait of a patient [9] [74]. Although a large number of symme-
try measures have been proposed, very few methods have been developed for
the quantitative assessment of gait normality.

The goal of Paper IV was to introduce a new measure of gait normality using
inertial sensors; and to evaluate this measure of normality, and a previously
proposed measure of symmetry, against reference measurements derived from
3D kinematic data.

Both normality and symmetry measures were calculated by symbolizing the
sensor data and creating symbol period histograms. Symmetry is a comparison
of the histograms from right and left sides, and normality is a comparison of
the subject’s histogram to a reference histogram. The data used in this study
was acquired using 3 Shimmer® sensor nodes, each containing a 3-axis ac-
celerometer and a 3-axis gyroscope; and a Qualisys 3D mocap system. Eighteen
healthy subjects were equipped with one sensor node on each shin, and one sen-
sor on the waist below the navel. Subjects were simultaneously recorded with
both systems while walking along a straight line in 3 different ways: normally,
slowly and limping. The mocap external reference data consisted of a previ-
ously acquired set of 34 randomly selected adult subjects presenting no known
pathologies. The inertial sensor reference data set was a small subset of the
subjects presenting most normal walk based on the kinematic data.
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Results showed that the proposed methods were well correlated to kine-
matic measurements. The best normality correlation was obtained between the
proposed normality measure, using the waist sensor data, and the kinematic
normality measure using all lower limb joints combined. The corresponding
Spearman’s rank correlation coefficient was r=0.81, p<0.0001. The best sym-
metry correlation was obtained between the proposed symmetry measure, using
shin sensors, and the kinematic symmetry measure considering all lower limb
joints. This Spearman’s rank correlation coefficient was r=0.84, p>0.0001.

The main contributions of Paper IV were the introduction of a measure of
gait normality using inertial sensors, and the validation of the proposed nor-
mality and symmetry measures against 3D kinematic data.

4.5 Paper V - A wearable gait analysis system using
inertial sensors Part II: Evaluation in a clinical
setting

Gait analysis is a tool that can aid the assessment of several conditions. Despite
many positive results, gait analysis is not routinely used in the clinical setting.
Several factors contribute to the low adoption of gait analysis as a clinical tool,
such as economic constraints [77], and difficulty in undertaking the analysis
and interpreting results. In addition, assessments are long and results are not
instantaneous. Wearable gait analysis systems based on inertial sensors can help
popularize the use of gait analysis. Quantitative measures of quality of gait, in
particular, may provide quick and intuitive outcome measures for clinical as-
sessment. However, much work is still needed in order to validate such systems
and show their usefulness.

The goal of Paper V was to investigate the validity and usefulness of previ-
ously introduced symmetry and normality measures, using inertial sensors, in
a clinical setting. These quantitative measures of symmetry and normality were
compared to traditional qualitative and quantitative patient outcomes after hip-
replacement surgery, in order to determine if these measures were adequate for
assessing the recovery of patients.

The data used in this study was acquired using 3 Shimmer® sensor nodes,
each containing a 3-axis accelerometer and a 3-axis gyroscope. Subjects were
equipped with one sensor node on each shin, and one on the waist below the
navel. Eleven hip-replacement patients were measured with the sensor nodes
while walking along a 10-meter walkway. The time to complete the walkway
and the number of steps taken were also recorded. This procedure was repeated
on the day of discharge from the hospital and approximately three months later.
Patients were also asked to answer (EQ-5D) questionnaires about mobility, self-
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care, daily activities, pain or discomfort, and anxiety or depression. The pro-
posed measures of symmetry and normality were compared to walking speed,
step length, length of stay at the hospital, as well as questionnaire results.

The questionnaire results showed that the largest differences before and
after surgery were related to pain or discomfort, mobility, and daily activities.
Normality values three months after surgery were better than at discharge for
all patients. Normality results also correlated well with step length and average
walking speed, two indicators of better walking ability. Normality measures
correlated particularly well with the daily activity section of the questionnaire.
That is, patients who reported being able to go about daily activities without
any problems had better normality measures than those that reported problems.
Another interesting result was that the number of days spent at the hospital
after surgery correlated well with improvement in normality. That is, patients
who had the largest improvement in normality from baseline to follow-up, had
spent less time at the hospital.

