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Sammanfattning

Inom detta arbete har ett effektivt verktyg för tillförlitlig simulering av
akustiska v̊agutbredningsproblem i realistiska tredimensionella geometrier
tagits fram. Verktyget är baserad p̊a finita differensmetoder med fjärde ord-
ningens noggrannhet. Koden har skrivits i C och parallelliserats med MPI.
Problemet är väl lämpat för parallellisering och koden uppvisar mycket hög
parallell effektivitet, vilket visar p̊a potentialen för parallellberäkningar in-
om v̊agutbredningsproblem i allmänhet. Realistiska v̊agutbredningsproblem
är ofta s̊a beräkningsmässigt krävande att en parallell implementering är
helt nödvändig för att simuleringar ska kunna genomföras.

V̊agutbredningsproblem uppst̊ar inom m̊anga tillämpningar s̊asom allmän
relativitetsteori, seismologi, akustik och elektromagnetism. Det g̊ar att vi-
sa att högre ordningars finita differensmetoder är mycket väl lämpade för
s̊adana problem. Vidare är det önskvärt att använda scheman som inte
till̊ater icke-fysikalisk tillväxt med tiden, en egenskap som kallas strikt sta-
bilitet. En kombination av högre ordningars noggranna summation-by-parts
(SBP) operatorer och the Simultaneous Approximation Term (SAT) met-
hod leder till SBP-SAT-metoden. Med SBP-SAT-metoden är det möjligt
att härleda ett energiestimat för den diskretiserade modellen som exakt
efterliknar det kontinuerliga energiestimatet. Därmed kan strikt stabilitet
bevisas, vilket är en av metodens främsta styrkor. Dessutom är det med
SBP-SAT-metoden möjligt att hantera v̊agutbredning i komplexa geometri-
er och diskontinuerliga medier noggrant, vilket gör att realistiska problem
kan simuleras.
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1 Introduction

Wave propagation problems arise in many applications, such as general rel-
ativity, seismology, acoustics and electromagnetics. It can be shown that
high-order (higher than second order) spatially accurate finite difference
schemes combined with high-order accurate time marching schemes are well
suited for such problems. It is also desirable to use schemes which do not al-
low non-physical growth in time, a property called strict stability. The com-
bination of high-order accurate narrow-stencil summation-by-parts (SBP)
operators and the Simultaneous Approximation Term (SAT) method for
imposing the physical boundary and interface conditions is here referred to
as the SBP-SAT method. The SBP-SAT method makes it possible to de-
rive an energy estimate for the discretized model which exactly mimics the
continuous energy estimate. Thus, strict stability can be proved.

In practice, the media in which the waves travel are often discontinuous.
Such a discontinuity in the media parameters is here referred to as an inter-
face. In order not to lose accuracy or stability, special care must be taken
when treating interfaces.

For wave propagation problems in general, the computational domain is
often large compared to the wavelengths, which means that a large number
of grid points is required. Thus, wave propagation problems can be com-
putationally demanding, especially when three space dimensions are consid-
ered. When solving such large problems, it is imperative to utilize parallel
computing, preferrably on a large number of cores.

We have implemented a tool, based on a fourth-order accurate SBP-SAT
method, for solving acoustic wave propagation problems in three spatial
dimensions. The tool has been constructed to handle curvilinear grids and
irregularly shaped media interfaces. In order to speed up the computations,
the code has been written in C and parallelized using the Message Passing
Interface (MPI).

In this thesis we focus on the following:

1. Showing strict stability for the acoustic wave equation with general
boundary conditions on a curvilinear grid.

2. Verifying the parallel implementation against an analytical solution.

3. Evaluating the parallel efficiency of the implementation.

We proceed by introducing some notation and definitions in Section 2.
In Section 3 the SBP-SAT method for the 1-D case, including the treatment
of media interfaces, is presented. In Section 4 we analyze a model problem
with general boundary condiditons in 2-D. We then state the equations that
are necessary for the 3-D implementation in Section 5. The details of the
parallelization are discussed in Section 6. In Section 7 we verify the par-
allel implementation by presenting the results of a convergence study. The
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parallel efficiency is evaluated by measuring the speedup for three different
problem sizes. Conclusions are presented in Section 8.

2 Definitions

Let the inner product for real-valued functions u, v ∈ l2[0, 1] be defined
by (u, v) =

∫ 1
0 u v a(x) dx, a(x) > 0, and let the corresponding norm be

‖u‖2a = (u, u). The domain (0 ≤ x ≤ 1) is discretized using the following
N + 1 equidistant grid points:

xi = i h, i = 0, 1, . . . , N, h = 1
N .

The approximate solution at grid point xi is denoted vi, and the discrete
solution vector is vT = [v0, v1, . . . , vN ]. Similarly, we define an inner product
for discrete real-valued vector functions u, v ∈ RN+1 by (u, v)Ha = uT HAv,
where H is diagonal and positive definite and A is the projection of a(x)
onto the diagonal. The corresponding norm is ‖v‖2Ha = vT HAv.

