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Abstract

In the 18th and 19th centuries the branch of mathematics that would later be known as
fractal geometry was developed. It was the ideas of Benoit Mandelbrot that made the
area expand so rapidly as it has done recently, and since the publication of his works
there have for fractals, and most commonly the estimation of the fractal dimension,
been found uses in the most diverse applications. Fractal geometry has been used in
information theory, economics, flow dynamics and image analysis, among many different
areas.

This thesis covers the foundations of fractal geometry, and gives most of the fun-
damental definitions and theorems that are needed to understand the area. Concepts
such as measure and dimension are explained thoroughly, especially for the Hausdorff di-
mension and the Box-counting dimension. An account of the graph-theoretic approach,
which is a more general way to describe self-similar sets is given, as well as a tree-
construction method that is shown to be equivalent to the graph-theoretic approach.

Fraktalgeometri, graf- och tradkonstruktioner

Sammanfattning

Pa 1800- och 1900-talen utvecklades det omrade som senare skulle komma att kallas
fraktalgeometri. Det var Benoit Mandelbrots idéer som fick omradet att vixa sa my-
cket som det gjort de senaste decennierna och alltsedan hans arbeten publicerades har
det for fraktaler, och da framst for skattningar av den fraktala dimensionen, funnits
anvandningsomraden i de mest skilda tillampningar. Bl.a. har fraktalgeometri anvants
i informationsteori, ekonomi, flddesdynamik och bildanalys.

Detta examensarbete gar igenom grunderna av omradet fraktalgeometri och forklarar
de flesta av de grundliggande definitionerna och satserna som behovs for att forsta
omradet. Saker sasom matt och dimension forklaras genomgaende, speciellt for Haus-
dorffdimensionen och Ladrdkningsdimensionen. Den generellare metoden att med graf-
teori beskriva sjalvlika méngder forklaras och forklaras gér d&ven en metod att med
tradkonstruktioner beskriva méngderna. Dessa tva metoder visar sig vara ekvivalenta.
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Chapter 1

Introduction

This report describes the master thesis project “Fractal Geometry, Graph and Tree Con-
structions” performed at the Department of Mathematics and Mathematical Statistics
at Umea University.

The history of fractal geometry is filled with work done on nowhere differentiable
but everywhere continuous functions and curves, self-similar sets and sets with fractional
dimension. The work and the results was initially seen as anomalies, and any suggestion
that i.e. a non-differentiable curve might have some practical application was not at all
taken seriously. This situation has been completely reversed today.

The first ideas concerning fractal sets came well over hundred years ago, at the end
of the 19th century, but have only received practical use since the 1970’s. The use of
fractal and multifractal geometry today spans from physics, through economy, biology,
medicine, to computer science; among many other areas.

More and more applications of fractal geometry are found. Some of the current
applications are, among others, image compression and enhancement, computer graphics
and special effects in movies, music generation and pattern classification.

The goal of this thesis is to give a recollection of the theory of fractal geometry
and connect this theory to the theory of the much broader class of sets created by
graph-directed constructions and tree constructions.

This thesis describes fractals geometry from the very most simple definitions of
set theory and non-formal explanations of fractals, through the topological dimension
and similarity dimension, to the much more general definitions of Hausdorff and Box-
counting dimensions. For the theory to be understood, some general measure theory
is described; starting with the Lebesgue measure to the more general notions. A brief
account of how to estimate the fractal dimension, by using the Box-counting theorem,
is given. Algorithms that are used to generate fractals are also explained.

In the later chapters, the classical theory of fractal geometry is broadened to con-
structions using graphs and trees. It turns out that the Iterated Function Systems and
tree constructions are just special cases of the graph-directed approach.

1.1 Prerequisites

This thesis does not require any previous experience in fractal geometry. All theory will
be built bottom-up, and all graduate students and alike should be able to follow the
text. Some of the theory might anyway be new to some readers, in which case Chapter 4
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probably should be read first. Readers without experience in reading mathematical
proofs should still be able to follow this text without so much reduced comprehension.
In most cases, the proofs are merely for completeness and sometimes they are omitted.
The only mathematical prerequisites are basic set theory and a moderate competence
in calculus; especially the notion of limits is important.

1.2 Thesis Outline

This thesis is organized as follows. Chapter 1 is this introduction. Chapter 2 states the
problem at hand, i.e. describe the goals and purpose of this thesis. Chapter 3 gives a
brief summary of the history of fractal geometry, but also describes some of the scientific
and real world work that involve fractal geometry.

In Chapter 4 can be found some theory that might be unknown to the reader. The
reader should browse this chapter before embarking the rest of the thesis, just to make
sure to have the correct prerequisites. This chapter is a short and concise recollection
of what is needed to understand the thesis.

Chapter 5 introduces the concept of a fractal and defines what a fractal is. The best,
and most general definition there is will be stated, and an explanation of what a fractal
is will be given. The concept of fractal dimension will be explained, and descriptions
of a number of different (though, in some cases equivalent) definitions are included. A
number of properties, which all good definitions of fractal dimension should possess will
be stated. Finally, a description on how to estimate the fractal dimension numerically
is given.

