
                                 978-1-4244-9306-7/11/$26.00 ©2011 IEEE                                 2223

2011 4th International Congress on Image and Signal Processing                       

Symbolization of time-series: An evaluation of
SAX, Persist, and ACA

Anita Sant’Anna
School of Information Science

Computer and Electrical Engineering,

Halmstad University - Sweden

Email: anita.santanna@hh.se

Nicholas Wickström
School of Information Science

Computer and Electrical Engineering,

Halmstad University - Sweden

Email: nicholas.wickstrom@hh.se

Abstract—Symbolization of time-series has successfully been
used to extract temporal patterns from experimental data.
Segmentation is an unavoidable step of the symbolization process,
and it may be characterized on two domains: the amplitude
and the temporal domain. These two groups of methods present
advantages and disadvantages each. Can their performance be
estimated a priori based on signal characteristics? This paper
evaluates the performance of SAX, Persist and ACA on 47
different time-series, based on signal periodicity. Results show
that SAX tends to perform best on random signals whereas ACA
may outperform the other methods on highly periodic signals.
However, results do not support that a most adequate method
may be determined a priory.

I. INTRODUCTION

Symbolic time-series analysis (STA) has been successfully

used in many different application areas to identify temporal

patterns in experimental data [1]. Although simple dynamics

may be observed with traditional analytical tools such as

Fourier Transforms, symbolization can improve the analysis of

processes that are complex and possibly chaotic. Symboliza-

tion may also reduce sensitivity to noise and greatly improve

computational efficiency [1]. Symbolization of time-series also

allows for the use of techniques developed for symbolic

data, e.g. data mining in databases [2], data mining on DNA

sequences [3], text mining [4], knowledge representation and

reasoning [5], and computational linguistics [6].

For the purpose of STA the following symbolization prop-

erties are of interest:

• Alphabet size: Ideally, the symbolic representation of a

signal contains the minimum number of symbols needed

to express all its underlying dynamics. In reality, since

these dynamics are usually unknown, choosing an alpha-

bet size is a mostly empirical task and should consider

the trade off between information loss and the complexity

of the analysis.

• Information loss: Symbolization will always incur some

loss of information. The best results are achieved when

the information lost is superfluous to the analysis at hand,

e.g. noise.

• Compression: The improvement in computational com-

plexity achieved by symbolization is due to the compres-

sion of the symbolized signal, where an interval of data

is represented by one single symbol.

• Temporal information: The underlying hypothesis of STA

is that symbolization simplifies the signal but retains its

temporal characteristics, enabling the discovery of its

dynamics.

An unavoidable part of the symbolization process is seg-

mentation. Time-series segmentation can be described in two

domains: the amplitude or the temporal domain. We will refer

to the former as quantization, and to the latter as temporal

segmentation. Figure 1 shows a very simple example of each

type of segmentation and subsequent symbolization.
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Fig. 1. Quantization vs. Temporal Segmentation. This simple example
illustrates the main differences between quantization (A) and temporal seg-
mentation (B). The breakpoints of quantization are in the amplitude domain,
and each interval may be assigned a symbol. The breakpoints of temporal
segmentation are in the temporal domain, and similar segments must be
clustered before they can be assigned a symbol.

The breakpoints of quantization techniques can be obtained

in a variety of ways, e.g. equidistant intervals, mean ±
standard deviation, equiprobable intervals (SAX) [7], enduring

states (Persist) [8]. Symbolization after quantization is very

straight forward, an unique symbol is assigned to the segments

in each quantization interval.
Temporal segmentation, on the other hand, can be achieved

using fixed-size windows, zero crossings of the signal and

its derivative [9], signal variance [10], clustering (ACA) [11],

piecewise linear approximation [12], among others. Sym-

bolization after temporal segmentation depends on grouping

similar segments into classes. A symbol can then be assigned

to each class.
Numerous segmentation techniques are available, so how

can the best symbolization method be chosen? Is quantization
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better than temporal segmentation? Are there intrinsic data

characteristics which work best with one class of method or

another? Given the nature of quantization and temporal seg-

mentation, one possible hypothesis is that signals presenting

clear recurring patterns can be well symbolized by tempo-

ral segmentation methods, whereas signals with no temporal

structure are better symbolized by quantization methods.

