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Abstract

The neutralization of positive space charge is studied for density perturbations of limited spatial
extent in a collisionfree magnetized plasma. It is found that a local density maximum gets a positive
potential which depends only on the ambient electron temperature T, and the relative increase in
density n/n,,. For small density increases, below 5%, the resulting relation between potential and
plasma density agrees closely with the Boltzmann relation, which applies in the presence of
collisions. For larger density increases, the difference from the Boltzmann relation rapidly becomes
large, e.g. a factor 2 for a 50% density increase, and a factor 3 for a 100% density increase. The
result constitutes (1) a justification for using the Boltzmann relation also in collisionless magnetized
plasma, provided that the density perturbations are small, and (2) a general relation which replaces
the Boltzmann relation for larger-amplitude perturbations.



1. Introduction.

One of the basic properties of a plasma is that it maintains quasineutrality, i.e., because of the high
mobility of the electrons there is usually an almost equal concentration of positive and negative
space charge. With the exception of special cases like boundary sheaths and double layers, it is
therefore not practical to calculate the potential from Poissons equation. In the presence of
collisions, the potential is instead obtained from the Boltzmann relation n, = n,pexp(eU/kT).

Solving for U gives
kT n
U=—1n(—2), (1)
e n,,

i.e., Uis a function only of the temperature and the density. The only condition of applicability of
Eq. (1) is that the density varies slowly compared to the collision time of the electrons, so that they
can maintain a thermal velocity distribution at all times. The cause of the density variation is

irrelevant,

In the collisionfree case, Eq. (1) is still valid for density decreases. In response to an ion density
decrease, quasineutrality can easily be restored by a negative plasma potential which reflects a
corresponding part of the electrons. The electrons which have sufficient energy not to be reflected
maintain a thermal velocity distribution, and Eq. (1) therefore remains valid. The situation is very
different for density increases. Consider a limited region in a plasma where the ion density has
increased for some unspecified reason, so that the region has momentarily obtained a positive
potential. The electrons become separated into two groups, free and trapped. The free electrons
enter the region from the outside, pass through, and escape on the other side. Because all the the
free electrons increase their velocity when they enter the positive potential, their total density is
reduced where the potential is positive. The trapped electrons, which have too small energy to
escape from the positive potential, must therefore compensate two sources of excess positive space
charge, (1) the increase in ion density and (2) the decrease in the density of free electrons. The
density of trapped electrons depends on the time history of the system. Our aim here is to calculate
the densities of free and trapped electrons under some general assumptions of that time history, and
derive a relation between the density and the potential which can replace Eq. (1) in a collisionfree

magnetized plasma.
2. Calculations

We consider a homogeneous magnetized plasma with density n,, where the ion density has locally



increased over a length L by an amount An(x), and where the potential as a consequence has
obtained a yet unknown value U(x). The x axis aligned with the magnetic field.

We need to make two assumptions to calculate the density of free electrons: (1) that the potential
U(x) is nowhere negative, and (2) that the time scale of variation of An(x) and U(x) is slow
compared to the time of transit of the free electrons over the distance L. For a thermal distribution
of the electrons in the surrounding plasma, the incident velocity distribution along the magnetic

feld is
2)
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Under the assumptions of positive and slowly varying potential, no electrons are reflected and their
density is a function only of the potential. At the potential U, the electrons which started with

velocity V., have a velocity
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Their density is therefore reduced by a factor IVxOIVx(U . The total density of the free electrons at
potential U is given by the integral over all velocities
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The solution is found by a series of substitutions (M. A. Raadu, private communication 1989):
a=mJ(2kT,), b=(2eUIm )2, 1=(V?+b%)12, 5=t a2, which yield

el/
kT, el
Py ree =T (L-erf k_j;) )
where erf is the error function,
2 r4
erf(z) =— fexp(—sQ')ds (6)
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To calculate the number of trapped electrons we need to assume that the conditions of positive and



slowly growing potential have held during the whole time history of the process we study. Under
these assumptions, consider the electrons that at any given time come from the ambient plasma into
the region with positive potential. Only the slowest electrons, out of the central part of the Maxwell
distribution, have so small energy that they become trapped by the small change in potential during
their time of transit. If the potential has grown slowly during the whole trapping process, then all
the trapped electrons that are found at a later time have originated in the central (low-energy) part of
the ambient electron distribution. From Liouville's theorem follows that in the absence of collisions
their velocity space density is unchanged, and therefore equal to the value for low velocities in the

ambient plasma:

m 1/2
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At a potential U it is only possible to have trapped electrons in the velocity range
- 2eUim )2 <V, < (2eUlm )12,

Electrons with higher velocity would escape. If this velocity range is completely filled, and the

velocity space density is given by Eq. (7), then the number of trapped electrons is
1/2
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This is, strictly, only an upper limit to the number of trapped electrons at a potential U. Depending
on the time history during the trapping process there could for example be holes in the velocity
distribution. However, we believe that Eq (8) gives the actual value for a slowly growing potential
which has been positive during the whole trapping process, for the following reasons. Brenning et
al., (1989) have made an analytical calculation of the electron trapping out of a thermal plasma into
a positive region where the potential grows in a prescribed way, which gave the same result as Eq.
(8). This calculation also explained two rather surprising features in Eq. (8), namely that the
number of trapped electrons is independent of the rate of change of the potential, and that it is
independent of the spatial extent L of the region where the electrons are trapped; these quantities
drop out of the result in a natural way. However, this analytical calculation has the drawback that
the potential is prescribed, while it should in reality be self-consistently determined by the electron
and ion dynamics. This process is better studied by computer simulations of the trapping process.
Such simulations have been made by Bohm ez al., (1990), for density increases An > n,o- The

result agrees with trapping of electrons according to Eq. (8).

The total electron density is



Ry = e free * e trapped

where n, o and Mg trapped 3T€ given by Eq:s 5 and 8. This gives the relative density increase
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Eq. (9) is the sought relation between the density and the potential. It is plotted in Fig. 1 together
with the Boltzmann relation, n, = n,, exp(eU/kT ). For density increases below 5% the two
solutions closely follow each other, but for larger density increases they rapidly diverge: at 50%
density increase, the value of Eq. (9) is twice that of the Boltzmann relation, and for 100% density
increase the difference is a factor three. Some values from earlier computer simulations on the
process (Bohm ez al., 1990) are included in the figure, and agree well with the result obtained here.

3. Summary

We have given a justification for using the Boltzmann relation also for density increases in
collisionless magnetized plasma, provided that the density perturbations are small, below 5%. We
have also derived a more general relation, Eq. (9), which shows a large deviation from the
Boltzmann relation for larger-amplitude density increases. The conditions of applicability of these
results is that (1) the density changes so slowly that it varies only little during the transit time of the
electrons, and (2) that during the time of density increase, the potential has been positive all through
the region. This latter condition excludes the possibility that electrons are reflected before they enter
the trapping region; such reflection would increase the potential for a given density increase
compared to the value of Eq. (9).

The density increase is here treated as due to a motion of the ions, to which the electrons react in
such a way that quasineutrality is maintained. The result does not depend on the mechanism which
changes the ion density. It could be for example the ion dynamics in solitons or ion acoustic waves,
or density variations which are externally imposed by injected ion beams or plasma clouds. The
relation (9) should be applicable where the Boltzmann relation is usually applied.
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Fig.1a. The relation between the density and the potential according to Eq. 9 (the solid curve), and
according to the Boltzmann relation (the dashed curve). The circles denote the computer simulations
by Bohm. ez al., 1990.

Fig. 1b. An enlargement of the small-amplitude part of Fig. 1a.
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