Remark The matrix product HA defines a norm if and only if HA is
symmetric and positive definite. This can only be guaranteed if H is a
diagonal matrix (see [4] for a detailed study on this).

The following vectors will be frequently used:

e0 = [1, 0, . . . , 0]T , eN = [0, . . . , 0, 1]T . (1)

To define the SBP-SAT method, we present the following three defini-
tions (first stated in [3] and [1]):

Definition 2.1 An explicit pth-order accurate finite difference scheme with
minimal stencil width of a Cauchy problem is called a pth-order accurate
narrow-stencil.

Definition 2.2 A difference operator D1 = H−1Q approximating ∂/∂ x,
using a pth-order accurate narrow-stencil, is said to be a pth-order accurate
narrow-diagonal first-derivative SBP operator if H is diagonal and positive
definite and Q+QT = diag (−1, 0, . . . , 0, 1).

Definition 2.3 Let D
(b)
2 = H−1(−M (b) +B̄S) approximate ∂/∂ x ( b ∂/∂ x),

where b(x) > 0, using a pth-order accurate narrow-stencil. D
(b)
2 is said to

be a pth-order accurate narrow-diagonal second-derivative SBP operator, if
H is diagonal and positive definite, M (b) is symmetric and positive semi-
definite, S approximates the first-derivative operator at the boundaries and
B̄ = diag (−b0, 0 . . . , 0, bN ).

We say that a scheme is explicit if no linear system of equations needs to be
solved to compute the difference approximation.
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Figure 1: The mapping between cartesian (left) and curvilinear (right) co-
ordinates for the 2-D case.

2.1 The 2-D case

To make the notation in two and three dimensions more compact we intro-
duce the Kronecker product:

C ⊗D =

 c0,0D · · · c0,q−1D
...

...
cp−1,0D · · · cp−1,q−1D

 , (2)

where C is a p× q matrix and D is an m× n matrix. We also let IN be the
N ×N identity matrix.

If the problem is given on a curvilinear domain Ω, we transform it to
the unit square, Ω′. We will refer to Ω as the physcial domain and Ω′ as the
logical domain. The logical domain is discretized using the (Nξ + 1)(Nη + 1)
grid points:

(ξi, ηj) =

(
i

Nξ
,
j

Nη

)
, i = 0, 1, . . . , Nξ, j = 0, 1, . . . , Nη.

The boundaries of Ω′ are denoted by W (west), N (north), E (east) and
S (south), respectively, as shown in Figure 1. The approximate solution
at a grid point (ξi, ηj) is denoted by vij , and the discrete solution vector is
vT = [v00, ..., v0Nη , v10, ..., vNξNη ]. The matrix iW is defined so that iW v is
a vector with the same length as v and the same elements on the positions
corresponding to the west boundary, but zeros everywhere else. The matrices
iN , iE and iS are defined similarly for the north, east and south boundaries,
respectively.

By D1ξ we denote the 2-D version of the narrow-stencil first-derivative

SBP operator D1, approximating ∂
∂ξ . Similarly, D

(b)
2ξ approximates ∂

∂ξ

(
b ∂∂ξ

)
.
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Figure 2: The logical domain Ω′ in the 3-D case.

In the same manner, we let Hξ denote the 2-D version of the diagonal matrix

H, applied in the ξ-direction. D1η, D
(b)
2η and Hη are defined similarly for the

η-direction.
To simplify the notation (without any restriction) we here assume Nξ =

Nη = N . The 2-D operators can then be neatly expressed in terms of the
1-D operators using the Kronecker product:

D1ξ = D1 ⊗ IN , D1η = IN ⊗D1

D
(b)
2ξ = D

(b)
2 ⊗ IN , D

(b)
2η = IN ⊗D(b)

2

Hξ = H ⊗ IN , Hη = IN ⊗H
iW = e0 ⊗ IN , iS = IN ⊗ e0

iE = eN ⊗ IN , iN = IN ⊗ eN ,

(3)

where the vectors e0 and eN are defined in (1).

2.2 The 3-D case

If the three-dimensional problem is given on a curvilinear domain Ω, we
transform it to the unit cube, Ω′. The logical domain Ω′ is discretized using
the (Nξ + 1)(Nη + 1)(Nζ + 1) grid points:

(ξi, ηj , ζk) =

(
i

Nξ
,
j

Nη
,
k

Nζ

)
,

i = 0, 1, . . . , Nξ, j = 0, 1, . . . , Nη, k = 0, 1, . . . , Nζ .

