Modulation and noise properties of multi-element
semiconductor lasers

Anders Karlsson, Richard Schatz and Olle Nilsson

Abstjfct

In this report a previously presented theory for the modulation and
noise properties of multi-element lasers is revised. Explicit formulas for
modulation response, amplitude and frequency noise are found. The
theory is illustrated by numerical examples.
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1 Introduction

In coherent optical communication systems severe requirements are put on the semicon-
ductor lasers used as transmitters and local oscillators. This has lead to the advent of
monolitic or hybrid structures where the characteristics of the laser more or less are tai-
lored to meet a specific demand. Such demands could for example be a pure spectral
behavior, large frequency tunability, a uniform and wideband FM-response with, at the
same time, a low spurious AM modulation etc. Sometimes the laser should be optimised
with respect to a pair or more of these characteristics, such as for a local oscillator in a
multichannel FSK system, which should have both a pure spectral behaviour, ie at least
a small linewidth, and at the same time be widely and preferably also rapidly tunable.

Much interest has focused on developing lasers with a small linewidths to be used as
local oscillators. Indeed lasers with sub-Megahertz linewidths [1, 2] have been reported,
this being a result of using long lasers with high Q-values, and by reduction of the gain-
refractive index coupling enhancement of linewidth typical for semiconductor lasers.

Normally one should expect the laser linewidth to decrease inversely with output
power, as predicted by the modified Shawlow-Townes linewidth formula [3, 5], but exper-
imentally a linewidth floor or even a rebroadening of linewidth at high output powers has
been found. This broadening has recently been the subject of intense research and debate
and several models have been proposed to explain this behaviour [5].

In order to being able to study these multi-facetted aspects of laser noise, it would be
preferable to have a desktop tool allowing for interactive simulation of the characteristics
of complicated laser structures. We have developed a theory for prediction of modulation
and spectral properties of multielement semiconductor lasers and implemented it in the
form of a user friendly interactive simulation program on a Apple Macintosh computer.
Here we present the theory, the frame of which has been presented earlier [4], and some
results from computer calculations of modulation and spectral properties. The theory, at
least partially, is shown to yield the same result as a theory independently developed by

Tromborg et. al. [6]. This comparison is discussed in some detail in appendix D.



2 Theory

2.1 Linearized multiport description

Here we recapitulate the theory that was presented in Ref. [4]. This theory is based on
ideas from [7, 8, 9], the steady state characteristics are calculated using a transfer matrix
formalism [8], and the noise properties are calculated using an equivalent electrical circuit
theory [7, 9]. However, in [7, 9] only a single active element was allowed, the present
theory allows for multiple active elements or spatially varying noise sources.

Consider a multi-section laser structure, consisting of several active regions, gratings
etc. The laser is assumed to operate in one single transverse and longitudinal mode. The
oscillation frequency and the steady state field distribution is calculated from the transfer
matrix method together with the carrier rate equations, as described in appendix E. The
influence of modulation and noise, such as fluctuations in carrier numbers, is described
in terms of small equivalent source currents inserted in the structure in a self-consistent

way using a small signal linearization. The model we use is illustrated in Fig 1.
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Laser Cavity

Fig. 1 : Schematic representation of the laser model. The laser cavity is treated as a

transmission line. Conductances are inserted at appropriate locations.

The equivalent total adinittance in plane A can be written as

2
1+T, )

where Gy, is the equivalent load conductance, Y4 the active admittance as seen looking

Y=GL+Ys1=0Gy



into the laser structure and ', is the reflection coeflicient, which can be defined as

— VA,out
FA - VA,in ) (2)
At oscillation we have

In the transfer matrix method the oscillation frequency is found from the zeros of
1/T 4 [8]. Since the reflection coefficient can be determined as a function of frequency, ¥
can be considered as a known function of frequency. The laser output field which usu-
ally is measured experimentally differs from the internal field which usually is calculated
theoretically (10, 7). In the language of electrical circuit theory the laser output field is
represented by the outgoing voltage wave Vj ouy, whereas the internal field (at the output
mirror) is represented by the total voltage V4. These are related by

Vaou =Va—Vain =V, -l : (4)

! ' 2G L
Here I4 is the source current of the matched load Gy. To find the voltage amplitude
V4 in the presence of small source currents in the active regions and at the outputs, a
multiport description is used. The laser is divided in regions so small that the field can
be considered as constant within each region. We also need the voltage amplitudes, V;
at the locations of the source currents [;. The multiport is linear as defined, so that one

can write

Y Vi = Ix+) Huli+ Hyplp

Y . I/; = H{AIA + Z Hfj]g + H{BIB
b
Y Ve = Hpala+ > Hp:li+ Hpslp (5)
where, assuming reciprocity,
Hyp: = Hia (6)

Here, both Y and the transfer functions H are functions of frequency. The calculation

of the transfer functions H is discussed in appendix A.