Paper V showed the potential of the normality measure to contribute to ev-
eryday assessment in a clinical environment. Measures were easy to understand
and correlated well with intuitive assessments of improvement. This shows that
the framework can contribute to the development of systems to be used in clin-
ical environments.



Chapter 5
Conclusions

This chapter highlights the main aspects of this work. First, research questions,
framework, and main results are summarized. Then, relevant issues related to
the framework and its implementation are discussed, and future research direc-
tions are highlighted. Finally, some general conclusions are drawn.

5.1 Summary

Research Questions

Motion analysis system should address both classification and characterization
of movements. This work considered new data processing and analysis meth-
ods for inertial sensor data as means of improving wearable motion analysis
systems. The main research gaps related to motion analysis were investigated
from two different perspectives, motion analysis systems in general, chapter 2;
and gait analysis systems in particular, chapter 3.

In order to address the identified research gaps, this thesis focused on the fol-
lowing general motion analysis research questions: How to organize different
approaches to movement analysis, and define characterization and classification
as independent problems? How can symbolization be used as an intermediate
representation for motion data, which facilitates movement characterization?
How can expert knowledge be used to parse sensor data and facilitate its inter-
pretation?

The following gait specific research questions were also investigated: How
can symbolization improve the characterization of different gait patterns? Can
signal symbolization and the addition of expert knowledge help generalize gait
analysis to different walking patterns?
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Framework

In order to address the afore mentioned research questions, a framework was
introduced in section 2.3, which organized motion analysis methods as se-
quences of tasks at different levels of abstraction. This allowed the definition
of characterization and classification of movements as independent problems.
In addition, the framework took advantage of expert knowledge in order to
parse sensor data and extract relevant information. The inclusion of expert
knowledge also facilitated the interface between sensor data analysis and hu-
man experts.

An important part of the framework was the symbolization of inertial sen-
sor data. This approach simplified the data representation by mapping the con-
tinuous signal to a limited set of symbols. This symbolic representation gave
rise, in particular, to a similarity measure, which was used for movement char-
acterization. In addition, the symbolic representation facilitated the correspon-
dence between expert knowledge and particular events recorded in the sensor
data.

Implementation and Results

A gait analysis application was chosen as a test bed for the framework. The
framework tasks related to symbolization, context analysis, expert knowledge
and characterization were implemented as part of a wearable gait analysis sys-
tem. This implementation was described in section 3.3.

In particular, a combination of symbolization, context analysis and expert
system was used to identify the phases of gait from accelerometer data, as ex-
plained in Paper I. The proposed method was compared to reference measure-
ments obtained with a pressure sensitive mat, and to a peak-detection method
described in the literature. Results showed that the proposed method was as
accurate as the peak-detection method, except for the slow walk data set, on
which the proposed method performed considerably better.

Based on symbolized inertial sensor data, a measure of signal similarity was
created. This measure was used to characterize movement symmetry in early-
to-mid-stage Parkinson’s Disease patients in Paper II. The proposed symmetry
measure was compared to four other indices based on discrete temporal vari-
ables, and two methods based on continuous signals. The symbol-based index
considerably outperformed the other methods. The proposed index presented
high sensitivity and specificity, and excellent test-retest reliability, almost double
that of the second best method.

The symbol-based similarity measure was also used to create a measure
of gait normality in Paper IV. This was the first normality measure based on
inertial sensor data described in the literature. Both symmetry and normality
measures were compared to state-of-the art kinematic measurements. Results
showed that the proposed indices were highly correlated to the kinematic ref-
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erence. Moreover, these indices were compared to patient-reported outcomes
and other measures of improvement obtained from a group of hip-replacement
patients in Paper V. Results showed that the proposed symbol-based indices
provided an assessment of quality of gait and level of recovery for this group
of patients.

