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Abstract

Over the past few decades the use of industrial robots has increased the
efficiency as well as competitiveness of many companies. Despite this fact,
in many cases, robot automation investments are considered to be technically
challenging. In addition, for most small and medium sized enterprises (SME)
this process is associated with high costs. Due to their continuously changing
product lines, reprogramming costs are likely to exceed installation costs by
a large margin. Furthermore, traditional programming methods for industrial
robots are too complex for an inexperienced robot programmer, thus assistance
from a robot programming expert is often needed. We hypothesize that in
order to make industrial robots more common within the SME sector, the
robots should be reprogrammable by technicians or manufacturing engineers
rather than robot programming experts. In this thesis we propose a high-level
natural language framework for interacting with industrial robots through an
instructional programming environment for the user. The ultimate goal of this
thesis is to bring robot programming to a stage where it is as easy as working
together with a colleague.

In this thesis we mainly address two issues. The first issue is to make
interaction with a robot easier and more natural through a multimodal frame-
work. The proposed language architecture makes it possible to manipulate,
pick or place objects in a scene through high level commands. Interaction with
simple voice commands and gestures enables the manufacturing engineer to
focus on the task itself, rather than programming issues of the robot. This
approach shifts the focus of industrial robot programming from the coordinate
based programming paradigm, which currently dominates the field, to an object
based programming scheme.

The second issue addressed is a general framework for implementing
multimodal interfaces. There have been numerous efforts to implement mul-
timodal interfaces for computers and robots, but there is no general standard
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framework for developing them. The general framework proposed in this thesis
is designed to perform natural language understanding, multimodal integration
and semantic analysis with an incremental pipeline and includes a novel
multimodal grammar language, which is used for multimodal presentation and
semantic meaning generation.
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Mikael Åsberg, Moris Benham, Nikola Petrovič, Radu Dobrin, Séverine
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Baran Çürüklü, Gordana Dodig-Crnkovic, Batu Akan, 5th ACM/IEEE
International Conference on Human-Robot Interaction, p 85-86, Osaka,
Japan, March, 2010

• Towards Robust Human Robot Collaboration in Industrial Environ-
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Chapter 1

Introduction

Robots have become more powerful and intelligent over the last decades.
Companies producing mass market products such as car industries have been
using industrial robots for machine tending, joining and welding metal sheets
for several decades now. Thus, in many cases an investment in industrial
robots is seen as a vital step that will strengthen a company’s position in
the market because it will increase the production rate. However, in small
and medium enterprises (SME’s) robots are not commonly found. Even
though the hardware cost of industrial robots has decreased, the integration
and programming costs for robots make them unfavorable among SME’s. No
matter how simple the production process might be, to integrate the robot, one
has to rely on a robot programming expert. Either the company will have to
setup a software department responsible for programming the robots or out-
source this need. In both cases the financial investments do not pay up [1].

Also an industrial robot must be placed in a cell that will occupy valuable
workspace and maybe operate only a couple of hours a day. It is, thus, very hard
to motivate an SME, which is constantly under pressure, to carry out a risky
investment in robot automation. Obviously, these issues result in challenges
with regard to high costs, limited flexibility, and reduced productivity.

In order to make industrial robots more favorable in the SME sector,
the issues of flexibility have to be resolved. Typically for those SMEs,
that have frequently changing applications, it is quite expensive to afford a
professional programmer or technician, therefore an human robot interaction
solution is demanded. Using a high-level language, which hides the low-
level programming from the user, will enable a technician or a manufacturing
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4 Chapter 1. Introduction

engineer who has knowledge about the manufacturing process to easily
program the robot and to let the robot switch between previously learned tasks.

In this thesis we propose a novel context dependent multi modal language
which is backed up by an augmented reality interface that enables the operator
to interact with an industrial robot. The proposed language architecture makes
it possible to give high-level commands to manipulate, pick or place the objects
in the scene. Such a language shifts the focus of industrial robot programming
from coordinate based programming paradigm to object based programming
scheme.

