A High Throughput Low Power
Soft-Output Viterbi Decoder

By
Gan Ouyang

Supervisor: Prof. Jun Yan Ren
Examiner: Prof. Lirong, Zheng

Department of Microelectronics,
School of Information Science and Technology
Fudan University, Shanghai, China
Royoal Institute of Technology (KTH), Stockholm, Sweden
Acknowledgements

My deepest gratitude goes first and foremost to Professor Junyan Ren, my supervisor, for his constant encouragement, suggestion and guidance. Second, I would like to express my heartfelt thankfulness to Dr. Fan Ye, who led me into this exciting research area and helped me a lot in the past three years.

I also acknowledge Professors Lirong Zheng, Shili Zhang, Hannu Tenhunen, Axel Jantsch, Ahmed Hemani, C. M. Zetterling, Mats Brorsson, Mohammed Ismail and Shaofang Gong for traveling thousands of miles from Sweden to Shanghai to teach me the interesting and valuable courses that I have taken at Fudan-KTH Joint Master Program.

I also owe my sincere gratitude to my colleagues who gave me their help and support in the past three years. These colleagues include Xuejing Wang, Liang Liu, Jingfeng Li, Zhuo Xu, Xiaojing Ma, Zhigui Liu, Cheng Zhang, Jun Zhou, Wenyan Su, Xu Shen, Chenxi Li, Wei Liang, Kai Li, Yu Nie and Yunqi Zeng.

This work is in part sponsored by National Sci & Tech Major Projects of China with grant number of 2009ZX03006-007-01. This financial support is greatly appreciated.

At last, I would like to thank my parents for their endless love, patience, understanding and support all through these years. This thesis is dedicated to them.
Contents

Acknowledgements ... 1

Contents ... I

List of Figures ... III

List of Tables .. V

摘要.. VI

Abstract .. VIII

Chapter 1 Introduction .. 1

Chapter 2 The Viterbi Algorithm ... 7

 2.1 Convolutional Code and Convolutional Encoder .. 7

 2.2 The Channel Mode ... 9

 2.2.1 Discrete memoryless channel .. 9

 2.2.2 Binary Symmetric Channel .. 9

 2.2.3 Gaussian Channel ... 10

 2.3 Maximum Likelihood Decoding .. 10

 2.3.1 Hard-Decision Decoding .. 12

 2.3.2 Soft-Decision Decoding .. 13

 2.4 The Viterbi Decoding Algorithm .. 14

Chapter 3 The Soft Output Viterbi Algorithm ... 21

 3.1 Original Formulation of SOVA ... 21

 3.2 Two-Step SOVA ... 24

Chapter 4 Hardware Architecture of SOVA Decoder .. 26

 4.1 Convolutional Codes in the UWB Standard ... 27

 4.2 Branch Metric Unit .. 30

 4.3 Add-Compare-Select Unit .. 32

 4.3.1 ACS VS CSA .. 32

 4.3.2 Path Metric Normalization ... 37

 4.4 Survivor Path Management Unit .. 39

 4.4.1 The Register-Exchange Method .. 39

 4.4.2 The Trace-Back Method ... 40

 4.4.3 The Trace-Forward Method ... 42

 4.4.4 The Modified Trace-Forward Architecture ... 46

 4.5 The Path Comparison Unit .. 50
4.6 The Reliability Measure Unit

Chapter 5
5.1 The Reed-Solomon Codes
5.2 The Architecture of Concatenated Decoder

Chapter 6
Chapter 7

References
List of Figures

Figure 1-1. Evaluation roadmap of wireless communication systems1
Figure 1-2. A typical communication system ..2
Figure 2-1. A simple convolutional encoder ..7
Figure 2-2. The trellis diagram ...9
Figure 2-3. Binary symmetric channel ...10
Figure 2-4. The impact of quantization levels to the decoding performance14
Figure 2-5. The encoding process ...15
Figure 2-6. The Viterbi decoding operation at t_1 ..16
Figure 2-7. The Viterbi decoding operation at t_2 ..17
Figure 2-8. The Viterbi decoding operation at t_3 ..18
Figure 2-9. The Viterbi decoding operation at t_4 ..18
Figure 2-10. The Viterbi decoding operation at t_{17}19
Figure 2-11. All the survivor paths merge after L iterations in the trellis20
Figure 3-1. An example of $P_{s,k}$..22
Figure 3-2. An example of updating operation ..23
Figure 3-3. An example of Two-Step SOVA ..25
Figure 4-1. Architecture of Two-Step SOVA decoder26
Figure 4-2. Convolutional encoder in the UWB standard27
Figure 4-3. An example of bit-stealing and bit-insertion for $R = 1/2$ code28
Figure 4-4. An example of bit-stealing and bit-insertion for $R = 5/8$ code28
Figure 4-5. An example of bit-stealing and bit-insertion for $R = 3/4$ code29
Figure 4-6. Seven-level quantization VS eight-level quantization32
Figure 4-7. ACS operation in the trellis diagram ...33
Figure 4-8. Block diagram of the ACSU ...33
Figure 4-9. The trellis diagram of radix-4 ACS ...34
Figure 4-10. Block diagram of radix-4 ACSU ...35
Figure 4-11. Block diagram of CSA structure ..36
Figure 4-12. Modified structure of CSA ...36
Figure 4-13. Example of the method to get the absolute value of path difference.....37
Figure 4-14. The structure of Register-Exchange SMU40
Figure 4-15. Decision memory for trace-back architecture41
Figure 4-16. An example of trace-forward method44
Figure 4-17. Decision memory organization in the trace-forward architecture45
Figure 4-18. Architecture of trace-forward unit ..46
Figure 4-19. Working flow of architecture A ...47
Figure 4-20. Working flow of architecture B ..49
Figure 4-21. Architecture of PCU ..51
Figure 4-22. Optimized architecture of PCU ..52
Figure 4-23. Architecture of RMU ..53
Figure 4-24. Architecture of optimized RMU ..54
Figure 5-1. An example of concatenated encoding and decoding55
Figure 5-2. Architecture of SOVA-RS concatenated decoder59
Figure 5-3. Decoding performance comparison of the two approaches61
Figure 5-4. Decoding performance if n(unreliable) is increased to 662
Figure 5-5. Decoding performance, convolutional code rate $R = \frac{1}{2}$63
Figure 5-6. Decoding performance, convolutional code rate $R = \frac{5}{8}$63
Figure 6-1. Organization of the SOVA decoder model64
List of Tables

Table 2-1 A table describe the convolutional encoder...8
Table 4-1 The convolutional codes in ECMA-368...29
Table 5-1 The combinations of errors and erasures..58
Table 6-1 Place & Route report of the SOVA decoder ..65
摘要

本文针对 ECMA-368 超宽带标准采用的卷积码设计了一个软输出维特比译码器。超宽带（UWB）是一种具有广泛应用前景的短距离无线通信技术，被采纳为无线个域网（WPAN）以及下一代蓝牙通信的物理层。MB-OFDM 是一种被广泛采用的超宽带的实现方案，被采纳为 ECMA-368 标准。为了使得发出的高速数据在经过信道之后能够可靠地复现在通信系统的接收端，EMCA-368 标准采用级联的卷积码-里德索罗蒙（RS）码对它的 PLCP Header 进行编码，并单独采用卷积码对它的 PPDU Payload 编码。

维特比译码算法（VA）是一种常用的卷积码的译码算法，因其硬件实现复杂度降低，且译码性能较好而广受欢迎。软输出维特比译码算法（SOVA）是一种改进的维特比译码算法。SOVA 译码器不但能够接收软判决信息，而且能够给出每个译码符号的可信度值。这些可信度值可以提供给下一级译码器，以提高整个级联译码器的译码性能。

本文设计的 SOVA 译码器能够对 ECMA-368 定义的码率为 1/3，约束长度为 7 的卷积码译码。它也能对通过对码率为 1/3 的“母码”打孔产生的的打孔码进行译码，这些打孔码的码率分别为 1/2, 5/8, 3/4。加-比-选择单元（ACSU）通常是译码器的速度瓶颈。为了加快其最高工作频率，译码器采用了 E.Yeo 提出的改进的 CSA 结构，而不是传统的 ACS 结构来实现 ACSU。另外，本文提出采用了 7 段量化方法来替代传统的 8 段量化方法，这样的话 ACSU 的最高工作频率能够进一步加快，所需硬件开销也能减少。

在 SOVA 译码器中，需要大量的存储器来存储路径度量的差值，且这些存储器占据了整个译码器所需存储器的很大部分。本论文提出了一种新颖的混合幸存路径管理结构。它采用了改进的前向追溯方法，能够减小所需的存储器，并获得较高的译码吞吐率，且不会有较大的功耗。另外，本文也对译码器的其他模块进行了优化。例如，路径比较单元（PCU）和可信度更新单元（RMU）中不必要的前 K –1 级被移除了，而这样做并不会影响译码结果。

SOVA 译码器的吸引力驱使我们去寻找将它的软输出信息传递给 RS 译码器的方法。由于 RS 译码器需要每个符号的可信度值，而 SOVA 译码器只能给出每个比特的可信度值，因此需要找到一种将比特可信度值转化为符号可信度值的方法。但是由于 SOVA 译码器的软输出信息是相关的，并不存在一种最优的转化方案。本文比较了两种不同的次优的转换方案，并且提出了一种易于实现的 SOVA-RS 原生译码方案。该方案适用于标准定义的多种码率的卷积码。仿真结果表明，与传统的 Viterbi-RS 级联译码器相比，采用这种方案的 SOVA-RS 级联
译码器能够提升将近 0.35dB 的译码性能。

关键词：软输出维特比译码器，高吞吐率，低功耗，多波段正交频分复用超宽带

中图分类号：TN492
Abstract

A high-throughput low-power Soft-Output Viterbi decoder designed for the convolutional codes used in the ECMA-368 UWB standard is presented in this thesis. The ultra wide band (UWB) wireless communication technology is supposed to be used in physical layer of the wireless personal area network (WPAN) and next generation Blue Tooth. MB-OFDM is a very popular scheme to implement the UWB system and is adopted as the ECMA-368 standard. To make the high speed data transferred over the channel reappear reliably at the receiver, the error correcting codes (ECC) are wildly utilized in modern communication systems. The ECMA-368 standard uses concatenated convolutional codes and Reed-Solomon (RS) codes to encode the PLCP header and only convolutional codes to encode the PPDU Payload.

The Viterbi algorithm (VA) is a popular method of decoding convolutional codes for its fairly low hardware implementation complexity and relatively good performance. Soft-Output Viterbi Algorithm (SOVA) proposed by J. Hagenauer in 1989 is a modified Viterbi Algorithm. A SOVA decoder can not only take in soft quantized samples but also provide soft outputs by estimating the reliability of the individual symbol decisions. These reliabilities can be provided to the subsequent decoder to improve the decoding performance of the concatenated decoder.

The SOVA decoder is designed to decode the convolutional codes defined in the ECMA-368 standard. Its code rate and constraint length is $R=1/3$ and $K=7$ respectively. Additional code rates derived from the “mother” rate $R=1/3$ codes by employing “puncturing”, including $1/2$, $3/4$, $5/8$, can also be decoded. To speed up the add-compare-select unit (ACSU), which is always the speed bottleneck of the decoder, the modified CSA structure proposed by E.Yeo is adopted to replace the conventional ACS structure. Besides, the seven-level quantization instead of the traditional eight-level quantization is proposed to be used is in this decoder to speed up the ACSU in further and reduce its hardware implementation overhead.

In the SOVA decoder, the delay line storing the path metric difference of every state contains the major portion of the overall required memory. A novel hybrid survivor path management architecture using the modified trace-forward method is proposed. It can reduce the overall required memory and achieve high throughput without consuming much power. In this thesis, we also give the way to optimize the other modules of the SOVA decoder. For example, the first $K-1$ necessary stages in the Path Comparison Unit (PCU) and Reliability Measurement Unit (RMU) are
removed without affecting the decoding results.

The attractiveness of SOVA decoder enables us to find a way to deliver its soft output to the RS decoder. We have to convert bit reliability into symbol reliability because the soft output of SOVA decoder is the bit-oriented while the reliability per byte is required by the RS decoder. But no optimum transformation strategy exists because the SOVA output is correlated. This thesis compare two kinds of the sub-optimum transformation strategy and proposes an easy to implement scheme to concatenate the SOVA decoder and RS decoder under various kinds of convolutional code rates. Simulation results show that, using this scheme, the concatenated SOVA-RS decoder can achieve about 0.35dB decoding performance gain compared to the conventional Viterbi-RS decoder.

Keyword: Soft-Output Viterbi Decoder, High Throughput, Low Power, MB-OFDM UWB

Classification Code: TN492
Chapter 1 Introduction

In recent years, there is an increasing need for high-throughput high-performance digital wireless communication and the relative technology is developed rapidly to meet our need. In terms of mobile communication, the third generation mobile communication system such as WCDMA, CDMA2000 and TD-SCDMA have been brought into commercial operation in many countries including China. And its successive version, the third generation long term evaluation (3G-LTE), is under research and supposed to be used in the recent future. The third generation mobile communication system can reach a data rate of dozens of Megabits per second (Mbps) in its downlink and 3G-LTE mobile communication system is designed to reach up to several hundred Mbps in its downlink! On the other hand, for the short range digital wireless communication system, the ultra wide band (UWB) wireless communication technology, which can transfer data at a speed over 100 Mbps within 10 meters, has been studied for several years worldwide. It is supposed to be used in physical layer of the wireless personal area network (WPAN) and next generation Blue Tooth. MultiBand Orthogonal Frequency Division Modulation (MB-OFDM) is a very popular scheme to implement the UWB system and is adopted as the ECMA-368 standard [1]. And China is going to publish its own UWB standard in the recent future. Figure 1-1 shows the evaluation roadmap of wireless communication system.

