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Abstract
This master thesis studies the problem of parameter identification for system bi-
ology. Two methods have been studied. The method of interval analysis uses
subpaving as a class of objects to manipulate and store inner and outer approx-
imations of compact sets. This method works well with the model given as a
system of differential equations, but has its limitations, since the analytical ex-
pression for the solution to the ODE is not always obtainable, which is needed for
constructing the inclusion function. The other method, studied, is SDP-relaxation
of a nonlinear and non-convex feasibility problem. This method, implemented in
the toolbox bio.SDP, works with system of difference equations, obtained using
the Euler discretization method. The discretization method is not exact, raising
the need of bounding this discretization error. Several methods for bounding this
error has been studied. The method of ∞-norm optimization, also called worst-
case-∞-norm is applied on the one-step error estimation method.

The methods have been illustrated solving two system biological problems and
the resulting SCPs have been compared.

Sammanfattning
Det här examensarbetet studerar problemet med parameteridentifiering för system-
biologi. Två metoder har studerats. Metoden med intervallanalys använder union
av intervallvektorer som klass av objekt för att manipulera och bilda inre och
yttre approximationer av kompakta mängder. Denna metod fungerar väl för mo-
deller givna som ett system av differentialekvationer, men har sina begränsningar,
eftersom det analytiska uttrycket för lösningen till differentialekvationen som är
nödvändigt att känna till för att kunna formulera inkluderande funktioner, inte
alltid är tillgängliga. Den andra studerade metoden, använder SDP-relaxering, som
ett sätt att komma runt problemet med olinjäritet och icke-konvexitet i systemet.
Denna metod, implementerad i toolboxen bio.sdp, utgår från system av differen-
sekvationer, framtagna via Eulers diskretiserings metod. Diskretiseringsmetoden
innehåller fel och osäkerhet, vilket gör det nödvändigt att estimera en gräns för
felets storlek. Några felestimeringsmetoder har studerats. Metoden med ∞-norm
optimering, också kallat worst-case-∞-norm är tillämpat på ett-stegs felestime-
rings metoder.

Metoderna har illustrerats genom att lösa två system biologiska problem och
de accepterade parametermängderna, benämnt SCP, har jämförts och diskuterats.
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Notation

In the following, the abbreviations and notations are listed and explained.

Notation Meaning
xC Vector of the time-continous state variables
xD Vector of the time-discrete state variables
yC Vector of the time-continuous model outputs
yD Vector of the time-discrete model outputs
uC Vector of the time-continuous model inputs
uD Vector of the time-discretes model inputs
p Vector of the unknown parameters
e(k)
D Vector of the discretization error at the time instant k.

domf Domain of a function, f .

X Set of the state vectors
Y Set of the output vectors
U Set of the input vectors
P Set of the unknown parameters
P0 Initial set or initial box
PCT Set of parameters consistent with the time-continuous dynamical model
PDT Set of parameters consistent with the time-discrete dynamical model
I(0, N) Denoting the integer set {0, 1, ..., N}
N + 1 Number of the measurements

R Set of all real numbers
Rn Set of all real vectors
Rnx Set of all real vectors with the dimension equal to nx=number of states.

The same is applicable for ny, nu and etc.
IR Set of all interval real numbers
IRn Set of all n-dimensional rea interval vectors
SCP Set of Consistent Parameters

1





Chapter 1

Introduction

Model validation and parameter estimation is a challenging task, specially because
of the uncertainty in the parameters and measurement data. Classical methods
based on statistical and regression methods require a huge amount of experimental
data, in order to be efficient for the purpose of validation. The subject of this thesis
is parameter identification for biological systems, where the amount of available
measurement data is limited to some few samples. As a result it is not possible
to use these classical methods. This is why set-based parameter identification
approach is more efficient, because by set-based methods it is possible to analyze
complete sets of data instead of finite number of distinct points [8, 17, 4]. Even
if the restriction regarding the limitation on measurement data had not been a
problem, it would have been difficult to validate the correctness of a model, based
on measurements taken from the system. Also, deriving a mathematical proof
that verifies a model is impossible in practice [17]. These are the reasons why
it seems to be more realistic to treat the converse problem, model falsification.
Related works in the field treat the problem in a similar way, namely by obtaining
an infeasibility certificate using set-based approaches instead of trying to develop
a mathematical proof that can be used for validation, see for instance [8, 17, 4].

For this purpose all the above mentioned works formulate a non-linear fea-
sibility problem, which is then relaxed to an SDP (Semidefinite Programming)
problem. In addition, the authors in [17] try to take the discretization error into
consideration, when finding the solution to the relaxed problem.

The aim with this thesis is to test different methods on important class of
biological models. The interval analysis approach is based mainly on [11]. The
method of relaxing the feasibility problem is motivated by the work presented
in [8], since we use the provided Matlab toolbox [10] devoloped by the same
author(s). In addition, several methods for estimating the discretization error has
been studied, one of which has been implemented in the toolbox.
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4 Introduction

1.1 Problem formulation
Let us start with some basic definitions of some entities, necessary for understand-
ing the text in this chapter,

Definition 1.1 Define
P set of unknown parameters.
X set of the states.
Y set of the outputs.
U set of the inputs.
N+1 number of measurement points.
Consider the dynamical system below, ẋ = f(x,u;p)

y = h(x;p). (1.1)

This model can be expressed in its discrete counter part as given below,

0 = F (x(k+1),x(k),u(k),p), x(0) = x0

0 = H(y(k),x(k),p), k ∈ I(0, N)
(1.2)

where k denotes the kth time point. We also assume that we are given N + 1
samples of output measurements indexed by I(0, N). In this thesis the dynamical
system in (1.1) usually describes the rate of reactions in a chemical/biological
system, in continuous time, where x,u, y and p are vectors of the states, inputs,
outputs and the unknown parameters, respectively. The question now is whether
there exists a parameter vector p ∈ P consistent with the provided data, i.e., y ∈
Y given x ∈ X and u ∈ U , or equivalently with set theoretical notation,

PCT = {p ∈ P|x ∈ X ,y ∈ Y,u ∈ U :ẋ = f(x,u;p)
y = h(x;p)}

However, the model falsification is performed for the discretized system (1.2).
As a result it is necessary to investigate how the introduced error by performing
discretization will affect the consistency of the results, and whether the emptiness
of PDT as below would lead to model rejection.

PDT = {p ∈ P|x(k) ∈ X ,y(k) ∈ Y,u(k) ∈ U :x(k+1) = F (x(k),u(k);p)
y(k) = H(x(k);p)}

(1.3)

In case the discretization does not introduce too much error, the emptiness of
PDT will result in the rejection of the proposed model. In this thesis, the method
of Euler is used for discretization and we will try to address how the discretization
error, introduced by this method will affect the SCP(Set of Consistent Parameters).



Chapter 2

Mathematical Preliminaries

In this chapter, the mathematical background needed to understand the chapters
to come are presented. In section §2.1 we review basic definitions in set theory
and interval analysis. This includes methods of building inclusion functions as well
as subpavings. Basics in mathematical optimization (used in this thesis) is also
presented briefly in section §2.2. Finally in sections §2.3,§2.4,§2.5 we discuss the
basic ideas in norms, inner products and singular Value Decomposition, respec-
tively. For a more comprehensive theory, the reader is mainly referred to [5, 14, 11]
and in some extension also to [16, 18].

2.1 Interval analysis
We begin with a brief introduction to the basics in set theory and interval analysis.
Then we continue with a short introduction into the concept of interval vectors
and interval matrices. Three methods of building inclusion functions are presented
as well as the method of building unions of non-overlapping boxes, referred to as
subpaving. The section ends with a short presentation of two methods where
the notions of inclusion function and inclusion test are used for set computation,
using subpaving as a class of objects to represent sets. In the examples illustrating
the two set computational methods sivia and Imagesp, the matlab toolboxes
intlab and SCS are used, see [16, 18].

2.1.1 Set theory and interval analysis, basic definitions
Definition 2.1 Consider two sets X and Y. We define

Intersection X ∩ Y =
{
x | x ∈ X and x ∈ Y

}
Union X ∪ Y =

{
x | x ∈ X or x ∈ Y

}
Complement X\Y =

{
x | x ∈ X and x /∈ Y

}
Cartesian Product X× Y =

{
(x, y) | x ∈ X and y ∈ Y

} (2.1)

5



6 Mathematical Preliminaries

Definition 2.2 Wrappers
A set IX is called a set of wrappers for the set X if X and each singleton of it
belong to IX and if IX is closed by intersection, i.e.,

X1 ∈ IX and X2 ∈ IX⇒ X1 ∩ X2 ∈ IX.

A singleton set, denoted {a}, is the simplest example of a nonempty set [1].
We also present a simplified version of a distance, called Hausdorf distance.

Assume that the two sets A and B are subsets of the compact set C(Rn). The
amount that is needed to inflate B so that it contains A, is called the proximity of
A to B and is defined as,

h0
∞(A,B) = inf{r ∈ R+|A ⊂ B + rU}

where U is the unit ball and R+ stands for the set of all positive real numbers , see
Figure 2.1. In this figure, the set A is represented by the area inside the triangle
and the set B by the area enclosed by the square. In a similar way, one can get
h0
∞(B,A) by inflating A until it contains B.

Definition 2.3 Hausdorff and complementary Hausdorff distance
The distance defined as,

h∞(A,B) = max{h0
∞(A,B), h0

∞(B,A)} (2.2)

is called Hausdorff distance. The distance

h∞(A,B) = max{h0
∞(A,B), h0

∞(B,A)} (2.3)

is called the complementary Hausdorff distance, where

h
0
∞(B,A) = h0

∞(Rn\B,Rn\A)

h
0
∞(A,B) = h0

∞(Rn\A,Rn\B) (2.4)

and where Rn\A and Rn\B denote the respective complementary sets of A and B in Rn.
The distances in (2.4) are attained if the reverse of the operation shown by Fig-
ure 2.1 can be performed, i.e., the operation of deflating the set A until it is
contained in the set B gives h0

∞(B,A). The distance, based on (2.2) and (2.3), is
the so called m∞-distance, and is defined as,

m∞(A,B) = max(h∞(A,B), h∞(A,B)) (2.5)

More details and comprehensive theory with illustrative figures are available in
[11].