1.1 Outline of thesis
The remainder of this thesis consists of two main parts. The first part
contains five chapters: Chapter 2 gives a brief survey of Human Robot
Interaction (HRI) and related basic concepts. Chapter 3 provides an overview
of robot programming systems in general. Chapter 4 presents the results
achieved during the work with this thesis, and finally, Chapter 5 concludes
and summarizes the thesis, and gives directions to possible future work. The
second part of the thesis is a collection of four peer-reviewed conference and
workshop papers.



Chapter 2

Human-Robot Interaction
(HRI)

Robots are artificial agents with capacities of perception and action in the
physical world. As robotic technology develops and the robots start moving
out of the research laboratories in to the real world, the interaction between
robots and humans becomes more important. Human Robot Interaction (HRI)
is the field of study that tries to understand, design and evaluate robotic systems
for use by or with humans [2].

Communication of any sort between humans and robots can be regarded
as interaction. Communication can be of many different forms. However, the
distance between the human and the robot alters the nature of communication.
Communication, and thus interaction, can be divided into the following
two categories: proximate interaction and remote interaction. In proximate
interaction, the user and the robot are in the same environment, for example,
industrial robots and the user are in the same cell during the programming
phase. In remote interaction, the user and the robot can be spatially and
temporally separated from each other. For example Mars rovers are both
temporally and spatially separated from their users. This division helps to
distinguish between applications that require mobility, physical manipulation
or social interaction. For example tele-operation and tele-manipulations use
remote interaction to control mobile remote robot and manipulate objects
that are not in the immediate surrounding of the user, whereas proximate
interaction, lets say with a mobile service robot, requires social interaction
[2].
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6 Chapter 2. Human-Robot Interaction (HRI)

In social interactions, the robots and the humans interact as peers or
companions, however the important factor is that social interaction often
requires close proximity.

While the distance between the robot and the user alters the nature of
communication, it doesn’t define the level or shape of the interaction. Like
many complex systems, a designer, designs the nature of interaction. The
designer, attempts to understand and shape this interaction process in the hope
of making it more beneficial for the user. From the designers point of view, the
following five attributes can be altered to affect the interaction process:

• Level and behavior of autonomy

• Nature of the information exchange

• Structure of the team

• Adaptation, learning and training of users and the robot

• Shape of the task

The remainder of this chapter will discuss these attributes in detail.

2.1 Levels of Autonomy
Robots that can perform the desired tasks in an unstructured environment
without human intervention are autonomous. From an operational point of
view, the amount of time during which the robot can be left without supervision
is an important characteristic of autonomy. A robot with high autonomy can
be left alone for longer periods of time whereas a robot with lower autonomy
needs continuous supervision and user control. Autonomy, however, is not
the highest achievable goal in the field of HRI, but only a means to support
productive interaction. Therefore in a human centered applications the notion
of levels of autonomy (LOA) gains more importance. Even though there are
many scales for LOA the following one proposed by Sheridan [3] is the most
cited one [2]:

1. Computer offers no assistance; human does it all.

2. Computer offers a complete set of action alternatives.

3. Computer narrows the selection down to a few choices.
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4. Computer suggests a single action.

5. Computer executes that action if the user approves.

6. Computer allows the human limited time to veto before automatic
execution.

7. Computer executes automatically then necessarily informs the human.

8. Computer informs human after automatic execution only if human asks.

9. Computer informs human after automatic execution only if it decides
too.

10. Computer decides everything and acts autonomously, ignoring the hu-
man.

However, such scales may not always be applicable to the whole problem
domain but are more beneficial when applied to the subtasks in the domain.

The scale proposed by Sheridan helps to determine how autonomous a
robot is under certain circumstances, but it does not help to evaluate the level
of interaction between the user and the robot from an HRI point of view. For
example a service robot should exhibit different levels of autonomy during the
programming phase and the execution phase. Figure 2.1 presents a different
perspective of autonomy regarding the level of interaction between the robot
and the user. It should be noted that one end of the scale doesn’t mean less
autonomy and the other end more autonomy. For example, on the direct control
side of the scale, the issue arises to make a user interface that minimizes the
operator’s cognitive load. At the other end of the scale, the problem is how
to create robots with the appropriate cognitive skills to interact naturally and
efficiently with a human to achieve peer-to-peer collaboration [2]. Peer-to-peer
collaboration requires not only full autonomy at sub-level tasks at times but
also social skills when interacting with humans; therefore it is often considered
more difficult to achieve than full autonomy alone.