5.2 Discussion and Future Work

Framework

The proposed framework is most vulnerable to two processes in particular:
symbolization and context analysis. As explained in section 3.3, symbolization
is the process that transforms continuous sensor data into strings of symbols.
Context analysis deals with understanding and describing the relationships be-
tween symbols or sequences of symbols.

Choosing an appropriate symbolization technique is an important and dif-
ficult task. Quantization and temporal segmentation aspects were explored in
Paper III. Nonetheless, the comparison of different symbolization methods is
not straightforward. In order to simplify the comparison in Paper III, the sym-
bolization process was isolated from the rest of the framework, and methods
were judged based on their signal reconstruction properties. However, the re-
construction of the signal is not the intended purpose of the framework. The
evaluation of different methods could have been very different if symbolization
had been considered as pre-processing, and results had been compared after
classification or characterization. The drawback of considering symbolization
within the framework is that there are numerous possible combinations of sym-
bolization and analysis methods, which cannot be comprehensively addressed.
For that reason, most works symbolize signals based on intuition and expert
knowledge about the signal and/or movement under observation. Methodolo-
gies for the evaluation of symbolization approaches should be further inves-
tigated. Future work may include the evaluation of symbolization techniques
combined with simple classification methods.

The context analysis reported in this thesis explored only very simple rela-
tionships between symbols, guided by expert knowledge. More complex and
automated context analysis approaches have been described in the literature.
Guerra-Filho and Aloimonos [30] worked with symbolized sequences of joint
angle kinematics obtained from 3D mocap data. Rules were created to describe
sequences of symbols based on how frequently certain pairs of symbols ap-
peared. The most common pair was represented by rule 1, the second most
common pair by rule 2, and so on. Rules could also be formed by grouping
symbols and rules. In this way, a hierarchical structure of rules was created to



40 CHAPTER 5. CONCLUSIONS

represent a symbolic string. Similarly, rules were derived to express movements
in terms of several concurrent joint angle sequences.

Another work, by Mörchen and Ultsch [59], investigated the temporal rela-
tions between different sources of concurrent symbolic signals in order to create
linguistic descriptions of an activity. Temporal relations between symbols were
expressed as interval relations such as “symbol A overlaps symbol B” or “sym-
bol A follows symbol B”. Groups of relations can be refined to express meta
rules or general descriptions that can be easily understood by human experts if
the meaning of each symbol is known. This method is very general and can be
used to describe combinations of different signals in a very intuitive way. Such
linguistic descriptions can easily be incorporated into the proposed framework.

Another common way of representing symbol sequences is using Hidden
Markov Models (HMM). Which can model an observable sequence (sensor
data) and estimate the most probable underlying states (movements) that gen-
erated such sequence. HMMs may be used to express relationships between
different symbols as well as represent typical symbol sequences. Many works
have used HMM for classification, but there is also potential for their use in
the characterization of activities. Metrics have been developed for measuring
distances or similarities between two HMMs [7]. These metrics may be used
to quantify differences between performances of a certain activity. One of the
challenges involved in using HMM is choosing an appropriate representation
of states. States are typically represented by statistics of features extracted from
the sensor data [82], [47], but they may also be manually constructed combi-
nations of features [36].

Implementation

The characterization of gait using inertial sensors may involve many different
types of measurements and variables, from kinematic and spatio-temporal do-
mains. This thesis focused on new measures of gait symmetry and normality.
These characterization variables were based on a measure of similarity between
two symbolic strings, which took into account mostly temporal characteristics.
Other measures of symmetry and normality can be derived from kinematic and
spatial variables such as stride length and joint angles, e.g. [17] [74]. However,
the acquisition of such spatial and kinematic variables requires the numerical
integration of accelerometer and gyroscope signals. A process susceptible to
accumulated measurement errors, due to the fact that inertial sensors are com-
monly affected by bias drift [52]. In addition, Kalman filter methods, typically
used to combine acceleration and gyroscope data into spatial information, are
also sensitive to drift errors that must be compensated for [68] [65]. Therefore,
mostly temporal variables were considered in this work, in order to minimize
the effect of drift errors and facilitate the manipulation of the data.