The boundaries of Ω′ are denoted by W (west), N (north), E (east), S
(south), B (bottom) and T (top), respectively, as shown in Figure 2. Ex-
tending the notation presented for the 2-D case and assuming Nξ = Nη =
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Nζ = N , the 3-D operators can be expressed as follows:

D1ξ = IN ⊗D1 ⊗ IN , D1η = IN ⊗ IN ⊗D1, D1ζ = D1 ⊗ IN ⊗ IN
D

(b)
2ξ = IN ⊗D(b)

2 ⊗ IN , D
(b)
2η = IN ⊗ IN ⊗D(b)

2 , D
(b)
2ζ = D

(b)
2 ⊗ IN ⊗ IN

Hξ = IN ⊗H ⊗ IN , Hη = IN ⊗ IN ⊗H, Hζ = H ⊗ IN ⊗ IN
iW = IN ⊗ e0 ⊗ IN , iS = IN ⊗ IN ⊗ e0, iB = e0 ⊗ IN ⊗ IN
iE = IN ⊗ eN ⊗ IN , iN = IN ⊗ IN ⊗ eN , iT = eN ⊗ IN ⊗ IN .

Remark We are using for example D1ξ to denote both the 2-D and 3-D
operator, which might seem confusing. However, it will always be clear from
context whether we are referring to the 2-D or 3-D version of the operator.

3 The SBP-SAT method

In this section we introduce the simple, yet powerful, SBP-SAT method for
model problems in 1-D. We start by assuming that the media parameters
are continuous and then move on to the case of discontinuous media.

3.1 Continuous media

Consider the following second-order hyperbolic equation:

autt = (bux)x, 0 ≤ x ≤ 1, t ≥ 0,
αut − bux = g, x = 0, t ≥ 0,
αut + bux = g, x = 1, t ≥ 0,
u = f1, ut = f2, 0 ≤ x ≤ 1, t = 0,

(4)

where a(x) > 0 and b(x) > 0. Multiplying the first equation in (4) by ut,
integrating by parts (referred to as “the energy method”) and imposing the
boundary conditions leads to

d

dt

(
‖ut‖2a + ‖ux‖2b

)
= −2 (αut − g)ut|x=1 − 2 (αut − g)ut|x=0 . (5)

An energy estimate is obtained if α ≥ 0. The discrete approximation of (4)
using the SBP-SAT method is

Avtt = D
(b)
2 v −H−1τe0 {(αvt −BSv)0 − g}

−H−1τeN {(αvt +BSv)N − g} ,
(6)

where e0 and eN are defined in (1). (We assume the same initial conditions
v = f1, vt = f2 as in the continuous case). The matrices A and B have
the values of a(x) and b(x) injected on the diagonal.
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Applying the energy method by multiplying (6) by vTt H and adding the
transpose leads to

d
dt

(
‖vt‖2Ha + vTM (b)v

)
= −(vTt )0 (2− 2τ) (BSv)0 + (vTt )N (2− 2τ) (BSv)N

+2τ
(
vTt (g − αvt)

)
0

+ 2τ
(
vTt (g − αvt)

)
N
.

Setting τ = 1 leads to

d

dt

(
‖vt‖2Ha + vTM (b)v

)
= −2

(
vTt (αvt − g)

)
0
− 2

(
vTt (αvt − g)

)
N
. (7)

Equation (7) is a semi-discrete version of (5).

3.2 Discontinuous media

The following result is important in the present study:

Lemma 3.1 The dissipative part M (b) of a narrow-diagonal second-derivative
SBP operator has the following property:

vTM (b)v = h
α

b0
(B̄Sv)2

0 + h
α

bN
(B̄Sv)2

N + vT M̃ (b)v, (8)

where M̃ (b) is symmetric and positive semi-definite, and α a positive con-
stant, independent of h.

For a proof of this lemma, see [1].

Second-order Fourth-order Sixth-order

α = 1 α = 0.2508560249 α = 0.1878715026

Table 1: The value of α in Eq. (8) for the second-, fourth- and sixth-order
accurate narrow-diagonal second-derivative SBP operators.

When deriving the interface conditions it is useful to consider the 1-D
wave equation,

autt = (bux)x, −1 ≤ x ≤ 1, (9)

where the coefficients a(x), b(x) > 0 are discontinuous at x = 0. Applying
the energy method leads to∫ 1

−1
auttut dx = lim

ε→0

(∫ −ε
−1

(bux)xut dx+

∫ 1

ε
(bux)xut dx

)
= lim

ε→0

(
buxut|1−1 − buxut|ε−ε −

∫ −ε
−1

buxuxt dx−
∫ 1

ε
buxuxt dx

)
.