2.2 Nature of Information Exchange
Autonomy is only one aspect that governs the interaction between the human
and the robot. The second component defines how the information is
exchanged. Input modality defines the nature of the interaction between the
robot and the user. Different modalities carry different types of information.
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Figure 2.1: Levels of autonomy with emphasis on human interaction.

While interacting with computers or robots often three of the five senses we
use are utilized: audio, visual and touch. However, the same message can
be carried over two different channels that address two different senses. For
example, text and speech may carry the same information but appeal to two
different senses. Both represent verbal information exchange, but speech
carries additional channels such as tonality so the information exchange really
has two dimensions: verbal and non-verbal. Verbal communication could be
better suited for passing commands to the robot and non-verbal communication
through gestures is more suitable for conveying spatial information. However,
combining these two modalities would yield a more complete and richer
communication between the robot and the user.

2.2.1 Verbal

Speech is an important modality for exchanging information between the robot
and the user. The user can give speech commands to the robot to make it
interact with the objects in the scene. These commands can be like: “Pick up
the blue object” or “Put it next to the green object”. It is also possible to adjust
the settings for the task. The user may command the robot to go “faster”, or
“slower”, etc. These commands will enable the user to fine-tune the tasks and
the skills. Also, any skills or tasks that have been taught to the robot, can be
executed through these speech commands.
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2.2.2 Non-Verbal Communication

A gesture is a form of non-verbal communication where visible bodily actions
communicate particular messages. Gestures include movement of the hands,
face, or other parts of the body. Gestures differ from physical non-verbal
communication that does not communicate specific messages. Gestures can
be static or dynamic meaning that, the gesture can be a certain pose of the hand
or the body or a movement in certain predetermined patterns. For example, a
pointing gesture is a static gesture while drawing a circle figure is a dynamic
gesture. Gestures can be used to program or control robots [4]. Voyles and
Khosia integrated a gesture based set of commands into a programming by
demonstration framework [5]. Strobel et al. use static gestures to direct the
attention of a robot to a specific part of the scene [6].

2.2.3 Multimodal Approach

Speech, facial gestures, body gestures, images, etc. are different information
channels that humans use in their everyday interaction, and mostly they
use more than one a time. On the other hand, humans see robots as
objects with human-like qualities [7]. Consequently, a human-like interaction
interface for robots will lead to richer communication between humans and
robots. In-person communication between humans is a multimodal and
incremental process [8]. Multimodality is believed to produce more reliable
semantic meanings out of error-prone input modes, since the inputs contain
complementary information which can be used to remove vague data [9].

Although giving instructions to the robot using speech is an intuitive
modality for many users, it is not always convenient or sufficient for passing
lower-level details to the robot about the skill to be learned. These low-
level details can concern the spatial relations between objects in the working
environment, or the target orientation and position of the objects. Humans
often make use of hand gestures and body postures when information conveyed
through speech modality is ambiguous or not detailed enough to describe the
task. Therefore it is important to design the language that the user employs to
interact with the robot in such a way that multimodal input is accepted.

Since the introduction of the “Media Room” in Richard A. Bolts paper [10],
many other systems have been implemented which are based on multimodal
interaction with the user. Researchers have employed different methods in
implementation of such systems [11, 12, 13, 14]. All multimodal systems are
common in the sense that they receive inputs from different modalities and



10 Chapter 2. Human-Robot Interaction (HRI)

combine the information to build a joint semantic meaning from these inputs.

Finite-state multimodal parsing has been studied by Johnston and Banga-
lore and they present a method to apply finite-state transducers for parsing
inputs [13]. Unification-based approaches are also studied by Johnston [15].

Fugen and Holzapfels research on tight coupling of speech recognition and
dialog management shows that the performance of a system can be improved
if it is coupled with a dialog manager [16].

A good study on incremental natural language processing and its integra-
tion with a vision system can be found here [8] and also in [17]. Incremental
parsers are also studied for translation purposes [12]. Schlangen and Skantz
have proposed an abstract model for incremental dialog processing in [14].

A multimodal communication scheme is very useful for robot program-
ming because combining two or more modalities can even provide improved
robustness [18]. McGuire et al. make use of speech and static gestures in order
to draw the robot’s attention to an object to be grasped [19, 20].