This paper investigates whether the periodicity of the signal

may be used to determine a priori which type of method

is advised. Two quantization methods and one temporal seg-

mentation method were chosen, namely Symbolic Aggregate

Approximation (SAX), Persist, and Aligned Cluster Analysis

(ACA). Their performance was evaluated on 47 different

signals, ranging from random to periodic, synthetic and real,

of various sizes. Each method was evaluated in terms of

information loss and compression factor. An estimate of signal

periodicity was used to characterize signals and investigate if

the performance of each method is dependent on certain signal

properties.

II. RELATED WORK

As mentioned previously, there are many possible ways to

segment and symbolize a signal. This paper investigates SAX,

Persist and ACA. SAX was chosen for it has been shown to

perform very well in many application areas. The breakpoints

of SAX, however, are independent of signal characteristics.

Persist, on the other hand, designs breakpoints that are op-

timized to certain signal characteristics. In addition, unlike

breakpoints based on signal statistics, Persist can create a

varied number of segments. The chosen representative for

temporal segmentation was ACA. This was the most promising

method described in the literature that combined both segmen-

tation and clustering. The remaining of this section elaborates

on each of these methods.

A. SAX

Symbolic Aggregate Approximation (SAX) [7] is a sym-

bolic representation of time-series based on the Piecewise

Aggregate Approximation (PAA) representation [13], and the

assumption that time-series are normally distributed. SAX can

reduce a time-series of length N to a symbolic string of length

W (W < N ) composed of Z different symbols (Z > 2).

Figure 2 exemplifies SAX.

This method is characterized by two important advantages:

• Dimensionality reduction: The dimensionality reduction

achieved with PAA [13] is also present in SAX.

• Lower bounding of distance measure: It has been shown

that a distance measure between two symbolic strings

created by SAX lower bounds the true distance between

the two original time-series [7].

An experimental validation of SAX [7] investigated its sym-

bolic representation applied to several data mining problems:

hierarchical clustering, partitional clustering, nearest neighbor

classification, decision tree classification, query by content,

detection of anomalous behavior, motif discovery, and visu-

alization aspects. SAX’s performance was compared to SDA
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Fig. 2. SAX symbolization. (A) shows the normalized original signal and
its PAA approximation for a window size of 50 samples. (B) shows the
breakpoints for alphabet size Z = 5. (C) illustrates how the PAA values
in between breakpoints are assigned symbols.
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Fig. 3. PERSIST symbolization. (A) shows the normalized original signal.
(B) illustrates the persistence scores obtained for each number of symbols. The
best score is obtained with 7 symbols. (C) shows the optimal segmentation
with 7 symbols.

[14] and IMPACTS [15]. The analysis concluded that SAX

was “competitive with, or superior to, other representations

on a wide variety of data mining problems” [7].

B. Persist

Persist is an unsupervised discretization method [8] de-

signed to identify relevant enduring states in time-series. This

method segments the signal so as to maximize the persistence

of each symbol. The main objective of Persist is to devise

breakpoints that somehow relate to the underlying temporal

characteristics of the signal. The method uses self-transition

probabilities of each symbol as an indicator of its persistence.

Figure 3 illustrates how Persist works.

The performance of Persist was compared to eight other

methods on both artificial and real data [8]. The methods

investigated were: equi-probable symbols based on signal dis-
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tribution, SAX, equi-distant symbols over the data range, mean

± standard deviation, median ± adjusted median absolute

deviation, k-means, Gaussian Mixture Model, and Hidden

Markov Model. These methods and Persist were applied to

artificial and real data with known enduring states. Persist was

found to outperform the other methods on artificial data, and

to create more meaningful breakpoints on real data [8].

C. ACA

Aligned Cluster Analysis (ACA) [11] is a method for unsu-

pervised clustering of temporal patterns in human motion data.

The main difficulties in segmenting human motion data stem

from large intra-person variability, wide range of temporal

scales, irregularity in the periodicity of human action and the

exponential nature of possible movement combinations [11].

The method copes with these issues by:

• Enabling user control over the temporal scale of the

actions of interest.

• Providing a robust distance metric based on Dynamic

Time Alignment Kernel (DTAK) [16].

• Formulating the segmentation problem as an energy min-

imization problem, which can be solved with an efficient

coordinate descent algorithm.

ACA is an extension of kernel k-means clustering [17] that

allows for variable numbers of features in each observation and

uses a distance metric (DTAK) robust to noise and invariant to

the speed of the action. Because of computational complexity,

it is impractical to rum ACA on large amounts of data, and

temporal reduction might be required. In addition, the per-

formance of the algorithm depends on adequate initialization.

Dedicated temporal reduction and initialization methods for

motion capture data were introduced [11].