Obtaining an energy estimate requires that ut and bux are continuous across
the interface, in which case we have limε→0(buxut|ε−ε) = 0 and we obtain the
energy estimate

d

dt

(
‖ut‖2a + ‖ux‖2b

)
= 2buxut|1−1. (10)

6



We now consider the following problem:

a1u
(1)
tt = (b1u

(1)
x )x, −1 ≤ x ≤ 0, t ≥ 0,

a2u
(2)
tt = (b2u

(2)
x )x, 0 ≤ x ≤ 1, t ≥ 0,

u
(1)
x = 0, x = −1, t ≥ 0,

u
(2)
x = 0, x = 1, t ≥ 0,

u = f1, ut = f2, −1 ≤ x ≤ 1, t = 0,

(11)

where a1(0) 6= a2(0), b1(0) 6= b2(0). Here u(1,2) denote the solutions cor-
responding to the left and right domains, respectively. Note that we have
chosen homogeneous Neumann conditions in order to minimize the number
of boundary terms in the coming energy estimate. Other types of boundary
conditions, like Dirichlet and radiation conditions, can also be used, but the
main focus here is on the interface treatment.

We have to impose the interface conditions

u
(1)
t = u

(2)
t , b1u

(1)
x = b2u

(2)
x , (12)

at the interface (x = 0). Note that the first condition in (12) holds if we
impose u(1) = u(2) at the interface.

Applying the energy method to (11) with the interface conditions (12)
leads to

d

dt
E(2) = 0, (13)

where the energy of the two subdomains is defined as

E(2) = ‖u(1)
t ‖2a1 + ‖u(2)

t ‖2a2 + ‖u(1)
x ‖2b1 + ‖u(2)

x ‖2b2 . (14)

The left and right domains are discretized using (N + 1) grid points and
v(1,2) denote the solution vectors corresponding to the left and right domains,
respectively. The semi-discrete approximation of (12) can be written

I1 = v
(1)
N − v

(2)
0 = 0

I2 = (v
(1)
t )N − (v

(2)
t )0 = 0

I3 = (B̄1Sv
(1))N + (B̄2Sv

(2))0 = 0,

(15)

where all conditions (also v
(1)
N = v

(2)
0 ) are written out. A semi-discretization

of the homogeneous Neumann boundary conditions in (11) is given by

L1v
(1) = (B̄1Sv

(1))0 = 0, L2v
(2) = (B̄2Sv

(2))N = 0. (16)

A semi-discretization of the complete problem (11), using narrow-diagonal
SBP operators and the SAT method to impose the semi-discrete interface

7



conditions (15) and boundary conditions (16) can be written as

A1v
(1)
tt = D

(b1)
2 v(1) A2v

(2)
tt = D

(b2)
2 v(2)

+τH−1eN (I1) −τH−1e0(I1)
+β(B̄1S)T eNH

−1(I1) −β(B̄2S)T e0H
−1(I1)

+γH−1eN (I3) −γH−1e0(I3)
+σH−1eN (I2) −σH−1e0(I2)

−H−1e0(L1v
(1)) +H−1eN (L2v

(2)).

(17)

Lemma 3.2 The scheme (17) is strictly stable if D
(b1,2)
2 are narrow-diagonal

SBP operators, σ ≤ 0, γ = −1
2 , β = 1

2 and τ ≤ − b1+b2
4hα hold.

Proof Applying the energy method by multiplying (17) by (v(1))Tt H and
(v(2))Tt H, respectively, and adding the transpose leads to

d

dt
E

(2)
H = 2wTt Dwt +

d

dt
xTRx,

where

w =

[
v

(1)
N

v
(2)
0

]
, D = σ

[
1 −1

−1 1

]
,

and

x =


v

(1)
N

v
(2)
0

(B̄1Sv
(1))N

(B̄2Sv
(2))0

 , R =


−τ τ −1

2
1
2

τ −τ −1
2

1
2

−1
2 −1

2 − α
b1

0
1
2

1
2 0 − α

b2

 .
Here we have used Lemma 3.1 and the fact that D

(b1,2)
2 are narrow-diagonal

SBP operators. The discrete energy is given by

E
(2)
H = ‖v(1)

t ‖2HA1
+ ‖v(2)

t ‖2HA2
+ (v(1))T M̃ (b1)v(1) + (v(2))T M̃ (b2)v(2).

Strict stability follows if D and R are negative semi-definite, which leads to
the following conditions:

σ ≤ 0, τ ≤ −b1 + b2
4hα

,

where b1,2 denote the local values of b1,2 at the interface. �

4 Analysis

In this section we analyze the scalar 2-D wave equation with general bound-
ary conditions. To allow for complex domains, we transform the equation
given on a curvilinear domain to an equation on a rectangular domain. We
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then derive an energy estimate for the continuous case. After discretizing
the model in space with the SBP-SAT method, we prove strict stability by
exactly mimicking the continuous energy estimate in the semi-discrete case.

The method for dealing with discontinuous media presented in Section
3.2 can be extended to two and three dimensions, but in this section we
limit ourselves to the case were the media parameters are continuous. For
a detailed analysis of media interfaces in 2-D see [5].