In Chapter 6 we describe how to generate fractals. Three methods, or algorithms,
are given that are build on the Iterated Function Systems approach. They are The
Deterministic Algorithm and two versions of the Random Iteration Algorithm. There is
a dimension that goes together with the particular Iterated Function System that will
be described here; this dimension is the general case of the similarity dimension that
was explained in Chapter 5.

In Chapter 7 the graph-directed constructions are described. The connection to
the classical fractal geometry, and Iterated Function Systems are established, and the
general case is explained. How to find the Hausdorff dimension of the graph-directed
constructions is also explained.

The recursiveness of fractals, and especially fractals that stem from Iterated Function
Systems are easily interpreted as a recursion tree, and thus the entire fractal can be
explained using a tree. It turns out that trees in fact are metric spaces in their own right,
and therefore have e.g. Hausdorff dimensions. With the right metric and translation
functions, the Hausdorff dimension of the tree is exactly that of the underlying set
that the tree describes. Trees can also be described using what is called the branching
number and growth rate. These numbers relate to both the Hausdorff and lower and
upper Box-counting dimensions.

There are several arithmetic operations that can be applied to sets, and therefore to
fractals sets. The results for set union is described in Chapter 9. It turns out that the
properties of union for classical fractal sets is equivalent to graph-directed constructions
and tree constructions.

In Chapter 10, the results and conclusions of this thesis are stated. Since this thesis
work was mostly to summarize the equalities between the classical fractal geometry
and the more recent results, the theoretical results are few. But some insights and
conclusions are drawn. Also, the method described in Chapter 5 to estimate the fractal
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dimension is tested with a number of fractals generated by the methods described in
Chapter 6. Also, the result that graph-union is done by matrix augmentation is tested.

The theorems and proofs in this thesis are collected from a vast amount of sources,
but several of them are those of the author. When a proof is someone else’s, the theorem
is preceded by the proper citation, thus, when a citation is not given, the proof is done
by the author. There are some cases, however, where no citation for e.g. a definition
is given, but the statement is still not that of the author. These are the cases when a
definition or theorem is considered too general or elementary to show, and there is no
specific reference that states it or that it is ubiquitous in the literature. These cases are
few, and shall hopefully not confuse the reader.
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Chapter 2

Problem Description

In this chapter the problem statement, the guide to do this master’s thesis, is given.
Over the course of the work, the original plan was followed quite well, but since the
specifications where rather loose, excavations have been done in some different directions.

2.1 Problem Statement

The theory of fractal geometry have grown for well over a hundred years by now. The
classical theory is pretty well understood and therefore, quite naturally, new areas of
fractal geometry have evolved. The most prominent being multifractal geometry and
graph-directed constructions. A study of the first area is found in i.e. [Nil07] and [L&£07].
The latter area was introduced by Mauldin and William in [MW88], and is what this
thesis is focused on.

2.2 Goals

The goal of this thesis is to correlate the theory of classical fractal geometry to the
theory of graph-directed constructions.

A literature study of the classical fractal geometry as well as the theory of graph-
directed constructions should be performed and documented.

The equivalence or differences between the two approaches should be evaluated and
compared.

If time be, a study of tree constructions should be done as well, comparing the
approach to that of the classical fractal geometry and the graph-directed constructions.

2.3 Purpose

The area of graph-directed constructions of fractals is likely to grow in the years to come,
with more and more applications following. Therefore, a study of how the classical theory
relate to the new theory is of great interest to the research area.
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Chapter 3

Previous Work

Often when approaching a new area of science, we look at its history. There is always
much to learn from history, and this is particularly true in mathematics, in which all
(or at least most) new results are explained in terms of old ones.

This chapter is a summary of the history of fractal geometry. The main source for
this summary is [Edg03], where some of the most influential articles since the 1880’s are
reprinted. The articles that made the most sense in this context, and that felt the most
important for this thesis are mentioned here. But in addition to to those articles several
other results are mentioned here that also seems to have made a strong impression on
the fractal geometry community.

The study of the special class of sets, which nowadays is known as Fractals, begun
already in the 19th century, and in the beginning of the 20th century, the interest in this
area flourished and much literature was written on the subject. The interest subsided
however, until it renaissanced in the 1970’s, much thank to Benoit Mandelbrot’s work,
and the advancement of computers in science. Computers made it possible to draw these
figures in a way that was never possible before. The Fractal dimension became one of
the most popular tool with which these sets where described.

The field of mathematics blossomed in the end of the 17th century, when Isaac
Newton and Gottfried Leibniz developed calculus. Many ideas came and went during
the 18th century and by the 19th century, the mathematicians thought they had the area,
by most part, figured out. But in 1872, Karl Weierstrass wrote an article where he proved
that there are functions which are everywhere continuous, but nowhere differentiable,
see [Wei72]. This was something completely new, the mathematical community had
assumed that the derivative of a function could be undefined only at isolated points.
Much research followed, and several counterexamples to the classical calculus was found.

In 1904, the Swedish mathematician Helge von Koch wrote an article about a contin-
uous curve, constructed from very elementary geometry, that did not have a tangent at
any of its points, see [vK04]. This curve is described in Example 5.1.2. Ernesto Cesaro
immediately recognized this geometrical figure as being self-similar, and did much work
on the theory of self-similar curves. The work of Cesaro was taken further in a 1938
paper by Paul Lévy, in which he introduces new, more general, self-similar curves.