Figure 1-1. Evaluation roadmap of wireless communication systems
When data are transferred between transmitter and receiver in wireless communication system, they are easily to be interfered by the channel which will bring noise to the data and attenuate them as well. To make the high speed data transferred over the channel reappear reliably at the receiver, the error correcting encoder and decoder, which can generate error correcting codes (ECC) and decoding the codes respectively, must be utilized. The error correcting encoder and decoder are also usually called channel encoder and decoder and in this thesis this form of address will be taken. Figure 1-2 is a block diagram which shows how the channel encoder and decoder can be used in the digital communication system.

![Block Diagram of Communication System](image)

Figure 1-2. A typical communication system

The information source and destination will include any source coding scheme matched to the nature of the information. The channel encoder takes the information symbols as input from the source and adds redundant symbols to it, so that most of the errors can be corrected by the channel decoder using the redundant symbols. The errors are introduced in the process of modulating a signal, transmitting the signal over a noisy and fading channel and demodulating the received signal.

All channel codes are based on the same basic principle: redundancy is added to information in order to correct the errors that may occur in the process of transmission. According to the manner in which redundancy is added to information, channel codes can be divided into two main classes: block codes and convolutional codes. Block codes process the source information block by block, treating every block of information bits independently from others. In other words, block coding is a memoryless operation, in the sense that codewords are generated independently from each other. In contrast, the output of a convolutional encoder depends not only on the current input information, but also on previous inputs or outputs, either on a block-by-block or a bit-by-bit basis. Both kinds of codes have found practical
applications. But historically, convolutional codes have been preferred, apparently because of the availability of the soft-decision Viterbi algorithm and the belief over many years that block codes could not be efficiently decoded with soft-decisions (Soft-decision here means the message to be decoded is represented using several bits. Hard-decision, on the contrary, means the message is represented using only one bit.) For example, wireless communications (IMT-2000, GSM, IS-95), digital terrestrial and satellite communication and broadcasting systems and space communication systems all adopt convolutional codes as their error correcting codes.

The Viterbi algorithm (VA) was first proposed by A. J. Viterbi in 1967 as a method of decoding convolutional codes [2]. It is a maximum likelihood (ML) decoding algorithm in the sense that it finds the closest coded sequence \(U \) to the received sequence \(Z \) by processing the sequences on an information bit-by-bit basis. Since the convolutional encoder is in essence a finite state machine where the state is defined as the contents of the memory constructed by a shift register, VA finds the most likely sequence of state transitions through a finite state trellis. It first assigns a transition metric to all possible state transitions and these transition metrics are computed from the received input samples in the so-called Branch Metric Unit (BMU). Subsequently, for every possible state, the path with the smallest sum of transition metrics among all the paths ending in the same state is selected as the most likely one. The selection are taken in the so-called Add Compare Select Unit (ACSU), which accumulates the transition metrics recursively and outputs a decision bit accordingly for each state and at each trellis cycle. These decisions are then processed in the Survivor Path Management Unit (SMU) of the decoder, which keeps track of the history of decisions. Consequently, the content of the SMU allows the reconstruction of the paths that are associated with the states. The problem of finding the most likely path through the trellis can then be solved by tracing all paths back in time until they have all merged into one path. This path is called the final survivor path below. The required number of trace-back steps to determine the final survivor path is called the survivor depth.

Since the Viterbi algorithm was proposed, many researchers have been devoted themselves to the hardware implementation of high throughput Viterbi decoder [3]-[5]. In [3] and [4], a radix-4 ACSU was used to achieve higher throughput by applying one level of look-ahead. In [5], a sliding block-based method without constraining the encoding process is proposed which can achieve an even higher
decode rate in an area-efficient manner. These Viterbi decoders can accept either hard-decisions or soft-decisions and a Viterbi decoder with soft decision data inputs quantized to three or four bits can perform about 2 dB better than one working with hard-decision inputs.

The Convolutional Encoder-Viterbi Decoder codec (code and decode) architecture is quite popular for its fairly low hardware implementation complexity and relatively good performance. But convolutional codes present some drawbacks. For example, they are not easy to be implemented at high code rates and are easy to generate burst errors at the decoder’s output as the SNR of the channel decreases. So if the communication system requires higher performance, using this codec architecture is not enough. A well known solution is to combine convolutional codes and Reed-Solomon codes in a concatenated system. The convolutional codes (with soft-decisions Viterbi decoding) are used as the inner codes and can correct most of errors brought by the channel for the outer codes, the Reed-Solomon codes, which in turn correct the burst error emerging from Viterbi decoder. This kind of concatenated codec architecture is widely used in modern communication systems such as Consultative Committee for Space Data Systems, Digital Video Broadcasting-Satellite Systems and WiMAX systems (IEEE 802.16 Systems). And many UWB standards including ECMA-368 and China's UWB standard also employ this architecture to enhance the correctness of the received Physical Layer Convergence Protocol (PLCP) header. The PLCP header is very important to UWB system because it contains information about both the Physical Layer (PHY) and the Medium Access Control (MAC) that is necessary at the receiver in order to successfully decode the PLCP Protocol Data Unit (PPDU) Payload [1].

Reed-Solomon codes belong to the other kind of error correcting codes, the block codes. They were firstly developed by Irving Reed and Gus Solomon in 1960 [6] and are now usually called RS codes for short. Being nonbinary, RS codes provide significant burst-error-correcting capability. Perhaps the biggest disadvantage of using RS codes lies in the lack of efficient and low complexity maximum likelihood soft decision decoding algorithm for the mismatch between the algebraic structure of extension Galois field which RS codes belong to and the real numbers at the output of the receiver demodulator [7].

All those Viterbi decoders mentioned above are hard output decoders which can output only 1 bit decision represented by '0' or '1'. If only one stage decoder is used,
this kind of output is enough. But when concatenated coding is considered with a convolutional code as the inner code, the performance of the global decoder can be significantly improved if the inner decoder is able to provide soft decisions for the subsequent stage.

In 1989, J. Hagenauer proposed a modified Viterbi Algorithm named Soft-Output Viterbi Algorithm (SOVA) [8]. A SOVA decoder can not only take in soft quantized samples but also provide soft decision outputs by estimating the reliability of the individual symbol decisions. The two-step SOVA architecture, proposed by C.Berrou [9] in 1993, is an efficient implementation of the SOVA, where the maximum likelihood path is determined by the conventional hard deciding Viterbi algorithm, and the reliability computations are performed only for this detected path. The two-step SOVA greatly reduces the computational complexity at the expense of increased latency and memory requirements. In 1995, O.J.Joeressen presented an early VLSI implementation of a two-step SOVA decoder [10] which achieved 40 Mbps throughput in 1-μm CMOS technology. And in 2003, a 500 Mbps SOVA decoder chip in 0.18-μm CMOS technology based on the two-step SOVA architecture was presented by E.Yeo [11]. In this decoder, to shorten the critical path delay of the decoder, conventional radix-2 ACS structure is replaced by modified radix-2 CSA structure. Thus the throughput of the decoder is increased by about 40%.

Compared to other kinds of soft-input soft-output (SISO) channel decoders (for example, the MAP or Log-MAP decoder), the SOVA decoder is much easier to implement and suffers just a little performance decrease. Thus it achieves a very good trade-off between performance and hardware complexity and thus is suitable to be used in a concatenated or iterative decoder. For example, the Turbo decoder, which is chosen as the channel decoder for the third generation mobile communication system for its near Shannon limit's decoding performance, use two parallel concatenated SISO decoder. The performance of modified SOVA-based Turbo decoder only decreases less than 0.4 dB compared to that of the MAP-based Turbo decoder [12].

The attractiveness of SOVA decoder enables us to find a way to deliver its soft output to the Reed Solomon decoder. Surely this kind of concatenated decoder will outperform conventional Viterbi-RS concatenated decoder. One difficulty is that the SOVA decoder outputs the reliability of every outgoing bit, whereas the RS codes
are symbol-oriented. Hence we have to develop a strategy to convert bit reliability into symbol reliability.

In this thesis, a high-throughput low-power SOVA decoder targeted to decode the convolutional codes used in the ECMA-368 UWB standard will be implemented. The standard uses concatenated convolutional codes and RS codes to encode the PLCP header and only convolutional codes to encode the Frame Payload. The constraint length and code rate of convolutional codes is \(K = 7 \) and \(R = 1/3 \) respectively. Additional code rates, including 1/2, 5/8, 3/4, are derived from the “mother” rate by employing “puncturing” [1]. The convolutional codes of the same constraint length are widely used in modern communication systems including Space Data Systems and WiMAX systems. This number of constraint length means the codes will have 64 states, making the corresponding SOVA decoder much more difficult to achieve high throughput and low power compared to the 8 states SOVA decoder in [11]. In the ECMA-368 UWB standard, the data rate of PLCP header is 53.3Mbps while the data rate of PPDU Payload can range from 53.3Mbps to 480Mbps. The SOVA decoder designed in this thesis is expected decode at a throughput as high as 480 Mbps. Thus the SOVA decoder must be designed carefully to make it meet the throughput requirement and reduce the power consumption as much as possible.

The rest of this thesis is organized as follows. The detailed description of Viterbi Algorithm and Soft Output Viterbi Algorithm will be presented in Chapter 2 and Chapter 3 respectively. In chapter 4, the hardware architecture of the SOVA decoder designed in this thesis will be presented. Every modules of the decoder will be described in detail and they will be modified and optimized to decode the convolutional codes defined in the ECMA-368 standard. In chapter 5, the way to concatenate the SOVA decoder and RS decoder will be studied. The implementing results of the decoder are presented in Chapter 6. And finally, this thesis is concluded briefly in Chapter 7.
Chapter 2 The Viterbi Algorithm

2.1 Convolutional Code and Convolutional Encoder

Convolutional code can be described by three integers: \(k \), \(n \) and \(K \). The ratio \(k/n \) is the rate of the code and \(K \) is called the constraint length of the code. The output of a convolutional encoder depends not only on the current input information, but also on the previous inputs. That means the convolutional encoder is a sequential circuit or a finite-state machine. In fact, a convolutional encoder can easily be constructed by some registers and XOR gates. All the registers form a shift register and the number of these register plus one is the constraint length.

Figure 2-1 shows a simple convolutional encoder. It has one input and two outputs so that the code rate of the code it generates is 1/2. The constraint length of the code it generates is 3. The connection style of the input of the XOR gates of with the registers (both their inputs and outputs) can be described by the code generator polynomial. In the generator polynomial, a ‘0’ means the connection does not exist a ‘1’ means the connection exist. So the generator polynomial corresponding to the upper XOR gate and lower XOR gate is \(g_0 = [1 1 1] \) and \(g_1 = [1 0 1] \) respectively. In practice, the connection vector is usually present in octal number by combining every 3 bits in the polynomial into an octal number starting from the right side. So, the code generator polynomials in this example can be written as \(g_0 = 7_8 \) and \(g_0 = 5_8 \).

![Figure 2-1. A simple convolutional encoder](image-url)
In practice, the next state of the convolutional encoder can be predicted if its current state is known. For example, if the current state S_i is 01 (it means the content of the left register is 0 and the content of the right register is 1), the next state S_{i+1} will be 10 if the current input is one and will be 00 if the current input is zero. So a table which lists all possible current states and their corresponding next states and outputs can be constructed, as Table 2-1 shows.

Table 2-1 A table describe the convolutional encoder

<table>
<thead>
<tr>
<th>Current state</th>
<th>Current input</th>
<th>Next state</th>
<th>Current output</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>0</td>
<td>00</td>
<td>00</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>00</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>10</td>
<td>00</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>01</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>11</td>
<td>01</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>01</td>
<td>01</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>11</td>
<td>10</td>
</tr>
</tbody>
</table>

Another very common method to describe the convolutional encoder is the trellis diagram. It shows how each possible input to the encoder influences both the output and the state transitions of the encoder. Figure 2-2 is the trellis diagram corresponding to the encoder in the Figure 2-1. In the trellis diagram, the four possible states of the encoder are depicted as four rows of horizontal dots. There is one column of four dots for the initial state of the encoder and one for each time instant during the message. The solid lines connecting dots in the diagram represent state transitions when the input bit is a zero. The dotted lines represent state transitions when the input bit is a one. The two-bit numbers labeling the lines are the corresponding convolutional encoder outputs. That is the same with Table 2-1.
2.2 The Channel Mode

2.2.1 Discrete memoryless channel

A discrete memoryless channel (DMC) can be characterized by a discrete input alphabet, a discrete output alphabet and a set of conditional probabilities $P(j | i)$. $P(j | i)$ is the probability that the demodulator receives j given that i was transmitted by the modulator. Each output symbol of a DMC depends only on the corresponding input and the channel noise will affect each symbol independently of all the other symbols. So that for a given input sequence $U = u_1, u_2, \ldots, u_m, \ldots, u_N$, the conditional probability of a corresponding output sequence $Z = z_1, z_2, \ldots, z_m, \ldots, z_N$ can be expressed as

$$P(Z | U) = \prod_{m=1}^{N} P(z_m | u_m)$$

(2-1)

2.2.2 Binary Symmetric Channel

A binary symmetric channel (BSC) is a common kind of DMC, where symmetric means the conditional probability $P(j | i)$ is symmetric. Both the input and output alphabet sets consists of binary elements 0 and 1. The conditional probabilities can be expressed as

$$P(0 | 1) = P(1 | 0) = p \quad \text{and} \quad P(1 | 1) = P(0 | 0) = 1 - p$$

(2-2)

Equation (2-1) means that if a channel symbol was transmitted, the probability
that it is received incorrectly is \(p \) and the probability that it is received correctly is \(1 - p \). That is illustrated in Figure 2-3. The BSC is an example of a hard-decision channel, which means the demodulator can make only firm or hard decisions consisting of discrete binary elements on each symbol.

