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Abstract
We study how the recent ATLAS and CMS Higgs mass bounds affect the renormalization group

running of the physical parameters in universal extra dimensions. Using the running of the Higgs

self-coupling constant, we derive bounds on the cutoff scale of the extra-dimensional theory itself.

We show that the running of physical parameters, such as the fermion masses and the CKM mixing

matrix, is significantly restricted by these bounds. In particular, we find that the running of the

gauge couplings cannot be sufficient to allow gauge unification at the cutoff scale.
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I. INTRODUCTION

Recently, the ATLAS and CMS collaborations presented new bounds on the mass of

the Standard Model (SM) Higgs boson, excluding values outside the range 115.5 GeV -

131 GeV [1] and 115 GeV - 127 GeV [2], respectively, at 95 % confidence level. While the

search for the Higgs boson is the primary goal of the LHC, the experimental collaborations

are also intensively searching for signs of new physics beyond the SM. Among the most

popular models describing new physics within the reach of the LHC is the universal extra

dimensions (UED) model [3]. In this model, all of the SM fields are promoted to a higher-

dimensional spacetime, giving rise to infinite Kaluza–Klein (KK) towers. The lowest-mass

KK modes are usually assumed to be located at the TeV scale, and in particular, the lightest

KK particle could be an interesting dark matter candidate [4, 5].

An important feature of extra-dimensional models is the impact of the large number of

KK modes on the renormalization group (RG) running of physical parameters. The RG

running in extra-dimensional models has previously been investigated, e.g., in Refs. [6–13].

It has been shown that the RG evolution changes from the typical logarithmic running in

four-dimensional models to an effective power-law running at high energies. This means that

sizable running could take place at relatively low energy scales. In particular, the possibility

of achieving gauge coupling unification at intermediate energy scales has been discussed

[6, 7].

In this paper, we use the RG evolution of the Higgs self-coupling constant in order to

derive bounds on the UED model, using the recent LHC Higgs mass bounds. Previously,

results from LHC Higgs searches have been used to constrain five- and six-dimensional UED

models in Ref. [14], giving the bound R−1 > 700 GeV for the minimal five-dimensional UED

model. The RG running of the Higgs self-coupling constant has also recently been used to

constrain new physics models in Refs. [15–17]

In addition, we discuss the running of fermion masses and mixing parameters in the

UED model, taking the new bounds into account. These fundamental physical parameters

are crucial for building new physics models, as well as testing the feasibility of theories

beyond the SM. In fact, since the values of these parameters are not predicted by the SM,

new physics, which is usually located at some very high energy scale, is needed in order to

gain insight into their origin. Thus, we provide values for the fermion masses and mixing

parameters at the cutoff scale of the UED model.

The rest of this work is organized as follows: In Sec. II, we discuss general features of

renormalization group running in extra-dimensional theories. Next, in Sec. III, we discuss

the running of the Higgs self-coupling constant and the resulting bounds on the UED model

from the LHC Higgs mass bounds. Then, in Sec. IV, we show the running of the gauge

coupling constants and demonstrate that gauge unification cannot be achieved within the

UED model. In Secs. V and VI, we give the RG evolution of the fermion masses and the

CKM matrix parameters, respectively. Finally, in Sec. VII, we summarize and discuss our
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results. In addition, in Appendix A, we provide the one-loop beta functions that are relevant

for our work.

II. RENORMALIZATION GROUP RUNNING IN EXTRA DIMENSIONS

A general feature of quantum field theories with extra spatial dimensions is that they are

non-renormalizable. However, as pointed out in Ref. [7], such models could preserve renor-

malizability if they are truncated at a certain energy scale (i.e., the number of KK modes is

finite). In such a situation, physical quantities are subject to a power-law running behavior,

in contrast to the typical logarithmic running in ordinary four-dimensional theories. This

power-law running may significantly change the running physical parameters, such as the

gauge couplings, the quark and lepton masses and mixing angles, and the Higgs mass.

