This is an author produced version of a paper presented at Umeå's 15th Student Conference in Computing Science (USCCS 2012), 18th of January 2012, Umeå.

Citation for the published paper:

Benjamin Fonooni
Sequential Learning From Demonstration Based On Semantic Networks
Sequential Learning From Demonstration Based On Semantic Networks

Benjamin Fonooni

Department of Computing Science, Umeå University, SE 901 87, Sweden, fonooni@cs.umu.se

Abstract. Most of the humans day to day tasks include sequences of actions that lead to a desired goal. In domains which humans are replaced by robots, the ability of learning new skills easy and fast plays an important role. The aim of this research paper is to incorporate sequential learning into Learning from Demonstration (LfD) in an architecture which mainly focuses on high-level representation of behaviors. The primary goal of the research is to investigate the possibility of utilizing Semantic Networks in order to enable the robot to learn new skills in sequences.

1 Introduction

Learning from Demonstration (LfD) is a technique that allows robots to extend their capabilities by observing human or robot teacher performing sequences of actions. For instance, teaching a robot how to find an object, go towards it and push it to the desired location can be time consuming and require programming skills. In case of LfD, even a non-roboticist tutor is able to teach such a behavior. This method is inspired by humans and animals natural learning ability which is more intuitive rather than explicit programming [1]. Most of the behaviors can be divided into low and high level representations. The low-level representation of a behavior is regarded as a set of sensory-motor events that form an action. The high-level representation of a behavior is formed based on connection of the concepts that are represented by labeled graphs or Semantic Networks. During the past years, several LfD algorithms have been proposed [2–4] which mainly focused on low-level representation of behaviors. In this paper we are focusing on the other aspect of learning behaviors from demonstration which less explored by the other researchers. Our goal is to investigate high-level representation of behaviors and find the solution for integrating it with low-level representation. Therefore, the approach proposed here is not an alternative for any LfD algorithm band should be considered as a complement.

In our previous work, we aimed for solving one of the well-known problems in LfD, namely how to generalize a demonstrated behavior such that it can be performed also in new, previously unseen situations [5]. The purpose was to introduce a technique that integrates high and low-level learning and control in a way that supports generalization. At the end, we showed the learning results of our novel technique with the real robot and in the simulated environment.
The high-level controller deals with concepts represented and processed in Semantic Networks. This controller is interfaced to a low-level controller that learns and performs behaviors defined at the sensory-motor level. The connector, interfacing the two levels, is learned contexts, describing behaviors using high-level concepts within the Semantic Networks. A context is a definition of necessary conditions for a low-level behavior to be performed. Therefore, in this research our robot is learning contexts that are connected to the behaviors which tutor demonstrated. Learning low-level representation of the behavior is also an important task, but we do not investigate it in this paper.

Sequential behaviors are the necessity to intelligence and an inseparable part of human daily activities. One of the most prevalent forms of human and animal learning is sequence learning [6]. Normally, a demonstration consists of several behaviors performed in sequence by the teacher. Sequencing refers to the arrangement of behaviors into a sequence. The robot should recognize demonstrated behaviors and connect them to a single sequence. The main topic of this paper is to propose a method based on our previous architecture and Semantic Networks [5] in order to sequentially teach the robot new behaviors controlled by environmental conditions. This enables the robot to later recognize the sequences and execute the sequenced behaviors.

2 Semantic Networks

Semantic Networks are often used to represent abstract knowledge in a human-like fashion. In robotics, Semantic Networks can be used for concept forming and situational awareness [7]. The structured way of representing knowledge can in combination with visualization tools [8] help humans to understand the internal state of the robot and what is happening in the robot’s cognitive system. This may for instance help a tutor to put the robot back on track when it is distracted during learning or performing phases. In our usage of Semantic Networks, high-level concepts such as object types (Place, Furniture, ...) and properties (Color, ...) are represented as nodes while relations between concepts are represented as links. The initial Semantic Network is pre-defined. Nodes are activated through perception of their corresponding object, person or location in the environment. This will be done by the perception unit [5] which is responsible for collecting information from various sensors. Figure 1 depicts the initial Semantic Network which is used during learning and performing phases.

A common reason for using a Semantic Network as a model of the environment is its ability to generalize [9]. For instance, after a demonstration in LfD, the robot will be able to extend the learned context to other, related, contexts. Assume for instance that the robot learns how to clean the table if there are empty cups on it. By generalizing the cup concept to all the drink wares, it will also perform the cleaning behavior when perceiving a mug on the table. The generalization is done by spreading and decaying activation which are fundamental functions in Semantic Networks [10]. In our approach, each node has an activation level; therefore, Spreading can be defined as a mechanism by which ac-
activation spreads from one node to another in proportion to the strength of their connection. The strength is determined by the weight value obtained by the learning algorithm. Decaying is defined as a mechanism by which the activation levels of nodes gradually decrease over time.