Definition 2.4 Interval, some definitions
Interval [x] =

{
x ∈ R | x ≤ x ≤ x

}
Lower bound x = sup{a ∈ R ∪ {−∞,∞}|∀x ∈ [x], a ≤ x}
Upper bound x = inf{b ∈ R ∪ {−∞,∞}|∀x ∈ [x], x ≤ b}
Width w([x]) = x− x
Midpoint mid([x]) = x+x

2

(2.6)
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Figure 2.1. A graphical illustration of the proximity of A to B. The set A is the area
inside the triangle and the not yet inflated set B is represented by the area inside the
smallest of the rectangles. The set B is inflated until the set A is contained in it, resulting
in the proximity of A to B. The inflated set B is now the area enclosed by the largest of
the rectangles.

h0
∞(A,B)

B

A

B + rU
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Arithmetic Operations

[x] + [y] = [x+ y, x+ y]
[x]− [y] = [x− y, x− y]
[x] ∗ [y] = [min

{
xy, xy, xy, xy

}
,

max
{
xy, xy, xy, xy

}
]

[x]/[y] = [x] ∗ (1/[y])

(2.7)

[x]2 =



[x2, x2], 0 ≤ x ≤ x,
[x2, x2], x ≤ x ≤ 0,

[0,max
{
x2, x2

}
], x ≤ 0 ≤ x

(2.8)

The division rules for defining 1/[y] depend mainly on the content of the interval
[y],

1/[y] = ∅ if [y] = [0, 0]
= [1/y, 1/y] if 0 /∈ [y]
= [1/y,∞[ if y = 0 and y > 0
=]−∞, 1/y] if y < 0 and y = 0
=]−∞,∞[ if y < 0 and y > 0

(2.9)

Example 2.1: An example on interval arithmetic
Consider an interval [x] = [2, 3] and interval [y] = [−1, 3]. We use these two
intervals to show the arithmetic operations presented in (2.7).

[x] + [y] =[2− 1, 3 + 3] = [1, 6]
[x]− [y] =[2− 3, 3− (−1)] = [−1, 4]
[x] ∗ [y] =[min

{
2 ∗ (−1), 2 ∗ 3, 3 ∗ (−1), 3 ∗ 3

}
,max

{
2 ∗ (−1), 2 ∗ 3, 3 ∗ (−1), 3 ∗ 3

}
]

=[−3, 9]
[x]/[y] =[2, 3] ∗ [1/y]

=[2, 3]∗]−∞,∞[
=]−∞,∞[

(2.10)

2.1.2 Interval vectors and interval matrices
As we defined an interval [x] ∈ R to be a set of real numbers bounded by an upper
and a lower bound, we similarly define the vector of intervals as the Cartesian
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product of intervals,

[x] = [x1]× [x2]× ...× [xn] ⊂ IRn (2.11)

where IRn denote the set of all n-dimensional real interval vectors. For the n-
dimensional box [x] we can define,

Lower bound [x] = (x1, ..., xn)
Upper bound [x] = (x1, ..., xn)
Width w([x]) = max1≤i≤nw([xi])
Midpoint mid([x]) = (mid([x1]), ...,mid([xn])).

(2.12)

An interval matrix is a matrix whose elements are interval numbers,

[A] =


[a11]...[a1n]

. . .
[am1]...[amn]


where [aij ] = [aij , aij ]. Similar to the vector intervals we define upper bounds and
lower bounds of the interval matrix A,

A =


a11...a1n

. . .
am1...amn

 , A =


a11...a1n

. . .
am1...amn

 . (2.13)

A good application for interval matrices is in solving a set of linear equations
with unknowns in the coefficients matrix, which its exact solution can not be
decided with methods like for instance Gaussian elimination. Then using interval
analysis and the matlab toolbox intlab the solution can be found as an exact
interval set.

Example 2.2: Solving linear equations using Intlab
Consider a linear system with two unknowns and the nonsingular interval coeffi-
cient matrix A,

[A][x] = [b]

[A] =
(

[4 4] [0 2]
[0 2] [4 4]

)
and [b] =

(
[−1 1]
[−1 1]

)
(2.14)

Now using intlab we can plot and show that the exact solution set is the shaded
area and the entire solution set is enclosed by the narrowest possible interval vector
(interval hull),

[x] =
(

[−0.5000 0.5000]
[−0.5001 0.5001]

)
depicted in the Figure 2.2



10 Mathematical Preliminaries

Figure 2.2. Exact solution set to [A][x] = [b], with [A] and [b] given in equation (2.14).

2.1.3 Inclusion functions
Previous subsections introduced interval numbers, arithmetic rules, interval vec-
tors and matrices. In this subsection, the focus instead will be on using them in a
function. The aim here will be to (i) introduce the concept of inclusion functions
and (ii) to learn how to construct them, given a real (punctual) function. We also
discuss how to make use of an inclusion function later on this section. Assume
that we have a function from Rn to Rm, e.g., f(x),x ∈ R2. If we substitute the
real vector x by an interval [x] ⊂ IR2, where, IR2 stands for real interval vector,
we get the image function, f([x]). Inclusion function,[f]([x]), is then defined as the
box which encloses the image function, i.e.

f([x]) ⊂ [f]([x]).

Building an inclusion function this way, by replacing the x with [x] and also the
arithmetic operators with their interval counter part, gives the natural inclusion
function. Figure 2.3 illustrates the concept and the fact that no matter what the
shape or size of f([x]) are it is always possible to compute a box [f] that contains
it. The smallest of the boxes is said to be minimal and is denoted by [f]∗.

Definition 2.5 An inclusion function [f] is convergent if for any sequence of boxes
[x](k),

lim
k→∞

w([x](k)) = 0⇒ lim
k→∞

w([f]([x](k))) = 0. (2.15)
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Figure 2.3. Images of a box by a vector function f and two of its inclusion functions [f]
and [f]∗; [f]∗ is minimal [11]

It is though important remembering that when building an interval-valued
function, its value may depend on how the originally real-valued function was
expressed. As we will see in the example below, in the real case x2 = x ∗ x,
whereas this is not the case with the interval-valued counterpart. The reason
to this is that in the interval arithmetics we have (i) dependency issue and (ii)
the wrapping effect. Dependency issue simply means that in interval functions
occurrence of each interval variable is treated individually and independently. This
can cause overestimation problem, which can be solved by rewriting the expression
and trying to obtain an expression in which each variable occurs as rare as possible,
see [11, 14]. Wrapping effect occurs when a result is not representable by an
interval, as illustrated by the example bellow.

Example 2.3: An example on dependency issue and wrapping effect
Consider a real-valued function of a real variable,f(x) = x2 = x ∗ x. For the
purpose of illustrating the dependency issue, consider the following two natural
inclusion functions,

[f1]([x]) = [x]2

[f2]([x]) = [x] ∗ [x].
(2.16)

In the case of punctual vector x and f(x), there should be no doubt that both
x2 and x ∗ x return exactly the same value. However, in interval arithmetic the
variable [x] in [x]2 is treated as one single variable, whereas the same variable in
[x] ∗ [x] is treated as two different variables. Let [x]=[-1,1], then

[f1]([x]) = [x]2 = [0, 1]
whereas

[f2]([x]) = [x] ∗ [x] = [−1, 1],

see (2.7). The overestimation in [f2], as illustrated by the Figure 2.4, is because
of the dependency issue. This problem can be solved by trying to express the
problem in a way such that each variable occurs as rare as possible in a problem,
as in the case [f1], see Figure 2.4. As the figure illustrates the inclusion function
[f1] ,in which the variable [x] appears only once, is minimum.
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Figure 2.4. An illustration of the dependency effect. The interval variable [x] is treated
as one variable in the expression [f1]([x]) = [x]2. The same variable is treated as two
separate variables in [f2]([x]) = [x] ∗ [x] leading to a too large inclusion function [f2]. [f1]
is minimal.

For the wrapping effect, consider the function f(x1 +x2, x2), see [15], with the
natural inclusion function [f ]([x1] + [x2], [x2]) where [x1] = [−2, 2] and [x2] =
[−2, 2]. The image set f([x1] + [x2], [x2]) is a parallelogram with corners at
(−4,−2), (0, 2), (4, 2) and (0,−2). This parallelogram is not representable as an
interval-box, but can be wrapped in its inclusion function, a box, which in gen-
eral also contains points or areas outside the actual image set. For this particular
example, the inclusion function or the box is [−4, 4]× [−2, 2]), see Figure 2.5.

In the following two other methods for building inclusion functions, namely cen-
tered and mixed centered inclusion functions, are presented briefly. For the method
of Taylor and further reading about inclusion functions the reader is referred
to [11, 14].

Centered inclusion functions

For the purpose of building the centered inclusion function, consider a scalar func-
tion f of a vector x from Rn to R and assume f to be differentiable over the
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Figure 2.5. The true image of the function f([x1] + [x2], [x2]), here denoted f([x]), is a
parallelogram not representable as an interval. The inclusion function, [f ]([x]) is a box,
enclosing the parallelogram but, because of the wrapping effect, also areas outside the
parallelogram.

interval vector [x] and let,

m = mid([x])

g =


∂f
∂x1
∂f
∂x2
...
∂f
∂xn

 .

The mean-value theorem implies that,

∀x ∈ [x],∃z ∈ [x]|f(x) = f(m) + gT (z)(x−m).

Letting [gT ] be an inclusion function for gT , we have,

∀x ∈ [x], f(x) ∈ f(m) + [gT ]([x])([x]−m).