When such two-valued hard decisions are fed to the decoder, the decoding operation can be called hard-decision decoding.

![Figure 2-3. Binary symmetric channel](image)

2.2.3 Gaussian Channel

Gaussian channel is a special kind of DMC with continuous input and output alphabets over range \((-\infty, +\infty) \). The channel noise is a Gaussian random variable with zero mean and variance \(\sigma^2 \). The probability density function of the received random variable \(z \), conditioned on the symbol \(u_k \), can be expressed as

\[
P(z | u_k) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left[\frac{-(z-u_k)^2}{2\sigma^2}\right]
\]

When the demodulator output consists of a continuous alphabet or its quantized approximation (with more than two quantization level), the demodulator is said to make soft-decisions. If the demodulator feeds such quantized code symbols to the decoder, the decoder will operate on the soft decisions and the decoding operation can be called as soft-decision decoding.

2.3 Maximum Likelihood Decoding

If \(Z \) is the received sequence and \(U^{(m)} \) is one of the possible transmitted sequences, then we call \(P(Z | U^{(m)}) \) as the likelihood function. If all input message sequences are equally likely, a maximum likelihood (ML) decoding algorithm finds
the closest coded sequence $\mathbf{U}^{(m)}$ to the received sequence \mathbf{Z} by processing the sequences on an information bit-by-bit basis [13]. That is, the decoder chooses $\mathbf{U}^{(m)}$ as the most possible transmitted sequence if the likelihood $P(\mathbf{Z}|\mathbf{U}^{(m)})$ is greater than the likelihoods of all the other possible transmitted sequences. That can be expressed as

$$P(\mathbf{Z}|\mathbf{U}^{(m)}) = \max_{\text{over all } \mathbf{U}^{(m)}} P(\mathbf{Z}|\mathbf{U}^{(m)})$$

(2-4)

The likelihood function can be computed from the specification of the channel. For a convolutional code of rate $1/n$, if the channel is memoryless, then the likelihood function can be expressed as

$$P(\mathbf{Z}|\mathbf{U}^{(m)}) = \prod_{i=1}^{\infty} P(Z_i|U_i^{(m)}) = \prod_{i=1}^{\infty} \prod_{j=1}^{n} P(z_{ij}|u_{ij}^{(m)})$$

(2-5)

Where Z_i is the ith branch of the received sequence, $U_i^{(m)}$ is ith branch of a particular codeword sequence $\mathbf{U}^{(m)}$, z_{ij} is the jth code symbol of Z_i, and $u_{ij}^{(m)}$ is the jth code symbol of $U_i^{(m)}$. Then the decoder needs to choose a path through the trellis diagram such that $\prod_{i=1}^{\infty} \prod_{j=1}^{n} P(z_{ij}|u_{ij}^{(m)})$ is maximized.

In practice, log-likelihood function is used instead of likelihood function so that summation can be used instead of multiplication and the computation complexity can be decreased greatly. The log-likelihood function is defined as

$$\gamma_{u}(m) = \log P(\mathbf{Z}|\mathbf{U}^{(m)}) = \sum_{i=1}^{\infty} \log P(Z_i|U_i^{(m)}) = \sum_{i=1}^{\infty} \sum_{j=1}^{n} P(z_{ij}|u_{ij}^{(m)})$$

(2-6)

Thus the task of the decoder is to choose a path through the trellis diagram such that $\gamma_{u}(m)$ is maximized. For a binary code sequence of the L branches, the most possible sequences may be found by comparing 2^L accumulated log-likelihood metrics if the fact that paths may remerge in the trellis diagram is ignored. But that kind of “brute force” decoding strategy will not be practical to decode convolutional codes with a trellis diagram directly since 2^L can be very large. This problem can be overcome by using Viterbi algorithm and it will be described in the following section.

Before specifying the Viterbi algorithm, it is better to describe hard-decision decoding and soft-decision decoding in detail.
2.3.1 Hard-Decision Decoding

If the decoder operates on the hard decisions made by the demodulator, the decoding is called hard-decision decoding. The BSC is an example of a hard-decision channel, which means that, even though continuous-valued signals may be received by the demodulator, the demodulator can still output firm decisions which consist of the one of two binary values.

For a BSC, the maximum decoding is equivalent to choosing a codeword \(U^{(m)} \) that is closest in Hamming distance to the received decoder sequence \(Z \). The Hamming distance between two codewords \(U \) and \(V \), denoted \(d(U,V) \), is defined to be the number of elements in which they differ. For example, if \(U = (0 \ 0 \ 0 \ 1 \ 1 \ 0 \ 1) \) and \(V = (1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1) \), then \(d(U,V)=3 \). Thus the Hamming distance is an appropriate metric to describe the distance or closeness of fit between \(U^{(m)} \) and \(Z \). From all the transmitted sequences \(U^{(m)} \), the decoder chooses the \(U^{(m)} \) for which the distance to \(Z \) is minimum.

Suppose that \(U^{(m)} \) and \(Z \) are each \(L \)-bit-long sequences and that the Hamming distance between them is \(d_m \). Take Equation (2-2) into consideration, the likelihood function can be written as

\[
P(Z \mid U^{(m)}) = p^{d_m} (1 - p)^{L - d_m}
\]

(2-7)

And the log-likelihood function is

\[
\log P(Z \mid U^{(m)}) = -d_m \log \left(\frac{1 - p}{p} \right) + L \log(1 - p)
\]

(2-8)

It should be noticed that the last term of the above equation is constant for each possible transmitted sequence. Assuming that \(p < 0.5 \), we can rewritten Equation (2-8) as

\[
\log P(Z \mid U^{(m)}) = -d_m A + LB
\]

(2-9)

Where \(A \) and \(B \) are both positive constants. Therefore, finding the closest coded sequence \(U^{(m)} \) to the received sequence \(Z \) is equal to maximizing the likelihood or log-likelihood metric.

Consequently, log-likelihood metric can be conveniently replaced by the Hamming distance if the channel is BSC. And a maximum likelihood decoder will choose a path \(U^{(m)} \) for which the Hamming to \(Z \) is minimum in the tree of trellis diagram.
2.3.2 Soft-Decision Decoding

The demodulator can also feed the decoder with a quantized value greater than two levels. This is the case when the channel is Gaussian channel. Such an implementation is called soft-decision decoding. It furnishes the decoder with more information than is provided in hard-decision decoding. For a Gaussian channel, the soft decision the demodulator sends to the decoder can be viewed as a family of conditional probabilities of the different symbols. It can be verified that maximizing \(P(Z|U^{(m)}) \) is equivalent to maximizing the inner product between the codeword sequence \(U^{(m)} \) (consisting of binary symbols represented as bipolar values) and the received sequence \(Z \) [13]. Thus, the decoder chooses the codeword \(U^{(m)} \) if it maximizes

\[
\sum_{i=1}^{n} \sum_{j=1}^{n} z_{j} u_{ij}^{(m)} \tag{2-10}
\]

This is equivalent to choosing the codeword \(U^{(m)} \) that is closest in Euclidean distance to \(Z \). Even though the hard- and soft-decision channels requires different metrics, the concept of choosing the codeword \(U^{(m)} \) that is closest to the received sequence, \(Z \), is the same in both cases.

When the demodulator sends eight-level quantized soft decision to the decoder, it sends a 3-bit word. In fact, sending 3-bit decision instead of a hard decision is equivalent to sending the decoder a measure of confidence. If the demodulator sends 111 to the decoder, it declares the code symbol to be a one with very high confidence. If the demodulator sends 100 to the decoder, it declares the code symbol to be a one with very low confidence. In contrast, if the demodulator sends 000 to the decoder, it declares the code symbol to be a zero with very high confidence. And if the demodulator sends 011 to the decoder, it declares the code symbol to be a zero with very low confidence.

Sending the decoder soft decisions instead of hard decision can provide the decoder with more information, which the decoder uses for recovering the message sequence. The eight-level soft-decision is often shown as \(-7, -5, -3, -1, 1, 3, 5, 7 \) [13]. Such a designation lends itself to a simple interpretation of the soft-decision: the sign of the metric represent a decision and the magnitude of the metric represent the confidence level of the decision.

For a Gaussian channel, eight-level quantization will improve the decoding performance by approximately 2dB in required signal-to-noise ratio \((E_b / N_0) \)
compared to two-level quantization. That means that the eight-level soft-decision decoding can achieve the same probability of bit error rate (BER) as that of hard-decision decoding, but requires 2dB less E_b / N_0. Infinite-level quantization can lead to 2.2dB performance improvement over two-level quantization. It means that quantization to more than eight levels can yield little performance improvement. This is illustrated in Figure 2-4, where Q means the quantization levels.

![Figure 2-4. The impact of quantization levels to the decoding performance](image)

The price paid for soft-decision decoding is the increase in hardware cost and possible decrease in speed. Higher level quantization means more hardware cost to implement the decoder and lower speed the decoder can operate on. So eight-level quantization is often used in practice because it balances the hardware cost and decoding performance well.

2.4 The Viterbi Decoding Algorithm

The Viterbi algorithm is a very common and efficient method to decode the
convolutional codes. It is a maximum likelihood decoding algorithm in the sense that it finds the closest coded sequence to the received sequence by processing the sequences on an information bit-by-bit basis. It is more convenient than the “brute force” decoding strategy mentioned above because it reduces the computational complexity by taking advantage of the special structure in the trellis diagram [13].

When two paths enter the same state, Viterbi decoder (that is, a decoder using Viterbi algorithm to decode the convolutional codes) selects the one with better metric and discards the other path. The path selected is called the survivor path. By repeating this operation for every state and at every time, the Viterbi decoder can remove from consideration those trellis paths that could not possible be the maximum likelihood before the final comparison is done. The early rejection of the unlikely paths reduces the decoding complexity.

To describe the Viterbi Algorithm in detail, an example of Viterbi decoding procedure is introduced below. In this example, we assume the channel is BSC. The encoder is shown in Figure 2-1 and the corresponding trellis is shown in Figure 2-2. Assume that the message sequence to be encoded is 01011100101000100 (The last two zero bits are used to make the encoder return to all-zero state), we can get the encoder’s output sequence, which is:

```
00 11 10 00 01 10 01 11 11 10 00 10 11 00 11 10 11
```

![Figure 2-5. The encoding process](image)

The encoding process is shown in Figure 2-5, where the thick lines illustrate the encoding path in the trellis.

Suppose the transmitted message is corrupted by the noise in the BSC and the received message sequence is

```
00 11 11 00 01 10 01 11 11 10 00 00 11 00 11 10 11
```

There are a couple of bit errors in the received message and they are shown in
The Viterbi decoder first assigns a transition metric to all possible state transitions by computing the similarity, or distance, between the received samples at time t_i and all the trellis paths entering each state at time t_i. These transition metrics are called branch metrics and are computed in the so-called Branch Metric Unit (BMU). Since the channel is BSC, Hamming distance is a proper distance measure.

From time t_0 to time t_1, there are only two possible paths because we know the convolutional encoder was initialized to the all-zero state. Thus, the possible encoder outputs are 00 and 11.

At time t_1, the received symbols is 00. Therefore, the branch metric from state 00 at time t_0 to state 00 at time t_1 is 0 and the branch metric from state 00 at time t_0 to state 10 at time t_1 is 2. Since the previous accumulated metric are both 0, the accumulated metric for state 00 and state 10 at time t_1 is 0 and 2 respectively. The accumulated metric of every path is also called path metric and the accumulated metric of every state is called state metric. If there is only one path merging at one state, its state metric is the metric of the path. Figure 2-6 shows the decoding operation at time t_1.