This method was tested on both synthetic 1-dimensional

data and real motion capture data. The method was shown

promising but further work is needed to “automatically select

the optimal number of actions and avoid local minima in the

optimization” [11]. Figure 4 exemplifies the use of ACA.

III. METHOD

A. Information Loss

Information loss was estimated by the Mean Absolute Error

(MAE) between original signal and reconstructed signal after

symbolization.

For SAX and Persist, a symbol value was estimated for

each symbol by taking the average of all original samples

corresponding to that symbol. The reconstructed signal was

created by substituting each original sample with its corre-

sponding symbol value.

For ACA, after segmentation/clustering a template was

created for each symbol. The segments belonging to the

same cluster were time shifted so as to be best aligned

with each other, and the ensemble average was taken. The

reconstructed signal was formed by substituting each segment

for its template. Because the segments may be of different

lengths, the template was re-sampled to adjust to the length

of the segment.
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Fig. 4. ACA symbolization. (A) shows the original signal. Because no
dedicated temporal reduction methods have been developed for arbitrary data,
the signal was simply down-sampled by a factor of 3. The down-sampled
signal is shown in (B). (C) illustrates the resulting segmentation and how
segments are grouped into symbols.

B. Compression Factor

Each symbolized signal was composed of: 1) a symbolic

string, Symb, of size N ; 2) a vector of size N containing

the duration of each symbol, Dur; and 3) a matrix of size

ZxP containing symbol values or templates, Templ. The

compression factor was calculated as:

CompFac = |BitsOrig −BitsComp|/BitsOrig

where:

BitsComp = BitsSymb +BitsDur +BitsTempl

BitsOrig = sizeof(double) ∗M = 64 ∗M
BitsSymb = ceil(log2(Z)) ∗N
BitsDur = ceil(log2(max(Dur)) ∗N
BitsTempl = sizeof(double) ∗ Z ∗ P
and M is the length of the original signal, ceil rounds

upwards, Z is the number of symbols, N is the length of

the symbolic string, and P = 1 for SAX and Persist.

C. Periodicity

The periodicity measure indicates if there are significant pe-

riodic patterns in the data. Since no gradual scale of periodicity

was found in the literature, it was estimated by the maximum

peak value (excluding the zero lag peak) of the normalized

auto-correlation of the detrended signal.

D. Data

Forty-seven 1-dimensional signals were used. These signals

were small extracts of the following public data sets:

• 1Synthetically generated control charts [18]: The first

instance of the Normal class.

• 1UCR Time Series Classification database [19]: One

arbitrarily chosen instance from each of the available 19

data sets.

1Data provided by Eamon Keogh.
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• walk8-gait data set [20], [21]: The first 4000 samples of

the X-axis acceleration values.

• 1ECG signals from PhysioBank Archives [22]: One ex-

ample from each of the following MIT-BIH databases:

Normal Sinus Rhythm, Malignant Ventricular Arrhyth-

mia, Supraventricular Arrhythmia.

• 1Personal income estimates from the (U.S.) Bureau of

Economic Analysis [23]: Personal income estimates for

the state of California from 1929 to 1999.

• 1Inline skating EMG signals [8], [24]: The signal relating

to the activation of the Medial Gastrocnemius muscle.

• The CMU Multi-Modal Activity Database [25]: Extracts

from Subject 07 cooking brownies and eggs, the first axis

of Sparkfun IMU data from arms and legs.

• CMU Graphics Lab Motion Capture Database [26]: Ex-

tracts from Subject2 performing the activities: walk, run

and jog, jump and balance, punch and strike, bend over,

swordplay, and wash self. The first dimension of the data

matrix was used.

• 1Population estimates from the U.S. Census Bureau [27]:

The population of the U.S from 1900 to 1999.

• 1Stock market data [28]: The daily opening prices of

an arbitrary company traded in the New York Stock

Exchange from 26-Mar-90 to 24-Oct-03.

In addition to these data, the following were generated:

• The previously explained Walk8 data, filtered with a 5-

sample window mean filter.

• The CMU Motion Capture dataset punch and strike data

repeated (concatenated) 4 times.

• A fractional Brownian motion signal with Hurst param-

eter 0.7, and length of 600 samples.

• A 600-sample long sinusoidal signal of amplitude one

and period of 63 samples.