2.3 Structure of the Team

It is often the case that interaction is not limited to one user and one robot.
There can be cases where a person needs to command and interact with
multiple robots, or multiple users with different roles interact with a single
robot, or multiple users interact with multiple robots. Robots used in search
and rescue operations are often operated by two humans, with special roles in
the team [21] is an example of many to one interaction. On the other hand many
Unmanned/Uninhabited Air Vehicles (UAVs) can be controlled simultaneously
by a single operator [22].

Designing the structure of the team is another aspect of HRI. There are
several questions that arise in this respect: Who has the authority to make
certain decisions: the human, the software interface or the robot? Who has the
authority to instruct the robot and at which level? How are conflicts solved?
How are the roles of the robot and the user defined. The question of what is
the role of the human has recently gained importance [23]. Often robots may
need to interact with humans who are bystanders with no training at all. For
example, a health-assistant robot must help patients and interact with visitors.
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2.4 Adaptation, Learning and Training
How to give robots the ability to adapt and learn has been widely researched
in academia. However, training of users has received relatively little attention,
due to the fact that HRI researchers often want to create robot systems, that
can be used with little to no training on the users side. Even the HRI
researchers might receive training to create better interactive systems. This
section addresses the issues regarding the training of operators, designers, as
well as robots. The training is often given in the hope of understanding and
improving the user interface, interpreting video feedback, controlling the robot,
coordinating with other team members and staying safe while operating the
robot in a hostile environment [24].

2.4.1 Efforts to Train Users
Even though one of the goals of good HRI is to minimize the training of the
users, it is always necessary required to give careful training to the users in
cases where the operator workload or risk is too high. Examples of such cases
are military and law enforcement applications, space applications, and search
and rescue operations. On the other hand, robots that interact with humans
socially are often designed to change, educate or train their users, especially in
longterm interactions [25].

2.4.2 Training Designers
The training of designers has received little attention in the HRI literature;
however, it is important that they do receive training in the procedures and
practices in the fields they seek to help. There are workshops and tutorials for
search and rescue robotics [26] as well as tutorials on metrics and experiment
design for robot applications [27].

2.4.3 Training Robots
It is often the case that robots need to learn and adapt to the environment
or to the user once they leave the factory or the laboratory where they are
preprogrammed regarding certain skills and behaviors. However, a well-
designed robot, that is beneficial to the user, continues to learn and adapt,
by improving both perceptual and reasoning capabilities through interaction.
Approaches to robot learning include teaching/programming by demonstration
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(PbD), as well as task and skill learning. Methods for programming robots are
discussed in more detail in Chapter 3.

2.5 Task Shaping
As new technology is introduced to our lives, the way we do certain things
changes. Similarly introduction of new robotic technologies allow a human to
do things that they were not capable of doing before, or it eases the physical
or cognitive workload by making the task easier or more pleasant to do for the
human. This means that introducing new technology fundamentally changes
the way humans do the task. Task shaping is the term that emphasizes the
importance of considering how the task should be done and will be done as
new technology is introduced [2].



Chapter 3

Robot Programming Systems

In this chapter we give a brief overview of how robots are programmed. This
chapter follows a similar pattern for dividing the field of robot programming
as Biggs na d Macdonald [28]. The field of robot programming is divided in to
two: manual programming and automatic programming (Fig 3.1). In manual
programming the code is hand created, and this is done through either text-
based programming and graphical programming. Automatic programming
can be divided in to three sub groups: learning systems, programming by
demonstration and instructive systems. In automatic mode the robot code is
automatically generated and the user has little or no direct control over the
code.

3.1 Manual Programming Systems

Manual programming systems require the user to create the program by hand
often without the actual robot. Once the program is finished, it is loaded into
the robot and tested. Manual programming systems are offline methods for
programming robots, because the code is created either without using the robot,
or with the robot disconnected from the programming environment. However
when there are no safety concerns, for example while programming toy robots,
it might be possible to control the robot online through an interpreted language
where line-by-line execution is possible while creating the code.