The idea of using a measure to extend the notion of length was used by Georg Cantor,
the father of set theory, in 1884 in [Can84], and Emile Borel in 1895 when he studied
“pathological” real functions. Their ideas where extended by Henri Lebesgue in 1901
in [Leb01] by the Lebesgue integral.
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The ideas of Lebesgue where developed further by Constantin Carathéodory in 1914,
who adapted the theory to lengths in arbitrary spaces. This was later generalized
further by Felix Hausdorff in 1919 in [Haul9] to extend to non-integral dimensions.
This contribution is the foundation of the theory of fractional dimensions. The Hausdorff
measure provides a natural way of measuring the s-dimensional volume of a set and the
Hausdorff dimension is today generally considered the Fractal dimension of a set. Much
of the early work with the Hausdorff dimension was done by Abram Besicovitch in the
1930’s.

Karl Menger wrote two papers in a communication with the Amsterdam Academy of
Sciences, in the beginning of the 20th century. In these papers, he introduced the ideas of
a topological dimension. These ideas where new, but other authors had, independently
of him, the same, or similar, ideas; e.g. Henri Lebesgue.

The definition of the Box-counting dimension dates back to the late 1920’s, and is
due to Georges Bouligand. It has become a very popular definition because of its ease
of numerical computation, but also rigorous computation. In his 1928 paper, Bouligand
defined several different variants of the new definition of dimension. In the same paper
there can also be found theory of the dimension of a Cartesian product of two sets being
the sum of the dimensions of the two sets.

In the 1940’s and 1950’s, several different authors proved results of arithmetic prop-
erties of fractal sets. In a 1946 paper, Patrick Moran proves results concerning the
Hausdorff dimension of a Cartesian product of two sets. The general result was proven
in a 1954 paper by J. M. Marstrand. In a 1954 paper, [Mar54], Marstrand also proved
several results concerning projections of fractal sets. This was later generalized by Pertti
Mattila in 1975 in [Mat75]. Authors like Falconer, Howroyd and others investigated this
further. Theoretical results for the intersection of fractal sets was also introduced by
J. M. Marstrand, and can be found in [Mar54]. But more work was done by Jean-Pierre
Kahane and Pertti Mattila in the 1980’s.

In the 1960’s, Benoit Mandelbrot did work on self-similar sets, and in a 1967 paper,
see [Man67], he describes the Similarity dimension. Mandelbrot formalizes the work of
Lewis Fry Richardson, who noticed that the length of a coast line depends on the unit
of measurement used. He also suggests that the theory of fractional dimensions and
self-similarity could be used not only in mathematics, but in other branches of science
as well. Mandelbrot coined the term Fractal in 1975, see [Man75]. Mandelbrot also
says that self-similar objects seldom are found in nature, but that a statistical form of
self-similarity is ubiquitous. He manifests in his 1982 book [Man82] the idea that fractal
geometry is better at describing the nature than classical Euclidean geometry is.

Mandelbrot’s book inspired literally thousands of new papers in science, engineering,
social sciences, economics and other areas. The introduction of computers in science
made it possible to do impressive colorful visualizations of the sets that earlier was only
existing in theory and possibly on paper.

The study of self-similar sets became one of the main fields of study in fractal ge-
ometry in the 1980’s and 1990’s. The theory of self-similar sets was formalized by
John Hutchinson in a 1981 paper, but popularized by Michael Barnsley in his 1988
book [Bar88]. The iterated function system approach, used to create self-similar sets,
was extended to graph-directed constructs by Mauldin and Williams in a 1988 paper.

Measures have always been a fundamental tool in the study of geometrical fractal
sets. But because there exists natural fractal measures in many constructions in fractal
geometry, i.e. self-similar measures, fractal properties of measures received increased
attention in the 1980’s and 1990’s. The idea leads to the notion of a dimension of a




measure.

Multifractal analysis, which became one of the most popular topics in geometric
measure theory in the 1990’s, studies the local structure of measures and provides much
more detailed information than the uni-dimensional notion that was popular earlier.
The multifractal spectra was first explicitly defined by physicists Halsey et al. in 1986
in [HIK™86].

Recent uses of fractal geometry and multifractal analysis is mainly in (medical) image
analysis. In a 1989 paper, [KC89], Keller et al. used the Box-counting dimension and
the concept of lacunarity to discriminate between different textures. They showed that
the fractal dimension alone is not enough to classify natural textures. In a 2002 paper,
[CMVO02], Caron et al. used the multifractal spectrum for texture analysis and object de-
tection in images with natural background. In a 2003 paper, [NSM03], Novianto et al.
used the local fractal dimension in image segmentation and edge detection. In 2006,
Stoji¢ et al., [SRRO6], used multifractal analysis for the segmentation of microcalcifica-
tions in digital mammograms. Their method successfully detected microcalcifications in
all test cases.

Another area that recently has attracted a great deal of attention is analysis on
fractals. This area studies dynamical aspects of fractals, such as how heat diffuse on a
fractal and how a fractal vibrate. But other areas have been explored as well, such as
Fourier or wavelet analysis on fractals.