In general, the beta function of a parameter P in an extra-dimensional model can be

expressed as

16π2 dP

d lnµ
= βP + sβ̃P , (1)

where βP denotes the SM beta function, while β̃P corresponds to the contributions from the

KK modes at any single KK level to the total beta function. Here, it is assumed that the

particle content at each non-zero KK level is the same, except for the particle masses. This

is the case in many models, and in particular in the UED model. The scale parameter s

is defined as s = ⌊µ/µ0⌋, where ⌊x⌋ is the largest integer smaller than x, and µ0 ≡ R−1 is

the inverse radius of the extra dimensions, i.e., s counts the number of KK levels below the

energy scale µ. At energy scales below µ0, i.e., below the mass of the lowest KK excitations,

the β̃P term can be ignored, whereas for µ ≫ µ0, many KK modes are excited and their

contributions change the scale-dependence of the physical parameters from logarithmic to

power-law. The relevant one-loop beta functions for the five-dimensional UED model can

be found in Appendix A.

As mentioned above, in order to make the theory renormalizable, an explicit cutoff scale

Λ has to be introduced. From this point of view, the UED model is an effective description

at low-energy scales, which is replaced by a renormalizable theory above the cutoff scale.

In the UED model, Λ is usually taken to be the energy scale where the gauge couplings

become non-perturbative [18], but it could also be related to a unification scale for the

gauge couplings [6, 7]. In this work, we will apply the LHC bounds on the Higgs mass to

the running behavior of the Higgs self-coupling constant in order to put bounds on Λ.

In the following sections, we perform a numerical analysis of the running physical pa-

rameters. In our computations, we make use of the full one-loop RGEs without any fur-

ther approximations. The input values for the physical parameters, at the energy scale

MZ = 91.2 GeV, are taken from Ref. [19].
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III. RUNNING OF THE HIGGS SELF-COUPLING CONSTANT

The running of the Higgs self-coupling constant λ in the UED model is given in Eq. (A1).

Now, the RG evolution of λ can be used to constrain the UED model. In particular, for

different initial conditions, λ may approach the triviality limit (λ diverges), or the vacuum

stability limit (λ becomes negative, i.e., the Higgs potential becomes unstable). For a general

discussion on this topic, see, e.g., Ref. [20]. Using the relation λ = m2
H/v

2, this allows us

to constrain the parameter space of the UED model using the LHC Higgs mass bounds,

by requiring that neither the triviality nor the vacuum stability limit is reached below the

cutoff scale. In the low Higgs mass region allowed by the new LHC bounds, only the vacuum

stability condition is important for the UED model.

In Fig. 1, we present the bounds on the cutoff scale Λ from the requirement of vacuum

stability. We show upper bounds on the product ΛR, which counts the number of KK levels

below the cutoff scale, as a function of R−1. The results depend on the value of the top

quark mass mt, which is only known to an accuracy of a few GeV, and therefore, we present

our results for mt in the range 170.9 GeV - 173.3 GeV. The weakest bounds are obtained in

the phenomenologically interesting range around 1 TeV. We observe that the global upper

limit on the number of KK modes in the model is five only, constraining the validity range

of the extra-dimensional description significantly. It should also be noted that our results

rely on the one-loop beta functions, and would be slightly changed by taking higher-order

contributions into account. Nevertheless, we expect our main conclusions to remain valid at

higher order.

IV. RUNNING OF THE GAUGE COUPLINGS

Next, the running of the gauge couplings in the UED model is given in Eq. (A4). Solving

this equation, we obtain

1

g2i (µ)
=

1

g2i (MZ)
−

bi
8π2

ln

(

µ

MZ

)

−
b̃i
8π2

[

s ln

(

µ

µ0

)

− ln s!