2.2 The modulated field

The equivalent voltages describing the laser field can be written
Vaip(t) = RE{VA,;.Bgej“’“”“'"'B{t)} (7)
where

c(t) = a(t) +jel(t) (8)

describes the amplitude and phase modulation at the various locations. Here a(t) and
(1) are real, small quantities except for a very slowly varying part of ¢(?) expressing the
phase diffusion common to all fields in the laser, the difference of ¢(t) for any two sections

are therefore always small. We can take the source currents to be of the form

]A,i,B (f) — RE{IA,LBQ ei(wo +9)f+64,i,5(*)} (g)

where {1 = w — wp. In eq. (9) we have only the upper sideband part, there will also be a

lower sideband part, as it is discussed in appendix B. Eqgs. (5) can then be approximated

as

1 .
§VA0YQ(Q) (asq + J4q) I + E Ha4i(Q) lia + Ha4p(Q)Ipa

1 .
iV{aYa(Q) N(ain +join) = HanQ)Taa+ > Hai(VLa + Hapi(Q)Isa
>

1 :
iVBoYa(Q) - (aBa + j¥Ba) Haap(Q) g0 + ZH&BT'(Q)];Q + Happ()Ipa (10)

and the corresponding equations with (1 replaced by —{). We also used eq. (3) and the

notation

Ya@) =Y(w), Ha(@)=Hw) , (1)

a(t), (1) = Re{aq, pae™} . (12)

Note that positive and negative frequency components will be coupled, as will be shown
below, and that YA(—) does not equal Yx () in the general case.



2.3 Carrier-rate equations
The carrier-rate equation for region i can be written [11]:

dN{ _ P.sa'
_E—'Js RI-'?E_FRI Fs: (13)

where N; is the number of carriers, J; is the number of injected carriers per unit time
including any pump noise, R; is the spontaneous recombination rate, P,; is the net gener-
ated ﬁower through stimulated emission-absorption, I'g; is the recombination fluctuation
and finally T'y; is the dipole fluctuation accompanying the stimulated emission-absorption.
The noise sources will be discussed in Section 2.4. The carrier diffusion term included in

[4] has been neglected. In order to find a small signal equation we define

_— 1 8gs
Ni = o 8N1 )

(14)

|Va|2 8951'
8p; = :
F Gsi a|VzP

where g,; is the gain constant, sy; express the differential gain and sp; express the non-

(15)

linear gain. We also need the relative intensity variation

AlV;[?
Vil?

= 2a,;(t) . (16)
Using
AN;(t) = Re{ANype’™} | (17)

we can do a small signal Fourier decomposition of the rate equation, finding

, P dR; Py;
7O+ 7o SN + d—M)A-NiR = AJig — 2695(1 + 8pi) = Trin — Tun . (18)
2.4 Source currents and noise sources.

The total noise current to be used in eq. (10) can be written as a sum of four contributions

Lig = Iyia + Ipia + Ipin + Iin . (19)

Here Iniq is proportional to the resulting carrier fluctuations, Ip;q stems from the nonlin-
ear gain, both of these could also be deterministic. Ipiq stems from the gain mechanism
(dipole fluctuations) and finally I';q is a noise current accounting for optical losses others

than those arising from the stimulated absorption, such as waveguide losses.
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A fluctuation in carrier number AN; gives rise to a fluctuation in conductivity that

we account for by a source current

2P,
Ine(t) = Re{Vﬂeroi+cu(t} AN(t) - e ]’ syi- (1 —ja;)} (20)
where 8¢ B
*=o5/o8 @)

is the linewidth enhancement factor which is usually negative in semiconductor lasers
[3]'. Note that this current represent the gain clamping that acts as a restoring force on
amplitude fluctuation. With Eq. (17) one obtains for the current to be used in Egs. (10):

_ WGPsi . . :
IN:Q = ]VmP * SN (1 }a|)ANsﬂ . | (22)

The source current for the nonlinear gain is similarily obtained as

V} P.n'
Ip,—n = -“/D;-—Diz" . Spggagn . (23)

Here we have neglected the nonlinearity in €.
Every stimulated recombination or excitation event is accompanied by noise stemming
from the fluctuating dipoles. The noise sources can be assumed as spatially independent,

and the single-sided power spectral density of Ip; is [9]

2P
[Viol?

where ng,; is the spontaneous emission factor for region :. We also have a noise current

Sip; = 2hw——=(2np; — 1) (24)

Ig; stemming from other losses than stimulated absorption, such as free carrier absorption

and scattering losses. It has a power spectral density given by

an' = 25&) (25)

where Pp; is the total loss mentioned above.
Further, there are fluctuations due to the matched loads at A and B (ie. the zero-point

fluctuations). The noise contribution to /4 and I will have spectral densities given by

2P, 2Pg
vap 0 SE = e

where Py is the output power at facet A and Pg is the output power at facet B.

Sia = 2hwG, = 2hw—7 (26)

In Henry’s definition a = An’/An" is positive, the negative a here is due to a different sign in the
definition.



Three noise sources enters the carrier-rate equation. The first is the pump noise from
the current injection, which can be directly included in J;. This may or may not be
suppressed depending on the pumping mechanism of the laser {12, 13]. The second is the

recombination noise I'g;, with power spectral density assumed to be
Stri = 2R; (27)

where R; is the total recombination. At last we have the noise from the gain mechanism
(dipole moment fluctuations) I',;, that must enter the rate equation since every stimulated

emission or absorption event also involves a carrier. It therefore can be assumed that
hwl'si(t) = (Vi(t) - Ipi(t)) (28)

where the average is taken over several light periods. If the in-phase component of the

fluctuation is defined to have the phase of V; one finds, appendix C, eq. (C.4)

Vi .
%h—i[fbin + Ipi_q] (29)

which shows the correlation between the gain (dipole) fluctuations entering the field

[yin =

equations, and I'y; in the carrier rate equations.



