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Abstract— We consider suboptimal decentralized controller
design for subsystems with interconnected dynamics and cost
functions. A systematic design methodology is presented over
the class of linear quadratic regulators (LQR) for chain graphs.
The methodology is evaluated on heavy duty vehicle platooning
with physical constraints. A simulation and frequency analysis
is performed. The results show that the decentralized controller
gives good tracking performance and a robust system. We also
show that the design methodology produces a string stable
system for an arbitrary number of vehicles in the platoon, if
the vehicle configurations and the LQR weighting parameters
are identical for the considered subsystems.

I. INTRODUCTION

The systems to be controlled are in many application
domains getting larger and more complex. When there is
interconnection between different dynamics, conventional
optimal control algorithms provide a solution where full
state information is required. However, it is often preferable
and sometimes necessary to have a decentralized controller
structure, since in many practical problems, the physical
or communication constraints often impose a specific in-
terconnection structure. Hence, it is interesting to design
decentralized feedback controllers for systems of a certain
structure and examine their overall performance.

The control problem and methodology in this paper is
motivated by systems involving a chain of closely spaced
heavy duty vehicles (HDVs), generally referred to as vehicle
platooning. Through commercially available systems, for
example radar and wireless communication, each vehicle
is able to measure or receive the relative distance, relative
velocity, and additional relevant information concerning the
preceding vehicle. The objective is to maintain a predefined
headway to the vehicle ahead. By traveling at a close
distance to a HDV, the air drag is reduced [1]. Hence,
the effort needed to maintain the desired relative velocity
varies with the relative distance. This creates a coupling of
the dynamics between vehicles throughout the platoon. In
[2] it was shown that a fuel reduction of 4.7-7.7% can be
experimentally obtained by utilizing the air drag reduction
that occurs when driving HDVs closely spaced. However,
due to the additional control effort produced by the existing
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control systems for maintaining the relative distance, the
fuel consumption increases. Hence, it is of vast interest for
the industry to produce a new fuel optimal control input.
Considering the physical constraints in radio, it cannot be
assumed that state information is available at every instance
in time. Thus, a decentralized control strategy is crucial for
practical implementation.

The problem of decentralized control has a long history.
Team decision problems were introduced in [3], where each
team member is trying to optimize a common cost function
through limited information concerning the global state of
nature. In [4], decentralized control was studied through a
sequential manner by closing one loop at a time and in, [5],
[6], under the assumption of spatial invariance. Decentralized
control design for stability based on local model knowledge
appeared in [7]. Control for chain structures in the context
of platoons has been studied through various perspectives,
e.g., [8]–[14]. It has been shown that control strategies
may vary depending on the available information within the
platoon. Maintaining a suitable relative distance, stability
and robustness of the platoon have been identified to be
amongst the main criteria to be considered. However, control
design for platooning applications have mainly been ad hoc
by tuning the control parameters. In [15]–[17], optimized
procedures were presented to give a systematic approach
to the design. However, the vehicle coupling was only
introduced through the cost function. In contrast, we present
a control algorithm that considers decentralized optimal con-
trol based upon systems with interconnected dynamics and
local state information. For HDV platooning applications,
the coupling is induced by the variation in aerodynamics
between the vehicles and the state information is restricted
due to information only being available from the immediate
preceding vehicle. The former is essential in the analysis of
fuel reduction potential for HDVs.

In this work, we are primarily concerned with the case of
forming a decentralized control, solely based on local model
knowledge, over the class of linear quadratic regulators
(LQR) for chain structured interconnection graphs. However,
the control design procedure can be generalized to the
extent of acyclic graphs. We propose a systematic method to
derive suboptimal stabilizing decentralized controllers, which
imposes a lower block-diagonal structure on the feedback
gain matrix. We also show that the controller gives a stable
and robust closed-loop system.

The main contribution of this paper is to design an LQR-



based method for deriving a suboptimal decentralized feed-
back that takes dynamic coupling into consideration. We give
physical insight of how to derive the weighting factors for a
specific problem with a chain structure. We also investigate
the performance of the proposed controllers, under normal
operating conditions, with respect to physical constraints
that are imposed in a practical set-up. The structure of the
controller feedback matrix can be tailored with respect to the
locally available state information.