By this, the interval function

[fc]([x]) = f(m) + [gT ]([x])([x]−m) (2.17)

defines the centered inclusion function for f.
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Mixed centered inclusion function

Let us now consider a function f which maps R to R ,

f(x) ∈ f(m) + f ′([x])([x]−m)
m = mid([x]). (2.18)

If now f is a function of n variables, we can build the mixed centered inclusion
function by applying (2.18) n times, for each component of x. To illustrate the
method consider the case when n = 2 and mi = mid([xi]), i = 1, 2. If we apply
(2.18) and consider f(x1, x2) to be a function of x2 only, we get

f(x1, x2) ∈ f(x1,m2) + g2(x1, [x2])([x2]−m2). (2.19)

Following the same procedure once more while considering f(x1,m2) as a function
of x1 only results in

f(x1,m2) ∈ f(m1,m2) + g1([x1],m2)([x1]−m1). (2.20)

Now combining the two equations (2.19) and (2.20), we get

f(x1, x2) ∈ f(m1,m2) + g1([x1],m2)([x1]−m1) + g2(x1, [x2])([x2]−m2). (2.21)

Thus

f([x1], [x2]) ⊂ f(m1,m2) + g1([x1],m2)([x1]−m1) + g2([x1], [x2])([x2]−m2)︸ ︷︷ ︸
[fmc]([x1],[x2])

.

(2.22)
As a result for an arbitrary number of variables, the general expression for the

mixed centered inclusion function is given by

[fmc]([x]) = f(m) +
n∑
i=1

[gi]([x1], ..., [xi],mi+1, ...,mn)([xi]−mi) (2.23)

where m is the vector containing the median of each interval variable. Hence,
[fmc]([x]) will be a smaller box than [fc]([x]), because of the mix of both punctual
and interval arguments in (2.23), which results in a decreased pessimism in the
inclusion function, as

[g](mid([x]), [x]) ⊂ [g]([x]).

2.1.4 Inclusion Tests
Having derived an inclusion function using some of the method presented, one may
for instance want to know whether the computed box or inclusion function contain
data with certain properties. Data with certain properties could for instance be a
small parameter box, in which we are looking for values consistent with a model
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and its outputs. In this small subsection, the methods of driving test functions is
presented in brief. Let us start by defining the Boolean set

B = {false, true}

and let
IB = {∅, 0, 1, [0, 1]}

denote the set of all Boolean intervals, where ∅ = impossible, 0 = false, 1 =
true and [0, 1] = indeterminate. Similar to inclusion functions one can define a
Boolean inclusion.If B is to be a Boolean function from Bn → B, then there exists
an inclusion Boolean [B] : IBn → IB if,

∀([b1], ..., [bn]) ∈ IBn,B([b1], ..., [bn]) ⊂ [B]([b1], ..., [bn]). (2.24)

The natural Boolean inclusion is obtained the same way as in the case of inclusion
functions, namely by replacing all the arguments and operators of B by its interval
counterpart.A natural Boolean inclusion is also minimal, if

∀([b1], ..., [bn]) ∈ IBn,B([b1], ..., [bn]) = [B([b1], ..., [bn]).

Definition 2.6 Inclusion Test
A test t is a function from the real vector, Rn to the Boolean set B. An inclusion
test [t] for t is a function from real interval vector, IRn, to the Boolean interval, IB
such that for any interval vector [x] ∈ IRn,

[t]([x]) = 1 =⇒ ∀x ∈ [x], t(x) = 1
[t]([x]) = 0 =⇒ ∀x ∈ [x], t(x) = 0,

(2.25)

similarly if S ⊆ Rn is a set, then

[tS]([x]) = 1 =⇒ ∀x ∈ [x], tS(x) = 1 ⇐⇒ ([x] ⊂ S)
[tS]([x]) = 0 =⇒ ∀x ∈ [x], tS(x) = 0 ⇐⇒ ([x] ∩ S = ∅)

(2.26)

Furthermore, an inclusion test [t] is said to be thin if [t](x) = t(x) and it is minimal
if,

∀[x] ∈ IRn, [t]([x]) = {t(x)|x ∈ [x]} (2.27)

In the following some useful relations for intervals and sets are presented,

([a, b] ≤ [c, d]) = 1 if b ≤ c
([a, b] ≤ [c, d]) = 0 if a > d

([a, b] ≤ [c, d]) = [0, 1] if neither b ≤ c nor a > d.

(2.28)
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If S ⊂ Rn, then

[tS]([x]) is a monotonic inclusion iff
([x] ⊂ [y]) =⇒ ([tS]([x]) ⊂ [tS]([y]))
[tS] is minimal iff
∀[x] ∈ IRn, [tS]([x]) = tS([x])
[tS] is thin iff
∀[x] ∈ Rn, [tS](x) 6= [0, 1]

(2.29)

2.1.5 Subpaving
This subsection presents a brief introduction to the concept of subpaving. Sub-
paving is defined as the union of non-overlapping sets, meaning that intersection of
the member sets in a subpaving is empty. The subpaving obtained by a succession
of bisections and selections of an initial box is called regular subpaving and the set
of all such subpavings is denoted RSP([x]). Consider a box [x] = [x1]× ...× [xn],
and define its left and right children as,

L([x]) = [x1, x1]× ....× [xj , (xj + xj)/2]× ...× [xn, xn]
R([x]) = [x1, x1]× ....× [(xj + xj)/2, xj , ]× ...× [xn, xn] (2.30)

respectively, where

j = min{i|w([xi]) = w([x])}
L([x]) ∩R([x]) = ∅ (2.31)

where w([.]) stands for the width of an interval, see (2.6) and (2.12).
A subpaving can also be represented as a binary tree, where the initial box

serves as a root to the tree, see Figure 2.8. The process of generating the two
children above is called bisection. Let us look at an example where we let the
initial box be [x0] = [0, 4]× [0, 6]. From (2.31) we can compute j = 2. This value
on j says that the bisection is done along [x1], resulting in left and right children,
member sets of the subpaving, whose intersection is empty

L([x0]) = [0, 4]× [0, 3]
R([x0]) = [0, 4]× [3, 6]

see Figure 2.6. Furthur bisection of the member sets above results on their own
left and right children. For both, L([x0]) and R([x0]) we got j = 1 thus,

LL([x0]) = [0, 2]× [0, 3]
RL([x0]) = [2, 4]× [0, 3]
LR([x0]) = [0, 2]× [3, 6]
RR([x0]) = [2, 4]× [3, 6].
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x2

x1 4

6
[x0]

R([x0])

L([x0])

Figure 2.6. Subpaving of the initial box [x0] and generating its children.

Child [x1] [x2]
L([x0]) [0,4] [0,3]
R([x0]) [0,4] [3,6]
LL([x0]) [0,2] [0,3]
RL([x0]) [2,4] [0,3]
LR([x0]) [0,2] [3,6]
RR([x0]) [2,4] [3,6]
LRL([x0]) [2,4] [0,1.5]
RRL([x0]) [2,4] [1.5,3]
LLR([x0]) [0,2] [3,4.5]
RLR([x0]) [0,2] [4.5,6]
LLLR([x0]) [0,1] [3,4.5]
RLLR([x0]) [1,2] [3,4.5]
LRRL([x0]) [2,3] [1.5,3]
RRRL([x0]) [3,4] [1.5,3]
LLRL([x0]) [2,3] [0,1.5]
RLRL([x0]) [3,4] [0,1.5]
LRLR([x0]) [0,1] [4.5,6]
RRLR([x0]) [1,2] [4.5,6]

Table 2.1. Resulting subboxes of initial box [x0]
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x2

x1 4

6

[x0]

RR([x0])

LL([x0])

a

b

c

d

e

f

g

h

Figure 2.7. Further subpaving of the Figure 2.6

Figure 2.8. Binary tree representation of the subpaving given by Figure 2.7
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The same procedure, recursively applied on the above generated children gives
new subboxes, whose union shapes the final subpaving for the initial box, see
Figure 2.7 and Table 2.1.The binary tree representaion of the same subpaving is
shown by Figure 2.8.

In the subsections to come, we make use of the unions of non-overlapping sets(
subpavings), inclusion functions and inclusion tests, presented this far.

2.1.6 Set Inversion
As stated before, the notions of inclusion function and inclusion test together with
subpvaing, as a class of objects to represent sets, are used in this and next subsec-
tion to show how set computations can be performed.This subsection, presents the
method sivia (Set inverter via interval analysis), by which the two regular sub-
pavings X and X of X such that X ⊂ X ⊂ X can be obtained. Let f : Rn → Rm,
be a non linear function and let Y be a subpaving or subset of Rm. The charachta-
rization,

X = {x ∈ Rn|f(x) ∈ Y} = f−1(Y) (2.32)

is called Set inversion. Given a very large search box [x0], guaranteed to contain
X, four different situations are considered,

(a) If [f]([x])∩Y 6= ∅ (Figure 2.9 a) but [f]([x]) is not included in Y, then nothing
can be said other than that [x] is undetermined and has to be bisected to
smaller boxes if w([x]) ≥ ε, where ε is a prespecified precision parameter.
Recall how the children L([x]) and R([x]) were obtained.

(b) If [f]([x]) ∩ Y = ∅ then f([x]) ∩ Y = ∅ as well, meaning that [x] does not
belong to the solution set X and can be cut off from the solution tree, see
Figure 2.9 b and recall that f([x]) ⊂ [f]([x]), section 2.1.3.

(c) If, as depicted on Figure 2.9 c, [f]([x]) is included in Y then f([x]) is also
included, meaning that [x] belongs to the solution subpaving X and can be
stored in X and X.

(d) If the box is undetermined and has the width lower than ε, then it is con-
sidered small enough and can be stored in X, Figure 2.9 d.

The sivia algorithm is summerized in the algorithm 1, where both the method of
inclusion function and the method of inclusion test is illustrated.
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Figure 2.9. Graphical illustration of sivia [11]
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Algorithm 1: Set Inverter Via Interval Analysis

1. IF INCLUSION FUNCTION =⇒ sivia(in: [x],f,ε, Y,inout: X,X)

a. Set X := ∅ and X := ∅
b. if [f]([x]) ∩ Y = ∅ return;
c. If [f]([x]) ⊂ Y then
{X := X ∪ [x];X := X ∪ [x]; return};

d. If w([x]) < ε then {X := X ∪ [x]; return};
e. Recursively call sivia ont he children of [x]

i.e. sivia(f,Y, L([x]), ε,X,X); sivia(f,Y, R([x]), ε,X,X)

2. IF TEST FUNCTION =⇒ sivia(in: t,[x],ε, inout: X,X )

a. Set X := ∅ and X := ∅;
b. If [t]([x]) = 0 return;
b. If [t]([x]) = 1 then
{X := X ∪ [x];X := X ∪ [x]; return};

c. If w([x]) < ε then {X := X ∪ [x]; return};
e. Recursively call sivia on the children of [x]

i.e. sivia(t, L([x]), ε,X,X); sivia(t, R([x]), ε,X,X)

2.1.7 Image evaluation
The previous subsection presented computation of solution set via sivia, the focus
in this subsection is to compute a direct image Y ⊂ Rm of a regular subpaving
X ⊂ Rn under a continues function f. The characterization

Y = f(X) = {y ∈ Rm|∃x ∈ X, f(x) = y} (2.33)

is the image evaluation problem.Assume that a convergent inclusion function [f]
for f is available, see Definition 2.5 on page 10.The set Y, a regular subpaving,
is the image of a regular subpaving, contained in the box [f](X). The algorithm
proceeds in three steps,

(a) Given an initial regular subpaving X ⊂ Rn, Figure 2.10 a.