2.5 Passive tuning region

For a passive tuning section the rate equations and the equivalent source current must be

rewritten, For source current corresponding to eq. (20) we get

Ini(t) = Re{Vige™ o'+ . AN;(t) - %‘;’ﬁ‘n“ (1= jaw)} (30)
where AwA N;- S;in,; is the loss power when the absorbtion is changed from zero to AN;n;;.
Hence, ny is related to the change in waveguide loss with carrier density ( ie. ny =
vydy:/dN;, where the absorbtion +; has the unit of inverse length). The change in real
part of refractive index can be included as an equivalent a-parameter ay;. The Fourier
components of Iy may then be written as

Viohw S; )
Inva = _JEW_ ny - (1 — jo ) AN . (31)

The carrier rate equation for a tuning section with carrier injection may be written as

dNy;
d_; =Ju— Ry — Try (32)

where Ry and I'ry are the deterministic recombination and its associated ﬂuctua\.tion.

The recombination fluctuation is assumed to have a spectral density given by

Stri = 2Ry (33)

in analogy with Eq. (27) . With this the theory is complete and we will now apply it to

noise spectrum calculations and illustrate with several examples.
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3 Spectrum calculations

To calculate the noise spectra and the linewidth of a multielement laser we first treat a
simplified case by assuming that the amplitude and phase can be taken as the same all
over the laser, though one should note that this need not generally be true [14, 15, 6].
Very recently [16] it was suggested that such spatial fluctuations in photon distribution
could explain the linewidth rebroadening observed in lasers at high output powers. Also
one could expect that the approximation of common amplitude may be incorrect close to
points of longitudinal instability [17]. The more general treatment is beyond the present
report and will be given elsewhere. As a starting point we assume that we have low

frequencies compared to any roundtrip times so that

dYa(0)
o0

We may also choose a reference plane such that

YA(Q) =0. Ha(ﬂ) ~ HQ(U), Vio = HAA,‘(O) . VAO . (34)

8Y¢ 68,_»\

70 e (35)
where Bais the imaginary part of the admittance Ys. We further assume that the in-
phase component , ie. I' = Iq 4 I”q, of the current has the same phase as V; and the
quadrature phase is taken as 1° = —j(In — I*y), (see appendix B for the definition of
in-phase and quadrature phase components of I). Using this in the first of eqs. (10), again

taking Vao as real, and adding the complex conjugate of the corresponding equation for

—§), one obtains

0Ba
a5

+Z[Re{l_%}(fg + 15+ 10)

JOEVEaan = Vaolh + Veol}

rm{llf;'_—l}ff& +19)

Zlv
/

(l ja{)}.‘:‘N{AN;n y (36)

+

0B
Qe Visean = Vaold + Vaol§

SIR(T) I +19) + fm{%}ug,- )

+ E IV .?as)}SNtAN:Q . (37)
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The only thing left is to elimate AN from the equations by using the carrier rate equations,

which can be written

fiw

P,
sNiANig = E;-(l—)[AJ'Q 20— ™ ~(1 + spi) — Tria — Tuq] . (38)
Here we have put
dR; P

which tends to zero for high pumping and low frequencies. For a passive tuning region

we introduce

.
= m = Jﬂ'Tsp‘H (40)
dN;
where the spontaneous lifetime of the passive section also has been introduced. To simplify

the notation we introduce
Vaz,s = sz(l - jay) (41)
and

Vau =Vi(1—jeu) . (42)

We can introduce the contributions from the passive regions by inserting Eq. (38) and

Eq. (29) into the amplitude equation Eq. (36). This gives

2P,; V2. V2 OB,
Zaﬂ[; 5 o) 1+S}3,JR6{|V!2} SP‘(I+{)RB{|VP} + 2 ViQ—= SQ]
P Vaz,lv ?lwﬂjl‘n ﬁwl"‘m
Vaola + Vol + Z (1+e )Re{ ]VF}( Psi ~ Py )

IVI V2 V2 10
+E]Dx 1 + E,)R6{|V|2} { H - ZIm{!MIE}ID’
{V} Im{V?)
Ry I8
2?10)5:1?1“1};;' ot .
+§ I+ €) |V12}(AJnn - Tr) . (®9)

By index t on the summation sign we indicate that this summation is to be taken over

tuning regions only. For the phase equation we introduce

12



2Py V2

V;
2(1+Q)[(1+3Pt)1—m{|V|2} SP3(1+E|)Im{|‘/‘!2}]

2

gye = — 2P, Vc?

E(1+ )[( +3Pt)Re{

} — Sp;(l + &;)R

44

EN

V"’ 1

which for low frequencies is an average a-parameter for the entire cavity. Note that agy. is

a frequency-dependent term containing also the enhancement at the relaxation oscillation

peak. Further, we then insert the resulting amplitude in the phase equation, and get for

the low frequernsy fluctuations

0B

j—= =0 V,m%niﬂ = VoIS + VaoI§ + ttave(Vaol}
TR - e )
S
> (?LJT)[“ b e)ewaRel i) + Im(i)

o) %
V?. . 2
cx 12 } 4 Q'QUERE’{

|Vif?

t

Z ZﬁwstintiTap,tf [I? {
(1 + Eh)

ot
Vi)

i

Il

Vaolg)
'2.
am)e IV[2
2
e AL
14
V2 2
Im + g R ot
({525} + ameRel 25 )
V2

Qavelm{ W‘_];T})

AJia — Tral (45)

In this expression, we can see how the influence of the dipole fluctuations via both the

field equation and the carrier rate equation affects the phase noise. The first terms with

I} stems from the field equation, and the second, via vy, from the carrier rate equation.