![Figure 2-6](https://via.placeholder.com/150)

Figure 2-6. The Viterbi decoding operation at t_1

At time t_2, the received symbols is 11. The possible encoder outputs are 00 and 11. If the state at time t_1 is 00, the possible symbols we could have received are 00 and 11 respectively. Thus, the corresponding branch metrics are 2 and 0 respectively. If the state at time t_1 is 10, the possible symbols we could have received are 10 and
01 respectively. Thus, the corresponding branch metrics both 1. Adding those branch metrics to the state metric at time t_1, we can update the state metric of all the four states at time t_2, as Figure 2-7 shows.

\[
\begin{align*}
00 & \Rightarrow 0+2=2 \\
01 & \Rightarrow 2+1=3 \\
10 & \Rightarrow 0+0=0 \\
11 & \Rightarrow 2+1=3
\end{align*}
\]

Figure 2-7. The Viterbi decoding operation at t_2

The method to calculate the branch metrics at time t_3 is similar with the method mentioned above and is omitted here. The different thing that happens at time t_3 is that there are two different paths merging at a same state at time t_3. So, we have to compare the path metric of the two different paths and select the path with smaller path metric and discard the other path. This operation is called add-compare-select (ACS) operation and is often completed in the Add-Compare-Select Unit (ACSU). If the two path metrics are equal, there are two ways to select a path. One way is to use a fair coin toss to pick one path. The other way is to pick the path containing the upper branch or the path containing the lower branch consistently. All the ACS operations are illustrated at Figure 2-8.
Chapter 2 The Viterbi Algorithm

The select result must be saved so that the predecessor of every state can be concluded. The select result can be represented by just one bit: a ‘0’ represents that the upper branch is selected and a ‘1’ represents that the lower branch is select. For example, there are two branches merging at state 00 at t_3. One branch starts from state 00 at time t_2, the other starts from state 01 at time t_2. The corresponding path metrics are 4 and 3 respectively and we select the lower branch and discard the upper branch. We can just using ‘1’ to record this selection. Using the state index 00 and the selection result ‘1’, we can conclude that the predecessor of state 00 at time t_3 is 10. All these select results must be saved for every step of the decoding procedure. The select results at time t_4 and time t_2 are relatively easier to get because there is just one possible predecessor for each state.

Figure 2-8. The Viterbi decoding operation at t_3

Figure 2-9. The Viterbi decoding operation at t_4
The decoding operation at time \(t_4 \) is the same as at time \(t_5 \) and is illustrated in Figure 2-9. In this figure, the path with the smallest path metric is shown in bold. We can see that the path is the same as the encoder’s encoding path through time \(t_0 \) to time \(t_4 \), as Figure 2-5 shows. So, the error symbol received at time \(t_i \) can be corrected if the section of path is included in the final survivor path.

Repeating the operation at time \(t_i \) until all the received symbols is treated. The decoding process at time \(t_{17} \) is shown in Figure 2-10 below. In this figure, the path with the smallest path metric is the same as the whole encoding path in Figure 2-5. We can take this path as the final survivor path and trace back along it in the trellis to find the information bits of the final survivor path. Those information bits are the output of the Viterbi decoder, and the information bits before encoded by the convolutional encoder have renewed. That is what we expect by using the Viterbi decoding algorithm.

Figure 2-10. The Viterbi decoding operation at \(t_{17} \)

If the channel is Gaussian Channel, the Viterbi decoding procedure is very similar as procedure introduced above. The biggest difference is the way to calculate the branch metric. In this case, the Gaussian Distance can be the proper metric and the ACSU should select the path with bigger path metric, as section 2.3.2 describes.

At the end of the section, it’s better to discuss how to find the final survivor path more efficiently. As stated above, the final survivor path is the path with maximum likelihood among all the survivor paths. It implies that we should compare all the states and select the one with the minimum state metric if the channel is BSC or select the one with the maximum state metric if the channel is Gaussian channel. If the constraint length of the convolutional codes is large, the state index will be very large and the compare operation will be complex. So it’s not practical to find the final survivor path in this way.

The convolutional codes have a very useful characteristic which can help us to
overcome this problem. If we start from every state and trace back along its survivor path in the trellis, all the survivor paths will merge with high probability into a state after D iterations. The number D is the well-known survivor path length and is typically $5K$ [12]. Figure 2-11 below illustrates this characteristic.

![Diagram showing the merging of survivor paths](image)

Figure 2-11. All the survivor paths merge after L iterations in the trellis
Chapter 3 The Soft Output Viterbi Algorithm

3.1 Original Formulation of SOVA

The Soft-Output Viterbi Algorithm (SOVA) is a modified Viterbi Algorithm which can not only take in soft quantized samples but also provide soft decision outputs along with the hard decision. The SOVA can generate the hard decision in the same way as the Viterbi Algorithm. In addition, it can generate the reliability of the hard decision, which is named as the Soft-Output. The Soft-Output can be provided to its successor to improve the decoding performance of the concatenated decoder.

At time t_k, the ACSU in the Viterbi decoder selects a path with larger path metric between the two paths merging at the same state s. It should be noticed that SOVA requires soft input. So the ACSU in the decoder should select the path with larger path metric. Without loss of generality, we assume path 1 is selected the survivor (that is, the path metric of path is larger). The probability of selecting the wrong path (path 2) as the survivor is

$$P_{s,k} = \frac{e^{\Gamma_{s,k}^{(2)}}}{e^{\Gamma_{s,k}^{(1)}} + e^{\Gamma_{s,k}^{(2)}}} = \frac{1}{1 + e^{\Delta_{s,k}}} \leq \frac{1}{2}, \quad \Delta_{s,k} = |\Gamma_{s,k}^{(2)} - \Gamma_{s,k}^{(1)}| \geq 0$$

(3-1)

Where $\Gamma_{s,k}^{(1)}$ and $\Gamma_{s,k}^{(2)}$ is the path metric of path 1 and path 2 respectively [8]. The absolute value computation in Equation (3-1) can make the formula independent of the actual path decision.

With probability $P_{s,k}$, the Viterbi decoder made errors in all the e positions where the information bits of path 1 differs from path 2 (we can also say the decoder made a relevant decision at these positions); in other words if

$$u_j^{(1)} \neq u_j^{(2)}, \quad j = j_1, ..., j_e$$

(3-2)

As Figure 3-1 shows, there are two paths merging at state 00 at time t_9. Path 1 is selected as the survivor path and its path metric is 23. Path 2 is discarded and its path metric is 17. The discarded path can also be named as the competing path.

The information bits of path 1 is

$$u_0^{(1)} \sim u_e^{(1)} = 0 1 0 1 0 1 0 0 0.$$

The information bits of path 2 is
\[u_0^{(2)} \sim u_6^{(2)} = 100011100. \]

So there are 5 positions where the information bit of path 1 differs from path 2, and the Viterbi decoder made errors in those 5 positions with probability

\[
P_{0,9} = \frac{e^{-17}}{e^{-23} + e^{-17}} = \frac{1}{1 + e^6} \approx 0.0025
\]

![Figure 3-1. An example of \(P_{j,k} \)](image)

Assume the length before path 1 and path 2 merge is \(\delta_m \). So there are \(e \) different information values, and \(\delta_m - e \) equal values. Assume the probabilities \(\hat{P}_j \) of previous erroneous decisions with path 1 have been stored. If path 1 is selected as the survivor path, these probabilities for the \(e \) differing decisions on this path according to the following equation

\[
\hat{P}_j \leftarrow \hat{P}_j (1 - P_{s,k}) + P_{s,k} (1 - \hat{P}_j), \quad j = j_1, \ldots, j_e
\] \((3-2) \)

It is easily to demonstrate that \(0 < P_{s,k}, \hat{P}_j < 0.5 \). Equation (3-2) requires that \(\hat{P}_j \) and \(P_{s,k} \) are statistical independent. And it is approximately true for most of the practical codes.

Both \(P_{s,k} \) and \(\hat{P}_j \) are not suitable for hardware implementation. In practice, the log-likelihood ratio \(L_j \) is used instead of \(\hat{P}_j \), which is defined as

\[
\hat{L}_j = \log \frac{1 - \hat{P}_j}{\hat{P}_j}
\] \((3-3) \)

Where \(\hat{L}_j \) is named as the reliability of decision \(u_j \) and it always has a positive value. The bigger \(\hat{L}_j \) is, the more reliable the decision \(u_j \) is.
If the decision u_j was relevant, its reliability \hat{L}_j can be updated using the formal value of \hat{L}_j and the path metric difference of path 1 and path 2, ie, $\Delta_{s,k}$. The updating formula is now

$$\hat{L}_j \leftarrow f(\hat{L}_j, \Delta_{s,k}) = \min(\hat{L}_j, \Delta_{s,k})$$ \hspace{1cm} (3-4)$$

Equation (3-4) is much easier to implement in hardware and does not deteriorate the performance of the algorithm [8].

Figure 3-2 is an example showing how to update \hat{L}_j. In this figure, path 1 and path 2 merge at state 00 at time t_5, of which path 1 is selected as the survivor path. The path metric difference of the two paths is $\Delta_{0,5}$.

The information bits of path 1 is

$$u_0^{(1)} \sim u_4^{(1)} = 0 \ 1 \ 0 \ 0 \ 0.$$

The information bits of path 1 is

$$u_0^{(2)} \sim u_4^{(2)} = 1 \ 1 \ 1 \ 0 \ 0.$$

So we can see that information bits u_0 and u_2 are relevant and their reliability \hat{L}_0 and \hat{L}_2 need to be updated. Before being updated, all the reliability values $\hat{L}_0 \sim \hat{L}_4$ have been initialized to a very large value at time t_0, and some of them have been updated at time $t_0 \sim t_4$. At time t_5, only \hat{L}_0 and \hat{L}_2 needed to be updated and the update equation is

$$\hat{L}_0 \leftarrow \min(\hat{L}_0, \Delta_{0,5}) \text{ and } \hat{L}_2 \leftarrow \min(\hat{L}_2, \Delta_{0,5})$$ \hspace{1cm} (3-5)$$

Figure 3-2. An example of updating operation
3.2 Two-Step SOVA

The original SOVA, as introduced above, requires the construction of a competing path for all states and performing the update operation along the paths for all states. However, the final hard output of the decoder is only the information bits of the final survivor path. Thus, all update operations that are performed on reliability values that are not associated with the final survivor path do not affect the output of the decoder.

C. Berrou [9] in 1993 proposed a new architecture named two-step SOVA which can implement the SOVA more efficiently. It splits the SOVA into two steps and discards the unnecessary update operations. In the first step, the common Viterbi algorithm is employed to find the final survivor path and generate the final hard decision. The update operation is postponed to the second step when the final survivor path is known. This causes at least a delay of D steps if D denotes the survivor depth of the SMU. Subsequently only the reliability values associated with this path are updated with respect to the competing paths constructed for each decoding step.

Figure 3-3 is an example of Two-Step SOVA. In the first step, we start tracing back in the trellis from an arbitrary state in time t_k, usually from the all-zero state. After D iterations along the survivor path, the path will end in the merging state at time t_{k-D}, which is state 10 in this example. In the second step, the reliability values of the relevant bits among the U information bits (in this example, U is 4 for simplification) have been updated. $u_{k-D-2}^{(1)}$ and $u_{k-D-2}^{(2)}$ is relevant so L_{k-D-2}^\wedge has to be updated using the following equation

$$L_{k-D-2}^\wedge \leftarrow \min(L_{k-D-2}^\wedge, \Delta_{2,k-D}) \quad (3-6)$$

At time t_k, the update operation of the reliability value L_{k-D-U}^\wedge is completed and can be output as the soft information associated with the hard decision u_{k-D-U}. Note that the first $K-1$ (in this example, $K-1=2$) branches in this example have identical labels. This is always the case if a feed forward encoder is used and can be exploited since the decision about the paths is never relevant with respect to these symbols.
Figure 3-3. An example of Two-Step SOVA

It is clear that update operation in a SOVA decoder takes place in a modified survivor memory unit. The rest of the Viterbi decoder remains unchanged as compared to a hard deciding Viterbi decoder except the ACSU. The ACSU now have to not only select the survivor path, but also output the path metric difference of the survivor path and its competing path. Since the metric differences are normally already present inside the ACSU, no additional hardware is required.
Chapter 4 Hardware Architecture of SOVA Decoder

Figure 4-1 is the architecture of the two-step SOVA decoder. The 3 modules in the dotted square construct a hard deciding Viterbi Decoder. Note that the SMU here has to output the state sequence in the final survivor path so that the update processing can be carried out. And it should be noted that the decision bits and path metric difference generated by the ACSU must be delayed to adjust the timing to the outputs of the SMU.

![Figure 4-1. Architecture of Two-Step SOVA decoder](image)

ACSU is a key module in the decoder and always limits the throughput of the decoder. In this thesis, we adopt the modified CSA structure to implement the ACSU so that the critical path delay of ACSU can be decreased greatly. And by using seven-level quantization instead of the conventional eight-level quantization to quantize the input symbol, we can use only 8 bits instead of 9 bits to represent the path metric, which can save the hardware overhead of the decoder and further decrease the critical path delay of ACSU. See section 4.2 and 4.3 for the detailed description.

The two delay lines, especially the delay line storing the path metric difference of every state, contain the major portion of the overall required memory. The depth of memory used in the delay line is determined by the decode latency of SMU. For example, if the path metric difference is presented using 7 bits and the memory depth is 60, the depth of memory used in the delay line should be 64 (It should be noted that the depth of memory must be the integral power of 2.) and the total bits in the
delay line 1 will be $64 \times 64 \times 7 = 28672$. And if the memory depth has to be increased to 105, we need another 28672 bits to store these path metric differences! So, the SMU must be designed carefully to save the memory used. In section 4.4, two novel SMU architectures are proposed and one of them is applied to the SOVA decoder. They both can make sure the decode latency be less than 64 without consuming too much power.

In section 4.5, we proposed an optimized architecture of PCU by removing the unnecessary stages and XOR gates. The optimized architecture can save about half of the hardware overhead without decreasing the decoding performance. And the architecture of RMU can also be optimized using the similar method. Section 4.5 and 4.6 will discuss this method in detail.

The detail of the hardware architecture will be described in the left part of the chapter. Before the description, the convolutional codes used in the ECMA-368 UWB standard (we’ll call it the UWB standard for short in the left part of the thesis) should be introduced because it will affect the design of the SOVA decoder.