The area of fractal geometry is young and prosperous, and we can safely conjec-
ture that the area will continue to grow for many years to come, with new subareas,
discoveries and applications likely to pop up all the time.
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Chapter 4

Prerequisites

This chapter aims to give the reader a brief review of theory used in this thesis, and
also, perhaps most importantly, to explain some of the less basic ideas (concerning both
set theory and general mathematics) and notations used in this work. This review is by
no means complete, but should give the reader a good enough summary to be able to
understand the general topics in the text.

4.1 Set Theory

In almost every area of mathematics, the notion of sets, and ideas from set theory is
used. A set is a well-defined collection of objects, where the objects are called members,
or elements of the set. Well-defined in the preceding definition means that we are always
able to determine whether an element is in a set or not [Gri90].

In this text, the theory we work with is mostly concerned with sets of points from
the n-dimensional Fuclidean space, R™.

We will use upper case letters to denote sets, and lower case letters to denote elements
of the set. Sometimes we will use the coordinate form of the points in R™, and denote
them = = (x1,...,2,), we then call them vectors. However, it is the object = that is the
member of the set R™. For a set A, we will write e € A to say that the element e is a
member if the set A (e is in A), and e ¢ A to say that e is not a member of A (e is not
in A). Sometimes, to distinguish vectors from scalars (i.e. real or complex numbers),
we denote vectors with a bold face font, i.e. as x.

We will write {e : condition} to denote the set of all elements of some set fulfilling
a given condition. E.g., the set of all even numbers is denoted:

{22 :2 € Z}.

Remember that Z is the set of integers, Q is the set of rational numbers, R is the set
of real numbers, and C is the set of complex numbers. We will use a superscript * to
denote only the positive elements of a set, e.g. ZT is the set of all positive integers.

Vector addition and scalar multiplication (multiplication with a scalar, not to be
confused with the scalar product) are defined as usual, so that x+y = (x1ty1,..., 2,
yn) and Az = (Ax1,...,Az,), and also so that A+ B={z+y:2 € ANy € B} and
AA = {)z : 2 € A}. Scalar product, or dot product, is defined as follows:

11
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Definition 4.1.1: Let v = (v1,...,vy,) and u = (u1,...,u,) be vectors in coordinate
form, then their dot product is

veu = wa (4.1)
i=1

We define subsets as follows [Gri90]:

Definition 4.1.2: If A, B are sets, we say that A is a subset of B, and write A C B
or B D A, if every element in A is also an element of B. Also, if B contains at least
one element that is not in A, we say that A is a proper subset of B, and write A C B,
or BD A. Thus, if A C B, then

Ve(r € A=z € B). (4.2)

If a set is empty, that is, it contains no elements, it is called the null set, or empty
set. It is a unique set denoted by @ or {}.
We define union, intersection and difference of sets as follows:

Definition 4.1.3: For two sets A, B, we define the following:
a) The union of A and B is: AUB={z:x€ AVx € B}
b) The intersection of A and B is: ANB={z:x € ANz € B}
¢) The difference of A and B is: AB=A—-B={x:x€ ANz ¢ B}

Two sets are called disjoint if AN B = (). Remember that AUB = BU A and
ANB =BNA AUu(BUC) = (AUB)UC and AN(BNC) = (AnB)NnC,
Au(BNC)=(AuB)N(AUC)and AN(BUC)=(ANB)U(ANC), AUA=A
and ANA=A, AUl =Aand AnP =0, and ANR" = A and AUR" = R". Proofs
of these properties are omitted, but can be found in [Gri90]. The complement of a set,
A C B, is the set B\ A.

The Cartesian product of two sets A and B is the set of all ordered pairs {(a,b) :
a€ ANb € B}, and is denoted A x B. If ACR™ and B C R™, then A x B C R*t™,

We can use the dot product to define the length of a vector [Roe03]:

Definition 4.1.4: If v € R" is a vector, we define the length, |v|, of v as /v - v, where
we take the positive square root. If x,y € R™ are vectors, or points in R™, then the
distance between them is the length, |z — y|, of the vector x — y.

In the above definition (and in the following), | - | denotes the Euclidean norm,

|z = La(z) =

for x = (x1,...,2n), but it could in general be any norm. A more general setting for
lengths is in a metric space [Edg90]:

Definition 4.1.5: A metric space is a set S together with a function p : S xS — [0, 00)
satisfying:

a) p(z,y) =0 if and only if x = y;
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b) p(x,y) = p(z,y);
c) p(x,2) < p(z,y) + p(y, 2)-

The number p(x,y) is called the distance between the points x and y, and the function
itself is called a metric on the set S.

A metric space may be written as a pair (5, p). For the Euclidean spaces, R", the
metric is the euclidean distance defined above, i.e. p(x,y) = L2(x — y).

The infimum of a set, denoted inf(A), is the greatest element that is smaller than,
or equal to, all elements in A, i.e. the greatest m such that m < x for all z € A. If such
an element does not exist, we define inf(A) = —co. If A = (), then inf(A) = co. The
supremum of a set, denoted sup(A), is the smallest element that is greater than, or equal
to, all elements in A, i.e. the least number m such that z < m for all z € A. If such an
element does not exist, we define sup(A4) = co. If A = (), then sup(A) = —co. Intuitively,
the infimum and supremum can be thought of as the minimum and maximum of a set
respectively, but need not be members of the set themselves, and they always exist.