The frequency noise spectrum is a sum of three contributions (four if there are contri-

butions from passive tuning regions)

Sas(Q) = Spora(V) + Srwn(Q) + Spnp(Q) (46)
where o’ | 2
au’.ue

Sf ord(ﬂ') = 4hw [aB ] E PS iTtsp i ¥ (47)

0
2hw (hw€J; + hwR; + Py(2n,,; — 1
Sy an(Q) = [aB&] > - ef|2( pi — 1))
0

2 V
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4hw, G
Sinp() = P:J [B——IL Z Pi(2ngp; — 1)

0

Im{ v; |2} + aaueRe{ IV [2 >} _
}H {IVP} I 1+ Lo )

Re{[aaueRe{ |V|2

Here the * denotes complex conjugate and the vertical bars denote modulus. If we have

passive tuning sections, we get an additional term equal to

2 Gg

Spann() = P2[55a12
89,
t (ﬁwS:{ﬂziTs;;,ta'J2(€Jt;+Rt‘-) D‘h oh )
2z 1+ Imifyp) +emelelig)l - (0)

The semiconductor laser linewidth is given from expression Eq. (46) by looking at the

frequency ncise for low frequencies, using

1
AUZES%?(Q—*U) . (51)

Note that the modulus and complex conjugate in the equations above may be omitted for
linewidth calculations. For the linewidth, this result generalizes the previous results of
Ujihara (18], Henry [19), Arnaud (20}, Bjork [9], Tromborg [21], Wang [22] and Duan [23].
The first term is the ordinary linewidth formula, the second is carrier induced frequency
noise, the £ term is to account for an eventual pump noise suppression. Finddy the
third term arise from the correlation between carrier number and photon number through
the gain mechanism. This result for the linewidth 1s very similar to results recently
given by Tromborg, Pan and Olesen [25, 26, 6], who used a Green function formalism.
The similarities and differences between these two theories are described in appendix D.
However, we can conclude that the phenomena of linewidth rebroadening is not expected
to occur in the present approximation of the theory, since it does not occur for the same
approximations in the theory of [6]. If we now concentrate on the passive sections only,

we find by inspecting eq. (45) that the frequency tuning may be written as

er L c?tr. af
_ [PA 8BQ] 2 hw Sy Tep, i I |V]2} + agpeReq |V|2 HAJ g = E[a‘]h]A‘}ﬁn’
o0

(52)
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where this equation also defines the local tuning efficiency 8f/0Jy; In appendix D we show
that this result is in agreement with the result of [6]. If we assume full shot noise of the
injection current of the tuning region we have that Ji; = Ry; and S, = Sg,, = 2Jy; which

gives

Of 1
a‘]f.a

For a case where the local tuning efficiency is constant (0f/0Jy; is constant) e.g. a Fabry

Synn(Q) = 4n*Sap = Spnn(Q) = 167 22 2 Ju . (53)

Perot section [6], we get the linewidth contribntion from the tuning region as

AV!NN = 47?{5‘]2..}; . (54)
t

This is the result obtained by Amann et. al. [27, 28].
Now, turning to the calculation of amplitude noise, the amplitude of the outgoing field

can be expressed as

- V
a0,out = ag — |4;j‘]fr . (55)
Rutting
1 2P, V2 1% 1 ., 0Ba ;
¢ —2‘[2 B +E;) 1+spi)Re W —5P1(1+5)Rf’{ﬁ7|— }+'?§VA°Q-§Q_] , (56)

we get the amplitude noise spectrum as

hw P,
- Sa,ouf(ﬂ) = 2|P¢-|2[ P_A|2PA+PB+ZPT + Z‘Psi(znsp.f_l)
(hwéJ; + hwR; + Py(2ngp; — 1)) VZii,
" TTap el
V2.
V2 Re{fzi}
=230 Pl = 1) Re{ms} - Rl "] . (57)

We can now make a test of the validity of the approximation of common amplitude.
If we assume output coupling only on one side , ie. Pg — 0, no internal losses i P — 0,
then if the laser is pumped very high all injected electrons will sooner or later be converted
to photons that are coupled out from the laser. This implies that for timescales longer
than any storage time, the statisics of the output light should follow that of the total
pump current. If the pump current statistics were sub-Poissonian, an amplitude squeezed

light output results. In terms of Eq. (57) this means that only the current terms J;

15



should remain. However, from Eq. (57) it looks like that a low-reflectivity cavity could
have residual noise, since the dipole moment and vacuum fluctuations do not cancel out.

This leads to our conclusion that the formula cannot be correct for this case since the

squeezing property follows purely from energy conservation.

4 Modulation properties

The AM and FM modulation properties of a multisection laser simply follows by only

considering the deterministic currents, thus from Eqgs. (43) and (45) we have

25 Vas V2, 1o, o8B
240 E (1+¢ )[ (1+ SP‘)Re{iVIz} — spi(l+ Ca‘)RE{W}}L J'Vfoﬂgﬁe]

s hwl Jg ' QhwSyngT Tepd 2 :
- e+ SRt

2

. aBa 2 _ QPS,' hwtﬁ]"n
jﬂa—QVAQSOAﬂ = ¥(1+€£) 7. [Im {[V[2}+Q°MRE{|V|2H
! Qﬁw‘gtintz'?_sp,ﬁ Voz,u' Vazn
2 vy MRt ocweRelgplade (59)

This result is a generalisation of the previously obtained result for the AM and FM

response of a two section laser with inhomogenous a—parameter [29]. It also includes tie

"grating factors” used by Kuznetsov [30]. However, as was previously mentioned, this
1

result does not include the fill factor redistribution that was included in Ref. [14] and

Ref. [6].
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5 Some numerical examples

FirsE we made some calculations on a laser with one active section and no nonlinear
gain to compare our results with the linewidth calculation method described by Bjork
and Nilsson [9]. The present method gave, as it should, exact agreement with these
calculations. Furthermore, we also found, for the laser types used in the calculations
below, a good agreement between the low-frequency modulation response calculated by
Egs. (58) and (59) and the change of output power and frequency of the steady state
solution when the input currents were varied. As the steady state solution includes the
fill factor redistributions, this comparison implies that our approximation of a uniform
change in amplitude and phase is valid for these cases.