The outline of the paper is as follows. First we give a
general description of the system structure and present the
methodology to produce a systematic decentralized control
design in Sec. II. We apply the methodology to the example
of HDV platooning controller design in Sec. III, for which we
give a physical interpretation of how to design the weighting
parameters. Then we present the performance by giving a
frequency analysis and simulation results in Sec. IV. Finally,
in Sec. VI we present a give summary of the results and
conclusions.

II. THE STRUCTURED LQR PROBLEM

In this section, we present the system under consideration
and provide the general procedure for solving the subopti-
mal stabilizing decentralized controllers for interconnected
systems with block tridiagonal structures. The method will
be utilized for solving local state feedback control problems.

The objective of this study is to design suboptimal stabi-
lizing decentralized controllers, solely based on local model
knowledge, for a N -vehicle system when there is inter-
connection between different subsystem dynamics, without
compromising system performance. The vehicles can only
receive information from the interconnected preceding vehi-
cle, which is generally the case for commercially available
systems. However, the local information can naturally be
extended to a larger subset.

Consider a system consisting of N vehicles as depicted
in Fig. 1, where each vehicle is interconnected with the
preceding vehicle. The system structure under consideration
can generally be given as

ẋ =


A11 0 0 . . . 0
A21 A22 0 . . . 0
0 A32 A33 . . . 0
...

...
...

. . .
...

0 0 0 . . . ANN




x1

x2

x3

...
xN



+


B1 0 0 . . . 0
0 B2 0 . . . 0
0 0 B3 . . . 0
...

...
...

. . .
...

0 0 0 . . . BN




u1

u2

u3

...
uN

 ,
(1)

where Aij , i 6= j, denotes the interconnection between the
system dynamics. An optimal LQR state-feedback controller
can be derived by minimizing the quadratic cost function
given by

Fig. 1. The figure shows a platoon of N heavy duty vehicles, where each
is only able to communicate with the preceding vehicle.

J(u) = x(tf )TSx(tf )+

tf∫
t0

x(t)TQx(t) + u(t)TRu(t)dt

(2)

where S and Q are positive semidefinite and R is positive
definite. The control input that minimizes (2) is given by

Ṗ =PBR−1BTP −ATP − PA−Q
L =R−1BTP

u∗cen =− Lx

where the optimal control solution, u∗cen, has a communi-
cation topology that provides each vehicle with full state
information. However, such an assumption is not realistic,
since the available information is limited in practice.

Structural Decomposition

Due to the constraints set upon the information topology
and the interconnection between the subsystems (Fig. 1), the
global system (1) can be divided into sub-blocks. Thereby,
the first vehicle (subsystem 1) can optimize its control
input by setting its weighting parameters Q1 and R1 with
respect to the desired performance criterion. By conveying
the information, each interconnected follower vehicle (sub-
system i) can subsequently derive locally optimal stabilizing
controllers based on the local model. The local optimization
is performed separately for each vehicle and the weighting
parameters Qi and Ri in the respective optimization steps
are set with respect to each vehicle’s performance criteria.
Therefore, they need only be known to the individual vehicle
and the dimension can vary based upon the available state
information. The matrix Qi will in particular have a specific
form, which will contribute to the desired coupling behavior
of the interconnected vehicle. As a result of subsequently
deriving controllers based upon local model information and
interconnection, a global suboptimal decentralized feedback
matrix with a lower block diagonal form is produced with
respect to (1), which can be given as

L =


L11 0 0 . . . 0
L21 L22 0 . . . 0
0 L31 L33 . . . 0
...

...
...

. . .
...

0 0 0 . . . LNN

 . (3)

Thus, a systematic decentralized LQR-optimization can be
performed for each subsystem, as described in Algorithm 1.



Algorithm 1:
0) Set the weight matrices Qi, Ri, i = 1, . . . , N , pos-

itive definite and in accordance with the desired
performance criteria.

1) Derive the locally optimal feedback controller, u∗1,
for subsystem 1 (the lead vehicle) by solving

min
u1

tf∫
t0

xT1 Q1x1 + uT1 R1u1dt

s. t. ẋ1 = A11x1 +B1u1.