The diameter of a non-empty set A is defined as diam(A) = |A| = sup{p(z,y) :
x,y € A}, with the convention that || = 0. A set is bounded if it has finite diameter,
and unbounded otherwise. The distance between two non-empty sets A, B is defined as
dist(A, B) = inf{p(x,y) : « € A Ay € B}. The §-neighbourhood, or §-parallel body, As,
of a set A is defined as As = {b: inf,ec4 p(a,b) <}, with & > 0. It is the set of points
within distance ¢ of A [Fal97].

We define the closed and open balls of center x and radius r by

B(x) ={y: p(z,y) <7}

and

Bl (x) = {y: plz,y) <r}
respectively. Thus, a closed ball contains its bounding sphere. If a,b € R and a < b,
we write [a,b] for the closed interval {z : @ < z < b} and (a,b) for the open interval
{z :a < x <b}. [a,b) denotes the half-open interval {z : a <z < b}.

A set A is open if there for every x € A is some € > 0 such that B2(x) C A, i.e. the
distance between any point in A and the edge of A is always greater than zero.

If S is a space, and A C S. A point z € S is called a limit point of A if every open
set containing x also contains at least one point y € A such that z # y. A set is closed
if every limit point of the set is a point in the set. A set is said to be compact if it is
both closed and bounded.

A set is called clopen if it is both closed and open. In any space S, the empty set
and the entire space S are clopen.

The intersection of all closed sets containing a set A is called the closure of A, and
is written A. The closure of A is thought of as the smallest set containing A [Fal97].

A cover of a set A is a countable (or finite) collection of sets that cover A. Le., if
C = {U;} is a collection of subsets of A, then C is a cover of A if

UmzA

More generally, a cover of a set A C X is a countable (or finite) collection of subsets
U; C X such that
Yui 2 A
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If C is a cover of A, then a subcover of C is a subset of C which still covers A.

A set is said to be finite, if there is a bijection between it and a set of the form
{1,2,...,N}, where N is zero or a positive integer. Le., if we can list the elements in
the set by enumerating them. An infinite set is a set that is not finite.

An infinite set is said to be countable, if its elements can be listed in the form
T1,T2,. .., Where every element has its specific place in the list. Otherwise the set is said
to be uncountable. Remember that Z and Q are countable, but that R is not. See [Fla98]
for a good explanation of countability.

A space, S, is connected if the only simultaneously open and closed sets (clopen sets)
are S and the empty set. Less formally we can say that S is connected if we can move
continuously from any one point of the space to any other point of the space. A subset of
a connected space S is a connected set if it is a connected space when seen as a subspace
of S. A connected component of a space is a maximal connected subset, i.e. a connected
subset to which we cannot add any point and keep it connected. A space is said to be
totally disconnected if all connected components are singletons. A space is said to be
disconnected if it is not connected.

There is a special class of sets that need to be mentioned. For that, we need the
following definition [Edg90]:

Definition 4.1.6: A collection % of subsets of a set F' is called a o-algebra on F if
and only if:

a) ), FeZF;

b) if Ae Z#, then F\Ae .7;

c) if A1, Az, ... € F, then ;o Ai € F;

d) if A1, As,... € .F, then ey Ai € F;

e) if A,Bec F, then AAB € .Z.

We now define this special class of sets as follows [Fal90, Edg90]:

Definition 4.1.7: The class of Borel sets is the smallest collection of subsets of a
metric space, (S, p), with the following properties:
a) every open set and every closed set is a Borel set;

b) all subsets in a o-algebra generated by Borel sets are Borel sets. Ie. the union
or intersection of every finite or countable collection of Borel sets is a Borel set,
and the set difference between Borel sets is a Borel set.

The above definition says that Borel sets are sets that can be constructed from open
or closed sets by repeatedly taking countable unions and intersections. The Borel sets
are measurable. In this text, almost all theory deals with Borel sets.

4.2 Calculus

Let S and T be two metric spaces and let x € S. A function h : § — T is said to be
continuous at x if and only if for every € > 0, there is § > 0 such that

p(z,y) <6 = p(h(z),h(y)) <e.
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A function h : S — T is a homeomorphism of S onto T if and only if it is bijective,
and both h and h~! are continuous. Two metric spaces are homeomorphic if and only
if there is a homeomorphism of one onto the other.

A property of a space is called a topological property if and only if it is preserved by
a homeomorphism.

4.3 Linear Algebra

Vector addition and scalar multiplication where defined above as x+y = (z1%y1,...,Tnt
yn) and Az = (Ax1,...,Ax,), respectively. A combination of these operations gives a
linear combination A\ix1 + Aaxa.

Vectors are either column vectors,

Z1
x = ?
Tn
or row vectors,
Yy = [ylv"'ayn]'
Sometimes, to save space, column vectors are denoted by their transpose as
z=[z1,..., 25" .