E. Analysis

The SAX algorithm was downloaded from the SAX home-

page [29]. The symbolization function requires: the original

signal, Orig, of length M ; the length of the PAA window,

w; the size of the desired symbolic representation n; and the

number of symbols, Z. For simplicity, w = n = M were used,

resulting in a symbolic string of length M . The consecutive

occurrences of the same symbol were then combined into one

symbol entry i and stored in Symb(i), and the corresponding

number of consecutive occurrences of the symbol were stored

in Dur(i). The signal was then reconstructed, the information

loss and the compression factor calculated as explained in

Parts III-A and III-B respectively. This analysis was under-

taken considering, for each file, number of symbols varying

from Z = 2 to Z = 15.

Similarly, the Persist algorithm was downloaded from

the homepage [30]. To calculate the persistence scores and

the optimized breakpoints, the function requires: the orig-

inal signal; and the minimum, minNumSymb, and max-

imum, maxNumSymb, number of symbols to consider.

In order to obtain results for several different numbers of

symbols, minNumSymb = maxNumSymb = Z was used.

Each sample of the original signal was then assigned a symbol,

according to breakpoint intervals. Consecutive occurrences of

the same symbol were combined into one symbol entry i,
stored in Symb(i), and the corresponding number of consec-

utive occurrences of the symbol were stored in Dur(i). The

signal was then reconstructed and the information loss and

compression factor calculated for each file, considering Z = 2
through Z = 15.

The ACA algorithm was downloaded from the homepage

[31]. Given the impracticalities of analyzing long signals,

the signals longer than 600 samples were down-sampled by

factor = round(M/600). The function requires the follow-

ing inputs: the original signal; the minimum, minSizeSeg,

and maximum, maxSizeSeg, segment lengths; and the num-

ber of symbols, Z. After segmentation, for each segment i,
its symbol, Symb(i), and its length, Dur(i), are stored. The

signal was reconstructed as explained in Part III-A, and the

information loss and compression factor were calculated. For

each file, Z = 2 through Z = 10 were considered.

The performance of ACA is very sensitive to minSizeSeg
and maxSizeSeg. In order to find the best values for each

file, the analysis explained above was undertaken for all

combinations of minSizeSeg varying from 5 to 100, and

maxSizeSeg varying from minSizeSeg + 10 to 300. The

values resulting in the smallest information loss were chosen.

The analysis was then repeated 10 times with the chosen

values, and the best results were used in the analysis.

The analysis was undertaken in MATLAB (MathWorks,

Natick, MA).

IV. RESULTS

The periodicity value (Part III-C) was calculated for each

signal. The signals were grouped according to periodicity as

shown in Table I. Most of the signals presented low periodicity

values, [0, 0.2]. As expected, the Brownian motion signal

falls within this group. Signals known to be more periodic,

such as the walk8 data set, presented higher values, (0.4,

0.6]. The sinusoid signal belongs to the highest interval, (0.6,

0.9]. Notice that the CMUmocap punch and strike signal,

jumps from the first interval to the last when repeated 4 times

(CMUmocap repeated). No signals presented periodicity value

higher than 0.9.

Figure 5 exemplifies some of the characteristics of recon-

structed signals for each of the methods. Notice that extreme

values of the original signal, i.e. peaks, are not captured by

SAX because they lie at the edge of the distribution; nor by

Persist because they are not enduring values. On the other

hand, ACA may perform extremely well (Figure 5(A)), and

adequately characterize peaks and valleys. On occasion, the

reconstructed patterns may be misaligned with the original

signal (Figure 5(B)), resulting in high information loss values.

This happens because the reconstruction of the signal is very

sensitive to ACA segmentation, which in turn, is very sensitive

to initial conditions.

The results of information loss versus compression factor

are displayed by periodicity interval in Figure 6. A directly
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Periodicity interval:[0, 0.2] Periodicity interval:(0.2, 0.4]
signal length (samples) signal length (samples)

CMUmocap jump and balance 483 ECG venarh 1000

CMUmocap punch and strike 1854 income 71

CMUmocap run and jog 173 CMUmocap walk 343

CMUmocap swordplay 1500 stocks 3421

CMUmocap wash self 2645 UCR coffee 286

Population 100 UCR face all 131

UCR 50words 270 UCR face four 350

UCR beef 470 UCR gun point 150

UCR CBF 128 UCR OSU leaf 427

UCR lighting2 637 UCR olive oil 570

UCR lighting7 319 UCR yoga 426

UCR trace 275 Periodicity interval: (0.4, 0.6]
UCR two patterns 128 CMUmocap bend over 2235