Ṗ1 = P1B1R
−1
1 BT1 P1 −AT11P1 − P1A11 −Q1,

L11 = R−1
1 BT1 P1

u∗1 = −L11x1.

2) Each preceding vehicle’s dynamics is known to
the follower vehicle. Therefore, utilize this infor-
mation of subsystem i − 1 in the control design
of subsystem i (the follower vehicle) and subse-
quently compute for i = 2, . . . , N ,

min
ui

tf∫
t0

[
xi−1

xi

]T
Qi

[
xi−1

xi

]
+ uTi Riuidt

s. t.[
ẋi−1

ẋi

]
=

[
A(i−1)(i−1) −Bi−1Li−1 0

Ai(i−1) Aii

]
︸ ︷︷ ︸

Āii

[
xi−1

xi

]

+

[
0
Bi

]
︸ ︷︷ ︸
B̄i

ui,

Obtain locally optimal, u∗i , feedback by solving

Ṗi = PiB̄iR
−1
i B̄Ti Pi − ĀTiiPi − PiĀii −Qi,

L̃i = R−1
i B̄Ti Pi,

u∗i = −L̃i
[
xi−1

xi

]
,

where L̃i =
[
Li(i−1) Lii

]
.

Theorem 1: Consider a chain of N interconnected sub-
systems with dynamics given by (1). Algorithm 1 provides
a locally optimal state-feedback controller u = −Lx with
L as in (3) that results in a globally asymptotically stable
closed-loop system.

Proof: Consider subsystems (Āii, B̄i), i = 1, . . . , N ,
as introduced in Algorithm 1. It is easy to see that with the
specified state-feedback control law u = −Lx the resulting
closed-loop system has eigenvalues given as the solutions to

N∏
i=1

det [λI − (Aii −BiLii)] = 0.

Thus, Algorithm 1 produces a globally asymptotic stable
system, since

Re [λi (Aii −BiLii)] < 0, ∀i.

III. APPLICATION TO HEAVY DUTY VEHICLE
PLATOONING

In this section, we consider the problem that inspired
the control design procedure over the class of LQR control
for chain structured interconnection graphs (Fig. 1). We
also investigate the performance with respect to system
requirements and stability.

The state equation of a single HDV is [18],

ṡ = v

mtv̇ = Fengine − Fbrake − Fairdrag(v)

− Froll(α)− Fgravity(α)

= keTe − kbFbrake − kdv2

− kfr cosα− kg sinα

(4)

where v is the vehicle velocity, mt denotes the acceler-
ated mass and Te ∈ R denotes the net engine torque.
ke, kb, kd, kfr, and kg denote the characteristic vehicle and
environment coefficients for the brake, air drag, road friction,
and gravitation respectively.

The non-linear model, (4), can be linearized with respect
to a set reference velocity, an engine torque which maintains
the velocity, a fixed time gap between the vehicles, and a
constant slope.

When traveling in a platoon, the air drag has a significant
impact on the overall resistive forces, which is one of the
key factors in fuel reduction possibilities and must therefore
be taken into account. To account for the aerodynamics the
air drag characteristic coefficient in (4) can be modeled as

k̃d = kd(1−
Φ(d)

100
),

where Φ(d) = −0.414d + 41.29 and 0 ≤ d ≤ 99 is
the longitudinal relative distance between two vehicles. The
linearized model for a HDV platoon is hence given by

ẋ = Ax+Bu,

where



A =



Θ1 0 0 0 0 · · · 0 0 0
1 0 −1 0 0 · · · 0 0 0
0 δ2 Θ2 0 0 · · · 0 0 0
0 0 1 0 −1 · · · 0 0 0
0 0 0 δ3 Θ3 · · · 0 0 0
...

...
...

...
...

. . .
...

...
...

0 0 0 0 0 · · · ΘN−1 0 0
0 0 0 0 0 · · · 1 0 −1
0 0 0 0 0 · · · 0 δN ΘN


,

B =



ke1 0 0 · · · 0
0 0 0 · · · 0
0 ke2 0 · · · 0
0 0 0 · · · 0
0 0 ke3 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0
0 0 0 · · · keN


, x =



v1

d12

v2

d23

v3

...
vN−1

d(N−1)N

vN


,

u =


T1

T2

T3

...
TN

 ,
Θ1 = − 2kdv0

mt
,

Θi = − 2k̃dv0
mt

, i = 2, . . . , N.