A vector with only zeros is called the zero vector and is denoted by 0.
The dot product was defined in the previous section as:

Definition 4.3.1: Let v = (v1,...,v,) and u = (u1,...,u,) be vectors in coordinate
form, then their dot product is

i=1

If the dot product of two vectors is zero, i.e. v -u = 0, the vectors are called
perpendicular.

We will say that vectors are linearly independent if they fulfill the following crite-
ria [Str05]:

Definition 4.3.2: A sequence of vectors, vi,...,v, are called linearly independent if
the only linear combination that results in the zero vector is Ovy + - -+ + Ouy,, thus the
sequence of vectors are linearly independent if

kivi + kovo + -+ + kpv, =0, ki=0fori=1,...,n. (44)

A matrix is a rectangular table of elements, in which the elements are real or complex
numbers, but could be any objects that allows for vector addition and scalar multipli-
cation. A matrix, A, of size m X n, has structure

a1,1 a12 ... Q1n
a2.1 a22 ... Q2n

Gm1 Qm2 - Gmn
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We may simplify this notation and write
A = (ai,j)mxna

for the matrix with m rows and n columns. The elements of the matrix, A, is identified
by A;;, meaning the element in the ith row and jth column. A square matrix with ones
on the diagonal, and zeros outside of the diagonal is called an identity matriz. A vector
is a special case of a matrix, with only one row or one column.

A system of linear combinations, e.g.

AMaZi+ . F AT, = b1

)\m,lxl +...F )\m,nxn = bma
is simplified by a matriz equation as
Mz =0,

in which M is a coefficient matriz with elements M;; = A; j, = is the column vector
x=[z1,...,7,]7 and b is the column vector b = [by,...,b,]7T.

And eigenvector to a matrix, A, is a vector that does not change direction when
multiplied by A, but might be stretched or shrunk. I.e. Az = Az, where A is the factor
with which z is stretched or shrunk. The number X is the eigenvalue corresponding to
the eigenvector x. The number A is an eigenvalue if and only if det(A — AI) = 0.

A matrix is said to be non-negative if all elements of A are greater than zero, i.e.
a;; > 0, and we denote this by A > 0. A matrix is called positive if a; ; > 0, denoted
by A > 0 and similarly A < 0 if the matrix is negative. If all elements of the matrix
are zero, it is denoted by A = 0. These notions are valid for vectors also.

The norm of a matrix is a function || - || : Amxn — R that fulfills the following
properties [Str05]:

Definition 4.3.3: If A is an m x n matriz and k is a scalar, then
a) |A[l =0
b) |A|| =0 if and only if A =0
c) |[FA] = [l A].

The norm of a matrix is a natural extension to the norm of a vector, which fulfills
the same properties.

4.4 Graph Theory

A graph is a pair, G = (V| E), of sets with E C V x V. V is the set of vertices (or nodes),
and E is the set of edges of the graph, G. A graph is called directed (or a digraph) if
the edges between vertices have an implied direction, and undirected otherwise. In Fig-
ure 4.1 a) is an example of an undirected graph with vertex set V' = {1, 2, 3,4}, and edge
set E = {{1,2},{1,3},{2,3},{3,4}}, and in Figure 4.1 c) is an example of an directed
graph with the same vertex set, but with edge set E = {(1,2),(1,3),(3,2),(4,3)}. In
the undirected case, the edge set is unordered, and ordered in the directed case.
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Normally, the vertices are painted as dots, and edges are painted as lines connecting
the dots. The direction of an edge is normally indicated by an arrow. How this is done
is irrelevant and merely a way to illustrate the connections between vertices.

The vertex set of a graph G is denoted V(G), and the edge set of G is denoted E(G).
When the context is clear, we will, however, write v € G or v € V instead of v € V(G)
for some vertex v in G, and e € G or e € E instead of e € E(G).

Two vertices, x and y, are adjacent, or neighbours if there is an edge joining them.
Instead of writing {z,y}, or (z,y), for that edge, we will simplify the edge as zy. The
set of all edges between vertex x and vertex y is denoted E, ,. If the graph is directed,
the vertex x is called origin, source or initial vertex of the edge, and y is called terminal
or terminating verter. A vertex can have an edge to itself, i.e. {z,z} or (a,a), and is
then called a loop. If all vertices of G are adjacent, and the graph is loop-free, then the
graph is called complete.

Let G1 = (V1, E1) and Gy = (Va, Es) be two graphs. If Vo C V; and E5 C E4, then
G is a subgraph of G1, and Gy is a supergraph of G3. We write Gy C G4, i.e. Gy
contains Gs.

The set of neighbours of a vertex v in a graph G is denoted by N¢(v), or N(v) if
the context is clear. The degree of a vertex, dg(v) = d(v) is the number of edges at v,
i.e. the number of neighbours of v. In the directed case, we count in and out degrees,
id(v) and od(v) respectively. A vertex of degree 0 is called isolated. If all vertices of a
graph, G, have the same degree, say k, then the graph is k-regular, or just regular. The
average degree of a graph G is

d(Q) = |17| > d(v). (4.5)

veV
A path in a graph is a non-empty graph P = (V| E) such that
V={xo,...,2x} E={xox1,...,Tp—12%}, (4.6)

with x; # x; when ¢ # j for all 0 < 4,5 < k. The number of edges of a path is its length.
We may write P = xox1 ...%k, and call it a path from zg to zp. If P = xg...xx is a
path, then C = P + xpx9 = o1 ... xx—1Tkxo is called a cycle. The length of a cycle is
its number of edges, and the cycle of length k is called a k-cycle. If the graph is directed,
we call a path and a cycle a directed path and a directed cycle, respectively.