Furthermore we made a comparison with the linewidth theory presented in Ref. [6].
Accordingly, we performed calculations on the same three section phase-shifted DFB
(kL = 2) using the same material parameter values as described in [6]. However, in
(6] the gain spectral dependence is included as a parabolic gain model whereas we have
neglected the spectral dependence of the gain. The laser consists of two 300 um long
outer electrodes with a 600 pm center electrode inbetween. A 7 /4 phase-shift is inserted
to avoid the mode-degeneracy of ordinary DFB lasers. However, the sharp intensity peak
" at thle phase-shift causes a depletion in the carrier density as is illustrated in Figs. 2 a

and b for the same biasing conditions in [6] (Fig. 3 and 5).
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Fig. 2 a: Intensity distribution in a phase-shifted DFB laser. Curve A is at threshold,
curve B for J/Jy = 3.08 for all electrodes and finally curve Cis with J/J;;, = 3.08 in
the outer electrodes and J/Jy;, = 4.8 in the center electrode. b: the corresponding
carrier distributions, A (dashed): at threshold (no spatial holeburning), curve B
(dotted) for J/Ju = 3.08 for all electrodes and finally curve C (solid) J/Ju = 3.08
in the outer electrodes and J/J;; = 4.8 in the center electrode. The steplike shape
is to indicate the that the carrier density is taken as constant within that region.

The homogeneous threshold current was 52 mA.

In Fig.3 we illustrate the effect of spatial holeburning on linewidth. For pumprates up
to I/I,x = 3.08 the laser is homogenously pumped and above only the center-electrode
is pumped. This curve is similar to the curve given in [6] (Fig. 6 b). In the curves
we have marked out the different linewidth contributions Av,.q, Avyny and Avyp (in
[6] these terms are denoted Av,,, Avyy and Avyg). In the present formalism we get a
negative Avyp quite opposite to the result of [6], where Avyp was positive. By closer
inspection we found that this difference could be attributed to different assumptions on
the mechanisms responsible for that term (see appendix D). This, together with the use
of a longitudinally constant population inversion factor n,, in [6], contributes to give a
change in sign of Avyp. The different size of Av,,s and Av,, in [6] is explained lg;the

difference in the mean magnitude of n,.

18
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Fig. 3 : Calculated linewidth of a three section phase-shifted DFB laser. In the left half
. of the curve, from J = 1.1Jy, to J = 3.1Jy the laser is pumped homogenously.
i In the right half of the curve only the center electrode is pumped and the outer

electrodes are kept at constant current densities J = 3.1J,.

In the present formalism we calculate the population inversion factor locally from ny, =
N./(N. — Ng), where N, is the local carrier density (dependant on spatial holeburning)
and Ny is the carrier density required for inversion, which is a material parameter.

As a next example we will compare theory with measured FM-noise spectra of a two-
section DBR laser by Goobar and Schatz [31], Fig. 5. These measured frequency noise
spectra are reproduced in Fig. 4 a. An interesting feature observed in these spectra was

that the entire frequency noise spectrum at a given output power could be increased or
decreased depending on the injection current to the DBR region. Also one could observe
a éhange in the relaxation oscillation peak. The reason for this behaviour, we believe,
is that the Bragg region constitutes a frequency dependent loss that will modify the
lasing dynamics. This mechanism, detuned loading, is the well known cause of linewidth

reduction in external-cavity lasers.
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Its effects on modulation properties and noise has also been investigated [32, 33]. In Fig.
4 b. we show the corresponding calculated spectras using representative parameter values.
Depending on which side of the Bragg wavelength the lasing mode is, the spectras are
either enhanced or decreased due to detuned loading and the non-zero a-parameter of the

jzctive region. In Fig. 4. c. we have calculated the relative intensity noise spectra for the
same set of parameters.

We also made a comparison between the results of [34] and our formalism method for
the tuning properties of a phase tunable DFB laser and found almost identical result for
the tuning, output power and linewidth, this will not be shown. A result of our calculation
and of the calculation of [34], is that the linewidth decreases with tuning current and that
it is high after a mode-jump toward shorter wavelengths has occured. This is contrary to
what has been experimentally observed (35, 36]. The reason for this descripancy is not

known, but could perhaps be related to instabilities occuring before 2 mode-jump.

Conclusions

Ga

In this report a theory for spectral properties of lasers has been developed and imple-
mented on a desktop computer. The theory has been shown to reproduce several estab-
lished results and has been illustrated with calculated examples of modulation response,
AM- and FM noise, for some specific laser structures. All this can be made interactively
by the user, the calculation time is modest despite the fact that only a desktop computer
is used. However, so far the theory has only been implemented in an approximate form,
where a uniform change of amplitude has been assumed. This approximation seems to
be good for high reflectivity lasers operating at moderate pump levels, but at high pump
levels, other authors have found that similar theories are not sufficient. In particular the
phenomena of linewidth rebroadening often observed in experiments does not occur in the
presént theory, but other authors has found that it can occur in theories going beyond the
approximation of a uniform change in amplitude. To include such phenomena the theory

should be implemented in its general form. This seems, however, to be rather difficult

and is therefore left as a future task.

Acknowledgement

The authors would like to acknowledge Mr Jean Luc Vey of Telecom Paris, for useful

discussions and for helping with computer programming.