(b) Mincing:split the boxes in the initial subpaving in non-minimal subpaving
Xε, such that w([xε,i]) < ε, Figure 2.10 b.

(c) Evaluation:the inclusion function is evaluated over each boxes in Xε, provided
by the previous step, resulting in [fε,i]([xε,i]). These boxes are then stored
into a list U , Figure 2.10 c.

(d) Regularization: a regular subpaving Y, containing the union U of all the
boxes of the list U is computed, Figure 2.10 d.
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Figure 2.10. The steps of IMAGESP [11]

Since f(X) ⊂ U, the final regularization step can be seen as an evaluation of inverse
image to U by the identity function, using sivia.

The image evaluation algorithm is summarized in Algorithm 2

Algorithm 2: IMAGESP(in: f,X, ε; out: Y)

1. Xε:=mince(X, ε);

2. U := ∅;

3. for each [x] ∈ Xε add [f]([x]) to the list U ;

4. sivia(y ∈ U, [f]([X]), ε,Y,Y).

2.2 Convex optimization problems
An optimization problem, 

minimize f0(x)
subject to f(x) ≤ 0

aTx = b
(2.34)

is convex if both the objective function and the inequality constraint function in
the problem are convex. Moreover, the equality constraint must be affine, meaning
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that it has to be a sum of a linear function and a constant. In the example above,

g(x) = aTx− b

is affine [chap.4 [5]]. One basic requirement for a function to be convex is that its
domain is a convex set. A convex set is defined as a set for which a line segment
between tow points in the set still lies inside the set. More precisely domf is a
convex set if for any two points, x1, x2 ∈ domf and any θ with 0 ≤ θ ≤ 1

θx1 + (1− θ)x2 ∈ domf

holds.
A simple and straight forward way to check the convexity of a function f is to

drive its gradient or first order derivative. A function f is convex if the domain of
f, domf , is convex and the condition

f(x2) ≥ f(x1) +5f(x1)T (x2 − x1)

holds for all x1, x2 ∈ domf .

Another way of checking the convexity of a function is through its second
derivative (if it exists). In that case, if , as above, the domf is convex and if the
Hessian of f is positive semidefinite,

52f(x) � 0

then the function is said to be convex [chap.3 [5]]. Note that when the optimization
problem is a maximization problem, then the problem is not convex unless the
objective function is concave. This property is important to keep in mind when
reading the subsection dealing with dual-primal problem.

2.2.1 SDP (Semidefinite Programming)
In this subsection a brief introduction to the optimization family of SDP (Semidef-
inite Programming) is presented. For more in dept theories and discussions, the
reader is referred to [5, 19, 21]. Consider the problem of minimization of a linear
function of variable x ∈ Rm,

aTx = a1x1 + a2x2 + ...+ amxm

subject to the matrix inequality

F (x) = F0 +
m∑
i=1

xiFi ≥ 0 (2.35)

where F0, ..., Fm ∈ Rn×n and a ∈ Rm are data for the optimization problem below
minimize aTx
subject to F (x) ≥ 0 (2.36)
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The inequality sign in F (x) ≥ 0 (in some literature denoted �) means that F (x)
is positive semidefinite, i.e.

zTF (x)z ≥ 0
for all z ∈ Rn. Since the function F (x) is a linear matrix and the constraint an
inequality one, we call F (x) ≥ 0 a linear matrix inequality and the problem (2.36)
an SDP. It is obvious that an SDP problem is a convex optimization problem,
since,

• the objective function aTx is linear and thus convex.

• The inequality constraint F (x) ≥ 0 is convex. Let, as in the previous sub-
section, x1, x2 ∈ domF and if F (x1) ≥ 0 and if F (x2) ≥ 0 then,

F (θx1 + (1− θ)x2) = θF (x1) + (1− θ)F (x2) ≥ 0

for all 0 ≤ θ ≤ 1.

• The affinity condition is not relevant in this particular problem. But if we
have had an equality constraint, A(x) = b↔ A(x)−b = 0 it had been shown
in a similar way as in the previous subsection that it is affine.

2.2.2 Dual and primal problems
In mathematical optimization it is sometimes routine to take advantage of the
duality relationship and solve the dual problem instead of the originally given
primal one. Consider a general non-linear optimization problem,

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, ...,m

hi(x) = 0, i = 1, ..., p (2.37)

where x ∈ Rn is the optimization variable and f0(x) the objective function. The
domain of this problem is then defined as all permissible x′s,i.e. for which all the
constraints hold,

D =
m⋂
i=0

domfi ∩
p⋂
i=0

domhi

Considering the optimization problem (2.37), the associated Lagrangian L is con-
structed by adding a wighted sum of the constraints to the objective function,

L(xi, λi, vi) =f0(x) +
m∑
i=1

λTi fi(x) +
p∑
i=1

vTi hi(x)

λi ≥ 0, i = 1, ...,m
(2.38)

where λi, and vi, are referred to as Lagrange multipliers or dual variables, asso-
ciated with the inequality and equality constraints, respectively. The Lagrangian
dual function g is formulated as the minimum of (2.38) over all x ∈ D,

g(λi, vi) = infx∈DL(xi, λi, vi) (2.39)
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The Lagrangian L in (2.38) is affine and unbounded below in x and therefore the
dual function g(λ, v) takes on the value −∞. This means that, for any feasible
point xfeas and any λ ≥ 0 and v, the following holds,

g(λ, v) ≤ f0(xfeas)

because
m∑
i=1

λTi fi(xfeas) +
p∑
i=1

vTi hi(xfeas) ≤ 0

This last inequality follows from fi(x) being non positive and hi(x) being zero, see
(2.37).

In order to estimate the best lower bound for the optimal value of the primal
problem (2.37) we are to maximize the dual function, (2.39), for all nonnegative
λ, {

maximize g(λ, v)
subject to λi ≥ 0 (2.40)

This problem is referred to as the dual optimization problem if (2.37) is to be the
primal. Another important consequence of working with the dual problem is that,
the dual optimization problem is always a convex problem, no matter whether the
original primal problem was convex or not. It is because it turns to a maximization
of a concave function and the constraints, as can be seen, are convex. For more
reading, see [chap. 5 [5]]

2.3 Norms
In linear algebra, functional analysis and related areas in mathematics, a norm is
a function f : Rn → R with the following properties,

• Domain of f = Rn

• f(x) ≥ 0 for all x ∈ Rn

• f is definite: f(x) = 0 if and only if x=0

• f is homogeneous: f(tx) = |t|x for all x ∈ Rn and t ∈ R

• f satisfies the triangle inequality: f(x+ y) ≤ f(x) + f(y)

Norm function is defined by f(x) = ‖x‖symb. The symb is usually used if the
norm is other than the well known two norm. The index symb takes different
values and for x ∈ Rn,

• 1-norm, sum-absolute-value

‖x‖1 = |x1|+ ...+|xn| (2.41)



26 Mathematical Preliminaries

• Euclidean norm or 2-norm for a vector x ∈ Rn ,

‖x‖2 = (xTx)1/2 = (x2
1 + ...+ x2

n)1/2 (2.42)

• Chebyshev or ∞-norm

‖x‖∞ = max{|x1| , ...,|xn|} (2.43)

• The operator norm or the induced norm of X ∈ Rm×n induced by the norms
‖.‖a and ‖.‖b on Rm and onRn, respectively is defined as,

‖X‖a,b = sup{‖Xu‖a |‖u‖b ≤ 1} (2.44)

When both ‖.‖a and ‖.‖b are similar, interesting results are achieved. For
instance if a=b=2, the operator norm is its maximum-singular-value,

‖X‖2 = σmax(X) = (λmax(XTX))1/2 (2.45)

Similar results can also be achieved for other values of a and b. If ‖.‖ is any norm
on Rn, then there exists a quadratic norm ‖.‖P for which

‖x‖P ≤‖x‖ ≤
√
n‖x‖P (2.46)

2.4 Inner product
Standard inner product for vectors x and y ∈ Rn is defined as,

〈x, y〉 = xT y =
n∑
i=1

xiyi (2.47)

and for matrices X,Y ∈ Rm×n,

< X,Y >= tr(xT y) =
m∑
i=1

n∑
j=1

xijyij (2.48)

with trace of a matrix being sum of its diagonal elements.

2.5 Singular Value Decomposition
Singular value theorem is used in coming chapters for computing an upper bound
for the discretization error. Let A ∈ Rm×n be a real valued matrix with m rows
and n columns. If Rank(A)=r then there exists U ∈ Rm×r and V ∈ Rn×r such
that UTU = I and V TV = I, and nonzero scalars σi, i = 1, 2, ...r so that,

A = UΣV T

Σ = diag(σ1, σ2, ..., σr)
σ1 ≥ σ2 ≥ ... ≥ σr

(2.49)
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The largest of the singular values, i.e. σ1, can also be written as,

σmax(A) = supx,y 6=0
xTAy

‖x‖2‖y‖2
= supy 6=0

‖Ay‖2
‖y‖2

(2.50)





Chapter 3

Infeasibility Certificate

The proposed model for describing the desired biological system or chemical reac-
tion is usually given as a continuous-time system, ẋ = f(x,u;p)

y = h(x;p). (3.1)

However, the model rejection is performed for discrete-time systems using discrete
data points. As a result we need to discretize the given time continuous system
using the algorithm,

x(k+1) = x(k) + h(k)Φ(x(k),p) (3.2)

where for the special case of Euler method Φ = f(x(k),p), [7]. In this thesis only
the Euler method is considered. In (3.2) the sampling rate h usually is a constant
scalar, but this can vary depending on the problem under consideration. Now
using (3.2) one can rewrite (3.1) in its discrete form,

0 = F (x(k+1),x(k),u(k),p), x(0) = x0

0 = H(y(k),x(k),p)
(3.3)

where x(k) ∈ Rnx ,y(k) ∈ Rny ,u(k) ∈ Rnu ,p ∈ Rnp represents the vectors of the
states, outputs, inputs and the unknown constant parameters to be estimated,
respectively. The functions F (.) and H(.) must be polynomials in all their argu-
ments. In case any of these two is rational then one can just multiply both sides
of the equations with its least common denominator.