Manual programming systems can be divided into two groups: text-based
systems and graphical programming environments. Graphical programming

13
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Figure 3.1: Categories of robot programming systems

environments are not considered automatic code generation, because the user
must create the code by hand before running it on the robot. Besides there
is a one-to-one correspondence with the icons and the generated program
statements.

3.1.1 Text-Based Systems
In text-based programming systems, the conventional programming approach
is used, and it is the most common way to program industrial robots to-
gether with programming by demonstration (PbD). Text-based systems can be
grouped depending on the type of language used, by means of the programming
done by the user.

Controller-Specific Languages

Controller-specific languages are the most common method to program indus-
trial robots. Ever since the invention of industrial robots and robot controllers
there has been a machine language and usually a programming language to go
with it that can be used to create programs for that robot. These languages
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Figure 3.2: A screenshot of the ABB Robot studio.

often consists of very simple commands for controlling the robot, input output
(IO), and program flow. ABB’s RAPID programming language [29] is a good
example of controller specific languages (Fig. 3.2). However KUKA and other
manufacturers have their own specific languages targeted for their robots.

In fact, it can be guessed that, there are as many languages as there are
manufacturers. The major disadvantage of controller specific languages is
that there are no international standard between different manufacturers. If
a company owns robots from several manufacturers, the programmers need to
be trained for each type of robot or the company will need to outsource robot
programming.

Generic Procedural Languages

Generic procedural languages provide an alternative to controller specific
languages. Generic programming languages for robots extends standard
high level procedural languages such as C++ or Java in a way to provide
functionality for the target robot platform. Such an approach is beneficial
in research environments, where generic languages are extended to meet the
needs of the research project. The extended generic language can be used for
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system programming or application level programming.
The abstraction provided by the generic language, which consists of a set

of classes and functions, can facilitate the programming. Abstraction provides
an easy way to control the robot, while hiding away the low-level functionality,
such as handling IO’s or raw sensor data. For example, with the help of
the functions provided the robot can easily be moved to a certain position.
Another example is collision-free paths that can be requested between two
configurations using the path planner.

Behavior-Based Languages

Behavior based programming languages provide an alternative to the procedu-
ral languages. Behavior based programming defines how the robot should react
to some stimulus or event rather than following a procedural description. The
idea behind behavior-based programming is to supply a set of behaviors that
independently work to accomplish their goals, but together allow the robot to
accomplish larger tasks. Behavior-based programming employs a hierarchical
system of behaviors specifically written to perform an action based on a set
of triggers (cruise, bumper escape, avoid, home, etc..). As the complexity of
the overall system increases, new behaviors can be added without changing
existing ones.

Functional Reactive Programming (FRP) is a good example of behavior
based programming. FRP reacts to both analog and discrete signals. Yampa
[30] and Frob [31] are example are two recent extensions of the FRP
architecture. The advantage of FRP is that it is much more code efficient in
comparison to procedural languages. In Yampa. for example, it is possible to
write a wall-following algorithm with just 8 lines of code.

3.1.2 Graphical Programming Environments
Graphical programming environments provide an alternative to text-based pro-
gramming environments. Even-tough graphical programming environments
are closer to automatic programming systems, they are still regarded as manual
programming. This is because, the user still needs to manually design the
program flow and actions. Graphical systems utilize graphs, flow charts or
diagrams to provide means for programming the robot. Small interdependent
modules are connected to each other to create procedural flow or behaviors.

Lego’s Mindstorm NXT [32] products provide a very successful flowchart
based programming environment (Fig. 3.3). Since it is targeted at children, it
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Figure 3.3: Lego Midstorm programming environment

is very simple in its design. In the programming environment iconic building
blocks representing low-level functions are stacked together to produce a se-
quence of actions. It is also possible to create macros with in the programming
environment. The generated sequence of commands can either be executed as
the main process of the robot or mapped as a behavior when a certain sensor is
triggered. A similar approach developed by Bischoff et al. [33] has been used
to program industrial robots. In their system the user joins iconic low-level
functions to reconfigure the robot to perform the required tasks. Usability tests
show that both experts and novice users found the graphical system easier for
handling robots.
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3.2 Automatic Programming Systems

3.2.1 Learning Systems

In learning systems, the robot learns by inductive inference from user provided
examples and self exploration [34]. First the robot watches and observes the
user through a range of sensors and then tries to imitate the user. Billard
and Schaal created a hierarchy of neural networks developed for learning the
motion of human arm in 3D space [35]. Weng and Zhang proposed a robot
that can learn simple tasks and chain them together to form larger and complex
behaviors [36].