4.1 Convolutional Codes in the UWB Standard

Figure 4-2 shows the convolutional encoder employed in the UWB standard. The constraint length and code rate of the codes it generates is $K = 7$ and $R = 1/3$ respectively. And the generator polynomials of the encoder is $g_0 = 133_s$, $g_1 = 165_s$, and $g_2 = 171_s$. The bit denoted as “A” shall be the first bit generated by the encoder, followed by the bit denoted as “B”, and finally, by the bit denoted as “C”.

![Figure 4-2. Convolutional encoder in the UWB standard](image)

Additional code rates are derived from the “mother” rate $R = 1/3$ convolutional code by employing “puncturing”. Puncturing is a procedure for omitting some of the encoded bits at the transmitter (thus reducing the number of transmitted bits and increasing the code rate) and inserting a dummy “zero” metric into the decoder at the
receiver in place of the omitted bits. The puncturing patterns are defined in Figure 4-3 to Figure 4-5 [1]. In each of these cases, the tables shall be filled in with encoder output bits from left to right. For the last block of bits, the process shall be stopped at the point at which encoder output bits are exhausted, and the puncturing pattern applied to the partially filled block.

Figure 4-3. An example of bit-stealing and bit-insertion for $R = 1/2$ code

Figure 4-4. An example of bit-stealing and bit-insertion for $R = 5/8$ code
Figure 4-5. An example of bit-stealing and bit-insertion for $R = 3/4$ code

The UWB standard supports 8 kinds of data rates ranging from 53.3 Mbps to 480 Mbps, as Table 4-1 shows. For data rates not greater than 200 Mbps, the binary information shall be modulated by the quadrature phase shift keying (QPSK) modulator. For data rates greater than 320 Mbps, the binary data shall be modulated using a dual-carrier modulation (DCM) technique. The rate-dependent code rate and modulation parameters are listed in Table 4-1.

Table 4-1 The convolutional codes in ECMA-368

<table>
<thead>
<tr>
<th>Data Rate (Mbps)</th>
<th>Code Rate</th>
<th>Modulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>53.3</td>
<td>1/3</td>
<td>QPSK</td>
</tr>
<tr>
<td>80</td>
<td>1/2</td>
<td>QPSK</td>
</tr>
<tr>
<td>106.7</td>
<td>1/3</td>
<td>QPSK</td>
</tr>
<tr>
<td>160</td>
<td>1/2</td>
<td>QPSK</td>
</tr>
<tr>
<td>200</td>
<td>5/8</td>
<td>QPSK</td>
</tr>
<tr>
<td>320</td>
<td>1/2</td>
<td>DCM</td>
</tr>
<tr>
<td>400</td>
<td>5/8</td>
<td>DCM</td>
</tr>
<tr>
<td>480</td>
<td>3/4</td>
<td>DCM</td>
</tr>
</tbody>
</table>
4.2 Branch Metric Unit

The punctured Viterbi decoder is used for diverse code rates using one Viterbi decoder. To implement the punctured Viterbi decoder, a de-punctured unit is added in the front of the BMU. The de-punctured unit takes in the input symbols and the code rate mode signal, and the input symbol is then changed to an appropriate symbol by a de-punctured metric.

Denote Z_i as the ith branch of the received sequence after quantization, that is, the received symbols at time t_i. And denote z_j as the jth code symbol of Z_i. Assume C_k is one of the particular codeword which consists of three binary bits $\{c_2, c_1, c_0\}$. The corresponding octal number of the three bits is k, that is

$$k = c_2 \times 2^2 + c_1 \times 2^1 + c_0 \times 2^0$$ \hspace{1cm} (4-1)

So, one of the eight branch metrics at time t_i can be computed as

$$\lambda_i(k) = \sum_{j=0}^{3} z_j u_j, \text{ where } u_j = 2 \times c_j - 1$$ \hspace{1cm} (4-2)

Since u_j is +1 or -1, no multiplier is needed to implement the Equation (4-2).

As section 2.3.2 shows, z_j can be quantized to one number belonging to a set of numbers $\{-7, -5, -3, -1, 1, 3, 5, 7\}$. So that the value of $\lambda_i(k)$ will range from -21 to 21. As the following section shows, this requires at least 10 bits should be used to represent the path metric. Since reducing the bits needed to represent the path metric can reduce the hardware overhead and speed up the ACSU, we should find a method that can narrow the range of the branch metric.

One efficient scheme is to use seven-level quantization instead of the traditional eight-level quantization. The quantized symbols then will belong to $\{-3, -2, -1, 0, 1, 2, 3\}$ and the value of $\lambda_i(k)$ will range from -9 to 9. By doing this, the bits needed to represent the path metric can be decreased to 9 bits. When using the seven-level quantization, we can just use 4'b0000 to represent the punctured symbols. And the “product” term $z_j u_j$ will be zero if z_j corresponds to a punctured bit. In this way, we can still use the Equation (4-2) to compute the branch metric without any modification.

Figure 4-6 shows, using the seven-level quantization instead of eight-level quantization will only bring in a little loss in the decoding performance (In these three figures, the trace-back length is set to 35. And we only give the simulation
results of the 3 kinds of code rate corresponding to QPSK modulation.). Compared to the hardware overhead reduction and speed increase it can bring in, this performance loss is worthy.

(a) $R = 1/3$

(b) $R = 1/2$
Equation (4-2) can be revised as

\[BM_j(k) = \sum_{j=0}^{2} z_j u_j + 9, \quad \text{where} \quad u_j = 2c_j - 1 \]

(4-3)

In this way, the value of branch metric will always be nonnegative number.

The BMU can be easily implemented using some adders and subtracters (which is also adder in essence). The widths of the quantized symbols that are input to the BMU are all 4 bits and the output branch metrics are 5 bits wide. The detail of its architecture is omitted here.

4.3 Add-Compare-Select Unit

4.3.1 ACS VS CSA

ACSU is a key module in the hard deciding Viterbi decoder and SOVA decoder. The ACS operation is recursive and is always the speed bottleneck of the decoder.

The ACS operation at time \(t_i \) can be expressed by the following two equations

\[\Gamma_i^{(0)} = \max \{ \Gamma_{i-1}^{(0x)} + \lambda_{i-1}^{(0)}, \Gamma_{i-1}^{(1x)} + \lambda_{i-1}^{(1)} \} \]

(4-4)
\[\Gamma_i^{x_l} = \max\{\Gamma_{i-1}^{0x} + \lambda_{i-1}^{0x}, \Gamma_{i-1}^{1x} + \lambda_{i-1}^{1x}\} \]

(4-5)

In the two equations, \(x \) stands for an arbitrary 5-bits number and \(\lambda \) is the branch metric. Figure 4-6 shows the ACS operation using the trellis diagram. In this figure, the state 0x and 1x at time \(t_{i-1} \) will transfer to state x0 if the current input is 0. The state metric of the two state at time \(t_{i-1} \) is \(\Gamma_{i-1}^{0x} \) and \(\Gamma_{i-1}^{1x} \) respectively and the branch metric of the two transition is \(\lambda_{i}^{0x0} \) and \(\lambda_{i}^{1x0} \). At time \(t_i \), the ACSU will accumulate the path metric and its corresponding branch metric, and then select the larger one as the state metric of state x0. Meanwhile, the ACSU should output the decision of the selection and the path metric difference of the two paths (\(\Delta_{x0,i} \) in Figure 4-7).

![Trellis Diagram](image)

Figure 4-7. ACS operation in the trellis diagram

Figure 4-8 shows the hardware block diagram of the ACSU corresponding to the ACS operation shown in Figure 4-7. The comparison is implemented through subtraction, and the most significant bit (MSB) of the result selects the survivor path.

![Block Diagram](image)

Figure 4-8. Block diagram of the ACSU
Previous high-throughput implementations of the Viterbi decoder [4] unrolled the ACS loop in order to perform two-step iterations of the trellis recursions within a single clock cycle. These look-ahead methods replace the original radix-2 trellis (As Figure 4-7 shows) with a radix-4 trellis (See in Figure 4-9), at the cost of increased interconnect complexity.

![Trellis Diagram](image_url)

Figure 4-9. The trellis diagram of radix-4 ACS

A radix-4 ACSU computes four sums in parallel followed by a four-way comparison. In order to minimize the critical-path delay, the comparison is realized using six parallel pair-wise subtractions of the four output sums. In general, the critical-path delay is still larger than that of radix-2 ACSU. One main reason of this is that the fan-out inside the radix-4 ACSU is larger than that inside the radix-2 ACSU. Another main reason is that the select logic in the radix-4 ACSU is more complex. However, due to the doubled symbol rate, the effective throughput is improved if this increase in delay is less than twofold. The block diagram of radix-4 ACSU is shown in Figure 4-10.

The critical path of the radix-2 ACSU consists of a two-input adder, a two-input comparator and a multiplexer. E.Yeo [11] proposed a new architecture to implement the add-compare-select function, of which the critical path consists only of a two-input comparator and a multiplexer. Consider the Equation (4-4) and Equation (4-5) again. They can be rewritten as Equation (4-6) and Equation (4-7) if we add λ_i^{300} or λ_i^{601} at both sides of them.
\[
\Gamma_{i-1}^{i^0} + \lambda_{i}^{00} = \max\{\Gamma_{i-1}^{0x} + \lambda_{i-1}^{0x}, \Gamma_{i-1}^{1x} + \lambda_{i-1}^{1x}\} + \lambda_{i}^{00}
\]
\(4-6\)

\[
\Gamma_{i}^{i^0} + \lambda_{i}^{101} = \max\{\Gamma_{i-1}^{0x} + \lambda_{i-1}^{0x}, \Gamma_{i-1}^{1x} + \lambda_{i-1}^{1x}\} + \lambda_{i}^{101}
\]
\(4-7\)

Where \(\lambda_{i}^{00}\) and \(\lambda_{i}^{101}\) is the branch metric if the current input at time \(i\) is 0 and 1 respectively. Figure 4-11 is the block diagram which can implement the function of the above two equations. This structure is named as compare-select-add (CSA) by E. Yeo, perhaps because it does these three functions in series.
Chapter 4 Hardware Architecture of SOVA Decoder

Figure 4-11. Block diagram of CSA structure

The CSA structure in the Figure 4-11 can be further modified by moving the add operations before the select operation, resulting in the parallel execution of the compare and add operations. The modified structure is shown in Figure 4-12. The critical path delay is reduced to the combined delays of the comparator (The delay of the comparator is slightly larger than that of the adder) and the multiplexer.

Figure 4-12. Modified structure of CSA
E. Yeo showed by using the modified CSA structure to replace the conventional ACS structure, the throughput can be increased by about 40%, at the cost that the area and power will almost double. In contrast, by using the radix-4 ACS structure, the throughput can be increased by about 60%, while area and power will increase by about 5 times and 3 times respectively.

Thus, in this high-throughput SOVA decoder implementation, the modified CSA structure is adopted because it provides much better balance between throughput and power & area than the radix-4 ACS structure.

At the end of this section, we should discuss the way to generate the absolute value of path metric difference. Since we don’t need the reliability to be very precise, we can generate the absolute value of path metric difference using an approximate approach. For the two inputs of the comparator $\Gamma_{i-1}^{01} + \lambda_{i-1}^{01}$ and $\Gamma_{i-1}^{10} + \lambda_{i-1}^{10}$, if $\Gamma_{i-1}^{01} + \lambda_{i-1}^{01}$ is less than $\Gamma_{i-1}^{10} + \lambda_{i-1}^{10}$, the decision d_i^{01} is 1, and vice versa. So the comparator can just subtracts the first input from the second input and output the MSB (most significant bit) of the difference as the decision. If the MSB of the difference is 0, we can use the other bits of the difference as the absolute value of path metric difference. And if MSB of the difference is 1, we reverse each bits of the difference and the result is the absolute value of path metric difference. This can be easily implemented using some XOR gates, as the example in Figure 4.13 illustrates. In this example, the input diff is the difference of the substation with $\text{diff}[4]$ as its MSB. The delay of this structure is very less compare to the multiplexer, so it will not affect the critical path delay of ACSU.

![Diagram](image)

Figure 4-13. Example of the method to get the absolute value of path difference

4.3.2 Path Metric Normalization

As the Viterbi decoder operates continuously, the path metrics will grow
proportional to the length on the received sequence. To avoid overflow or saturation (depending on the number representation used), the path metrics need to be normalized. There are basically two methods of doing this. Both rely on the following two properties of the Viterbi algorithm [14]:

1. The maximum likelihood decoding path selection depends only on the metric differences.

2. The metric differences are bounded.

Perhaps the most intuitionistic approach is to substrate the minimum path metric from all the path metrics if the minimum path metric is large than a threshold. Clearly, this does not affect the selection process because the path metric differences remain the same. But doing this will make the decoding algorithm more difficult the increase the critical path delay. Thus, it is not suitable in our design.

Another approach is the modular arithmetic method. It uses two’s complement arithmetic to calculate the path metric so that overflow can occur but it does not affect the selection process. This approach is favored in hardware implementations.

Assume that two numbers a and b are compared using subtraction, and their difference is less than \(\Delta \), that is, \(|a-b|<\Delta \). According to the number theory, the comparison can be evaluated as \(\text{mod}(a-b,2\Delta) \) without ambiguity. Hence, if the path metric precision is chosen appropriately, the modular arithmetic can be implicitly implemented by ignoring the path metric overflow.