4.1 The continuous problem

We consider the following problem:

utt = (bux)x + (buy)y (x, y) ∈ Ω, t ≥ 0

γ1u+ γ2b∇u · n + γ3ut = 0 (x, y) ∈ ∂Ω, t ≥ 0
u = f1, ut = f2, (x, y) ∈ Ω, t = 0,

(18)

where b(x, y) > 0. We have chosen homogeneous boundary conditions to
avoid unnecessary notation in the analysis, but the analysis holds for in-
homogeneous conditions as well. We also limit our present study to the
case γ2 6= 0, which includes the important case of Neumann conditions
(γ1 = 0, γ2 = 1, γ3 = 0).

Remark Dirichlet conditions (γ1 = 1, γ2 = γ3 = 0) form an important
category of boundary conditions which are not included in the case γ2 6= 0.
Treating Dirichlet conditions with the SAT method is more complicated
than treating the conditions of the present study. For a detailed analysis of
this matter see for example [2].

Assume that there is a smooth one-to-one mapping{
x = x(ξ, η)
y = y(ξ, η),

(19)

from Ω′ to Ω. The Jacobian J of the transformation is

J = xξyη − xηyξ. (20)

The scale factors η1 and η2 of the transformation are defined as

η1 =
√
x2
ξ + y2

ξ , η2 =
√
x2
η + y2

η. (21)

Since the mapping is one-to-one, the Jacobian is everywhere non-zero. By
the chain rule, we have {

uξ = uxxξ + uyyξ
uη = uxxη + uyyη,

(22)

9



which is equivalent to{
ux = 1

J (uξyη − uηyξ) = 1
J ((uyη)ξ − (uyξ)η)

uy = 1
J (uηxξ − uξxη) = 1

J ((uxξ)η − (uxη)ξ) .
(23)

Replacing u with bux and buy in (23) yields

(bux)x = 1
J

(
b
J (uξyη − uηyξ) yη

)
ξ
− 1

J

(
b
J (uξyη − uηyξ) yξ

)
η

(buy)y = 1
J

(
b
J (uξxη − uηxξ)xη

)
ξ
− 1

J

(
b
J (uξxη − uηxξ)xξ

)
η
.

(24)

By adding (bux)x and (buy)y and rearranging terms, the first equation in
(18) can be written as

Jutt = (α1uξ)ξ + (βuξ)η + (βuη)ξ + (α2uη)η, (ξ, η) ∈ Ω′ (25)

where

α1 =
b

J

(
y2
η + x2

η

)
, β = − b

J
(yηyξ + xηxξ) , α2 =

b

J

(
y2
ξ + x2

ξ

)
. (26)

Using equation (23) to transform ∇u ·n in the second equation in (18) yields
the transformed boundary condition:

γ1η2u− γ2 (α1uξ + βuη) + γ3η2ut = 0, (ξ, η) ∈W
γ1η2u+ γ2 (α1uξ + βuη) + γ3η2ut = 0, (ξ, η) ∈ E
γ1η1u− γ2 (α2uη + βuξ) + γ3η1ut = 0, (ξ, η) ∈ S
γ1η1u+ γ2 (α2uη + βuξ) + γ3η1ut = 0, (ξ, η) ∈ N.

(27)

The complete transformed problem is given by (25), (27) and the initial
conditions stated in (18). Applying the energy method leads to

d

dt
E = −

∫
W

γ3

γ2
η2u

2
tdr −

∫
E

γ3

γ2
η2u

2
tdr −

∫
N

γ3

γ2
η1u

2
tdr −

∫
S

γ3

γ2
η1u

2
tdr (28)

where

E =
1

2

∫
Ω′

Ju2
tdΩ′ +

∫
Ω′

[
uξ uη

] [α1 β
β α2

] [
uξ
uη

]
dΩ′ +BT

 (29)

and

BT =

∫
W

γ1

γ2
η2u

2dr +

∫
E

γ1

γ2
η2u

2dr +

∫
N

γ1

γ2
η1u

2dr +

∫
S

γ1

γ2
η1u

2dr. (30)

The matrix

[
α1 β
β α2

]
is positive definite since α1 > 0 and α1α2 − β2 =

(xξyη − xηyξ)2 = J2 > 0. Thus, the problem has an energy estimate if the
relations

γ1

γ2
≥ 0,

γ3

γ2
≥ 0 (31)

hold.
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4.2 The semi-discrete problem

The discrete version of (27) is given by
LW v = iW

{
γ1η2v + γ2

(
B̄(α1)Sξv − βD1ηv

)
+ γ3η2vt

}
= 0

LEv = iE
{
γ1η2v + γ2

(
B̄(α1)Sξv + βD1ηv

)
+ γ3η2vt

}
= 0

LSv = iS
{
γ1η1v + γ2

(
B̄(α2)Sηv − βD1ξv

)
+ γ3η1vt

}
= 0

LNv = iN
{
γ1η1v + γ2

(
B̄(α2)Sηv + βD1ξv

)
+ γ3η1vt

}
= 0.