A Determination of the transfer functions H(w)

The transfer functions Hyu;, Hi;, H;; can be determined by introducing source currents
I4: B at the individual locations and then calculating the resulting voltage distributions.
For example, H;4 (and H,4; due to reciprocity) is obtained from V;/V,4 with all currents
except I, equal to zero. Instead of using this direct approach one may study how the
admittance Y = I4/Vy changes when we connect a small additional conductance §G; at

the location ¢ such that I; becomes —V; : 6G;. One then finds that

Y
Hﬁi = EYeR ) (A1)
f
1 Y &%
HffZHig“g'H—i'w ; (A.2)
1 Y 9ty
H{j = HA{HA;' - 5 ' HA{HAJ' ) 3G!agj (AB)

These quantities can be readily found from a transfer matrix analysis of the laser

structure. They are suitable if one wants to approximate the real laser with a lumped

model.
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B The complex notation used in this chapter

In eq. (9) we defined the current as

-

I(t) = Re{lqe/ oD%} (B.1)

which is actually only the upper sideband. The complete current reads

I(t) = Re{(Ine’™ + I_qe~it)eilot+9)y (B.2)

whi‘gh we can separate in quadrature components as
%

I(t) = Re{(In + I*g)e™}cos(wot + @) — Re{j(In — I'q)e™}sin(wot + )

= a(t)cos(wot + @) — b(t)sin(wet + ) : (B.3)
Writing
a(t), b(t) = Re{aq, bae’™} | (B.4)
vields
1
aa=Ig+I'g=1, o= }(Ig -Ir)=1 . (B.5)

This equation defines the (real) in-phase and quadrature phase components of the fluc-
tuations, which were denoted I7 and I° in the previous paragraphs. The noise spectral
densities of these components are easily calculated. The noise current 7(¢) of the conduc-

tance G has a white, single sided, spectral density of

S1() = 2hw|G| . (B.6)
Here w is the carrier frequency, ie. the frequency of the lasing mode. The spectrum of
I(t) is symmetrical around w, this implies that the spectral density of the narrowband

components will be given by

5.(Q) = S(Q) = 4hw]|G], Sap () =0 : (B.7)
That ié, their spectral densities are equal, plus that a and b are uncorrelated. Note that
using the relationship between the conductance and the power |G| = 2P/|V |2, we get

/ P

5u(0) = S(®) = $hwrs (B.8)

which is the result used in the calculations.
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C Calculation of noise from stimulated emission-
absorption

In Eq. (28) it was stated that the dipole fluctuation that enters the carrier rate equation

is given by
hwl'si(t) = (Vi(t)Ipi(t)) (C.1)

where Ip; is the optical field fluctuation from the fluctuating dipoles, and the average is

taken over one or several lightperiods. Writing V; as

Vi(t) = |Vio|cos(wet + @) (C.2)

where @ is the same phase as in eq. (B.1), so that the in-phase fluctuation of Ip hase the

same phase as V;. Performing the integration we have

[Viola(t),
(C.3)
where a(t) and b(t) are slowly varying over a light field period T. From (B.3) and (A.5)

BI|

T+t
hwl g (t) = -;;ft [Violeos(wot' +@)[a(t')cos(wqt'+ &) — b(t')sin(wet'+ @)]dt’ =

we find the Fourier component of I';; as

1 o
Fia = Z—HJH’?OHIDm +Ipi_ql ; (C.4)

which gives the result used in eq. (29).
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D Correspondence to Green function formalism for
calculation of linewidth in lasers

Several authors [19, 21, 22, 6, 23] have used a Green function formalism in order to asses
the spectral properties of semiconductor lasers. We will therefore now show that the
connection between the Green function formalism and the formalism of this paper. We
will especially connect to the recent results of Tromborg et al. [6] which in the authors
opinion represent the most complete formulation to date. The linewidth formulation of
(6] Egs. (52)-(53c) is more complete than the low frequency limit of Eqs. (46) -(49)
here, since the spatial redistribution of photons is included. However, to compare our
results with those of [6] we use the approximations as they were used in the numerical
calculations in [6], that is, we put Mg = M =0, H = 0. We then get according to Egs.
(57)- (58b) of [6]

eff = RC{C‘N'SQ—CS'SU}J (DU
where
L OR,
On- 5. = /0 On(2)7r(2) 85‘(2)50(2)(;;;, (D.2)
_ _ L
Cs - So= [ Os(2)Sol2)dz, (D3)

are the spatially averaged quantities. The weight functions Cy,Cs are given by [6] Eq.
(22)
. SW Ok ow
Oxle) = gy ax O B
where X = N, S and W is the Wronskian of the laser. The linewidth is then given by [6]
Egs. (52)-(53¢)

(D.4)

Av = Avyy + Auny + Auws, (D.5)
Av,, = 4—}%(1 +al;), (D.6)
Avyn = %f:’ K(2)*Dyn(2)dz, (D.7)
Bwys = =221 | ¥ K(2)Dys(2)dz, (D.8)
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where 77 = 1 under the approximation given previously and K (z) is defined as
K(z) = tr(2){Cni(z) — aessCn:(2)} . (D.9)

Here 7 is the total recombination time. To connect to the formalism used in the present
paper we can put in a fictive (or physical) reflectance r; = rg to find that the derivates
of the Wronskian W can be written (Z; (0) =1, Z£(0) = ry)

aw ‘ 7}
EE = zjk( )?‘]_g‘ffﬂ?‘ll . (DIO)
However, this can also be written as an admittance derivate
8Y T 6
5% = -_ZGL — 75X —linrg, , (D.11)

which can be found from the reflexion COEfﬁClEﬂt. Here X = N, 5,81 and the derivate
with respect to X and S is taken as a functional derivate. If we now consider a case with
a discrete number of elements, the functional derivate can be replaced by derivates with
respect to variations in the discrete elements. Using this and the fact that the derivate of

the Wronskian and the admittance are proportional we can write C'y as

gy ,aY
Cx(z) = —Jog /75 (D.12)