3.2.2 Programming by Demonstration

Programming by demonstration (PbD) is also a common way of tutoring robots
for trajectory oriented tasks such as arc welding or gluing [1]. PbD started
about 30 years ago with the development of industrial robots and has grown
importantly in the last decade with the advances in computer science and sensor
technology. Traditional PbD systems use a teach-pendant to jog the robot to the
desired position. This position is recorded and a sequence of these positions
is used to generate a robot program that will move the robot through a certain
path. This method has been the industry standard for many years. In research
this traditional ways of guiding/teleoperating the robot was progressively
replaced by more user-friendly and intuitive interfaces [37], such as vision
[38, 39, 40], data gloves [41], laser range finder [40] or kinesthetic teaching (ie.
by physical guiding the robot’s arm through motion)[42, 43, 44]. Kinesthetics
provide a very rapid way of teaching new paths to robots, especially when used
in assembly. Myers et al. used programming by demonstration to teach the
robot subtasks which are then grouped into sequential tasks by the programmer
[45].

Over the years, research and applications moved from simply copying or
imitating the demonstrations to generalizing across a set of demonstrations.
Münch et al. suggested the use of machine learning (ML) techniques to
recognize elementary operators, thus defining a discrete set of basic motor
skills. In their work, they also issued how to generalize a task, how to reproduce
a skill in a completely novel situation, how to refine the reproduction attempt,
and how to better define the role of the teacher during learning [46]. There are
two different approaches for skill representation; A low-level representation
of the skill can be seen as nonlinear mapping between sensory and motor
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inputs; trajectory encoding is an example of low-level skills. By contrast,
high-level representation of a skill decomposes the skill into a sequence of
elementary action and perception units also referred as symbolic encoding
[37]. A significant portion of the work done in the PbD field uses symbolic
representation of both the learning and the encoding of skills and tasks [46, 47].

3.2.3 Instructive Systems
In the case of instructive systems, series of instructions are given to the robot.
This type of programming is best suited for executing series of tasks that
the robot is already trained for. Using speech to instruct a robot provides a
natural and intuitive way. Lauria et al. use a speech based natural language
input to navigate a mobile robot to different locations via specified routes
[48]. Brick and Scheutz provide an incremental framework where the robot
can act upon sufficient information to distinguish the intended referent from
perceivable alternatives, even when this information occurs before the end of
the syntactic constituent [49]. Hand gestures are also used as input; Voyles
and Khosia integrated a gesture based set of commands into a programming by
demonstration framework [50]. Strobel et al. use static gestures to direct the
attention of the robot to a specific part of the scene [6]. Combining the two
modalities can even provide improved robustness [51]. McGuire et al. make
use of speech and static gestures in order to draw the robot’s attention to the
object of interest and make it grasp this object [19].





Chapter 4

Results

4.1 Contributions

The contributions presented in this thesis can be divided into two parts:

4.1.1 General Multimodal Framework

It is believed that using multiple modalities makes a message less prone to
being misunderstood, depending on the type of data; therefore multimodality
can help to reduce ambiguities in human-computer interaction [9]. There
have been numerous efforts to implement multimodal interfaces for computers
and robots [11, 12, 13, 14]. Yet there is no general standard framework
for developing multimodal interfaces. In order to design and implement
such interfaces efficiently, we propose a general framework. The proposed
framework in Paper C is designed to perform natural language understanding,
modality fusion and semantic analysis through an incremental pipeline.

The framework also employs a new grammar definition language which
is called COactive Language Definition (COLD).COLD is responsible for
multimodal grammar definition and semantic analysis representation. COLD is
used to (1) generate separate grammars for each modality, (2) define the fusion
pattern, (3) define the semantic variables and calculations and (4) define dialog
patterns and dialog turns. This means that COLD affects the whole process
from the processing of inputs to modality fusion, semantic analysis and dialog
management.