Modular arithmetic also exploits the fact that the Viterbi algorithm inherently bounds the maximum dynamic range \(\Delta_{\text{max}} \) of path metrics to be

\[
\Delta_{\text{max}} \leq \lambda_{\text{max}} \log_2 N
\] (4-8)

Where \(N \) is the number of states (in this 64-state SOVA decoder, \(N \) is 64) and \(\lambda_{\text{max}} \) is maximum branch metric for the original radix-2 trellis.

So that the minimum path metric precision in the SOVA decoder is

\[
\Gamma_{\text{bits}} = \left\lceil \log_2 (\Delta_{\text{max}} + \lambda_{\text{max}}) \right\rceil + 1
\] (4-9)

Where the operation \(\left\lceil A \right\rceil \) rounds the elements of \(A \) to the nearest integers greater than or equal to \(A \). The term \(\lambda_{\text{max}} \) in the above equation accounts for the potential dynamic range increase due to the use of the radix-2 CSA structure. In the radix-2 CSA structure, the path metric and its corresponding branch metric are treated as a whole.
The equivalent of overflow errors will result if the design value for the dynamic range is exceeded during operation. Hence, the upper bound given in Equation (4-8) is used to ensure correct operation under all SNR conditions. If the eight-level quantization is applied in this decoder, λ_{\max} will be 42 and Γ_{bits} will be 10. But if we use the seven-level quantization as introduced in section 4.2, λ_{\max} can be reduced to 18 and Γ_{bits} can be reduced to 8. Thus, we’ll use seven-level quantization to save the hardware cost and speed up the decoder.

Since the path metric can be presented using 8 bits, the path metric difference can be presented using 7 bits.

4.4 Survivor Path Management Unit

There are two classical methods for survivor path management: the register-exchange method and the trace-back method. Both methods require a recursive update which fundamentally limits the throughput.

4.4.1 The Register-Exchange Method

The register-exchange method (RE) is the simplest and most direct method of survivor path update and decode. A register exchange consists of a two-dimensional array of one-bit registers and multiplexers. The registers in successive stages are interconnected to resemble the trellis structure of the convolutional code [11][15]. Figure 4-14 is the structure of Register-Exchange SMU corresponding to the convolutional encoder shown in Figure 2-1. The connection style of it is the same as the trellis diagram shown in Figure 2-2.

Each row of registers records the decoded output sequence along the path from the initial state to the final state. A global clock signal controls the registers. The frequency of the clock determines the throughput of the Viterbi decoder. The decisions from the ACSU ($d_0 \sim d_4$ in the above figure) are input to select the outputs of a corresponding row of multiplexers. At each clock cycle, a multiplexer located at row i and column j outputs a decision bit corresponding to a trace-back of length j, originating from state i. This bit is stored in a register and will be input to a multiplexer at column $j+1$ in the following clock cycle.
The number of columns of array is survivor depth D. Given that the chosen survivor depth is sufficiently large, there is a high probability that all survivors merge and the symbol at depth D of any of the survivors may be chosen as output symbols. We need to compute all survivors because they can affect the decoded symbol sequence if a merge of paths occurs at depth D although the paths usually merge earlier. So, the decode latency is identical to the survivor depth D. This is the minimum decode latency we can achieve among all the different kinds of SMU architectures we can use.

If the constraint length of the convolutional code is K, the survivor depth D needs to be at least $5K$. Since there are 2^{K-1} columns in the array, the total number of the registers and multiplexer will be as large as $5K \times 2^{K-1}$. At each clock cycle, each survivor symbol sequence is completely overwritten with new survivor symbols, resulting in $5K \times 2^{K-1}$ read and write accesses per cycle. In our SOVA decoder, the value of K is 7, so there will be as many as 2240 read and write accesses per cycle. Thus, the power consumption is not acceptable if we take the RE method.

4.4.2 The Trace-Back Method

The trace-back (TB) method is a backward processing algorithm for survivor path update and decode. Such an algorithm is noncausal and requires the decisions to
be stored in a decision memory prior to tracing back the survivor path. The current state decision d_i^S is read from the decision memory using the current state S_i and time index i as an address. The previous state S_{i-1} can be updated using S_i and d_i^S. For the common radix-2 trellis, we just need to right-shift S_i by one bit with d_i^S as the input of the shift register. Then the content of the shift-register is previous state S_{i-1}.

Practical trace-back architectures must achieve a throughput which is matched to the throughput of ACSU while minimizing the required decision memory. The one-pointer trace-back architecture described below is a practical implementation of the architecture.

In the one-pointer trace-back architecture, the decision memory is organized as a cyclic buffer and is partitioned into a write region and a read region as shown in Figure 4-15. During each block decode phase, new decisions (one decision per state) are written to the write region while the survivor path is traced and decoded from the read region. The read region is divided into a merge block of length D and a decode block of length U. Tracing-back through the merge block is used to find the merging state from which the final survivor path starts. We can trace back along the final survivor path in the decode block and get the hard deciding output. Once a block is decoded it becomes the write block for the next phase and the other logical partitions appropriately shift.

![Figure 4-15. Decision memory for trace-back architecture](image)

To ensure continuous operation the trace-back operations must complete in the time it takes to fill the write region. This requires more than one trace-back processes
can be done every clock cycle. Thus, the frequency of the read pointer should be several times (usually two or three) of that of the write pointer. This is not practical in our SOVA decoder because the frequency of the read pointer is expected to be as high as 480 Mega-Hz.

Another drawback of the one-pointer trace-back architecture is the large decode latency. Assume we permit that multiple trace-back processes can be done every clock cycle, the relationship between the length \(U \) and \(D \) is

\[
U = \frac{D}{TRR - 1} \quad \text{where} \quad TRR > 1
\]

(4-10)

The decode latency is equal to the latency to fulfill the decision memory:

\[
\text{latency} = U + D + U = D \frac{TRR + 1}{TRR - 1}
\]

(4-11)

The TRR in the above equations is the so-called trace-back recursion rate [15]. It means the number of trace-back recursion per clock cycle.

In our SOVA decoder, the survivor depth \(D \) needs to be greater than 35. Thus, if TRR is equal to 2, the minimum decode latency will be 105 clock cycles in the write clock domain. And if TRR is equal to 3, the minimum decode latency will be 70 clock cycles in the write clock domain. As mentioned in the beginning of Chapter 4, the two delay lines in Figure 4-1 contain the major portion of the overall required memory. Since the survivor depth should be greater than 35, the minimum decode latency we can achieve is 35 clock cycles (It is only possible when the register-exchange method is adopted. But according to the discussion above, the register-exchange method is not suitable in our SOVA decoder.). So what we can do to minimize the depth delay line is to make sure the decode latency be less than 64 cycles in the write clock domain. So the one-pointer trace-back architecture is not practical in our SOVA decoder even if we permit that multiple trace-back processes can be done every clock cycle.

4.4.3 The Trace-Forward Method

The purpose of tracing back through the merge block is to find the merging state. But it will bring in two problems. First, it requires trace-back recursion rates greater than one if want to decode continuously, which is very hard to implement in our high-throughput SOVA decoder. Second, the delay of tracing back through the merge block takes up a large proportion in the decode latency. A good solution to
these problems is to use the hybrid trace-forward (TF) method [15].

The TF method combines the merits of both register-exchange method and trace-back method. It enables us to find the merging state without tracing back in the merge block. Instead, it estimates the merging state when the decisions are written to the merge block. When the merge block is fulfilled with the newly input decisions, the merging state is also found. So the latency of tracing back in the merge block is eliminated and trace-back recursion rates can be reduced to one.

It is useful to define the tail of a survivor path before describing the TF method. Every trellis state S at time $t_{i+\Delta}$ has an associated survivor path. Tracing back through this survivor path and a certain state at time t_i can be found. That is called the tail state of S and is denoted as $T_{i,i+\Delta}^S$. Thus, for $\Delta > L$ all the states at time $t_{i+\Delta}$ have very large possibility to have the same tail state at time t_i. And this tail state is the merging state we expect to find.

The TF method is a forward recursive procedure for finding the tail states over the interval t_i to $t_{i+\Delta}$. To do this, a register should be assigned to every state to store its tail state and we name it as the tail state register in this thesis. When the trace-forward operation starts at time t_i, the value of the tail state register is initialized to its corresponding state index. This can be expressed as

$$T_{i,i}^S = S \quad (4-12)$$

The trace-forward update is merely a selection operation. The current state S at time $t_{i+\Delta}$ will select its predecessor state S' at time $t_{i+\Delta-1}$ according to its decision value. And then, the content in the tail register of S' is assigned to the tail register of state S. Thus the updating function can be expressed using the following equation

$$T_{i,i+\Delta}^{S'} = T_{i,i+\Delta-1}^{S'} \quad (4-13)$$
This update occurs concurrently for all states at time $t_i+\Delta$ and is similar in form to the register-exchange method. Figure 4-16 shows an example of trace-forward method. The survivor path for every state from time t_i to time t_i+4 is shown in Figure 4-14(a), where the survivor path of maximum likelihood at each time is shown in bold lines. Figure 4-14 (b) shows how the tail state registers update their values at each time. At time t_i, the tail state registers are initialized with their state index. And from time t_i+1 to time t_{i+4}, the register value for every state is updated to the register value of the state’s predecessor. As Figure 4-14(a) shows, every state at time t_{i+4} has the same tail state 00 at time t_i, ie, all the survivor paths at time t_{i+4} merge at state 00 at time t_i. Figure 4-14(b) shows that all the tail state registers at time t_{i+4} have the same values 00. So, we can get the merging state at time t_i immediately by reading from any one of these four register, without doing the trace back operation.
The decision memory can be organized similar to the one-pointer trace back architecture except that all the three blocks must have the same depth, as shown in Figure 4-17.

During each block decode phase, new decision vectors are written to the write region while the survivor path is traced and decoded from the read region. Concurrently, the new decisions are processed by the trace-forward unit, which estimates the state at the beginning of each write block. Since the write block becomes the merge block of the next phase, this state is the required starting state for the next decode block.

At first glance the required decision memory length is $3L$. However, because the read and write rates are matched, the write block can be folded onto the decode block, thus reducing the memory length to $2L$. After a decision vector is read and decoded, its location is available for the next written vector. Note that the decision memory here is no longer a cyclic buffer and the read pointer and write pointer will be a little more complex to control.

The architecture of trace-forward unit in a state-4 decoder (the corresponding encoder is shown in Figure 2-1) is shown in Figure 4-18. It has the same connection style with the trellis diagram. At time t_i each tail state registers is initialized with its corresponding state index. On subsequent iterations, the interconnection and multiplexers implement the recursive update under the control of the current decisions. The trace-forward unit is busy updating the content of the tail state.
registers from \(t_i \) to \(t_{i+\Delta} \). At time \(t_{i+\Delta} \), the merging state can be found by reading from any one of the registers. One of the update datapath is shown in red line in the figure.

![Figure 4-18. Architecture of trace-forward unit](image)

4.4.4 The Modified Trace-Forward Architecture

If we apply the trace-forward architecture introduced above to our SOVA decoder, the decode latency is still a problem. Assume that the length \(L \) takes its minimum value 35, the decode latency will be \(L + L + L = 105 \) clock cycles. This is unacceptable in our SOVA decoder. So modification needs to be done to the original architecture.

Analyze the composition of the decode latency, we can find that the decode latency can be reduced by shortening the depth of decode block. This mainly because that fulfilling the decode block and tracing back in it will both bring a latency whose value is equal to the depth of the decode block. An effective way is to divide the three blocks into several smaller sections and use more than one trace-forward unit.
In this thesis, two different kinds of survivor path architecture are developed. They are both modified based on the trace-forward architecture mentioned above. The working flow of the first architecture (It’s named as architecture A below for simplification) is illustrated in Figure 4-19. In this architecture, the memory fragment of length 12 is treated as a whole. They are denoted as bank0–bank4 in the figure. These banks are located in the same memory whose depth and width are both 64. It should be noted that the location of these 5 banks are not fixed in the memory. The figure just shows their location from time t_0 to t_{59}.

Figure 4-19. Working flow of architecture A
In this architecture, a trace-forward unit will continue operate until a whole merge block is fulfilled with newly input decisions. The merge block consists of three banks whose length is 12. The operation details of this architecture are described below.

The combination of bank1, bank2 and bank3 can be treated as the merge block if we set bank0 as the decode bank. From time \(t_0 \) to \(t_{11} \), decisions are written to the bank0. Since all the survivor paths originate from state 0 at time \(t_0 \), no trace-forward operation is needed. From time \(t_{12} \) to \(t_{23} \), decisions are written to the bank1 and the first trace-forward unit denoted as TFU0 works. And from time \(t_{24} \) to \(t_{47} \), TFU0 continues tracing-forward until bank3 is fulfilled with newly decisions (It should be addressed that TFU0 needs not to be initialized at time \(t_{24} \) and time \(t_{36} \). It just continues tracing-forward based on the formal result.). After the \(47^{th} \) clock cycle passes, all the tail registers have stored the tail state at time \(t_{12} \). And these register are probable with the same value, which is just the merging state at time \(t_{12} \). So, from time \(t_{48} \) to \(t_{60} \), tracing-back can be done in bank0 with this merging state as the start of final survivor path. From time \(t_{48} \) on, TF0 can be reused to trace forward along with the other banks. The operation flow of the TF1 and TF2 is similar to that of TF0.