The noisy measurements of the outputs of the system are usually represented
as below [8]

ȳ(k) = y(k) + e(k), k = 0, 1, ..., N (3.4)

29
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where N+1 is the number of measurement points and the measurement noise
e(k) ∈ Rny belongs to a compact set εny ⊂ Rny . Also in (3.4), y(k) is the actual
output of the system, which by construction is contained in the set Y(k) at each
time point k,

Y(k) = {y ∈ R(ny) | ∃e ∈ ε(k) : ȳ(k) = y + e} (3.5)

A graphical illustration of (3.5) is shown by Figure 3.1.

Figure 3.1. Graphical illustration of the output

Having discretized the system, we express the considered problem as a feasibil-
ity problem. This feasibility problem is described in (3.6) which in words means
that we simply want to see if there exists a sequence of output y, state x, input
u and unknown parameters p in the corresponding sets, for which (3.3) has a
solution. This problem however is in general non-convex and not tractable as it is
formulated below. The non-convexity comes from the nonlinearity in F and H in
(3.3). In order to make this feasibility problem solvable, it needs to be relaxed to
an SDP (SemiDefinite Programming) problem.

3.1 SDP Relaxation
The relaxation procedure here is motivated by the work presented in [8], because
the Matlab toolbox developed by the same author(s) will be used for simula-
tions in the implementation part. This procedure of relaxation is almost the same
even in other works done in the area, see [17, 4]. Figure 3.2 illustrates the steps
of this relaxation method. The start point is the following feasibility problem,
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
find y(0,N) ∈ Y(0,N),x(0,N) ∈ X (0,N)

u(0,N−1) ∈ U (0,N−1),p ∈ P
s.t. F (x(k+1),xk,uk,p) = 0, k = 0, .., N − 1

H(yk,xk,p) = 0, k = 0, .., N
(3.6)

where y(0,N) = (y(0), ..., y(N)),u(0,N) = (u(0), ..., u(N)) and x(0,N) = (x(0), ..., x(N))
represent the output, input and state sequences, respectively, whereas

Y(0,N) = {y(0,N)|y(k) ∈ Y(k)}
X (0,N) = {x(0,N)|x(k) ∈ X (k)}
U (0,N) = {u(0,N)|u(k) ∈ U (k)}, k = 0, ..., N

denote the corresponding admissible sets for k = 0, ..., N .

Figure 3.2. Relaxation procedure [9]

For the relaxation to a SDP , (3.6) is first rewritten as a quadratic feasibility
problem, which also introduces the vector ξ ∈ Rnξ consisting of the monomials
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appearing in F and H in (3.3),

ξ =(1, y(k)
iy
, x

(k)
ix
, u

(k)
iu
, pip , y

(k)
iy
x

(k)
ix
, x

(k)
ix
pip , ....)T

iy ∈ I(1, ny)
ix ∈ I(1, nx)
iu ∈ I(1, nu)
ip ∈ I(1, np)
k ∈ I(0, N)

(3.7)

Let Snξ denote a square and symmetric matrix and let Qi ∈ Snξ be a sparse
matrix, then(3.3) can be transformed to,

ξTQiξ = 0, i ∈ I(1, nxN + ny(N + 1)).
(3.8)

When there are higher order terms in the vector ξ, additional constraints must be
introduced leading to additional equations of the form

ξTQiξ = 0, i ∈ I(nxN + ny(N + 1) + 1, c)

where c denotes the total number of the equality constraints.
Similarly the constraints y(0,N) ∈ Y(0,N),x(0,N) ∈ X (0,N),u(0,N−1) ∈ U (0,N−1)

and p ∈ P can also be expressed as

Bξ ≥ 0 (3.9)
with B ∈ Rnb×nξ , nb being the number of constraints.

This leads us to the quadratic feasibility problem,
find ξ ∈ R(nξ)

s.t. ξTQiξ = 0, i ∈ I(1, c)
Bξ ≥ 0
ξ1 = 1

(3.10)

Now introducing the matrix X = ξξT and dropping the non-convex constraint
rank(X) = 1, leads us to a relaxed SDP feasibility problem,

find X ∈ S(nξ)

s.t. tr(QiX) = 0, i ∈ I(1, c)
tr(e1eT1 X) = 1
BXe1 ≥ 0
BXBT ≥ 0
X � 0

(3.11)
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with e1 = (1, 0, ...., 0)T ∈ Rnξ .

Note that these steps do not necessarily need to be performed in the exact
same way as described here, e.g., in [17, 4], these are done in a slightly different
way.

Since the relaxation process is conservative, each feasible solution for (3.6)
corresponds to a feasible solution for the relaxed problem in (3.11). However,
additional solutions may be introduced that are only feasible for (3.11), which
might lead to considering erroneously an invalid model to be valid. [Shona Laila
and colleagues] in [17], reduce this error by introducing additional constraints
BXBT ≥ 0.

The problem in (3.11) together with additional constraints BXBT ≥ 0 is large
and is computationally heavy to solve. In order to reduce the computational effort,
one can split up the measurement, state and input sequences into subsequences.
For instance, for the measurement sequence Y this is shown in Figure 3.3 and
results in the following subproblems,

Pj :


find y(j,j+m) ∈ Y(j,j+m),x(j,j+m) ∈ X (j,j+m)

u(j,j+m−1) ∈ U (j,j+m−1),p ∈ P
s.t. F (x(k+1),xk,uk,p) = 0, k ∈ I(j, j +m− 1)

H(yk,xk,p) = 0, k ∈ I(j, j +m)
(3.12)

where 1 ≤ m ≤ N and m+1 is the number of sequential measurement points
in each such sub-feasibility problem. If the original feasibility problem, with all
the measurements taken into account is feasible then also Pj , j = 0, ..., N −m, is
feasible, but the converse is in general not true.
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Figure 3.3. Breaking down the original problem into subproblems

3.2 Infeasibility Certificate
First, we construct the Lagrangian function L for the primal problem (3.11) and
use it to formulate the dual problem, which can be used to certify the infeasibility
of the primal problem. Generally the Lagrangian L for the optimization problem,

P :


minimize f0(x)
s.t. g(x) ≤ a

h(x) = b
x ≥ 0

(3.13)

is defined as [5, chapter 5],

L(x, λ) = f0(x) + λT1 (g(x)− a) + λT2 (h(x)− b)− vx (3.14)

with the λi and v being the lagrange multipliers for the inequality and equality
constraints, respectively. Based on (3.14) we can formulate the Lagrangian for the
primal problem (3.11), where f0(x) = 0, as

L(X, λ1, λ2, λ3, v) =− λT1 BXe1 − tr(λT2 BXBT )− tr(λ3X)

+
c∑
i=1

v2,itr(QiX) + v1tr(e1e
T
1 X)− v1, (3.15)

with the Lagrange multipliers λ1 ∈ Rnb ,λ2 ∈ Snb ,λ3 ∈ Snξ ,v1 ∈ R and v2 ∈ Rc.
As it can be seen in (3.15) the signs in front of each term corresponding to the
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inequalities in (3.11) are negative. The reason to this is that inequality signs in
the minimization problem in (3.13) is chosen to have the opposite direction, i.e.,
≤. Because of the cyclic property of the trace operator saying that tr(ABC) =
tr(BCA) = tr(CAB) we rewrite the first and second terms in (3.15),

tr(λT2 BXBT ) =tr(λT2 BTXB)
and

λT1 BXe1 =tr(e1
λT1
2 BX + tr(eT1

λ1

2 BTX)

tr((e1
λT1
2 B + eT1

λ1

2 BT )X)

Since the definition of the dual function is the minimum of the Lagrangian (3.15)
over x ∈ X, we are to solve the following problem first,

Infx∈XL(X,λ1, λ2, λ3, v).

We can see that, all but the last term in (3.15) are linear in X. This linearity can
be described by the slope matrix,

dL
dX = e1λ

T
1 B + BTλ1eT1 + BTλ2Bλ3 + v1e1eT1 +

c∑
i=1

v2,iQi

For the derivative roles of the trace functions see [2]. This means that the La-
grangian minimum with respect to X is -∞, which is not acceptable. In order to
avoid this, the expression in dL

dX is set to zero, by including the constraint dL
dX = 0

in the dual problem. As a result we have,

Inf dL
dX =0

L(X,λ1, λ2, λ3, v) = v1 (3.16)

This leads to the following dual problem for the relaxed problem (3.11),

D(P ) :


maximize v1
s.t. e1λ

T
1 B + BTλ1eT1 + BTλ2B

λ3 + v1e1eT1 +
∑c
i=1 v2,iQi = 0

λ1 ≥ 0, λ2 ≥ 0, λ3 � 0

(3.17)

where λi are Lagrange multipliers, λ1 ∈ Rnb , λ2 ∈ Snb , λ3 ∈ Snξ , v1 ∈ R and v2 ∈
Rc, see [8, 20]

Theorem 3.1 Model invalidation
Given the collections of measurements from the real process. Model (3.3) is
inconsistent with the measurements if D(P )→∞, [17].
Theorem 3.1 is equivalent with the proposition in [8] and the theorem in [20],
which its proof follows from weak duality and is available in [20].