δi = − 0.0414kdv
2
0

mt
,

(5)

The system under consideration has a block tridiagonal
structure on which the proposed controller design method
can be implemented.

Cost function

In this section we propose a suitable set-up for the weight
matrices Q and R based upon physical insight.

For general LQR-design the weighting factors need to
be specified and adjusted based upon the results of the
specified design goals. In the proposed decentralized control
algorithm the weighting factors can be set separately for each
subsystem. The lead vehicle’s objective is to follow a given
reference velocity and minimize the control input with re-
spect to fuel optimality. However, the follower vehicles in the
platoon have an additional objective of maintaining the set
intermediate distance. The desired relative distance generally
varies depending on the vehicle velocity. It is determined by
setting a timegap τ s, which gives the desired headway as
dij = τvj . Thus, considering the platoon objectives, the cost
function can be set up as

J(T ∗i ) = min
Ti

tf∫
t0

wτi (d(i−1)i − τvi)2 + w∆v
i (vi−1 − vi)2

+ wdi d
2
(i−1)i + wvi v

2
i + wTi

i T
2
i dt

= min
Ti

tf∫
t0

 vi−1

d(i−1)i

vi

T Qi
 vi−1

d(i−1)i

vi

+RiT
2
i dt

(6)

where

Qi =

 w∆v
i 0 −w∆v

i

0 wdi + wτi −τwτi
−w∆v

i −τwτi τ2wτi + w∆v
i + wvi

 ,
Ri = wTi

i .

(7)

In accordance with the objective for a vehicle traveling
in a platoon, wτi in (6) determines the importance of not
deviating from the desired time gap and w∆v

i creates a cost
for deviating from the velocity of the preceding vehicle. The
following terms, wdi , w

v
i , w

Ti
i , put a cost on the deviation

from the linearized states and the control input. Since the
main objective is to maintain a set intermediate distance, wτi
and w∆v

i must be set larger than the remaining weights.

IV. ROBUSTNESS EVALUATION

In this section, we state a definition of string stability and
give the performance by analyzing if the proposed controller
produces a string stable system. An analytic expression is
derived for the system under consideration and numerical
results are given to show that the system is string stable.

Relative distance and velocity tracking are key factors
in measuring the performance of the system. However, a
concern regarding the robustness is frequently raised in
vehicle platooning applications. In [19] a definition of string
stability is presented. String stability can loosely be described
as the ability to suppress a disturbance along the platoon. We
will use a less rigorous approach similar to that presented in
[20] and [21]. Assuming that the i:th vehicle (Fig. 1) controls
the headway distance by using only information from the
immediate preceding vehicle, the transfer function from the
lead vehicle’s velocity v1 to the tail-end vehicle’s velocity
vn can be expressed as

Vn(s) = Gv1(s)Gv2(s) · · ·Gvn−1(s)V1(s) (8)

where

Vi(s) = Gvi (s)Vi−1(s), i = 2, . . . , n. (9)

and V (s) := L(v(t)) is the Laplace transform of the time
domain velocity. We define that a string of n vehicles in a
platoon is string stable if for all i = 2, . . . , n

||Gvi ||∞ ≤ 1, (10)



where || · ||∞ indicates the maximum peak of the frequency
response. The definition states that a deviation in the lead
vehicles velocity from its steady-state value should not be
amplified downstream.

The plant model (5) together with state-feedback

ui = −(L1
i vi−1 + L2

i d(i−1)i + L3
i vi)

gives the transfer function relation

Vi(s) =
(δi − keiL2

i )

s− (Θi − keiL3
i )
D(i−1)i(s)

− keiL
1
i

s− (Θi − keiL3
i )
Vi−1(s).