(32)

The semi-discrete approximation of (25) and (27) using the SBP-SAT method
is

Jvtt = D
(α1)
2ξ v +D1ξβD1ηv +D1ηβD1ξv +D

(α2)
2η v

+ τ1H
−1
ξ LW v + τ1H

−1
ξ LEv + τ2H

−1
η LSv + τ2H

−1
η LNv.

(33)

One of the main results of the present study is stated in the following lemma:

Lemma 4.1 The scheme (33) is strictly stable if τ1 = τ2 = − 1
γ2

and the
conditions (31) hold.

Proof Applying the energy method by multiplying (33) by vTt HξHη and
adding the transpose leads to

d
dtE = (1 + τ1γ2)vTt HηB̄

(α1)Sξv + (1 + τ2γ2)vTt HξB̄
(α2)Sηv +

(1 + τ1γ2) vTt Hη (−iW + iE)βD1ηv +

(1 + τ2γ2) vTt Hξ (−iS + iN )βD1ξv +

τ1γ3v
T
t Hηη2 (iW + iE) vt + τ2γ3v

T
t Hξη1 (iS + iN ) vt,

where

E = 1
2v

T
t HξHηJvt +

1
2

(
vTHηM

(α1)
ξ v + vTHξM

(α2)
η v + 2 (D1ξv)T βHξHη (D1ηv)

)
+

1
2

(
−τ1γ1v

THηη2(iW + iE)v − τ2γ1v
THξη1(iS + iN )v

)
.

By choosing τ1 = τ2 = − 1
γ2

we obtain an energy estimate completely analo-
gous to (28). If (31) holds, we have a non-growing energy. �

5 The 3-D problem

The analysis for the 3-D case is completely analogous to that for the 2-D
case shown in Section 4, but includes more terms and notation. We therefore
omit the details of the analysis in this section, but for completeness we
state the transformed version of the scalar 3-D wave equation with general
boundary conditions, and show how to discretize the problem in space using
the SBP-SAT method.

11



5.1 The continuous problem

We consider the problem:

utt = (bux)x + (buy)y + (buz)z (x, y, z) ∈ Ω, t ≥ 0

γ1u+ γ2b∇u · n + γ3ut = 0 (x, y, z) ∈ ∂Ω, t ≥ 0
u = f1, ut = f2, (x, y, z) ∈ Ω, t = 0,

(34)

where b(x, y, z) > 0. Assuming that there is a smooth one-to-one mapping
from the unit cube Ω′ to Ω, 

x = x(ξ, η, ζ)
y = y(ξ, η, ζ)
z = z(ξ, η, ζ),

(35)

we can transform the problem (34) into a problem on Ω′. The transformed
partial differential equation reads

Jutt = (α1uξ + β1uη + β2uζ)ξ

+ (α2uη + β1uξ + β3uζ)η

+ (α3uζ + β2uξ + β3uη)ζ

(36)

where

α1 = b
J (t211 + t221 + t231), β1 = b

J (t11t12 + t21t22 + t31t32),

α2 = b
J (t212 + t222 + t232), β2 = b

J (t11t13 + t21t23 + t31t33),

α3 = b
J (t213 + t223 + t233), β3 = b

J (t12t13 + t22t23 + t32t33),

(37)

and

t11 = yηzζ − yζzη, t12 = yζzξ − yξzζ , t13 = yξzη − yηzξ,
t21 = xζzη − xηzζ , t22 = xξzζ − xζzξ, t23 = xηzξ − xξzη,
t31 = xηyζ − xζyη, t32 = xζyξ − xξyζ , t33 = xξyη − xηyξ.

(38)

The Jacobian J of the transformation is

J = xξyηzζ + xηyζzξ + xζyξzη − zξyηxζ − zηyζxξ − zζyξxη. (39)

The boundary condition in (34) transforms into

LW [u] = 0, (ξ, η, ζ) ∈W
LE [u] = 0, (ξ, η, ζ) ∈ E
LS [u] = 0, (ξ, η, ζ) ∈ S
LN [u] = 0, (ξ, η, ζ) ∈ N
LB[u] = 0, (ξ, η, ζ) ∈ B
LT [u] = 0, (ξ, η, ζ) ∈ T,

(40)

12



where

LW [u] = γ1
√
α1u− γ2 (α1uξ + β1uη + β2uζ) + γ3

√
α1ut

LE [u] = γ1
√
α1u+ γ2 (α1uξ + β1uη + β2uζ) + γ3

√
α1ut

LS [u] = γ1
√
α2u− γ2 (β1uξ + α2uη + β3uζ) + γ3

√
α2ut

LN [u] = γ1
√
α2u+ γ2 (β1uξ + α2uη + β3uζ) + γ3

√
α2ut

LB[u] = γ1
√
α3u− γ2 (β2uξ + β3uη + α3uζ) + γ3

√
α3ut

LT [u] = γ1
√
α3u+ γ2 (β2uξ + β3uη + α3uζ) + γ3

√
α3ut.