When the aim of parameter identification is estimation of the SCP (Set of
Consistent Parameters), it is important to keep in mind that we are not looking
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for the SCP itself. Instead we try to drive an outer approximation for the SCP, in
which the actual SCP is contained. In other words, if we let P∗ denote the actual
SCP and P∗ its outer approximation, then

P∗ ⊆ P∗

Now, no matter if the aim of parameter identification work is the estimation of
an outer approximation for the SCP or model falsification, we start with determin-
ing an initial parameter set P0, P

∗ ⊆ P0. For biochemical networks, determining
the lower bounds of the initial set is not difficult, since they are all in general
positive. Taking other facts into account it is not too difficult to determine the
upper bound either. Having decided P0, if Theorem 3.1 holds, then the model
can be rejected as invalid. If ,on the other hand, the purpose of the work is to
find a consistency certificate, then P0 is bisected in subsets Pi and the dual prob-
lem (3.17) is analyzed for each of the subsets. This bisection algorithm is called
repeatedly until the weighted volume

V (P) =
∫
P

w(p)dp

is smaller than a threshold ε, see algorithm (3). The algorithm of bisection and
also the mentioned volume is implemented in the Matlab toolbox, [10]. An
outer approximation of the SCP is then the union of all the subsets containing
parameter values consistent with the feasibility problem (3.6), i.e

P∗ = P0\
⋃
I
PI

where
⋃
I PI marks the union of the rejected parameter sets, i.e. for which the

problem proved infeasible and I denotes the set of integers, containing the indexes
of the rejected subsets .

As stated before, a model can be rejected as invalid, whenever the algorithm re-
turns empty, meaning that there does not exit a parameter value p ∈ P0 consistent
with the measurements, states and model input.
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Algorithm 3: Analyze P(U ,X ,Y,P)
Given a parameter set P

1. If V (P) < ε, return P = P

2. Check feasibility of Dj(U ,X ,Y,P),∀j ∈ I(0, N −m)

3. If sup{v∗1 , j|j ∈ I(0, N −m)} =∞, return P = ∅

4. If sup{v∗1 , j|j ∈ I(0, N −m)} 6=∞:

(a) Bisection of P in P1 and P2

(b) P1 = Analyze P(U ,X ,Y,P1)
(c) P2 = Analyze P(U ,X ,Y,P2)
(d) Return P = P1 ∪ P2





Chapter 4

Numerical Analysis, Error
bounding

This chapter will cover the estimation of an upper bound for the error caused by
the time discretization of a time-continuous system. The error estimation is done
only for the linear systems. Computing this error bound is very difficult for a
nonlinear system, without being overly conservative, see [17]. Different methods
for estimating the error are studied and their advantages and disadvantages are
discussed. In section §4.1 the‖.‖2-norm is studied, where the error is expressed as
a difference between the analytical expression for the solution of the ODE-model
and its time-discrete counterpart. Section §4.2 explores the usage of ‖.‖∞-norm.
In this section we will also apply ‖.‖∞-optimization on a method called one-step
error estimation.

In this chapter, states representing both time-continuous and time-discrete will
appear together and therefore we will introduce indexed states, like xC for time-
continuous and xD for time-discrete to avoid confusion.

When the system is linear, given as

ẋC =f(xC ; p)
=P (p)xC , x(0) = x0

y =g(xC ; p),
(4.1)

we can easily find its analytical solution, which is usually a matrix exponential
function of the unknown parameters p, i.e.

xC(p, k, h) = eP (p)hkx0 (4.2)

for the kth time instant and sampling rate h. The analytical expression for the
discrete system xD(.) is obtained using Euler’s method for discretization, i.e.,

x
(k)
D = x

(k−1)
D + hf(x(k−1)

D , p) (4.3)

39
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where the given initial value x(0) is used for approximation of x(k)
D = x

(1)
D , i.e.

when k = 1. An analytical expression for an arbitrary time instant k and sampling
rate h, given that the time-continuous system is given by (4.1), is obtained in the
following manner

x
(1)
D =x0 + hP (p)x0

=(I + hP (p))x0

x
(2)
D =x(1)

D + hP (p)x(1)
D

=(I + hP (p))x(1)

=(I + hP (p))(2)x0

...

x
(k)
D =x(k−1)

D + hP (p)x(k−1)
D

=(I + hP (p))(k)x0.

(4.4)

In the subsections that follows, we try to compute an upper bound for the dis-
cretization error e(k)

D .

4.1 The method of ‖.‖2

The basic idea for the method of singular value analysis and ‖.‖2-optimization is
to bound the whole error expression by a constant upper bound, as mentioned
before. This is done by using the relationship between the singular values of a
matrix and its induced ‖.‖2, and by finding the maximum of the singular values
for P (pi, k, h), for all possible values of pi.

Consider an unconstrained and convex problem

minimize
∥∥P (p)

∥∥
2 (4.5)

where P (p) = P0 + p1P1 + ... + pnPn, Pi ∈ Rr×q and pi ∈ Rn. The convexity
follows from the fact that

∥∥P (p)
∥∥

2 is a convex function, see section §2.2. Assume
a λ ≥ 0 we can then state that

∥∥P (p)
∥∥

2 ≤ λ, if and only if

P (p)TP (p) � λ2I

where I and � denotes the unit matrix and positive semi-definiteness respectively.
We can then express the optimization problem (4.5) as

minimize λ

subject to P (p)TP (p) � λI
(4.6)

which also is a convex optimization problem, since P (p)TP (p) − λ2I is matrix
convex in (p, λ). Given that we can express P (p)TP (p) � λ2I as a linear matrix
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inequality, we have the following equivalence

P (p)TP (p) � λ2I ⇐⇒

[
λI P (p)T
P (p) λI

]
� 0 (4.7)

for λ ≥ 0, resulting in the SDP problem bellow,

minimize λ

subject to

[
λI P (p)T
P (p) λI

]
� 0 (4.8)

Going back to the error estimation problem, the result above is used to compute
an upper bound for the discretization error, expressed as a difference between the
time-continuous system, xC and its time-discrete counterpart, xD

e
(k)
D = xC(p, kh)− x(k)

D (p, h) (4.9)

where xC(p, kh) is a matrix exponential function, see (4.2). In the expression
above the time t has been replaced by kh, to avoid inconvenience in the notation.
The time under which the time-continuous system is simulated and the sample
rate h, at which the the samples has been collected gives the total number of the
samples, k. The analytical expression for x(k)

D is given by (4.4).
To motivate the use of ‖.‖2 we take the ‖.‖2 of the error expression (4.9)∥∥∥e(k)

D

∥∥∥
2

=
∥∥∥xC(p, kh)− x(k)

D (p, h)
∥∥∥

2

=
∥∥∥eP (p)khx0 − (I + hP (p))(k)x0

∥∥∥
2

(4.10)

and make use of Cauchy Schwartz and triangle inequality resulting in∥∥∥e(k)
D

∥∥∥
2
≤
(∥∥∥eP (p)kh

∥∥∥
2

+
∥∥∥(I + hP (p1))k

∥∥∥
2

)
‖x0‖2

≤
(
σmax(eλ1I) + σmax(λ2I)k

)
‖x0‖2

(4.11)

where σmax represents the maximum singular value of the respective matrices
which can be calculated using the results given by equations (4.5)-(4.8) and λ1 and λ2
are given as follows

minimizeλ1λ1

subject to

[
λ1I (P (p, k, h))T

P (p, k, h) λ1I

]
� 0

∀ α ≤ p ≤ β

(4.12)
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and similarly

minimizeλ2λ2

subject to

[
λ2I ((I + hP (p))k)T

(I + hP (p))k λ2I

]
� 0

∀ α ≤ p ≤ β

(4.13)

where α and β marks the given range for the unknown parameters.
The upper bound for the error obtained this way can be reduced via interval

analysis, i.e., examining smaller regions of the parameter space, which would pos-
sibly lead to model rejection. However this requires the calculation of the largest
maximum singular value of the matrix P (p) and (I+hP (p)) with respect to all the
possible values of parameters, which is in general not possible to solve. However,
since in the problems above P (p, k, h) and (I + hP (p)) are both linear functions
of the parameter space,p, it would still be possible to solve.

Since the optimization problems above are NP-hard, meaning that they are in
general not easy or possible to solve, we look at alternative approaches, one of
which is presented in next subsection.

4.2 The method of ‖.‖∞
We can make use of the relation

∥∥∥e(k)
D

∥∥∥
∞
≤
√
n
∥∥∥e(k)
D

∥∥∥
2
, see section §2.3 equa-

tion (2.46), and compute a tighter upper approximation for the discretization
error. In this subsection we will look at two ways of expressing the discretization
error. The first one, still the difference between the true and approximative so-
lutions given by (4.9) and the second is the so called one-step method, see [6, 7].
For the one-step method two different scenarios are considered,

(i) a set of measurements, i.e., outputs of the time-continuous model are given,

(ii) no measurements given, but initial values are given.

For the scenario (i) consider a linear state space equation

ẋC =f(x; p)
=P (p)xC , x(0) = x0

y =g(x; p)
(4.14)

where y denotes the output vector from the model. A Taylor series expansion of
xC around zero and step size h gives.

xC(0 + h) = xC(0) + hẋC(0)︸ ︷︷ ︸
xD given by Euler

+h2

2! ẍC(ε) (4.15)
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where 0 ≤ ε ≤ h for the first time instant and where, as indicated, the first two
terms make the formula for Euler’s discretization method. Taylor expansion of
xC around an arbitrary point k − 1 is done in the same manner, resulting in
xC(kh) = x

(k)
D + e

(k)
D . Having said that, we formulate the one-step error for time

instant k as

e
(k)
D (h) = h2

2! (fxf)(xC(εk)) (4.16)

where hk−1 ≤ εk ≤ hk. In this thesis, the system (4.14), is always linear, thus the
derivative fxf(xC(εk)) = P (p)2xC(εk), resulting in

e
(k)
D (h) = h2

2 (P (p)2xC(εk)). (4.17)

Based on the result of equation (4.2), we can express xC(εk) as

xC(εk) = eP (p)εkxC(εk−1), hk−1 ≤ εk ≤ hk (4.18)

where the (k−1)th given measurement is used as initial value for obtaining xC(εk).
Now applying‖.‖∞ on e(k)

D (h), equation (4.17) and making use of (4.18) results in

∥∥∥e(k)
D (h)

∥∥∥
∞

=

∥∥∥∥∥h2

2 P (p)2xC(εk)

∥∥∥∥∥
∞

≤ h2

2

∥∥∥P (p)2
∥∥∥
∞

∥∥xC(εk)
∥∥
∞

≤ h2

2 ‖λ‖
2
∞

∥∥∥eλI∥∥∥εk
∞

∥∥xC(εk−1)
∥∥
∞

(4.19)

where I stands for the identity matrix. The discretization error, for the one-step
method is thus

e
(k)
D (h) ≤ h2

2 ‖λ‖
2
∞

∥∥∥eλI∥∥∥εk
∞

∥∥xC(εk−1)
∥∥
∞ , 0 ≤ εk ≤ hk (4.20)

where λ is the optimization variable, explained later in this section. The relation
0 ≤ εk ≤ hk comes from the fact that we are now using the (k−1)th measurement
as initial value for computing xC(εk), as stated before, and the distance between
the (k − 1)th and kth measurements is just hk.