The next step is to relate Cx to the field distribution. This is done by using

ay 8}' dg; G'LP:,.t 1 dg;

BN, ~ dgoN, ¢ i) =" {lv|2 PrTACELL (0.13)
81/ _ 83'; agi _ 8Y g; _ GL 51 gi
85"‘ - ag‘ aS 891 S - PA {“’QP}S, F1i (D]4)
where
oy G oy g oYy ..P‘ﬂl 1{ ‘_GLPﬂ-i V2 } (D15
950G g oG] Vg VP~ Th awE o (P19

has been used. The minus sign appears because G; in Eq. (A.1) is to be interpretated
as a negative conductance. Note also that « of [6] is defined to be positive whereas « is

negative in the notation used here. If we now use the specification of the reference plane

of Eq. (35) i.e. that

dYs _ .0Bs

Using this we find the final expression for Cy and Cs as
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GL ]P51 8.9&{ ar.}
P dBa" g; ON; ' |Vi|? !
4700
GL g V;?
- 68& ]ESP:{W} 3
4790
Using this we can write Egs. (D.2) and (D.3) as
- 1 9P,
On-Sa= g7 27
an

Cn = | | (D.17)

Cs =] (D.18)

1+Sp;

1+ € ’ (Dlg)

{IV[Q( jai)]

Cs- 5= 5 £ 77 g o (D .20)
0
where we have used that 1 + ¢; = 7 /7r; . If Egs. (D.19) and (D.20) are inserted in
Eq. (D.1) one finds that a.ss of [6] is identical to auy. of eq. (44), (apart from the minus
sign due to our sign convention). We can now check the equivalence of Eq. (47) and
Eq.(D.6). To do this we use that the admittance derivate 9B, /00) = 2GL8{1/T 4}/00Q
can be written as according to Eq. (30) of [24]

g 1
PA'éﬁ'{ﬂ

where egnng = €+ 1/2wde/Ow has been used to define the group index n,. Further we

} = %ILOlnngﬂde| , (D.21)

can use the fact that the dissipated power to stimulated emission (stimulated absorption

not included) can be written
] 2
S Pungi =3 | nngvggnglBFAV (D.22)

where ¢ is the modal gain and v, the group velocity. Further we can define a photon
number I, related to the field energy W ? by

holy = W = %Ofm nng|EPV | (D.23)
Using this we find that
0,1, Ry,
; P.sinsp,f/[PA ' '6._'9_{1_\';}] - EUJIQ H (D24)

2The external @-value @, can be defined through Py = w/Q. - W where W is the field energy. In
this case it would be tempting to use an admittance derivate directly to define the @-value. These are
related by: Q. = K ~1/%w8/0w{1/T 4} where K = [[y,, nng|E[*dV]?/[| [, nny E?dV |2 is the Petermann
or Arnaud K-factor. That the correction term K ~/2 occurs simply reflects the fact that the field energy
cannot be directly related to the admittance derivate in a lossy system.
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where R, is the spontaneous emission rate into the lasing mode as given by Eq. (E.7) of
[6]. With this it is shown that Eq. (47) and Eq.(D.6) are exactly the same. For a one-
section laser without any nonlinear gain Eq.(D.6) is the only linewidth term appearing.
It is worth to repeat that the result here, which was first presented in [4] and [9], as was
argued in [4] includes the Petermann [22, 37] and Arnaud [20] K-factor automatically, an
argument for this was also given in [24]. The next step is to compare the second and the
third term in the linewidth expressions. For the second term we can use Eq. (55) of [6]

that the local tuning efficiency is given as

af 1
9 _ L1k - |
aJ; 2« ( ) (D 25)
By using equation Egs. (D.12)- (D.15) we find that this can be written as
of 1. Gp Py 0y V2 %4
a7 T - = TRild n avell I . N .
8J; o PA{?B“‘]F:' BN;TRI m{w‘_[g}%*a e{|V='lz}] (D.26)
aN

By inspecting Eq.(59) one finds that the same modulation response or tuning efficiency
is obtained. As a paranthesis one may compare Eq. (D.26) with Eq. (52), it is seen that
the term P,;/g:0¢;/0N;7r; is replaced by hwSyny7s,4 Which physically seems correct.
However, returning to the problem of showing the equivalence, if one finally uses Eq.
(E.14) or (E.15) for Dyn(z) one finds that the end result is that the two linewidth terms
are identical. For the third term the two formalisms do not give identical results. The
difference is that in [6] an integrated Langevin source for the field is used when finding
the correlation to the local carrier fluctuations, whereas in the present formalism both
local field fluctuations and local carrier fluctuations are assumed. In the formalism of
[6] the integrated Langevin source gives rise to the term a.;y in front of the integral in
Eq. (D.8) whereas in the present formalism a term g Re{V?/|V:i[*} + Im{V?/|V;|?}
inside the summation sign as in Eq. (49) appears. Further in [6] the correlation is
assumed to be induced by stimulated emission only (spontaneous emission into guided
mode) yielding a factor 2FP,n,, whereas in the present formalism the correlation is induced
by both stimulated emission and stimulated absorbtion yielding a factor P,(2n,,—1). This
discrepancy can be traced back to an assumption of the diffusion coeflicient entering the
rate equations. Compare, for instance, the diffusion coefficients in [11, 19] with those
of [38, 39, 40]. In [39, 40] these issues are discussed in detail, however, a more exact

discussion on why the diffusion coefficients are different is not given.
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E Steady state calculations

The selfconsistent solution of the steady state properties of laser diodes using the transfer
matrix method [8], together with carrier rate equations has been given by several authors
[41, 42]. Here we briefly describe the method used by the present authors.