(11)

The transfer function for the relative distance is given by

D(i−1)i(s) = (Vi−1(s)− Vi(s))/s. (12)

By combining (11) and (12) it is straight forward to derive
the transfer functions

Vi(s) = Gvi (s)Vi−1(s) (13)

where

Gvi (s) =
−keiL1

i s+ δi − keiL2
i

s2 − (Θi − keiL3
i )s+ δi − keiL2

i

(14)

As presented in Sec. V, we have considered a platoon
consisting of N = 6 identical vehicles and utilized equal
LQR-weights for each follower vehicle. Thus, the transfer
functions Gvi (s) are identical for each vehicle pair with
Θi = −3.6×10−3, δi = 1.48×10−5, kei = 0.148×10−3,
∀ i. Hence, the maximum peak response for each transfer
function can easily be calculated, (15), by inserting the
subsystem LQR feedback gains L1 = 0.98 × 103, Li =
103 × [−6.69, − 577.35, 584.03], using Algorithm 1, into
(14).

||Gvi ||∞ = 1.00, i = 2, . . . , 6. (15)

The results show that the robustness condition in (10)
is satisfied. If additional HDVs are added to the platoon
with identical weighting parameters Qi and Ri, the transfer
function, (14), and inherently the maximum peak response,
(15), will not change. Thus, the proposed decentralized
controller design produces a string stable control regardless
of how many vehicles of identical configuration that are
added to the platoon.

V. SIMULATIONS

In this section, we evaluate the proposed controller algo-
rithm by giving an example of how to derive the controllers
for a system involving a HDV platoon consisting of six vehi-
cles. The performance is evaluated through simulation results
and we also investigate the feasibility and fuel efficiency of
the derived controller.

When studying the behavior of vehicles within a finite
platoon, the velocity does not deviate significantly from

the lead vehicles velocity trajectory. The control strategy is
simply to provide an input that maintains the platoon velocity
at a set relative distance. However, concern arises when a
disturbance is introduced to the system. The disturbance can
be modeled as a deviation in the lead vehicles velocity.

The controller for each vehicle is designed with respect to
the proposed Algorithm 1. The optimal feedback gain, L11,
for subsystem 1 is derived through (16) with A11 = Θ1,
B1 = ke1 , Q1 = wv1 , and R1 = wT1

1 .

min
u1

∞∫
t0

wv1v
2
1 +R1T

2
1 dt

s. t. v̇1 = Θ1v1 + ke1T1,

(16)

The the locally optimal feedback is given by u∗1 = −L11v1+
l0w, where l0 is the static feedback gain, and w is the
imposed disturbance. The controller for the rest of the
subsystems in this case are derived iteratively in (17) with

A(i−1)(i−1) =
[
Θi−1 0

]
, Ai(i−1) =

[
1 0
0 δi

]
, Aii =

[
−1
Θi

]
,

Bi−1 = kei−1 , Bi =

[
0
kei

]
, Li−1 = L3

i−1, and Qi, Ri given

in (7).

min
ui

∞∫
t0

 vi−1

d(i−1)i

vi

T Qi
 vi−1

d(i−1)i

vi

+RiT
2
i dt

s.t. v̇i−1

ḋ(i−1)i

v̇i

 =

Θi−1 − kei−1
L3
i−1 0 0

1 0 −1
0 δi Θi

 vi−1

d(i−1)i

vi


+

 0
0
kei

Ti,
(17)

By utilizing L3
i−1 in (17), which is the gain corresponding

to the available state of the preceding vehicle’s velocity,
the controller becomes independent of all other indirectly
preceding vehicles. The optimal feedback gain is obtained
by solving the Riccati-equations for each subsystem as
described in Algorithm 1. Hence the optimal control input
is given as

u∗i = −
[
L1
i L2

i L3
i

]  vi−1

d(i−1)i

vi

 , i = 2, . . . , 6.

The modeled HDVs are described as traveling in a lon-
gitudinal direction on a flat road. The maximum engine
and braking torque for a commercial HDV varies based
upon vehicle configuration but can be approximated to be
3000 Nm and 60000 Nm/Axle respectively. The minimum
time gap is τ = 1 s and the mass of the vehicles are set
to m = 40000 kg, which is generally considered to be
the standard weight of a long haulage heavy duty vehicle.
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Fig. 2. The figure shows a platoon of 6 HDVs, where a disturbance in
velocity of the lead vehicle is imposed.