1 2 1 2 1 2
4 4 4
3 3 A/‘ 3 A/.
a) b) c)

Figure 4.1: a) A graph, G, with V = {1,2,3,4}, and E = {{1,2},{1,3},{2,3}, {3,4}}.
b) The same graph as in a). c¢) The graph G with edge set E = {(1,2),(1,3),(3,2),
(4,3)}.
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A graph, G = (V, E), is called a multigraph if for some x,y € V, there are two or
more edges in E, i.e. (x,y) or {x,y} exists multiple times in E. If there are k edges
between two vertices z, y we say that the edge {z,y}, or (x,y), has multiplicity k.

A graph, G, is called connected if for any two distinct vertices, z,y € V, where x # y,
there is a path joining x and y. A graph that is not connected is called disconnected. A
directed graph G is called strongly connected if for all x,y € V, where x # y, there is a
path of directed edges from x to y.

A connected subgraph is called mazimal if there are no other vertices and edges that
can be added to the subgraph, and still leave it connected. A connected component is a
maximal connected subgraph. A strongly connected component is a maximal connected
subgraph that is strongly connected. The set of all strongly connected components of a
graph G is denoted SC(G).

The edges of a graph may have a weight assigned to them. This weight is normally
a (positive) real number, but could be anything. The weight could be e.g. the cost to
travel between the two vertices, or the length between them and so on. The weight of an
edge is denoted w(e) or w(zx,y), for e € E and x,y € V. If there is no edge between two
vertices, i.e. {x,y} ¢ E or (z,y) ¢ E, the weight is set to some appropriately default
value, normally 0, —oo or co. A graph with weights like this is denoted a weighted graph.

The adjacency matrix, A := (@i j)nxn, of a graph G with n vertices is defined by

0 otherwise. (4.7)

L { 1 if’Uﬂ}j S
Qi =

I.e. the adjacency matrix indicates whether there is a directed edge between vertices v;
and v;. If the matrix is symmetric, i.e. A = AT then the matrix corresponds to an
undirected graph, otherwise it corresponds to a directed graph. The adjacency matrix
allows for loops, and the non-zero entries can indicate the number of edges between
vertices, i.e. it can describe multigraphs. When the entries in the matrix are allowed to
be other than 0 and 1, the entries can denote the weights between vertices.

4.4.1 Trees

An acyclic graph, i.e. a graph without any cycles, is called a forest. A connected forest
is called a tree. The vertices of degree 1 in a tree are called leaves. Any two leaves, and
in fact even any two vertices, of a tree are connected by a unique path. The vertices of
a tree can always be enumerated, even if the tree is infinite. A connected graph with n
vertices is a tree if and only if it has n — 1 edges. Figure 4.2 is an example of a tree.

If any edge is removed from a tree, the tree will be disconnected, and if any edge is
added to the tree between vertices that are not adjacent will add a cycle to the tree.

It is often convenient to consider one vertex of the tree as special. That vertex is
denoted the root of the tree, A. A tree with a root is called a rooted tree. A tree without
root is called a free tree. With a root, there is a natural orientation on the tree; towards
or away from the root.

If o is a vertex, then |o| denote the number of edges on the unique path from A to
o. We write o < 7 if ¢ is on the unique path from A to 7; 0 < 7 if 0 < 7 and o # T;
o—T1ifto<7and|o|=|r|—1. If 0 — 7, o is said to be the parent of 7, and 7 is said
to be the child, or successor of o. If o #A, then T denotes the unique vertex such that
—

o — 0.
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Figure 4.2: An example of a tree
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Chapter 5

Fractal Geometry

When dealing with the class of geometrical objects called Fractals, the classical Euclidean
Geometry is not enough to describe their complex nature. In the past decades, a new
branch of geometry, called Fractal Geometry, have grown and received a great deal of
attention from a variety of fields.

This chapter will describe the general theory of fractals and their geometry. First,
we will see a short explanation of what a fractal really is. Then some various notions of
dimension, something very important in Fractal Geometry, will be described, followed
by a description of some methods to estimate the fractal dimension.

Some notions and theory in this chapter might be new to the reader, in which case
we recommend reading Chapter 4 first.

5.1 What is a Fractal?

In his founding paper (see [Man75]) Benoit Mandelbrot coined the term Fractal, and
described it as follows:

A [fractal is a] rough or fragmented geometric shape that can be subdivided
in parts, each of which is (at least approzimately) a reduced-size copy of the
whole.

The word is derived from the Latin word fractus meaning broken, and is a collective
name for a diverse class of geometrical objects, or sets, holding most of, or all of the
following properties [Fal90]:

i. The set has fine structure, it has details on arbitrary scales.

ii. The set is too irregular to be described with classical euclidean geometry, both
locally and globally.

iii. The set has some form of self-similarity, this could be approximate or statistical
self-similarity.

iv. The Hausdorff dimension of the set is strictly greater than its Topological dimen-
ston.

v. The set has a very simple definition, i.e. it can be defined recursively.