The decode latency of this architecture is 60 clock cycles, which is less than 64 clock cycles and meets the requirements mentioned at the beginning of this chapter. A drawback of this architecture is that three trace-forward units work concurrently from time \(t_{36} \) on. Since a trace-forward unit consists of 264 1-bit registers and 64 2:1 multiplexers, the power consumption of this architecture is a big problem.

The other modified architecture, named as architecture B below, doesn’t have this problem. The working flow of architecture B is illustrated in Figure 4-20.

From time \(t_0 \) to \(t_{11} \), decisions are written to the bank0. And similar to the working flow of architecture A, no trace-forward operation is needed during this period. From time \(t_{12} \) to \(t_{23} \), decisions are written to the bank1 and the first trace-forward unit denoted as TFU0 works. After the \(23^{th} \) clock cycle passes, the TFU0 stops its operation for a while and the tail states at time \(t_{12} \) are stored in the registers of TFU0. The tail registers in TFU1 are updated from time \(t_{24} \) to \(t_{35} \). And after the \(35^{th} \) clock cycle passes, the TFU1 stops its operation for a while with the tail states at time \(t_{24} \) stored in its tail state registers. From time \(t_{36} \) to \(t_{48} \), the tail states at time \(t_{36} \) are stored in the state registers of TFU2. The merging state at time
t_{12} can be found by “tracing-back” through the three sets of tail state registers. The detailed operation is described below.

Figure 4-20. Working flow of architecture B

After the 33th clock cycle passes, a state’s tail state at time t_{24} has been stored in its tail state register in TFU2. At time t_{34}, we select an arbitrary one of the tail state registers (for example, select the register of state 0) and use its value as the address to read from the 64 tail registers of TFU1. We denote the output of this read operation as $S_{merge _temp}$. Thus $S_{merge _temp}$ is the tail state at time t_{24} corresponding to the survivor path at time t_{33}. Then, at time t_{35}, we use
S{\text{merge}}_\text{temp} \text{ as the address to read from the 64 tail registers of TFU0. The output of this read operation is the merging state at time } t_{12}, \text{ which is denoted as } S_{\text{merge}}. \text{ Then, at time } t_{36}, \ S_{\text{merge}} \text{ can be used as the starting state of tracing back through bank0. From time } t_{48} \text{ to } t_{59}, \text{ TFU0 is reused to do the trace-forward operation when the decisions are input to bank4.}

The most left address of the memory is read at time } t_{59}, \text{ so the decode latency is also 60 clock cycles. After the 59th clock cycles passes, bank0 will change its location in the memory to cover the 12 addresses that are to be written in the next 12 clock cycles (that is, the most right 4 addresses and the most left 12 addresses).

It can be seen from the above description that not more than one trace-forward unit works at the same time in architecture B. So it consumes much less power than architecture A. The hardware overhead of architecture B is slightly bigger than that of architecture A. In architecture B, “tracing back” in the three sets of tail state registers is needed in order to find the merging state. When we decide to find the merging state, we should know predecessor and successor of the current trace-forward unit. So it’s a more difficult to control the work flow of architecture A. And to implement this special kind of tracing-back operation, a 6-bits 64-1 multiplexer should be placed following the three trace-forward units, which will increase the hardware overhead of architecture B slightly compared to the architecture A.

Another disadvantage of architecture B is that the survivor depth in architecture B is 2 steps less than that in architecture A. The survivor depth in architecture B is limited to 2 steps less than the depth of merge block, because “tracing back” in the three sets of tail state registers consumes 2 clock cycles. In contrast, the survivor depth in architecture A can be as same as the depth of merge block. Simulations using MATLAB shows decoding performance is almost the same either architecture is adopted.

In summary, we will apply architecture B to the SOVA decoder because it consumes much less power at the cost of increasing slightly hardware overhead.

4.5 The Path Comparison Unit

In the Path Comparison Unit (PCU), the information bits of the competing paths need to be compared in one clock cycle to generate the relevance bits for the
Reliability Measure Unit (RMU) [11]. While the information bits of the final survivor are already known (they are input to the PCU) the information bits of the competing path must be calculated.

The register-exchange method used in the SMU provides a convenient way to determine whether competing paths lead to equivalent decision bits or not. The two inputs to each 2:1 multiplexer reflect the competing decisions, and a test for their equivalence can be realized by the addition of an XOR gate at each multiplexer location.

![Figure 4-21. Architecture of PCU](image)

Figure 4-21 shows the first two stage of the PCU. The architecture of the other stages is the same with the second stage and is omitted here. The decisions generated by the ACSU are delayed by D clock cycles to match the timing of the final survivor states generated by SMU. These delayed decisions are denoted as
$d_{0,k-D} \sim d_{3,k-D}$ in the figure. The multiplexers at the top of the figure are used to select the relevance bits according to the final survivor states. In this figure, S_{k-D} represents the final survivor state at time t_{k-D}, where k means it is generated by SMU at time t_k. The first two relevance bits at time t_k is denoted as $Rel_{0,k}$ and $Rel_{1,k}$ in the figure.

![Diagram](image)

Figure 4-22. Optimized architecture of PCU

Analyze the structure of Register-Exchange SMU, we can find the values of the registers in the first $K-1$ stages are fixed independently of the input decisions. For example, in Figure 4-12, the values of the registers in the first stage are always 0 0 1 1 from the top downward. And the values of the registers in the second stage are always 0 1 0 1 from the top downward. Furthermore, for the two paths merging at the same state, the $K-1$ information bits near the state are always the same (It is easy to comprehend. Assume the state S can be denoted as $s_{K-1}s_{K-2}...s_0$ in binary. In the trellis diagram, given the input sequence $s_0,...,s_{K-2},s_{K-1}$, a path starting from an arbitrary state will end at the state S. So, these $K-1$ information bits of the
two paths are both $s_0, \ldots, s_{K-2}, s_{K-1}$). Thus, the corresponding $K-1$ relevance bits are always zero. Figure 3-2 is an example of this characteristic, where path 1 and path 2 merging at state 0 at time t_5 have the same information bits 00 at time t_4 and t_5. So, the first $K-1$ stages of PCU in Figure 4-21 can be removed with the first $K-1$ relevance bits fixed to 0.

On the other hand, for the two states which can be denoted as $0 s_{K-2} \ldots s_0$ and $1 s_{K-2} \ldots s_0$ in binary respectively, the two predecessors of them are the same. Thus, the relevance bits corresponding to the two states are the same. So, we can remove half of the XOR gates in the Figure 4-19 and reduce the bits width of multiplexers at the top by one bit.

The optimized architecture of PCU is shown in Figure 4-20. Compared its former, the optimized architecture saves considerable hardware overhead and reduces considerable power consumption. It is demonstrated that $2K$ is sufficient for the update depth U of PCU [11]. So the number of stages in Figure 4-22 can be set to $K + 1$, which is equal to 8 in our SOVA decoder.

4.6 The Reliability Measure Unit

The function of Reliability Measure Unit is to generate the soft output of the SOVA decoder by selecting the minimum path metric difference according to the relevance bits along the final survivor path. So it can be easily implemented by connecting comparators and multiplexers in a pipeline. The architecture of the RMU is shown in Figure 4-23. In this figure, every update stage consists of a register, a 2:1 multiplexer and a comparator which can choose the minimum input. The register in the first stage is initialized to the maximum binary representation of the reliability measure, which is 7'b11111111 in our SOVA decoder.

![Figure 4-23. Architecture of RMU](image)

As discussed in section 4.5, the first $K-1$ relevance bits are always 0. Thus,
the first \(K-1 \) multiplexers will always choose the input from the preceding register. So the above architecture can be optimized by removing the first \(K-1 \) stages. Figure 4-24 shows the optimized architecture.

![Figure 4-24. Architecture of optimized RMU](image-url)
Chapter 5 The Concatenated Decoder

Concatenated coding was introduced in 1966 by Forney [16]. It is a powerful technique for creating error-correcting codes by combining two or more codes sequentially. The primary reason for using concatenated codes is to achieve a low error rate with an overall implementation complexity which is less than that which would be required by a single decoding operation. Figure 5-1 is an example of concatenated encoding and decoding. The stream from the information source is first encoded in the outer encoder. The output of the outer encoder is then re-encoded by the inner encoder before transmission. At the receiver the decoding order must be reversed, and so the inner decoder is adopted first.

![Diagram of Concatenated Encoding and Decoding](image)

Figure 5-1. An example of concatenated encoding and decoding

The attractiveness of SOVA decoder enables us to find a way to deliver its soft output to the Reed Solomon decoder. Surely this kind of concatenated decoder will outperform conventional Viterbi-RS concatenated decoder. In this Chapter, we’ll study how to concatenate the SOVA decoder and Reed-Solomon decoder. An easy to implement scheme which can work under various kinds of convolutional code rates is proposed.

5.1 The Reed-Solomon Codes

In 1960, Irving Reed and Gus Solomon found a new class of error-correcting codes that are now called Reed-Solomon (RS) codes [6]. Ever since its discovery, Reed-Solomon codes have found many applications, including compact disc players, deep-space applications and digital video broadcasting, etc.

Reed-Solomon codes are nonbinary cyclic codes with symbols made up of m-bit
sequences, where \(m \) is any positive integer greater than 2. If \(k \) is the number of data symbols being encoded and \(n \) is the total number of code symbols in the encoded block, the RS codes can be denoted as \(\text{RS}(n,k) \). The number \(n \) and \(k \) must obey the following constraint:

\[
0 < k < n < 2^m + 2
\]

(5-1)

For the most conventional \(\text{RS}(n,k) \) code, the relationship between \(n \), \(k \) and \(m \) is

\[
(n, k) = (2^m - 1, 2^m - 1 - 2t)
\]

(5-2)

Where \(n - k = 2t \) is the number of parity symbols that are added at the end of \(k \) symbols being encoded.

The \(\text{RS}(n,k) \) code is capable of correcting any combination of \(t \) or fewer errors. One can say that the decoder has \(n - k = 2t \) redundant symbols to “spend,” which is twice the amount of correctable errors. For each error, one redundant symbol is used to locate the error, and another redundant symbol is used to find its correct value. So, if the RS decoder knows the error’s location in advance, it just needs one redundant symbol to correct it. That is the erasure-correction capability of the RS codes. For the \(\text{RS}(n,k) \) code, it can correct up to \(n - k \) erasures within the block, no matter where these erasures locate. RS codes can be designed to have any redundancy. However, the increase of redundancy will lead to the increase of complexity to implement the high-speed RS decoder. So, in practice, RS codes with redundancy no greater than 8 are often adopted.

In practice, \(m \) is often selected as 8 so that the block length \(n \) will be 255 symbols. The codes with so large block length are not flexible to be processed in other modules of the communication system. So, we often use shortened RS codes by removing parts of the information symbols. For example, the UWB standard is able to use RS codes of 23 encoded symbols, while still retaining the 8-bit symbol structure of a length-255 code.

The shortened RS code the UWB standard uses can be described as \(\text{RS}(23,17) \). It is obtained by shortening a systematic \(\text{RS}(255, 249) \) code. The method for shortening is to force the first 232 information symbols to be zeros. Since these 232 symbols are known to the receiver, they are not transmitted. It should be noted that the performance of the shortened RS code is no less than its un-shortened
counterpart.

The two codes can be both specified using the generator polynomial \(g(x) \) over the Galois field \(F \) \([1]\). \(g(x) \) can be expressed as

\[
g(x) = \prod_{i=1}^{6} (x - \alpha^i) = x^6 + 126x^5 + 4x^4 + 158x^3 + 58x^2 + 49x + 117
\] (5-3)

Where \(x \in F \) and the coefficients are given in decimal notation.

We are not going to elaborate how to generate the RS codes and how to decode them in this section. See \([6]\) \([13]\) \([17]\) for more information about the RS codes.

5.2 The Architecture of Concatenated Decoder

In the UWB standard, no interleaver is used between the inner code and outer code, and thus, iterative decoding cannot be employed. The typical concatenated decoder consists of a Viterbi decoder that delivers hard decisions at its output followed by an errors-only or errors-erasure RS decoder. We hope the inner decoder can output the soft information to the outer decoder, so the performance can be improved. The SOVA decoder is a very suitable candidate for this kind of inner decoder because of its low complexity. Since the SOVA decoder provides soft information to the RS decoder, we hope that the RS decoder can accept these soft outputs. There are several existing algorithms for soft decoding RS codes \([18]\)\([19]\). But unfortunately, the large alphabet size of the RS code precludes the use of maximum likelihood decoders due to very high computational complexity. The research of soft input RS decoder is out of the range of this thesis so we will only research the method to concatenate SOVA decoder and hard input RS decoder.

As introduced in the above section, RS codes have the remarkable property that they are able to correct any set of \(n-k \) symbol erasures within the block. Furthermore, the RS decoder is capable of correcting a block of symbols if the number of errors \(n(error) \) and the number of the erasures \(n(erasure) \) among the block satisfy the following expression

\[
2n(error) + n(erasure) \leq n-k
\] (5-3)

According to the above expression, we can extend the error-correcting capability of RS decoder by marking some of the unreliable symbols as erasures.

It should be noted that the soft output of SOVA decoder is the reliability per bit
while the reliability per byte is required by the RS decoder. So we have to develop a strategy to convert the bit reliabilities to the symbol reliabilities. No optimum transformation exists because the SOVA output is correlated [7].

A simple suboptimal approach is to use the minimum of the bit reliabilities corresponding to a symbol as the symbol reliability. The idea is that, we regard a symbol reliable only if all of its bits are reliable. We name it as the ‘min’ approach here.