]

, (2)

between the n-th and (n + 1)-th thresholds. The second term in Eq. (2) corresponds to

the SM contributions and the last term to the corrections from the KK modes. Note that

the expression in the last parenthesis is always positive, e.g., for µ/µ0 = 5, 10, 40 one has

s ln(µ/µ0) − ln s! ≈ 3, 8, 37. In the limit of large s, i.e., µ ≫ µ0, the evolution of gi(µ) is

dominated by the contributions from KK excitations. Since the coefficients bi and b̃i are in

general not the same, the impact on the RG running from the KK modes is different from

that from the SM particles. In particular, the sign of b̃2 is opposite to that of b2, indicating

that g2 tends to increase at higher energy scales. In addition, b̃1 = 27/2 is larger than the

other two coefficients, which leads to a fast running behavior of g1 at high energies.
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FIG. 1: Upper bounds on ΛR as a function of R−1 from the vacuum stability condition for the

Higgs self-coupling constant. The bands show the variation of the bound with the top mass in the

range 170.9 GeV - 173.3 GeV, where the strongest bounds are obtained for the largest value for

mt.

By solving the RGEs for the gauge couplings, we obtain the running of the gi, which is

shown in Fig. 2 for R−1 = 1 TeV. The most interesting feature of this result is that the

region where the coupling constants would approximately unify is ruled out by the vacuum

stability criterion. In fact, it turns out that this is a general statement and there is a no-go

scenario for gauge unification below the cutoff scale Λ in the UED model. From Eq. (2), it

follows that

Dij(µ) = Dij(MZ)−
1

8π2

{

bij ln

(

µ

MZ

)

+ b̃ij

[

s ln

(

µ

µ0

)

− ln s!

]}

≡ Dij(MZ)−∆ij(µ),

(3)

where Dij = 1/g2i −1/g2j , bij = bi−bj , and b̃ij = b̃i− b̃j . By comparing ∆ij(Λ) with Dij(MZ),

we can observe from Fig. 3 that the ratio never reaches (or is even close to) one. In this

figure, we have taken the upper limit of the cutoff scale from Fig. 1 for mH = 130 GeV,

which is equivalent to using the global upper limit on Λ. Thus, Dij(µ) can never become zero

below the cutoff scale, meaning that the gauge couplings gi and gj will not unify while the

extra-dimensional theory is valid. Note that, while higher-order corrections or allowing for

a broader uncertainty range in the input parameters could change the actual values slightly,

the ratio is quite far away from one and this conclusion should therefore be robust to such
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details.
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FIG. 2: The RG evolution of the three gauge couplings as functions of the energy scale in the UED

model, with R−1 = 1 TeV. The gray-shaded area is ruled out by the vacuum stability criterion.

V. RUNNING OF THE FERMION MASSES

As mentioned before, the evolution of the fermion masses is important for constructing

new physics models. Therefore, in this section, we give a detailed discussion on the running

fermion masses at the cutoff scale for various radii R.

The running quark masses can be obtained from Eq. (A5) as

ṁf = [Re(Fu)ff + αu + sα̃u]mf , (4)

where ṁf ≡ 16π2dmf/d lnµ, f = u, c, t, and Fu is given by

Fu =
3

2
(Du − V DdV

†)(1 + s) . (5)

For the down-type quarks, a similar relation holds, with

Fd =
3

2
(V †DuV −Dd)(1 + s) . (6)
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FIG. 3: The ratio ∆ij(Λ)/Dij(MZ), where Λ is given by the global upper limit from Fig. 1. The

solid, dashed, and dotted curves correspond to {i, j} = {1, 2}, {1, 3}, and {2, 3}, respectively. A

ratio of one or higher would indicate that the gauge couplings gi and gj unify below Λ, which this

figure shows is impossible given the current bounds on the Higgs mass.