The optical field in the laser can be described as a wave with amplitude u(z), going in
the right direction, and a wave with amplitude v(z) going in the left direction. The wave
amplitudes on the left side of a segment ¢ can be calculated from the wave amplitudes of
the right side by using the transfer matrix T‘ of the segment.

! r
() -7 e
The transfer matrix can be easily calculated for segments with a homogeneous or a
periodically perturbated complex propagation constant as is described in [8]. Accordingly,
the laser is divided into M segments (numbered from right to left) so that, within each
segment, the carrier and the photon densities, and hence also the propagation constant,
can be regarded as constant (except for a possible periodic perturbation). The complex

propagation constant &; used in the calculation of the transfer matrix of segment 7 can be

divided in a real and imaginary part
ki=p; +1iB; (E.2)

where ip
ﬁ: = Byp + E(wg — wgp) + AB:. (E.3)

Here f,, = (wgp/ co)nus is the real part of propagation constant determined by the nominal
refractive index, n, defined at the gain peak frequency, wy,, and with a carrier density
level, Ny, that yields the homogeneous threshold gain gi,. Furthermore, wp is the lasing
frequency, df/dw = ny/co , where n, is the group refractive index and finally Af; =
(wo/co)An; is the small change of the propagation constant due to the perturbation of

the refractive index, An;, caused by the local carrier density variation i.e.

An; = af"—ra(m — Na) (E.4)

Wp
where a is the linewidth enhancement factor, I' is the lateral confinement factor and a
is the gain/carrier density slope. The imaginary part of complex propagation constant is

written as ]
;6; = é'(rg: - g]css) (E5)
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where gjs¢ 15 the waveguide loss. The gain in each segment g; depends not only on the

local carrier density N;, but also on the confined photon number S;, through nonlinear
gain. -
a
F =TSV
where V; denotes the volume of segment z.

To have a normalized gain distribution we define a mean gain go as the homogenous
gain yielding the same total stimulated emission rate as the actual gain distribution
and write ¢; = 1;90. The same type of normalization is done with the photon number
distribution, i.e. S; = 4:S, where S is the total number of photons in the cavity. At start,
N; is put to Ny, and S is put to zero, which gives 7; = 1 and An; = 0, so that the below

(N = No) (E.6)

calculated go will equal the threshold gain g.
For given 7; and An; we calculate wo, go and +; with the help of the transfer matrix

method by finding the frequency and mean gain that gives no right-going wave at the left

side of the laser when no left-going wave at the right side is applied i.e.

unm+1(wo, go) = 0 (E.7)

whith vy = 0. Here subscript M + 1 and 0 of the field amplitudes denotes that they are
taken outside the lasers left and right mirror, respectively.

The fill factors 4; are given from

v = Cif Z Cj (E.8)
7
where
2] NgT; - r
Co=nymi [, (WP + (=) PNz = P2+ AP — bl = i) (E9)

The last equality is derived by observing that, at steady state, the generated power in
each segment (which is proportional to the confined energy) must equal the power that

escapes the segment minus the power that goes into it.
The carrier density in each segment N; and the total photon number S can then be

calculated using the carrier rate equation for each segment
Ji = Ri(N:) + nﬁwirg;(Nf,S)S (E.10)
9

together with the total photon rate equation

1

C;
E;(Pgi(NnS) _gloss) = iu{l[?‘l' |UM+1|2 (Ell)
g

30



Eq. (E.11) simply states that the total nét generated power must equal the power lost
from right and left mirrors. J; is the injected number of carriers per second and R,‘ is the
number of spontaneously recombinated carriers per second. S is adjusted until the values
of N; calculated from Eq. (E.10), are consistent with Eq. (E.11).

In order to find a consistent steady state solution, we repeatively use Eq. (E.2) to Eq.

(E.11) until convergence is reached.
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F Laser followed by traveling wave laser amplifier

In this appendix we will derive a result for the linewidth of a laser followed by a traveling
wave laser amplifier, previously given by Berglind and Nilsson in[43]. We stick to the uni-
form amplitude distribution case. The laser amplifier is assumed to have a spontaneous
emission factor n,y 4, power gain G, internal efficiency 7,4 (defined as total generated stim-
ulated emission power minus internal loss power divided by the total stimulated emission

power. Assuming that only the first term Av,,4 is dominant we get

hw GL 1 + l‘:lﬁuc
Av = "{[FK]E P2 (Popnspr + Poantspa) - (E.1)
an

Now we must study how the terms are modified by the amplifier. The‘kqutput power
P, is the laser output power multiplied by a factor GG, but the admittance derivate after
the amplifier is the admittance derivate at the laser divided by G (the reflection factor
is multiplied by G, thus the product of the admittance derivate and the output power
remains unchanged. This may also be inferred from Eq. D.23), since the integral of E?
over a traveling wave field is zero. The effective a— parameter a,,. equals ay,,,, since

the quotient the integral over a traveling wave field will be zero. Thus we can write the

formula for the linewidth as

Av=~Avy- 1422 Ded gy (E.2)

nsp T4
Here we have used iy Ps 4 = (G—1)P4 and 0, = P4/ P 1as. Eq. (E.2) is exactly the same
as [43] Eq. (13).
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