TABLE I
TABLE OF THE REQUIRED CONTROL INPUT (TORQUE) TO HANDLE THE

DISTURBANCES IN FIG. 3.

i = 1 2 3 4 5 6
||Ti||2 [kNm] 45.5 42.1 40.8 39.8 39.0 38.4
Tmax
i [kNm] 2.78 2.00 1.83 1.72 1.64 1.57

Tmin
i [kNm] -5.49 -3.95 -3.61 -3.39 -3.23 -3.10

All the vehicles are assumed to be travelling in the steady
state velocity v0 = 19.44 m/s (70 km/h) and relative distance
d0 = τv0.

Based upon these physical constraints, we investigate the
controller performance when several disturbances are im-
posed on a N = 6 vehicle platoon (Fig. 2). The disturbances
can be explained by the following scenario. The lead vehicle
is first forced to accelerate through a step input from 70 km/h
to 80 km/h due to a new road speed point. When reaching
80 km/h it suddenly has to decelerate to a lower speed of
60 km/h, because an obstruction in the form of a slower
vehicle has entered the lane that has not yet reached the road
speed. The obstructing vehicle increases its speed to 70 km/h
and then switches lanes, enabling the platoon to resume the
road speed again.

The control design handles the disturbance well and
demonstrates a good tracking performance. It can be seen
(Fig. 2) that there is no overshoot in the velocity or relative
distance tracking. The control input required (Fig. 3) to
produce the tracking performance is also well within the
boundaries of what is known to be physically obtainable.
However, an engine cannot produce an instantaneous input
torque. Therefore, a ramp input more suitable in these
applications.

Table I shows the maximum, minimum, and accumulated
torque energy that was required to account for the distur-
bances. The results show that the required input energy,
which corresponds to the fuel consumption, decreases along
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Fig. 3. The figure shows a the corresponding input torque for the platoon
of 6 HDVs, where a disturbance in velocity of the lead vehicle is imposed.

the chain of vehicles. Hence, the designed controller is fuel
efficient. In comparison with a centralized controller for an
identical scenario, assuming that all states are available at all
time instances, the control effort energy is up to 29 % higher
for the decentralized controller. However, the decentralized
control system have a 41 % lower rise time because the
follower vehicle dynamics are not taken into consideration.
Hence, there is a trade-off in system performance. In freight
transportation, the delivery time is equally important as fuel
consumption.

VI. SUMMARY AND CONCLUSIONS

The proposed decentralized controller in this paper ad-
dresses the basic communication topology and handles dy-
namically interconnected systems. It can easily be extended
to more advanced communication topologies such as receiv-
ing state information from additional preceding or follower
vehicles. However, extending the communication topology
will increase the controller and computational complexity,
which is restricted in many real life applications. The pro-
posed methodology produces a simple and energy efficient
suboptimal decentralized controller with good tracking per-
formance, stability, and robustness properties. It is simple in
its nature, since the optimal control input, is calculated se-
quentially for each vehicle and is only based on information
from the preceding vehicle. Thus, it is also scalable, since
adding a vehicle to the end of the chain will not mandate
a change in decentralized controllers within the platoon. Yet
it maintains the overall system performance. A centralized
control strategy might produce a lower LQR-cost, however it
is not realistic to assume that an agent in the platoon would
know the state of all the other agents in the formation at
any given time and be able to use it to calculate the control
input due to physical constraints in the information flow.
Hence, the control design methodology can most likely be
implemented in real life applications.



On the other hand, as the control law is based on a
linearized model, it is interesting to evaluate it on the actual
HDV dynamics. In real life applications many parameter
uncertainties and nonlinearities exist. For example, the brak-
ing power becomes nonlinear due to a temperature variation
in the braking hardware and the produced engine torque
transferred to the wheels is a nonlinear function of the current
gear. If nonlinearities are taken into account, a more fuel
efficient control strategy could most likely be produced. Also,
delays or losses within the communication is a common
occurrence in real applications. Robustness, in the sense of
string stability, is only guaranteed for identical vehicles and
LQR weighting parameters. It is interesting to determine
necessary and sufficient conditions for heterogeneous pla-
toons such that robustness in a finite vehicle HDV platoon is
always guaranteed. Hence, these issues follows as a natural
extension and future work within this subject.
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