Here, V denotes the Cabibbo–Kobayashi–Maskawa (CKM) matrix, and

Du = diag(y2u, y
2
c , y

2
t ) , (7)

Dd = diag(y2d, y
2
s , y

2
b ) , (8)

where the y2f are the eigenvalues of the matrix Y †
f Yf . We adopt the standard parametrization

of the CKM matrix, in which V is parametrized by three mixing angles and one CP-violating

phase, viz.,

V =







c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13






, (9)

with cij ≡ cos θij and sij ≡ sin θij ({i, j} = {1, 2}, {1, 3}, {2, 3}). Note that, above the

electroweak symmetry breaking scale, the unbroken gauge symmetry forbids quark and

lepton masses. The actual meaning of a fermion mass mf in this energy region is a measure

of the corresponding non-trivial Yukawa coupling eigenvalue yf . We adopt the definition

mf = yfv, above the electroweak scale, where v ≈ 174 GeV is the vacuum expectation value
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of the Higgs field in the SM.

In view of the hierarchical spectrum of the quark masses, i.e., mt ≫ mb,c ≫ mu,d,s, one

can neglect all of the Yukawa couplings except for yt, and in this approximation, the running

of the quark masses is given by the equations

ṁu ≃ (αu + sα̃u)mu , (10)

ṁc ≃ (αu + sα̃u)mc , (11)

ṁt ≃

[

3

2

(

y2t + sy2t
)

+ αu + sα̃u

]

mt , (12)

and

ṁd ≃

[

3

2

(

s213c
2
12c

2
23 + s212s

2
23 − 2s12s13s23c12c23cδ

) (

y2t + sy2t
)

+ αd + sα̃d

]

md , (13)

ṁs ≃

[

3

2

(

s212s
2
13c

2
23 + s223c

2
12 + 2s12s13s23c12c23cδ

) (

y2t + sy2t
)

+ αd + sα̃d

]

ms , (14)

ṁb ≃

[

3

2
c223c

2
13

(

y2t + sy2t
)

+ αd + sα̃d

]

mb . (15)

The RG evolution equations for mu and mc are similar to each other and are both governed

by the flavor-diagonal part αf , whereas for the top quark mass, contributions from yt should

be taken into account, which slightly changes the running of mt. In the down-type quark

sector, the two light quarks d and s also receive similar RG corrections, since the flavor

non-trivial parts [i.e., the yt terms in Eqs. (13) and (14)] are suppressed by the CKM mixing

angles. Since the αf parameters are negative, we expect the quark masses to decrease with

the energy scale.

As for the charged leptons, we can safely ignore the Yukawa corrections due to the

smallness of their masses, and we obtain

ṁi = (αℓ + sα̃ℓ)mi , (16)

for i = e, µ, τ , where αℓ is the flavor-diagonal part of the right-hand side of Eq. (A9).

Therefore, the charged-lepton masses are essentially rescaled by a common factor at high-

energy scales. However, this factor is larger than in the SM, due to the scale parameter s.

Furthermore, in contrast to the quark sector, the flavor-diagonal part αℓ is positive, due to

the lack of g3 corrections (i.e., leptons do not participate in the strong interactions), which

leads to larger values for the charged-lepton masses at higher energies.

In order to numerically show the RG evolution of the fermion masses, we define the ratios

Rf ≡ mf (µ)/mf(MZ) reflecting the RG corrections at the scale µ. The scale-dependence of

mt, mb, and mτ is illustrated in Fig. 4, for R−1 = 1 TeV and mH = 125 GeV. As expected,

the running quark masses decrease with the energy scale. We observe that the quark masses
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at the cutoff scale are reduced by about 15 % - 20 % (c.f., Table I for detailed numbers).

Therefore, it seems impossible to achieve a reasonably good unification of Yukawa couplings,

due to the bounds on Λ. As for the lepton sector, the charged-lepton masses run to larger

values at the cutoff scale Λ, e.g., a 10 % increase of the tau mass can be observed from

the plot. It is also interesting to point out that the values for the running charged-lepton

masses [21] are maximal at µ = 30 TeV - 40 TeV (or equivalently n = 30 - 40), a region

which is not allowed by the new Higgs mass bounds. It should be stressed that the running

of the charged-fermion masses is not very sensitive to the specific value for the Higgs mass,

since λ does not enter the beta functions for Yf at one-loop level. As a reference for model

building, we list in Table I the running quark and charged-lepton masses at the cutoff scale

Λ for R−1 = 500 GeV, 1 TeV, and 10 TeV. These numerical values are consistent with Fig. 4,

and in general, the evolution of the masses is relatively small due to the strong constraints

on Λ. We hope that the table could be useful for building possible extra-dimensional models

within the UED framework.