For the scenario (ii) where only the initial values and no measurements are
given, one can use the approximative data, given by the time-discrete model. This
results in an error expression e

(k)
D , for the one-step method, where the discrete

data x(k−1)
D is used as initial point, resulting in the following error expression
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∥∥∥e(k)
D (h)

∥∥∥
∞
≤ h2

2 ‖λ‖
2
∞

∥∥∥eλI∥∥∥εk
∞
‖x0‖∞ , if k = 1

and∥∥∥e(k)
D (h)

∥∥∥
∞
≤ h2

2 ‖λ‖
2
∞

∥∥∥eλI∥∥∥εk
∞

∥∥∥x(k−1)
D + e(k−1)

∥∥∥
∞

= h2

2 ‖λ‖
2
∞

∥∥∥eλI∥∥∥εk
∞

∥∥∥∥∥(I + hλI)(k−1)x0 + h2

2 ‖λ‖
2
∞

∥∥∥eλI∥∥∥εk−1

∞
(I + hλI)(k−2)x0

∥∥∥∥∥
∞

= h2

2 ‖λ‖
2
∞

∥∥∥eλI∥∥∥εk
∞

∥∥∥∥∥(I + hλI)(k−1) + h2

2 ‖λ‖
2
∞

∥∥∥eλI∥∥∥εk−1

∞
(I + hλI)(k−2)

∥∥∥∥∥
∞

‖x0‖∞

if k 6= 1

(4.21)

where the first row on the right of the inequality sign is the discretization error for
k = 1 and thus the same as in (4.20) for k = 1. For any other time instant k 6= 1,
the discrete data x(k−1)

D is used as initial value for estimation of e(k)
D . The term

e(k−1) is the propagating error from discretization of x(k−1)
D . In the third row,

we have made use of the analytical expression for the time-discrete system given
by (4.4) and finally, the last row makes the general expression of the discretization
error for this method. We can by inspection see that this method must be more
conservative than the one given in the previous case. One of the reasons to this
might be that here we are using an already erroneous data x(k−1)

D for estimation of
e

(k)
D . The other reason is that the errors from previous steps accumulate through
the whole range of time horizon k.

The method of ‖.‖∞ has also been used for the method where the error was
expressed as the difference between the time-continuous and the time-discrete
systems. The same procedure of applying‖.‖∞, Cauchy Schwartz and the triangle
inequality results in

∥∥∥e(k)
D (h)

∥∥∥
∞

=‖xC − xD‖∞

=
∥∥∥(eP (p)kh − (I + hP (p))k)x0

∥∥∥
∞

≤
(∥∥∥eP (p)kh

∥∥∥
∞

+
∥∥∥(I + hP (p))k

∥∥∥
∞

)
‖x0‖∞

≤
(∥∥∥eλIkh∥∥∥

∞
+
∥∥∥(I + hλI)k)

∥∥∥
∞

)
‖x0‖∞

(4.22)
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The parameter λ in (4.20),(4.21) and (4.22) is computed using the‖.‖∞, which for
a matrix P (p), where each of its component represent a variable, is defined as,

∥∥P (p)
∥∥
∞ = max

i=1,...,m

n∑
j=1

∣∣pij∣∣ . (4.23)

where pij represent the element in ith row and jth column. The relation in (4.23)
is simply saying that the ‖.‖∞ of a matrix is obtained as the maximum of sum of
the absolute value of elements in its rows. Considering a matrix

A =
(
−1 2
2 −2

)
then

‖A‖∞ = max
i=1,2

(
|−1|+|2|
|2|+|−2|

)
= max
i=1,2

(
3
4

)
= 4

see [5, 12]. For computation of the parameter λ, we solve the optimization problem
bellow

minimizeλλ

subject to
n∑
j=1

∣∣pij∣∣ < λI ∀i = 1...m, p ∈ P (4.24)

where the optimization parameter λ is minimized, as the worst-case-‖.‖∞ is con-
sidered. A generalized yalmip-code implementing this optimization method is de-
veloped by Johan Löfberg, see [13], which then has been modified for the purpose
of this thesis. This code is embedded in the biosdp toolbox.

We can just by inspection of the two studied error expressions, (4.20) and
(4.22), conclude certain things. Recalling that the aim of the error bounding task
was to find an upper bound, which itself opens for conservativeness of the error
bounds. But it is also desired that the computed upper bound is as tight as
possible. The nature of the worst-case-matrix-norm, (4.24) , is to compute the
smallest possible optimization problem λ, but keep it large enough so that the
inequality

n∑
j=1

∣∣pij∣∣ < λI

is still valid. This means that the optimization parameter λ is minimized, but the
inequality constraint does not allow it to be too small. The error algorithms,(4.20)
and (4.22), are directly dependent in this parameter, resulting in their conserva-
tiveness.
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Figure 4.1. Objective function, λ

We can see from (4.22), that this method is too conservative. Using this as a
method for bounding the discretization error will not allow rejection of almost any
parameter sets. The reason to this is that the extended measurement intervals
will be too wide, which makes it possible for much more parameter sets to qualify
as consistent with the model.

In the next subsection a case study has been made, where the error bounds are
computed, using both the methods given by (4.20) and (4.22).

4.2.1 A case study for ‖.‖∞

In this chapter some simulation results using‖.‖∞-optimization is presented, with
aim to make a comparison between the methods given by (4.20) and (4.22). The
system under consideration is

ẋ =
(
−p1 0
p1 −p2

)(
x1
x2

)
,
(

x01
x02

)
=
(

1
0

)
y =

(
0 1

)( x1
x2

)
(4.25)

with the initial parameter set or box P0 given by

P0 = [α1 β1]× [α2 β2] = [0.1 2]× [0.1 2].
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A simple box-shrinking code has been developed, which shrinks the intervals
and after each iteration,i.e for each new parameter set, the optimization problem
(4.24) is solved. Figure 4.1 illustrates the changes in the λ-value as function of pi.

Figures 4.2(a) and 4.2(b) illustrate the resulting error bounds for the methods
(4.22) and (4.20) respectively. As the comparison shows and also discussed before,
the method given by (4.22) is too conservative, compared to the other one, given
in (4.20).
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(a) Error bounds using the method given by equation (4.22)

(b) Error bounds for the method given by equation (4.20)

Figure 4.2. Figures 4.2(a) and 4.2(b) illustrate the error bounds for the discretization
error, as expressed in equations (4.22) and (4.20). As the bounds illustrate, the method
(4.22) is too conservative compared to the one-step method, (4.20)



Chapter 5

Implementation

In this chapter, the theories presented this far is applied on some system biological
problems. The method of SDP-relaxation and model falsification is implemented in
the matlab toolbox, [10]. What the implementation problems really represent
in detail, from a biological point of view, is not discussed here. This will by
no means limit the focus and aim of this thesis, since the problems solved in
this chapter are treated as what ever mathematical formulation of some physical
relations. How a problem should be set up in the mentioned toolbox will not be
discussed here, instead the reader is referred to the source, see [10].

All the systems studied, when using the toolbox bio.sdp, are linear because
of the limitations in the algorithm developed for estimating the discretization error.
For the purpose of illustrating the effect of the discretization error, each problem
is solved both with and without this error taken into consideration. When the
discretization error is considered, the model output, as stated in (3.5) section §3,
is extended with the computed error bounds

ȳ(k) = y(k) ± e(k)︸ ︷︷ ︸
noisy data

±e(k)
D

k = 0, ..., N,
(5.1)

where N + 1 is the number of measurements and e(k)
D represent the discretization

error, given by equation (4.20), section §4.2. Furthermore, since the measurements
contain some uncertainty and therefore each uncertain measurement is an interval,
the measurement vector is extended with bounds for the discretization error.

The methods of interval analysis, described in section §2.1 are also illustrated,
by solving some problems. For solving problems by these methods, the matlab
toolbox scs is used, see [18].

49
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5.1 Problem 1, Conversion reaction
The first problem to be simulated is a conversion reaction, where the states,
IR and IRP , represent some biological substances, in which an amount of the sub-
stance IRP is given, and the reaction in its whole describes a dephosphorylation of
this substance to IR. The parameters to be identified are k1 and k2 respectively.

IR

pk1

IRP

k2

The relationship described by the state diagram can be expressed as a system
of differential equations,

dIR
dt

= −k1IR + k2IRP

dIRP
dt

= k1IR − k2IRP .

(5.2)

To simplify the notations, we introduce new state and parameter variables, letting
IR = x1, IRP = x2, k1 = p1 and k2 = p2. The task is now to identify an outer
approximation for the parameter set, such that the output of the following model
is inside the given uncertainty boundaries.

ẋ(t, p) =
(
−p1 p2
p1 −p2

)(
x1(t)
x2(t)

)
y(t, p) =

(
1 0

)(x1(t)
x2(t)

)
, x(0) =

(
0 1

)T (5.3)

The initial search box for the unknown parameters is assumed to be,

P0 = [p1, p1]× [p2, p2] = [0, 10]× [0, 10].