UCR synthetic control 60 control chart 60

UCR wafer 152 UCR Adiac 176

CMUkitchen right leg brownie 27180 UCR fish 463

CMUkitchen right leg eggs 25657 UCR Swedish leaf 128

CMUkitchen right arm brownie 27191 walk8 4000

CMUkitchen right arm eggs 25676 walk8 filtered 4000

CMUkitchen left leg brownie 27221 Periodicity interval: (0.6, 0.9]
CMUkitchen left leg eggs 25699 ECG normal 512

CMUkitchen left arm brownie 27216 ECG superven 512

CMUkitchen left arm eggs 25705 inline skating 29900

Brownian motion 600 CMUmocap repeated 7416

Sine 600

TABLE I
PERIODICITY. SIGNALS GROUPED ACCORDING TO PERIODICITY.
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Fig. 5. Reconstructed signals. Examples of reconstructed signals for each
of the methods, the number of symbols used is expressed in parenthesis.
(A) shows an example where ACA was very successful. (B) shown an
example where the ACA segmentation caused the reconstructed templates to
be misaligned with the original signal. The original signal is a normal ECG
data. The figures shows only a detail of the signal.

proportional trend is observed, i.e. higher compression factors

result in higher information loss. For SAX and Persist it

is clear that more symbols result in lower information loss

and lower compression. ACA, on the other hand, is less

predictable. Notice also that the lowest compression achieved

increases with periodicity. For the first periodicity interval,

compression varies from around 0.65 to 1. In the highest

periodicity interval, compression only varies between 0.9

and 1. This indicates that signals with periodic patterns are

symbolized more efficiently. From Figure 6 it is observed

that ACA can, at times, perform very well, and at times,

considerably poorer than the other two methods, especially

for low periodicity signals. This apparent inconsistency may be

due to the reconstruction method’s sensitivity to segmentation,

and the segmentation’s sensitivity to initial conditions. It may

also reflect ACA’s inadequacy for segmenting random signals.

It is clear from Figure 7 that, for low periodicity signals,

SAX may outperform the other methods. A small portion of

ACA results outperformed Persist but mostly, ACA is confined
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Fig. 6. Information loss versus compression factor. Results for files
contained in each periodicity interval. For each file, SAX and Persist results
encompass Z = 2, 3, ..., 15, and ACA results include Z = 1, 2, ..., 10. For
each of these, the resulting information loss is plotted against the achieved
compression factor.
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Fig. 7. Detail of Figure 6. The plots presented previously were zoomed in
on compression values 0.85 to 1, and information loss values 0 to 0.2.

to high-compression, high-loss sectors. These signals present

no striking underlying structure, which makes it difficult for

Persist to find enduring states, and for ACA to find good

segment clusters. As the periodicity of the signal increases, the

best ACA results improve, the best SAX results worsen, and

the best Persist results stay unchanged around 0.05 information

loss. In the highest periodicity interval, ACA outperforms the

other methods for one particular signal, the sinusoid.

Although the number of signals in the first interval is much

superior to the number of signals in the other intervals, certain

tendencies can be observed for each method depending on the

periodicity characteristics of the signal. However, the majority

of results overlap and there is no clear indication of which

method would perform best given the signal’s periodicity,

therefore decisions must be made on a case by case basis.

One final observation is necessary, Persist and ACA were
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not designed for symbolization of arbitrary time-series. Persist

is based on the assumption that the data contains enduring

underlying states, and ACA was designed for temporal seg-

mentation of mocap data. Nonetheless, their application to ar-

bitrary time-series was shown possible, and in alignment with

the characteristics expected from quantization and temporal

segmentation methods.

V. CONCLUSION

This paper investigated the symbolization of time-series

based on quantization and temporal segmentation. The objec-

tive of the analysis was to determine if the performance of each

method could be predicted based on signal characteristics. The

hypothesis was that quantization methods are more appropriate

for signals with no temporal structure, whereas temporal

segmentation is advised when the signal presents periodic

patterns.

Two quantization methods, namely SAX and Persist, and

one temporal segmentation method, ACA, were considered.

Methods were evaluated based on information loss and com-

pression factor. Forty-seven varied signals were considered,

they were divided into four groups according to their peri-

odicity. Results indicated that there is a tendency for SAX

to perform better on non-periodic signals, and for ACA to

perform better on periodic signals. However, the majority of

results overlapped and an a priori evaluation of signal period-

icity cannot determine which method is more appropriate.

Although these results were not statistically conclusive, they

support the idea that certain signal characteristics influence the

performance of different symbolization methods. Further work

is needed to develop measures of signal properties which may

predict the performance of time-series symbolization methods.
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