102 103 104
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R
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FIG. 4: The RG evolution of the mass ratios Rf for the top quark, the bottom quark, and the tau

lepton in the UED model, for R−1 = 1 TeV and mH = 125 GeV. The gray-shaded area is ruled

out by the vacuum stability criterion.

Finally, we investigate the running neutrino masses with the new Higgs mass bounds in

the UED model. By analytically diagonalizing the beta function for κ, which is given in
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µ = MZ
R−1 = 500 TeV R−1 = 1 TeV R−1 = 10 TeV

Λ = 2.3 TeV Λ = 4.5 TeV Λ = 36 TeV

mt [GeV] 172 160 150 140

mb [GeV] 2.86 2.4 2.3 2.0

mc [GeV] 0.638 0.55 0.53 0.47

ms [MeV] 57 49 47 43

md [MeV] 2.82 2.4 2.3 2.1

mu [MeV] 1.38 1.2 1.1 1.0

mτ [GeV] 1.746 1.9 1.9 1.9

mµ [MeV] 102.7 110 110 110

me [MeV] 0.4866 0.53 0.53 0.52

TABLE I: Fermion masses at the cutoff scale Λ for R−1 = 500 GeV, R−1 = 1 TeV, and R−1 =

10 TeV, respectively. The input values for the fermion masses at the energy scale µ = MZ are

listed in the left column for reference.

Eq. (A6), we arrive at very compact expressions for the evolution of the neutrino masses

ṁi ≃ (ακ + sα̃κ)mi , (17)

where ακ is the diagonal part of the right-hand side of Eq. (A10) and we have omitted the

charged-lepton Yukawa couplings. An approximate solution to this equation is given by

mi(Λ)

mi(MZ)
≃

(

Λ

MZ

)ακ+sα̃κ

. (18)

Therefore, the RG running of the neutrino masses is only sensitive to ακ, independently of

the neutrino mass spectrum and the mixing parameters. Similarly to the charged fermions,

we define the ratios Ri ≡ mi(µ)/mi(MZ) for the neutrino masses, and illustrate the evolution

of Ri in Fig. 5 for mH in the range 115 GeV - 130 GeV. An important feature of the running,

which can be seen from the plot, is that, due to the stability bounds, Ri cannot reach large

values below Λ. Furthermore, the running of the neutrino masses does indeed depend on the

Higgs mass mH , since the effective neutrino coupling matrix κ receives one-loop corrections

from the quartic Higgs interaction.

VI. RUNNING OF THE CKM MIXING MATRIX

The CKM mixing matrix stems from the mismatch between the diagonalization of the

Yukawa matrices Yu and Yd, and the running of the CKM matrix is not sensitive to the

flavor-diagonal parts in the beta functions for Yf . Explicitly, one could insert the CKM

10



102 103 104
1

2

3

4

R
i (

)

[GeV]

 

 

FIG. 5: The RG evolution of the neutrino mass ratios Ri in the UED model, for mH in the range

115 GeV - 130 GeV. The gray-shaded area is ruled out by the vacuum stability criterion.

matrix into Eq. (A5), and obtain the individual beta functions for the CKM mixing angles

θ̇12 = −
3

2

(

y2t + sy2t
)

c12
[(

s213c
2
23 − s223

)

s12 + 2s23s13c12c23cδ
]

, (19)

θ̇23 =
3

2

(

y2t + sy2t
)

s23c23 , (20)

θ̇13 =
3

2

(

y2t + sy2t
)

s13c13c
2
23 , (21)

as well as δ̇ ≃ 0 at leading order.