3 The Proposed Approach

For simplicity, we assume that all the required low-level behaviors are pre-programmed and callable from the high-level controller. Therefore, no learning for low-level controller is required and focus is only on the high-level representation of the behavior. In the following sections, learning and performing mechanisms are explained and a technique for weight calculation is elaborated.

3.1 Learning Phase

Learning will be started by tele-operating the robot, observing the environment and forming a context. The predefined Semantic Network shown in Figure 1 is used as a base and a new context node (Move Object) which robot starts to learn, will be added. The whole demonstration will be performed by the tutor at once, while segmenting the behavior into sub-behaviors and determining start and end of each one for the robot. Thus, termination of the first sub-behavior leads to the start of second one. Therefore, each sub-behavior node that represents each segment of the behavior, will be added and connected to the context node. Furthermore, sub-behavior nodes are connected to each other from subsequent to the preceding ones with the weight value equal to -1. This assures
that by activating the subsequent sub-behavior node, the preceding is disabled.

Figure 2 depicts a sample of learned network.

In addition to context and sub-behavior nodes, set of other nodes which represent objects, persons or places in the environment are exist in the network. These nodes are activated by various sensors from the perception unit. All activated nodes are linked to the corresponding sub-behavior node with a weight value that can be obtained by several learning modes. In our previous work, we introduced Novelty Detection technique [5]. In this paper another approach, Multiple Demonstrations, will be explained in section 3.1.1. Arrows depicted in Figure 2 show direction of activation spreading through their connected nodes. Thicker arrows have higher weight values which result in transferring more energy from one node to another. Each node has an energy parameter that limits the number of link levels for spreading and controls the degree of generalization.

As an example, assume that the tutor wants to teach the robot how to move a red box to the kitchen. Therefore, there should be a Move Object behavior that has two sub-behaviors. The first sub-behavior is Go to the Red Box and the second one is Push the Red Box to the Kitchen. As mentioned earlier, Semantic Networks have the ability to generalize one concept to another. Thus, by generalizing Go to the Red Box behavior to Go to the Object (S1) and Push the Red Box to the Kitchen behavior to Push the Object to the Location (S2), there is no need to demonstrate the same behavior with different objects or locations. In this research, we assume that the tutor is responsible for determining start and end of each sub-behavior. The tutor indicates start of the first sub-behavior (S1) with a designed user interface and executes tele-operation. After reaching the red box, the tutor indicates start of the second sub-behavior (S2) and continues

Fig. 2. A Sample of Learned Network.
the demonstration with pushing the box to the kitchen. As shown in Figure 2, at the end of the demonstration and terminating the second sub-behavior, both sub-behavior nodes will be connected to the Move Object context node. Meanwhile, the nodes that were active during each segment of the behavior will be connected to their respective sub-behavior nodes. As mentioned before, a single directional link from Push Object to the Location node to Go to the Object node will be established and weight value equal to -1 will be assigned. The more strengthened links have higher weight values, meaning that by activation of respective nodes, the chance of activating sub-behavior nodes is relatively higher. At the end of demonstration, the last sub-behavior node forms and the learning phase terminates.

3.1.1 Multiple Demonstrations Algorithm One of the important tasks of the learning mechanism is to obtain the weights for each connection between the nodes. In our previous work, Novelty Detection technique introduced and tested [5]. Our novel approach is Multiple Demonstrations that has similarities to the Novelty Detection but with changes in number of demonstrations and the way each eliminates the irrelevant nodes from the network. In Novelty Detection, system checks for the significant changes in the environment, but in Multiple Demonstrations system checks for significant invariances. The approach is to read the sensor values and sample the activation levels of all activated nodes at a given frequency while demonstrating the behavior. At the end of each demonstration, the learned network is stored and labeled as same as the context. Statistical tests will be run to determine whether the data for the same node in different sets (demonstrations) are from the same distribution or not. In case of having two demonstrations, Unpaired T-Test and for more than three demonstrations, One Way ANOVA test will be run [11]. In this section, formulation for T-Test is described.

The purpose of running t-test is to compare mean node activation of all nodes.

\[t_x = \frac{\mu_{A_1} - \mu_{A_2}}{\sqrt{\frac{\text{Var}_1}{n_1} + \frac{\text{Var}_2}{n_2}}} \]

(1)

where

\(\mu_{A_1} \) is mean activation of node \(x \) in the first demonstration
\(\mu_{A_2} \) is mean activation of node \(x \) in the second demonstration
\(n_1 \) and \(n_2 \) are number of samples for first and second demonstrations
t\(x \) tells whether the samples for the two nodes are drawn from the same distribution or not. In other words: did the node change significantly between two demonstrations. If it did not, the connection between the node and the context node should be disconnected.