21
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The framework is also an incremental system. The incremental nature of
the system allows to start processing of input words or signals from other
modalities as they are received before the sentence is complete. Parsing,
modality fusion, semantic meaning generation and execution are all performed
through this incremental pipeline. With an incremental system it is easy
to build a response to user inputs before the sentence is finished. In the
HCI/HRI domain, incremental processing helps to improve the response times
of computer systems. Multimodal systems should be very responsive, because
they would otherwise require the repetition of commands from the user, more
ambiguity in the recognition process as well as user annoyance

4.1.2 Object-Based Programming Scheme

Programming industrial robots is not an easy task for a person who doesn’t
have previous experience. One of the reasons is that even though we occupy
the same physical space as the robots, the intrinsic representation of the world
is different for humans and robots. Humans represent the world around them
by describing objects and spatial relations between these objects in a natural
language. Robots, by contrast, work in abstract numeric coordinate systems
which are not intuitive to us. Paper A, B and D aim to find a mapping
between our object-based representation of the world and the robots’ numeric
representation.

The simulation environment presented in Paper B provides a procedural
language API for ABB industrial robots, making it possible to program them
through C# [52]. With an extended version of this API it is also possible
to use Prolog [53], which is a general-purpose logic programming language,
to program the robot. Having support for generic procedural and logic
programming languages through simulation environment, makes it possible
to automatically generate error free RAPID code for ABB robots [29]. Calls
from C# are tested for reachability along a path. Collision free path planning
from point A to point B can be performed. The motivation for using Prolog is
twofold. Firstly, it is used to develop an initial prototype for natural language
processing that is later on replaced by COLD framework. Secondly, using
backtracking makes it possible to generate long list of RAPID commands
from simple PROLOG commands. All these properties of the simulation
environment makes it a useful and reliable research tool.

Paper B explores the use of natural language backed with spatial relations in
an industrial environment. In the paper, we demonstrate a high-level language
in order to command an industrial robot for simple pick-and-place applications.
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The proposed high-level language allows the user to give high-level commands
to the robot to manipulate the objects. The proposed language can also handle
attributes of the objects in the environment, such as shapes, colors, and other
features in a natural way. It is also equipped with functions for handling spatial
information, enabling the user to be able to relate objects spatially to static
objects. Paper B aims to command a robot to define which operations or tasks
to be performed on a selection of objects.

The language described in Paper B works at a very high-level. The robot
knows what to do and the user only instructs the robot to do the operation
on a set of objects that pass a criterion. A possible example is “put all the
blue objects into the palette”. The user has no freedom of choosing which
blue objects go in to which locations in the palette. In order to address this
problem, Paper D lowers the level of abstraction of commands, giving the user
the ability to determine which object goes where. Paper D utilizes the general
multimodal framework backed up with an augmented reality interface. With
the camera mounted on the gripper of the robot, the user can see through the
eyes of the robot and select objects and drop locations for these objects.Paper
D addresses to describe how a task should be performed.

Combining the proposed general multimodal framework with the object-
based programming scheme open new possibilities for creating interactive
systems for robot programming. One of the these possibilities injunction with
the goals of the thesis is to create a instructive programming environment that
can easily be used by people who does not have expert knowledge in robot
programming.

4.2 Overview of Papers

4.2.1 Paper A

Interacting with Industrial Robots Through a Multi-modal Language and
Sensory Systems, Batu Akan, Baran Çürüklü, Lars Asplund, In proceedings of
the 39th International Symposium on Robotics (ISR), Seoul, Korea, October,
2008

Summary: In this paper we propose a theoretical model for the framework,
that we build the system on. The paper discusses the issues about difficulties
in programing of industrial robots and why these robots are not used in small
and medium sized enterprises (SMEs). As a solution we propose a high level
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language that acts a mediator between a user and a robot.

My contribution: I was the main author of this paper; however, all authors
contributed to the idea and the writing process.

4.2.2 Paper B
Object Selection using a Spatial Language for Flexible Assembly, Batu Akan,
Baran Çürüklü, Giacomo Spampinato, Lars Asplund, In Proceedings of the
14th IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA’09), Mallorca, Spain, September, 2009.