Note that current experiments indicate that all the quark mixing angles are relatively

small and the CKM matrix takes a nearly diagonal form. Thus, the beta function for θ12
[the right-hand side of Eq. (19)] is strongly suppressed by sines of the mixing angles, implying

that θ12 is stable against radiative corrections. The mixing angles θ23 and θ13 may receive

visible RG corrections, and they increase with the energy scale. In fact, using Eqs. (20) and

(21), it holds that θ23 and θ13 are related to each other by sin 2θ13 = C tan θ23, where C is a

constant.

In analogy with the mass ratios, we define the ratios Aij(µ) ≡ θij(µ)/θij(MZ) char-

acterizing the running behavior of the quark mixing angles. The evolution of the Aij is

demonstrated in Fig. 6 for R−1 = 1 TeV. In agreement with our analytical results, θ12 is

rather stable, whereas θ23 and θ13 could increase by about 5 %.
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FIG. 6: The RG evolution of the ratios Aij in the UED model with R−1 = 1 TeV. The curves of

A23 and A13 overlap with each other. The gray-shaded area is ruled out by the vacuum stability

criterion.

VII. SUMMARY AND CONCLUSIONS

In this work, we have studied the RG running of physical parameters in the five-

dimensional UED model. In particular, we have investigated the impact of the recent

ATLAS and CMS Higgs mass bounds on the cutoff scale of the extra-dimensional model.

These bounds come from the criterion of not reaching the Higgs vacuum instability limit

below the cutoff scale. We have found that the five-dimensional UED model can be valid

only at most up to the fifth KK level, significantly constraining the higher-dimensional

description.

Using this new result, we have shown that it is generally not possible to achieve gauge

coupling unification at the cutoff scale in the UED model. Furthermore, we have studied the

RG running of the quark and lepton masses and mixing parameters in the UED model. We

have found that, while the running at high-energy scales shows interesting features, these

regions are excluded by the new bounds on the model. In particular, the regions of large

power-law running is excluded.

Our results demonstrate that the LHC searches for the SM Higgs boson can have impor-

tant consequences also for models of physics beyond the SM. As the bounds on the Higgs

mass become even stronger, the global limit on the cutoff scale could be decreased suffi-

ciently to allow for only three KK levels in the model. We emphasize that this is only an

12



upper limit on the cutoff scale, and that new physics that changes the evolution of the Higgs

self-coupling constant sufficiently to avoid the vacuum instability has to be introduced below

this scale.

Although we have considered only the five-dimensional UED model, we expect that even

stronger constraints can be derived for six-dimensional models, since a higher density of

states gives rise to an even faster running in such models.
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Appendix A: One-loop beta functions in the UED model

The running of the Higgs self-coupling constant is given by

16π2 dλ

d lnµ
= βλ + sβ̃λ . (A1)

Here, we have defined the scale parameter s = ⌊µ/µ0⌋, where ⌊x⌋ is the closest integer below

x. The SM contribution reads [22]

βλ = 6λ2 − λ
(

3g21 + 9g22
)

+

(

3

2
g41 + 3g21g

2
2 +

9

2
g42

)

+ 4λT − 8tr

[

3
(

Y †
uYu

)2
+ 3

(

Y †
d Yd

)2

+
(

Y †
ℓ Yℓ

)2
]

. (A2)

where T = tr
(

3Y †
uYu + 3Y †

d Yd + Y †
ℓ Yℓ

)

. In addition, the extra-dimensional contributions

are [10]

β̃λ = 6λ2 − λ
(

3g21 + 9g22
)

+
(

2g41 + 4g21g
2
2 + 6g42

)

+ 8λT − 16tr

[

3
(

Y †
uYu

)2
+ 3

(

Y †
d Yd

)2

+
(

Y †
ℓ Yℓ

)2
]

. (A3)