(41)

5.2 The semi-discrete problem

The semi-discrete version of the boundary conditions (40) is given by

LW v = 0
LEv = 0
LSv = 0
LNv = 0
LBv = 0
LT v = 0,

(42)

where

LW v = iW
{
γ1
√
α1v + γ2

(
B̄(α1)Sξv − β1D1ηv − β2D1ζv

)
+ γ3
√
α1vt

}
LEv = iE

{
γ1
√
α1v + γ2

(
B̄(α1)Sξv + β1D1ηv + β2D1ζv

)
+ γ3
√
α1vt

}
LSv = iS

{
γ1
√
α2v + γ2

(
−β1D1ξv + B̄(α2)Sηv − β3D1ζv

)
+ γ3
√
α2vt

}
LNv = iN

{
γ1
√
α2v + γ2

(
β1D1ξv + B̄(α2)Sηv + β3D1ζv

)
+ γ3
√
α2vt

}
LBv = iB

{
γ1
√
α3v + γ2

(
−β2D1ξv − β3D1ηv + B̄(α3)Sζv

)
+ γ3
√
α3vt

}
LT v = iT

{
γ1
√
α3v + γ2

(
β2D1ξv + β3D1ηv + B̄(α3)Sζv

)
+ γ3
√
α3vt

}
.

The semi-discrete approximation of (36) with boundary conditions (40) us-
ing the SBP-SAT method is

Jvtt =D
(α1)
2ξ v +D1ξβ1D1ηv +D1ξβ2D1ζv

+D
(α2)
2η v +D1ηβ1D1ξv +D1ηβ3D1ζv

+D
(α3)
2ζ v +D1ζβ2D1ξv +D1ζβ3D1ηv

+τ1H
−1
ξ LW v + τ1H

−1
ξ LEv

+τ2H
−1
η LSv + τ2H

−1
η LSv

+τ3H
−1
ζ LBv + τ3H

−1
ζ LT v.

(43)

By applying the energy method it can be shown that the scheme (43) is
strictly stable if τ1 = τ2 = τ3 = − 1

γ2
and the conditions

γ1

γ2
≥ 0,

γ3

γ2
≥ 0 (44)

hold.
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Figure 3: Decomposition of the computational domain into 16 subdomains.

6 Implementation

The fourth-order accurate finite difference method for the 3-D wave equa-
tion, i.e. (43), has been implemented in C and parallelized using the Message
Passing Interface (MPI). The fourth-order accurate Runge-Kutta scheme
(RK4) is used for stepping in time. The computational domain is decom-
posed into rectangular, non-overlapping subdomains. This is illustrated in
Figure 3, where the computational domain has been decomposed into 16 sub-
domains. To minimize load imbalance, the subdomains should be of similar
size. Each such subdomain is then assigned to one processor. Thus, the fi-
nite difference approximations can be computed in parallel. Each processor
requires border data from its neighbors to compute the finite difference ap-
proximations across the subdomains. How much data each processor needs
from its neighbours depends on the width of the finite difference stencil. In
the case of fourth-order accurate narrow-stencils, data from two layers of
grid points in all directions is needed. The concept is illustrated in Figure
4, where we have zoomed in on subdomains 1, 2, 5 and 6 in Figure 3 and
separated the subdomains for illustrative purposes. The lines represent grid
lines. To compute the finite difference approximations close to the borders
with its neighbors, processor 1 requires data from the grid points marked in
Figure 4. Therefore, the processors need to communicate with their neigh-
bors every time the spatial finite difference approximations are computed.
In the RK4 time marching scheme, this happens four times in every time
step.

Since the processors require data from the same grid points in every it-
eration, the communication pattern is always the same. Thus, the message
size, location, tag, communicator and data type in the communication calls
remain the same each iteration. We can therefore use persistent communica-
tion, where the communication is initailized once and activated repeatedly,
to reduce the overhead associated with redundant message setup. Note also

14



Figure 4: The communication pattern. The four large blocks are the sub-
domains 1, 2, 5 and 6 in Figure 3. The lines in each block are grid lines.
To compute the finite difference approximations, processor 1 requires data
corresponding to the grid points marked in red.

that the finite difference approximations in the interior of each subdomain
do not depend on data from the neighbors. Thus, each processor can up-
date the interior points while waiting for data from its neighbors. This
allows us to reduce communication and synchronization overhead by using
non-blocking send/receive calls and overlapping the communication with the
interior computations.

7 Experiments

7.1 Convergence study

To verify the parallel implementation, a convergence study was performed
against an analytical solution. The convergence rate q is calculated as

q = log10

(
‖u− v(N2)‖h
‖u− v(N1)‖h

)
/ log10

(
N1

N2

)1/d

, (45)

where d is the dimension (d = 3 in the 3-D case), u is the analytical solution,
v(N) is the corresponding numerical solution with N grid points and ‖u −
v(N)‖h is the discrete l2 norm of the error.