Confidence Interval (CI) of the test is given by the t-distribution with \(\alpha \) value set to 0.05. Degree of Freedom (DF) is calculated as follows:

\[DF = (n_1 + n_2) - 2. \]

(2)
According to equation 1, t_x will be computed and nodes which fulfill equation 3 remain connected.

$$-CI \leq t_x \leq CI.$$ \hspace{1cm} (3)

After disconnection of the irrelevant nodes, weight values for each remained node should be calculated:

$$w_x = \frac{N_x \mu_{A_x}}{P}.$$ \hspace{1cm} (4)

where N_x is the number of samples for which node x has activation value above 0 during the learning phase, μ_{A_x} is the mean activation of node x in both demonstrations. P is the weighted sum for all nodes, calculated as follows:

$$P = \sum N_i \mu_{A_i}.$$ \hspace{1cm} (5)

Finally, the learned sub-behavior nodes will be connected to the context node.

As mentioned earlier, Multiple Demonstrations and Novelty Detection techniques have features in common. Determining which technique is suitable mostly depends on the learning scenario. Also, number of demonstrations (datasets) is important while choosing the best technique. The main difference is about the approach they disconnect the irrelevant nodes.

Multiple Demonstrations technique is well-suited for learning behaviors that sufficient presence of an object during demonstrations is necessary for connecting the concept of that object with the context. At the other side, in the dynamic and highly changing environment, Multiple Demonstrations may not work properly. Even though, increasing number of demonstrations can solve parts of the problem, but is not the best solution. Therefore, other learning modes like Novelty Detection that looks for the changes in the environment is more suitable choice.

3.2 Performing Phase

After the learning phase, the robot is ready to recognize similar environmental conditions in which it started to learn the behavior. In the given example, environmental conditions are starting positions, box location, color or any other feature that can be perceived by the sensors. Due to the activation spreading in Semantic Networks, a node’s activation propagates to all of its connected nodes and causes the linked sub-behavior and behavior nodes to be activated. Therefore, even by perceiving objects or locations other than the ones perceived during the learning phase, system can correctly recognize and execute proper sub-behavior. The execution of the sub-behavior is done by evaluating its node’s activation level. After each perception, current activation level of all sub-behavior nodes is checked according to the selection threshold defined by the user. If the activation level exceeds the given threshold, system executes that sub-behavior. The next sub-behaviors execute accordingly while deactivating their preceding sub-behavior nodes. Figure 3 depicts the performing phase for a given example.
Suppose we replace the red box with a green ball in the same location and let the robot to move around and observe the environment. By perceiving the green ball, the corresponding nodes in the learned network is activated. Activation level of nodes spread through their connections based on the weights value. Depending on degree of generalization which corresponds to the energy level, other nodes in the network may get activated. Therefore, activation of Ball node activates Movable Object and to some degree, Box nodes. The same situation happens by activation of Green node which activates both Color and Red nodes. As illustrated in Figure 3, the nodes with yellow color are activated. The activation levels are shown by light or dark yellow color.

As a result of nodes activations, Go to Object (S1) sub-behavior node is activated and if its activation level exceeds the selection threshold, it will be executed by the robot. As mentioned earlier, we assumed that all the required low-level behaviors like moving and pushing are pre-programmed and do not require learning. Thus, robot moves toward the green ball and observes the environment again. At front of the green ball, the robot recognizes the same conditions for performing the second sub-behavior (S2) of the Move Object behavior. This activates Push Object to the Location (S2) sub-behavior node and due to the weight value equal to -1; it deactivates (S1) automatically. Finally, if the activation level of (S2) exceeds the selection threshold, the robot performs the second sub-behavior.

![Fig. 3. Nodes which are activated during the Performing Phase.](image)
4 Conclusion and Future Works

Sequence Learning is playing a key role in the task domains like planning, reasoning and robotics [6]. It is inspired by the humans and animals natural learning skills. In this research, incorporation of sequential learning and our previously developed architecture is discussed. By introducing Semantic Networks as a core element, its usage in sequentially learning and performing high-level representation of behaviors are elaborated. Also, the technique for disconnecting irrelevant nodes from the learned network is introduced. We believe the proposed approach enables the robot to focus on right aspects of the demonstration and incrementally teaches the robot new behaviors from demonstration.

Currently, our approach is incapable of handling quantities and negations. In our future work, we are going to define new link types in the Semantic Networks and design the high-level control in a way that can learn and perform more complex behaviors.

In this research we assume that sub-behaviors are determined by the tutor during the learning process. Therefore, an algorithm can be introduced to automate identification of sub-behaviors.

Acknowledgments

This work has been financed by the EU funded Initial Training Network (ITN) in the Marie-Curie People Programme (FP7): INTRO (INTeractive RObotics research network), grant agreement no.: 238486.

References