Next, the RGEs for the gauge couplings are given by

16π2 dgi
d lnµ

=
(

bi + sb̃i

)

g3i , (A4)

where (b1, b2, b3) = (41/6,−19/6,−7) and (b̃1, b̃2, b̃3) = (27/2, 7/6,−5/2) [10].
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Finally, the one-loop RGEs for the Yukawa coupling matrices Yf (f = u, d, ℓ) and the

neutrino mass operator κ can be expressed in a general form as

16π2 dYf

d lnµ
= βf + β̃f = βf + sα̃fYf + sYfÑf , (A5)

16π2 dκ

d lnµ
= βκ + β̃κ = βκ + sα̃κκ+ sκÑκ + sÑT

κ κ , (A6)

where the SM beta functions are [23–25]

βu = Yu

(

3

2
Y †
uYu −

3

2
Y †
d Yd −

17

12
g21 −

9

4
g22 − 8g23 + T

)

, (A7)

βd = Yd

(

−
3

2
Y †
uYu +

3

2
Y †
d Yd −

5

12
g21 −

9

4
g22 − 8g23 + T

)

, (A8)

βℓ = Yℓ

(

3

2
Y †
ℓ Yℓ −

15

4
g21 −

9

4
g22 + T

)

, (A9)

βκ = −
3

2
κ
(

Y †
ℓ Yℓ

)

−
3

2

(

Y †
ℓ Yℓ

)T

κ +
(

λ− 3g22 + 2T
)

κ . (A10)

The contributions from the KK excitations are given by [11, 13]

Ñu =
3

2
Y †
uYu −

3

2
Y †
d Yd , (A11)

Ñd = −
3

2
Y †
uYu +

3

2
Y †
d Yd , (A12)

Ñℓ =
3

2
Y †
ℓ Yℓ , (A13)

Ñκ = −
3

2
Y †
ℓ Yℓ , (A14)

and

α̃u = −
101

72
g21 −

15

8
g22 −

28

3
g23 + 2T , (A15)

α̃d = −
17

72
g21 −

15

8
g22 −

28

3
g23 + 2T , (A16)

α̃ℓ = −
33

8
g21 −

15

8
g22 + 2T , (A17)

α̃κ = −
1

4
g21 −

11

4
g22 + 4T + λ . (A18)
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[13] M. Blennow, H. Melbéus, T. Ohlsson, and H. Zhang, JHEP 1104, 052 (2011), 1101.2585.

[14] K. Nishiwaki, K.-y. Oda, N. Okuda, and R. Watanabe (2011), 1108.1764.

[15] M. Holthausen, K. S. Lim, and M. Lindner (2011), 1112.2415.

[16] I. Masina and A. Notari (2011), 1112.2659.

[17] J. Elias-Miro, J. R. Espinosa, G. F. Giudice, G. Isidori, A. Riotto, et al. (2011), 1112.3022.

[18] D. Hooper and S. Profumo, Phys. Rept. 453, 29 (2007), hep-ph/0701197.

[19] Z.-z. Xing, H. Zhang, and S. Zhou (2011), 1112.3112.

[20] M. Sher, Phys.Rept. 179, 273 (1989).

[21] Z.-z. Xing, H. Zhang, and S. Zhou, Phys. Rev. D77, 113016 (2008), 0712.1419.

[22] T. P. Cheng, E. Eichten, and L.-F. Li, Phys. Rev. D9, 2259 (1974).

[23] K. S. Babu, C. N. Leung, and J. T. Pantaleone, Phys. Lett.B319, 191 (1993), hep-ph/9309223.

[24] P. H. Chankowski and Z. Pluciennik, Phys. Lett. B316, 312 (1993), hep-ph/9306333.

[25] S. Antusch, M. Drees, J. Kersten, M. Lindner, and M. Ratz, Phys. Lett. B525, 130 (2002),

hep-ph/0110366.

15


	I Introduction
	II Renormalization group running in extra dimensions
	III Running of the Higgs self-coupling constant
	IV Running of the gauge couplings
	V Running of the fermion masses
	VI Running of the CKM mixing matrix
	VII Summary and conclusions
	 Acknowledgments
	A One-loop beta functions in the UED model
	 References