Summary: In this paper we propose a limited natural language that utilizes
spatial terms to hide the complexities of robots programming. We use Gaussian
kernels to represent spatial regions such as “left” or “above”. We also
introduce our robot simulation environment where we check for reachability
and collisions. The simulation environment also provides application program-
mers interfaces for procedural and behavioral programming in C# and Prolog
languages.

My contribution: I was the main author of this paper contributing with the
development of the system, together with the programming interfaces. The co-
authors contributed with technical aspects, such as inverse kinematics for the
robot and valuable feedback on the overall paper.

4.2.3 Paper C
A General Framework for Incremental Processing of Multimodal Inputs,
Afshin Ameri E., Batu Akan, Baran Çürüklü, Lars Asplund, In Proceedings
of the 13th International Conference on Multimodal Interaction (ICMI’11),
Alicante, Spain, November, 2011.

Summary: In this paper we propose a framework for the rapid development
of multimodal interfaces. The framework is designed to perform modality
fusion and semantic analysis through an incremental pipeline. The incremental
pipeline allows for semantic analysis and meaning generation as the inputs
are being received. The framework also employs a new grammar definition
language which is called COactive Language Definition (COLD). COLD is
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responsible for multimodal grammar definition and semantic analysis represen-
tation. This makes it easy for multimodal application developers to view and
edit all the required resources for representation and analysis of multimodal
inputs at one place and through one language.

My contribution: As the second author of this paper, I contributed with
the idea and formalization of COLD,the partial development of the system,
experiments and the editing of the paper

4.2.4 Paper D
Intuitive Industrial Robot Programming Through Incremental Multimodal
Language and Augmented Reality, Batu Akan, Afshin Ameri E., Baran
Çürüklü, Lars Asplund, In proceedings of the IEEE International Conference
on Robotics and Automation (ICRA’11), Shanghai, China, May, 2011.

Summary: In this paper, we propose to use an incremental and multimodal
natural language, which we developped in Paper C, in combination with
our simulation environment and augmented reality. A view of the working
environment is presented to the user through a unified system. The system
overlays visuals through augmented reality to the user and also receives
inputs and voice commands through our high level multimodal language. The
proposed system architecture makes it possible to manipulate, pick or place
the objects in the scene. Such a language shifts the focus of industrial robot
programming from a coordinate-based programming paradigm to an object-
based programming scheme.

My contribution: I am the main author of this paper and contributed with
the development of the AR module, the experimental setup and the writing
of the paper. The co-authors contributed with technical aspects and valuable
feedback on the overall paper.





Chapter 5

Conclusions

In this thesis we propose general multimodal framework and a object-based
programming scheme for interacting with industrial robots by using natural
means of communication. The proposed system provides an alternative to well-
established robot programming methods which require considerable larger
amount of time, and perhaps more importantly, expert knowledge. A system
which is easy to learn and use enables large numbers of users to benefit from
that technology. Minimizing the need of expert knowledge is very beneficial
for the industry, especially for small and medium-sized enterprises(SMEs).
Providing such a solution to the SMEs might encourage them to invest in robot
automation which in return will boost productivity. It is not only SMEs that
can benefit from the easy programming of industrial robots; integrators, who
develop robotic automation solutions for various companies can do so too.
Developing and delivering solutions to their customers at the fraction of the
time it took before would increase their competitiveness in the market.

5.1 Future Work

This thesis opens up possibilities to conduct further research in certain areas
that have not thoroughly addressed.

The current work so far addresses the interaction between the robot and the
user. In a way the robot understands the user’s intentions, but it has no sense
of the environment. Object recognition and localization are essential abilities
for robots in general to work in unstructured environments. From the point of
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view of this thesis, object localization abilities will also enrich the interaction
process between the robot and the user. In the future we plan to add a camera
system capable of object recognition and object localization.

In our initial experiments, users have found the system easy to learn and
to use; they also have reported that it was “fun” to use compared to the
traditional programming method. However, more experiments, especially in
real industrial workplaces and with user groups having different backgrounds
are necessary to be carried out.

The current natural grammar is very limited in size. As the grammar grows
upon requests from the industry, it is necessary to analyze the impact of growth
upon the COLD framework. Another task regarding COLD framework would
be to introduce a context analyzer to improve the robustness of the framework
as the size of the grammar gets bigger.
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