Another suboptimal approach is to use the sum of bit reliabilities corresponding to a symbol as the symbol reliability. This strategy assumes the SOVA outputs are independent. So the symbol probability can be computed as the product of all the corresponding bit probability. Since the bit reliability is the logarithmic ratio of the bit probability, we can take the sum of the sum of bit reliabilities as the symbol reliability approximately. We name it as the ‘sum’ approach here.

Because no optimum transformation exists, we cannot mark the erasures in the block absolutely correctly. So it’s better to prepare several possible erasure vectors, and select one vector from them to test whether the decoder can correct the errors. For an erasure vector, a ‘1’ means that the data symbol is to be replaced with an erasure symbol, and a ‘0’ means that the data symbol is passed unaltered. Before constructing all the possible erasure vectors, we should first set up a list of the locations of the least reliable symbols in a block of RS codewords to be decoded. The values of the 23 bits in the erasure vector are assigned according to this list. If the number of least reliable symbols in the list is denoted as \(n(\text{unreliable}) \), the total number of possible erasure vectors \(n(\text{vectors}) \) can be computed as \(C_{n(\text{unreliable})}^{n(\text{erasure})} \).

Table 5-1 The combinations of errors and erasures

<table>
<thead>
<tr>
<th>Number of errors</th>
<th>Number of erasures</th>
<th>Decoding Capability</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>0</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

According to Equation (5-3), the number of errors and erasures can be configured as table 5-1. The decoding capability in the table is the sum of number of errors and number of erasures. The RS decoder can achieve this number of decoding capability only when all the erasures are marked correctly, which is not often the
Analyzing this table, the number of erasures should be 4 or 6 if we want to have obvious improvement in the decoding performance. In this thesis, we set \(n(error) \) and \(n(erasure) \) to be 1 and 4 respectively. This decision is made based on the following two considerations.

First, by using this configuration, the decoding capability is only 1 less than the maximum decoding capability. But one error can exist outside of the list of erasures. This is very useful when we cannot locate the erasures absolutely correctly.

Second, the total number of possible erasure vectors \(n(vectors) \) is attractive for hardware implementation if the number of erasures is 4. If \(n(unreliable) \) is 5, then \(n(vectors) \) is 5. Only two copies of RS decoder are needed to ensure continuous decoding. If the number of erasures is 6, \(n(unreliable) \) should be at least 4 and more copies of RS decoder are needed to ensure continuous decoding. The reason for this is explained in detail below.

Figure 5-2. Architecture of SOVA-RS concatenated decoder

The proposed architecture of the SOVA-RS concatenated decoder is shown in Figure 5-2. The bit reliability \(\hat{L}_b \) is packed into the byte reliability \(\hat{L}_a \) in the so-called Bit to Byte Reliability Converter. At first, the error-only RS decoding mode is used. If the RS decoder succeeds in decoding the RS code words in this mode, the decoding is finished and the corresponding information sequence is delivered. The correctness of the decoded symbols is checked in the so-called Correctness Checker, which is in essence the syndrome compute block of the RS decoder. The syndrome is the result of a parity check performed on the input code block to determine whether it is a valid member of the codeword set. If in fact it is a member, the syndrome has value 0. Any nonzero value of syndrome indicates the
presence of errors.

If the RS decoder fails in the error-only RS decoding, it will turn into the errors-and-erasures decoding mode. The RS decoder will accept an erasure vector from the so-called Erasure Vector Generator every decoding round. If the RS decoder fails in a decoding round, a new erasure vector will be provided to it until the decoder succeed or all the possible erasure vectors have been tested.

Then let’s calculate how many copies of RS decoders are needed to ensure continuous decoding. Because the SOVA decoder is bit oriented and every block of RS codes have 184 bits, the RS decoder should finish decoding in 184 clocks to ensure continuous decoding.

The Correctness Checker needs 23 clocks to judge whether the current block of RS decoding result is correct or not. And the decode latency of the RS decoder is 40 clock cycles [20], among which the syndrome computing takes 23 clocks. Because input 23 symbols to the RS decoder keep the same in every decoding round, so we need to do the syndrome computing for only 1 time. Thus an additional decoding round will cost additional 40 clock cycles. And it should be noted that when the 184 hard decisions are output from SOVA decoder, the syndrome computing can be carried out at the same time. So, if continuous decoding is expected, at most 4 decoding rounds can be done. So if \(n(\text{unreliable}) \) is 5, we need two copies of RS decoder working concurrently to ensure continuous decoding. And if \(n(\text{unreliable}) \) is increased to 6, at least 4 copies of RS decoder are needed to working concurrently. The number of RS decoders will become unacceptable if \(n(\text{unreliable}) \) is greater than 6.

Figure 5-3 illustrates the decoding performance of the SOVA-RS concatenated decoder if the code rate of the convolutional code is 1/3. The figure also shows the decoding performance comparison when the two kinds of bit to symbol reliability transformation approaches are used. In this figure, the block error rate (BLER), instead of BER, is used to reflect the decoding performance of the concatenated decoder. It can be seen that the ‘min’ approach performs a little better than the ‘sum’ approach. Using the ‘min’ approach, the SOVA-RS concatenated decoder can achieve about 0.35 dB additional coding gain than the Viterbi-RS concatenated decoder when the BLER is \(10^{-3} \).
In both the two approaches, the Bit to Byte Reliability Converter can be implemented with low complexity. But compared to the ‘sum’ approach, the ‘min’ approach has an advantage which can be used to save the hardware cost of the SOVA decoder. In the ‘min’ approach, we use the minimum of the bit reliabilities corresponding to a symbol as the symbol reliability. So we can decrease the bits needed to represent the path differences by replacing all the path difference values greater than a certain threshold with the threshold. Thus the several most significant bits to represent the path differences can be removed. Simulation results show only 4 bits are needed to represent the path differences without affecting the decoding performance of the concatenated decoder. The corresponding threshold is 4’b1111. If the 3 most significant bits of a path difference value are not 3’b000, then we set the path difference to be 4’b1111, otherwise, we only take its 4 least significant bits to represent the path difference. In this way, 12288 bits can be saved in Delay line2. So, in this thesis, we use the ‘min’ approach to convert the bit reliabilities to the symbol reliabilities.

Figure 5-3. Decoding performance comparison of the two approaches

Figure 5-4 shows the decoding performance will not have attractive
improvement if we increase $n(\text{unreliable})$ to 6. The corresponding $n(\text{vectors})$ will be increased to 15 and the number of RS decoders will be unacceptable if we still hope the concatenated decoder can decode continuously.

![Graph showing decoding performance]

Figure 5-4. Decoding performance if $n(\text{unreliable})$ is increased to 6

Figure 5-5 to Figure 5-6 show the decoding performance of the concatenated decoder when the code-rate of the convolutional code is 1/2 or 5/8 (Because the DCM modulation needs to divide the input data into groups of 200 bits. We don’t think it is compatible with the convolutional-RS concatenated codes. So we only test the 3 kinds of code rate corresponding to QPSK modulation.). We can see from these figures that the SOVA-RS concatenated decoder can achieve about 0.3dB~0.35dB performance gain compared to the traditional Viterbi-RS concatenated decoder when BLER is 10^{-3}. These figures also show that only about 0.05dB additional performance gain can be achieved if $n(\text{unreliable})$ is increased from 5 to 6. So, in this thesis, the number of least reliable symbols is selected as 5.
Figure 5-5. Decoding performance, convolutional code rate $R = 1/2$

Figure 5-6. Decoding performance, convolutional code rate $R = 5/8$
Chapter 6 Implementation Results

The SOVA decoder designed in this thesis is modeled using the Verilog HDL, which is a popular hardware description language. The Verilog HDL provides a means of describing a digital system at a wide range of levels of abstraction, and, at the same time, provides access to computer-aided design tools to aid in the design process at these levels.

The Verilog model is organized as Figure 6-1 shows. In this figure, m_top_sova is the top module of the SOVA decoder. It invokes 5 sub-modules: m_bmu, m_acsu, m_smu_tf, m_pcu and m_rmu. These 5 sub-modules are the models of the BMU, ACSU, SMU, PCU and RMU respectively. The sub-module m_abs is invoked by m_acsu to calculate the absolute value the path metric approximately. And the sub-module m_dpram is the model of dual port RAM.

The Verilog model is verified by using Questasim 6.4d, which is a popular tool for simulation and verification. A MATLAB model of the SOVA decoder has been built in advance. This MATLAB model is described similarly to the Verilog model, so that most of the important signals in the Verilog model have their corresponding variables in the MATLAB model. Thus the MATLAB model can help to debug the Verilog model.

The verified Verilog model is synthesized on the Xilinx Virtex5 XC5VLX330 FPGA (field programmable gate arrays) by using ISE 10.1. The synthesize report shows that the minimum clock period of the SOVA decoder is 2.91ns. The critical path of the decoder is the tracing-back operation (including the “tracing-back” operation among the tail state registers) in module m_smu_tf. This operation requires selecting one bit from a 64-bit signal in one clock, which is very time consuming when implemented on FPGA. Except for this operation, the CSA

Figure 6-1. Organization of the SOVA decoder model

64
operation in the module m_acsu has the second longest delay. Its delay is 2.55ns and is about 13% less than the delay of the tracing-back operation. It’s hard to re-optimize the tracing-back operation to shorten its delay.

Table 6-1 shows the Place & Route report of the SOVA decoder when implemented on Xilinx Virtex5 XC5VLX330 FPGA. The post Place & Route simulation shows that the decoder can operate at the frequency as high as 200MHz.

Table 6-1 Place & Route report of the SOVA decoder

<table>
<thead>
<tr>
<th>Device Utilization Summary</th>
<th>Used</th>
<th>Available</th>
<th>Utilization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slice Logic Utilization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Slice Flip Flops</td>
<td>4,012</td>
<td>207,360</td>
<td>2%</td>
</tr>
<tr>
<td>Number of Slice LUTs</td>
<td>5,979</td>
<td>207,360</td>
<td>3%</td>
</tr>
<tr>
<td>Number of route-thrus</td>
<td>545</td>
<td>414,720</td>
<td></td>
</tr>
<tr>
<td>Slice Logic Distribution</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of occupied Slices</td>
<td>2,085</td>
<td>51,840</td>
<td>4%</td>
</tr>
<tr>
<td>Number of LUT Flip Flop pairs used</td>
<td>6,539</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IO Utilization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of bonded IOBs</td>
<td>18</td>
<td>1200</td>
<td>1%</td>
</tr>
<tr>
<td>Specific Feature Utilization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of BlockRAM/FIFO</td>
<td>36</td>
<td>288</td>
<td>12%</td>
</tr>
<tr>
<td>Total Memory used (KB)</td>
<td>1296</td>
<td>10,368</td>
<td>12%</td>
</tr>
</tbody>
</table>
Chapter 7 Conclusions

This thesis describes the development and design of a high-throughput low-power Soft-Output Viterbi decoder of constraint length $K = 7$. The decoder supports any code rate defined in the ECMA-368 UWB standard.

The input symbols to be decoded are quantized to seven levels instead of the traditional eight levels. In this way, the number of bits needed to represent the path metric can be reduced from 10 bits to 8 bits. Thus, the delay of ACSU, which is often the throughput bottleneck of the decoder, can be decreased and its hardware implementation overhead can also be reduced. The quantized symbols are calculated in BMU to get the branch metrics, where only simple addition and subtraction is needed to be carried out.

The throughput of the ACSU is increased in further by adopting the modified CSA structure proposed by E.Yeo. Compared to the traditional ACS structure, the delay of CSA structure is reduced by removing one adder from its critical path, at the cost of doubling the hardware implementation overhead.

In the SOVA decoder, the delay line storing the path metric difference of every state contains the major portion of the overall required memory. The depth of the memory is determined by the decode latency of SMU. Two kinds of traditional SMU architecture, the RE method and TB method, are introduced and compared. Both of them are not suitable for our SOVA decoder. A novel hybrid survivor path management architecture is proposed in this thesis. It is modified based on the trace-forward method and combines the merits of RE method and TB method. This hybrid survivor path management architecture can decode continuously so that high decoding throughput can be obtained. And no more than one trace-forward unit work concurrently, so the architecture will not consume much power.

The trellis diagram of the encoder is analyzed carefully and it’s found that the first $K - 1$ stages of PCU are unnecessary and can be removed without affecting the decoding results. RMU is optimized in the same way.

The way to concatenate the SOVA decoder and RS decoder is also researched. The RS codes used in the ECMA-368 standard is RS(23,17), which can correct arbitrary 3 symbols errors among the code block. This thesis proposes an easy to implement scheme to concatenate the SOVA decoder and RS decoder under various kinds of convolutional code rates. The scheme uses a property of the RS decoder,
that is, the decoding capability of RS decoder can be extended by marking some of
the symbols with least reliability as erasures, which is named as errors-erasures RS
decoding. Simulation results show that, using this scheme, the concatenated
SOVA-RS decoder can achieve about 0.35dB decoding performance gain compared
to the conventional Viterbi-RS decoder.
The decoder is implemented on Xilinx Virtex5 XC5VLX330 FPGA. The post Place &
Route simulation shows that the throughput of SOVA decoder can be as high as
200Mbps. However, in ECMA-368 UWB standard, the highest data rate is 480 Mbps.
This throughput requirement is supposed to be met through custom circuit design and
technology scaling.
Chapter 7 Conclusions

References

Chapter 7 Conclusions