Throughout the five appended papers described in this thesis, different sen-
sor configurations were used depending on the resources available at the time.
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Papers IV and V, in particular, made use of both 3-axis accelerometers and
3-axis gyroscopes. Sensors nodes were attached to the subjects’ shanks and
waist as illustrated in Figures 3.2 and 3.3 respectively. The acceleration and
gyroscope data were processed independently and underwent the same analy-
sis. Results showed that, when using the symbolic approach, the accelerometer
sensors placed on the waist provided normality measures that correlated bet-
ter with the kinematic reference data; whereas the shank gyroscope sensors
provided better symmetry measures. Further investigations are needed to deter-
mine why this was the case, and if the preferred configurations would be the
same when comparing to other reference measurements.

In this thesis, shanks, wrists and waist were the preferred sensor positions.
However, other positions such as arms, thighs, chest and lower back have been
reported in other studies. Some studies have characterized gait patterns using
sensors placed on the lower back [2] [57], based on the assumption that this
location is closer to the body’s center of gravity. Recently, Atallah et al. [5]
investigated the effects of sensor position and feature selection on activity clas-
sification tasks using accelerometers. Their study concluded that optimal sen-
sor positions depend on the activities being performed by the subject. Other
important factors to consider, especially if the system is designed for long and
continuous use, are how comfortable it is to wear and how easy it is to put on.
Frequently, accuracy must be compromised for ease of use and comfort, due to
a reduction in number of sensors. The optimal system configuration is, there-
fore, difficult to evaluate. It depends not only on the accuracy of the system but
also on other practical aspects.

Applications

Another interesting characterization measurement is gait variability, for it “of-
fers a complementary way of quantifying locomotion and its changes with ag-
ing and disease, as well as a means of monitoring the effects of therapeutic
interventions and rehabilitation” [34]. Gait variability is a measure of how gait
parameters change from stride to stride. It is normally defined as the within-
subject standard deviation or coefficient variation of gait parameters over sev-
eral strides. Studies have shown that changes in stride time are more random
in elderly and Huntington’s Disease patients compared to young controls [35].
Stride time and swing time variability also increases in Parkinson’s Disease pa-
tients [26]. This variability is significantly linked to falls and becomes worse as
the disease progresses [33]. Measures of gait symmetry, normality and variabil-
ity together span all dimensions of movement similarity: how one side compares
to the other side; how both sides compare to an external reference; and how
movements change over short periods of time. Therefore, future developments
of the proposed gait analysis system should investigate measures of stride-to-
stride variability.
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The framework should also be validated for activities other than walking.
Before tackling whole-body movements, it would be interesting to investigate
the use of the framework for identifying and characterizing sign language or
other well defined hand gestures. After that, a combination of coordinated up-
per body and lower body movements such as dancing or swimming would be
interesting to investigate.

5.3 Conclusion

Many health-related monitoring applications may profit from motion analysis
systems composed of inertial sensors. Inertial sensors are cheap, small, and can
be conveniently embedded into garments such as watches, shoes and mobile
phones. However, additional research efforts are required in order to process
inertial sensor data for movement characterization in particular.

This thesis introduced a framework for motion analysis based on different
levels of abstraction. The framework defined classification and characterization
as independent problems, and focused on creating a data representation that
facilitated movement characterization. This framework can not only be used to
structure previous works, but it also serves as a road-map to the development
of new motion analysis systems.

The foundation of the framework is the symbolization of sensor signals,
and many such approaches were investigated here. Although the comparison
of these symbolization methods was far from trivial, and the choice of opti-
mal method is still unclear, the different implementations of the framework
achieved excellent results. A similarity measure was created based on the sym-
bolized signal, and used to characterize symmetry and normality. And expert
knowledge was used to parse the symbolic data and link certain data events to
human concepts.

Movement characterization was targeted in this thesis because the ability
to quantitatively measure differences in the performance of activities over time,
or before and after treatment, is essential to health-related monitoring applica-
tions. The proposed measures of symmetry and normality are clear examples
of the importance of movement characterization, and in particular, gait charac-
terization. Such systems, capable of quantifying quality of movement, may one
day revolutionize routine clinical practices both within and outside health-care
facilities.
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