This problem is simulated and the resulting SCP is shown by Figures 5.1 and
5.2. Figure 5.1 shows the outer approximation of the SCP, where the discretiza-
tion error is not taken in consideration. As it has been pointed out before, the
method used for discretization of the time-continuous system is not reliable and
as a consequence the discrete model is erroneous. In order to compensate for
the discretization error, each uncertain measurement interval is extended with the
discretization error bounds, computed as discussed in section §4.2. The resulting
outer approximation for the SCP is shown by Figure 5.2.

When it comes to the dependency of the discretization error on the sampling
rate h, it is obvious that the smaller this parameter is the smaller the resulting
error bound will be. This can be seen from a direct inspection of the algorithm
used for estimation of the error bound, where e(k)

D is directly dependent on h,

e
(k)
D (h) ≤ h2

2 ‖λ‖
2
∞

∥∥∥eλI∥∥∥εk
∞

∥∥xC(εk−1)
∥∥
∞ , 0 ≤ εk ≤ hk (5.4)
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Figure 5.1. Outer approximation for the
set of consistent parameters, where the dis-
cretization error is not taken in consider-
ation, time step h = 0.1. The data in
red represent the Monte-Carlo parameters
for which the discretized counterpart of the
problem (5.3) is feasible. see [10] and [3].

Figure 5.2. Outer approximation for the set of con-
sistent parameters, where the discretization error is
taken in consideration, time step h = 0.1. The al-
gorithm for computing the upper bound for the dis-
cretization error introduces a pessimism in the set of
consistent parameters. As a result the subsets of the
initial parameter set that can be rejected decreases.

From (5.4) we can conclude that, the smaller the sample rate is, the faster e(k)
D (h)

will decrease, i.e.,
lim
h→0

e
(k)
D (h) = 0. (5.5)

5.1.1 Simulation of the time-continuous system, using sivia
Let us solve the coversion reaction problem,(5.3) with the method of sivia and
the SCS toolbox. For this purpose we consider the analytical solution of (5.3)

x(t, p) = e

(
−p1 p2
p1 −p2

)
t(
x1(0)
x2(0)

)
y(t, p) =

(
1 0

)(x1(t, p)
x2(t, p)

)
, x(0) =

(
0 1

)T (5.6)

where the parameters to be identified is as before p1 and p2. For this problem we
let the subpaving Y represent the union of sets in which the solution sets to (5.6)
is included. The subpaving Y consist of the uncertain measurements given for the
conversion reaction problem , see Table 5.1.

The set of feasible parameters p1 and p2 consistent with the measurements is
characterized as

SCP = {p ∈ P0|x(t1, p) ∈ [y(t1)], ..., x(t5, p) ∈ [y(t5)]} (5.7)
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t [y]
0.1 [0.00, 0.10]
0.2 [0.44, 0.54]
0.3 [0.57, 0.67]
0.4 [0.60, 0.70]
0.5 [0.56, 0.66]

Table 5.1. The uncertain measurements for the problem conversion reaction, given as
intervals

Figure 5.3. Set of consistent parameters SCP computed by the method sivia for the
conversion reaction problem (5.6).

where P0 is the initial parameter box [0, 10]× [0, 10]. The resulting outer approx-
imation for the set of consistent parameters is shown by Figure 5.3

Figures 5.1 and 5.3 both illustrate the outer SCP for the same problem, but two
models. For generating the SCP illustrated by Figure 5.1, an approximative model
has been used, approximated using Euler’s discretization method. A comparison
between the resulting SCPs shows that the discretized model is corrupted by the
discretization error. Figure 5.2 shows the SCP when this discretization error is
taken into consideration. This upper bound for the discretization error covers
both the SCPs resulting in a nonempty intersection between them, which is desired,
despite it’s conservativeness.

5.2 Problem 2, Internalization
This problem is a three dimensional phosphorization problem, where the substance
IR is phosphorized to IRP . IRtot denotes the total amount of the concentrations
available, which in this specific case is assumed to be 100 units. The internal
state, IRi = IRtot − IR − IRP , from which the title is inspired, has probably some



5.2 Problem 2, Internalization 53

chemical/biological significance, but since this is substituted and does not effect
the ODE-description of the model, we accept it just as "some thing".

IR

pp1

IRP

IRi

p2p3

IRi = IRtot − IR − IRP
The relations described by the state diagram above can be expressed as a system
of differential equations,

dIR
dt

= −p1IR + p3IRi

dIRP
dt

= p1IR − p2IRP .
(5.8)

Using the relation IRi = IRtot − IR − IRP we can rewrite (5.8) in an equivalent
form

dIR
dt

= −(p1 + p3)IR + p3(IRtot − IRP )

dIRP
dt

= p1IR − p2IRP .
(5.9)

We introduce new state variables and let x1 = IR, x2 = IRP and x0 = IRtot
resulting in the following state space model

ẋ(t, p) =
(
−(p1 + p3) −p3

p1 −p2

)(
x1(t)
x2(t)

)
+
(

p3
0

)
x0

y =
(
0 1

)(x1(t)
x2(t)

)
.

(5.10)

One major difference from example 1, beside the intermediate state IRi, is that
the sample rate h is a vector, with varying length for different time points. The
initial parameter space for this problem is assumed to be

P0 = [p1, p2, p3]× [p1, p2, p3] = [10−6, 10−6, 10−6]× [106, 106, 106].

This problem is unfortunately not possible to solve, when the discretization error
is taken into consideration, because of numerical problems. The error expression,
as given in (4.20), contains matrix exponentials, which for parameter values of this
size generate error bounds that are either undefined or infinitely large.
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However, this problem is simulated in the biosdp toolbox, and the resulting
outer approximation for the SCP is shown by Figure 5.4. Since the discretization
error is not possible to compute for this problem and neither any other information
about this model is available, we can not draw any conclusions regarding the
consistency of the SCP illustrated by Figure 5.4.

Figure 5.4. Outer approximation for the set of consistent parameters, where, because
of numerical difficulties, it has not been possible to compute the discretization error. The
gray area shows the 3-D set of consistent parameters and the blue areas its projection
on the parameter planes. Since the discretization error is not possible to compute for
this problem and neither any other information about this model is available, we can not
draw any conclusions regarding the consistency of the SCP.

5.3 Reachable States

This example is taken directly from [18]. The example is used to illustrate the
image evaluation algorithm, ImageSp, described in section §2.1. The principle of
reachable states is simply saying that starting from a set of initial states [x0], it is
possible to compute a set X(k), which contains the state x(k). The system under
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consideration is the following quadratic system,

x1(k + 1) = 0.5x2
1(k)− 0.5x2

2(k) + 0.4x1(k)x2(k) + 0.6x2(k)
x2(k + 1) = 0.6x2

1(k) + 0.5x2
2(k) + 0.6x1(k)x2(k)− 0.6x2(k). (5.11)

The states x1 and x2 are initially assumed to be contained in the box

[x0] = [−0.38, 0.38]× [−0.38, 0.38].

This problem is simulated with the image evaluation method, described by the
algorithm (2), section §2.1, for k=30. Figures 5.5(a) - 5.5(f) illustrate the reachable
states in the first six time instants. Figures 5.6(a) and 5.6(b) show the results in a
longer time horizon, where the results are also compared with the results obtained
using Monte Carlo simulation.
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(a) k=1 (b) k=2

(c) k=3 (d) k=4

(e) k=5 (f) k=6

Figure 5.5. Starting from the initial state box [x1(0)] × [x2(0)] it is possible to compute
the box X(k), which containes [x1(k)] × [x2(k)] at an arbitrary time instant k. Figures
5.5(a) to 5.5(f) illustrate X(k) for k=1,...,6.
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(a) The state x1 in a longer time horizon

(b) The state x2 in a longer time horizon

Figure 5.6. Figures 5.6(a) and 5.6(b) show the evolution of the limits for each states
variable in a longer time horizon, where the simulation is also compared with a Monte-
Carlo simulation of the states





Chapter 6

Discussion and conclusion

In this thesis the problem of parameter identification for system biology, using
set based methods, has been studied. We mainly focus on the methods based
on SDP-relaxation and interval analysis and we obtain an outer approximation
for the SCP. The SDP-relaxation method, based on the work presented in [8],
defines an in general non-convex feasibility problem. This feasibility problem is
then relaxed to a more computationally efficient feasibility problem, using the
method of Semidefinite Programming approach. Such methods although aimed at
continuous time model falsification, they use time-discrete reformulations, where
the Euler’s method is used for the discretization of the continuous ODE-model.
Euler’s method, however, is erroneous, meaning that the resulting discrete model
does not in general behave the same way as the original ODE-model. In the
case of parameter identification it means that the set of consistent parameters,
obtained using the discrete model, can not be fully trusted, which rises the need
for estimating the discretization error.

In this thesis several methods for bounding this discretization error has been
studied and tested using different examples. For the numerical examples, it is
assumed that the output of the models are given. In the cases where these mea-
surements are available, one can use the method of one-step error estimation and
achieve quite satisfactory results, although still conservative. This conservativeness
is mainly due to the optimization parameter λ as it is computed as the worst-case-
matrix-norm. The error bounds computed based on only the initial values, result
in more conservative error bounds.

The other set-based method studied is based on interval analysis and regular
subpaving of the parameter space for a time-continuous dynamical system. In this
approach the outer approximation for the SCP is achieved using Set inverter via
interval analysis, Sivia. This method works well for low dimensional systems, but
when it comes to more complicated and high dimensional problems, this method
is quite slow.

Finally, a comparison between the Figures 5.1 and 5.3, both illustrating outer
approximations for the SCPs of Problem 1, shows that the discrete model is heavily
corrupted by the discretization error. This can be seen by comparing the outer
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approximations in Figures 5.1 and 5.3, where, the conditions PCT ⊆ PDT , where
PCT is the set of parameters consistent with the time-continuous model and PDT
is the set of parameters consistent with the time-discrete model, is not satisfied.
When the discretization error is taken into consideration, on the other hand, the
true SCP is also covered,as can be seen in Figure 5.2.

Based on the results of problem 1 and the discussions above, we conclude that
treating the discretization error is crucial when working with approximative models
described by system of difference equations. Without this error estimation taken
into consideration, no certain conclusion can be drawn about the time-discrete
system biological models.
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