In this study, we let the physical domain Ω be a cube of side 5 with
a curved interface as shown in Figure 5, where the two blocks have been
separated for illustrative purposes. The computational grid was constructed
using transfinite interpolation in each block. A coarse such grid is shown
in Figure 5. To allow for a simple analytic solution while still testing the
parallel implementation of the interface treatmenat on a curvilinear grid,
we let the coefficient b be constant and continuous across the interface.

15



Figure 5: The domain used in the convergence study: a cube with a curved
interface between two blocks. The grid was constructed with transfinite
interpolation in each block.

Neglecting the interface, the test problem can be written as

utt = (bux)x + (buy)y + (buz)z (x, y, z) ∈ Ω, t ≥ 0

∇u · n = 0 (x, y, z) ∈ ∂Ω, t ≥ 0
u = cos (4πx) cos (3πy) cos (2πz), (x, y, z) ∈ Ω, t = 0
ut = 0, (x, y, z) ∈ Ω, t = 0.

(46)

For b = 4
29 the analytical solution to the test problem is the standing wave

u = cos (4πx) cos (3πy) cos (2πz) cos (2πt). (47)

In the simulations we stepped in time until t = 1, using a time step dt =
5 · 10−4, and compared the result with the analytical solution (47). The
results of this convergence study are presented in Table 2. It is clear that
the implementation achieves the expected fourth order convergence rate.

7.2 Speedup measurements

The speedup S is defined as

S(p) =
T (1)

T (p)
, (48)

where p is the number of processors and T (p) is the computational time
required when using p processors.
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N P el2 log10(el2) q

1003 18 1.27 · 10−3 -2.90 0.00
2003 32 4.72 · 10−5 -4.33 4.75
3003 32 7.07 · 10−6 -5.15 4.68
4003 50 2.43 · 10−6 -5.63 3.84
5003 50 7.99 · 10−7 -6.10 4.82
6003 72 3.52 · 10−7 -6.45 4.49

Table 2: l2-errors, log10(l2-errors) and convergence rates. P is the number
of processors used in the computations.

Nξ Nη Nζ N

200 200 20 8 · 105

400 400 40 6.4 · 106

800 800 80 5.12 · 107

Table 3: Problem sizes used in the speedup measurements. N is the total
number of grid points.

To test the parallel efficiency of our code, we measured the time required
to take 100 time steps, using different numbers of processors. All mea-
surements were performed on resources provided by SNIC through Uppsala
Multidisciplinary Center for Advanced Computational Science (UPPMAX)
under Project p2011136. In these tests we used the grid point configurations
and problem sizes shown in Table 3. Figure 6 shows the measured speedup.
One might expect to see superlinear speedup due to the fact that higher per-
centages of the data fit in the caches as the number of processors increase.
In our implementation however, each processor uses cache-blocking, even in
the serial algorithm, and thus superlinear speedup is impossible. Note that
for the smallest problem size, performance decreases for p & 100. This hap-
pens when the subdomains are becoming so small that the gain of making
them even smaller is negated by the overhead of extra communication and
synchronization between processors. The larger the problem size, the more
processors one can use before performance starts to drop due to this effect.
For the two larger problem sizes we do not suffer from this effect when using
144 processors or less. Since all three curves are close to the ideal case of
linear speedup (until the speedup starts to decrease for the solid curve), we
can conclude that the implementation is efficient.

8 Conclusions

In this thesis we have studied the acoustic wave equation in discontinuous
media and curvilinear geometries in one, two and three spatial dimensions.
We have described how to solve the equations with high-order accurate finite
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Figure 6: Speedup as a function of the number of processors. The different
curves show the speedup for different problem sizes.

difference methods, using the SBP-SAT method. For the 2-D equation with
general boundary conditions, we have used the energy method to prove
strict stability of the finite difference scheme. We have also outlined how to
make a parallel implementation of the 3-D scheme using MPI, and verified
such an implentation in a convergence study against an analytical solution.
Furthermore, speedup measurements have shown that the parallel efficiency
of the implementation is high. For example, for the problem with 6.4 · 106

grid points a speedup factor of 114 was observed when using 144 cores.
Since this is a considerable gain, it is apparent that parallel computing is
imperative for efficent simulation of wave propagation in 3-D with high-order
accurate finite difference methods.

Acknowledgements

I would like to express my heartfelt gratitude towards my supervisor, Kristof-
fer Virta, for introducing me to the subject and supporting me at all times.
I would also like to thank Associate Professor Ken Mattsson for offering
invaluable comments on a draft of this report.

18



References

[1] K. Mattsson, F. Ham, and G. Iaccarino. Stable and accurate wave prop-
agation in discontinuous media. J. Comput. Phys., 227:8753–8767, 2008.

[2] K. Mattsson, F. Ham, and G. Iaccarino. Stable boundary treatment for
the wave equation on second-order form. Journal of Scientific Comput-
ing, 41:366–383, 2009.
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