21
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Property (iv) is Mandelbrot’s original definition of a fractal, however, this property
has been proven not to hold for all sets that should be considered fractal. In fact, each
of the above properties have been proven not to hold for at least one fractal. Several
attempts to give a pure Mathematical definition of fractals have been proposed, but all
proven unsatisfactory. We will therefore, rather loosely, use the above properties when
talking about fractals [Fal90].

Perhaps a couple of examples are required to get a better understanding of the
geometrical objects we are talking about.

Example 5.1.1: The Cantor set, see Figure 5.1, is created by removing the middle
third segment of a unit line segment, call it Ey. We now have two line segments, each
one third of the original line’s length, call this set Eq, see Figure 5.1 b). We get Es by
removing the middle third of the two line segments of Ey, see Figure 5.1 ¢). If we apply
the rule (removing the middle third of the line segments) on Ey_1 we obtain Ey, and
when k tends to infinity, we get the Cantor set in Figure 5.1 d).

We see that in the kth iteration, there is are 2F disjoint intervals, each of length
(1/3)k. Thus, the total length of the Cantor set at iteration k is (2/3)%. The limit of

this is .
. 2
i (3) =0

and thus, the total length of the Cantor set is zero. This length is what we later will call
the measure of the set. We note that the endpoints of the intervals are members of the
set, and notice that in each iteration, there are 2 new endpoints. Thus, when k — oo,
the number of points in the cantor set tends to infinity.

Q0 T
S N N N

Figure 5.1: a) One, b) two, c) three, and d) several iterations of the Cantor set

Example 5.1.2: The von Koch curve, see Figure 5.2, is created as follows: Start with
a unit line segment Ey. Remove the middle third of Ey and replace it by two lines, each
of the same length as the removed piece, call it E1. We now obtained an equilateral
triangle (with the base segment gone) as Figure 5.2 b) suggests. Ey now has four lines
of equal length, % of that of Ey. We can now create FEo by applying the same procedure
as when we created Ey, and thus obtains the curve in Figure 5.2 ¢). Thus, applying the
rules on Eyx_1, we obtain Ey, and when k tends to infinity, we get the von Koch curve
of Figure 5.2 d).

We note that in each iteration, we have 4% line segments of length 3=%. Thus, the
length of the von Koch curve tends to infinity as k — oo, i.e.

im (1) =
e \3) T

The von Koch curve can be proven to be continuous, but without tangent at any of its
points. Read more about the von Koch curve in [vK04].
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Figure 5.2: a) One, b) two, c) three, and d) several iterations of the von Koch curve

a) b)

Example 5.1.3: The Sierpinski triangle is created by replacing an equilateral triangle
of unit size (Figure 5.3 a)), Eo, by three triangles of half its size, leaving the middle
region empty, gwing E1, see Figure 5.3 b). Es is created by replacing each of the three
triangles of Eq by three half-sized triangles, leaving the middle region empty as before,
see Figure 5.8 ¢). Thus, as in Example 5.1.2, applying the rules on Ey_1, we obtain
Ey, and when k tends to infinity, we get the Sierpinski triangle of Figure 5.8 d).

We see that the set Ej consists of 3% triangles, each with side length 27%. Thus,
the total area of the Sierpinski triangle is 3% - (27F)2 . \/3/4, which tends to zero when
k — o0, i.e.

Note that in each iteration, we always keep the line segments that constitute the boundary
of the triangles from every earlier iteration, and we always get new line segments from
the new triangles. Starting with three line segments, we get one new for each triangle of
the kth iteration. Thus, in the kth iteration we have 3+ >y 3% line segments. This
goes to 0o as k — oo, which means that the length of the Sierpinski triangle is infinite.

a) b) ¢) d)

Figure 5.3: a) One, b) two, ¢) three, and d) several iterations of the Sierpinski triangle,
or Sierpinski casket

Objects in nature often have fractal properties (i.e. a tree has a stem, on which
each branch is a reduced size copy of the step), and therefore, fractals are used to
better approximate objects in nature than classical euclidean geometry can do [Man82].
Natural objects with fractal properties could be trees, clouds, coast lines, mountains,
and lightning bolts.
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5.2 Fractal Dimension

An important feature of fractal geometry is that it enables a characterization of irregu-
larity at different scales that the classical Euclidean geometry does not allow for. As a
result, many fractal features have been identified, among which the fractal dimension is
one of the most important [JOJ95].

From the works of Euclid, see [Roe03], we know that the dimension of a point is
considered 0, the dimension of a line is 1, the dimension of a square is 2, and that the
dimension of a cube is 3. Roughly, we can say that the dimension of a set describes
how much space the set fills [Fal90]. We will build the theory of fractal dimension
from the basic Euclidean definition to the more mathematically exhaustive definitions
of Hausdorff and Box-counting dimensions.

One might ask why there are several different definitions of dimension. This is simply
because a certain definition might be useful for one purpose, but not for another. In
many cases the definitions are equivalent, but when they are not, it is their particular
properties that makes them more suitable for the task at hand.

5.2.1 Topological Dimension

The intuitive feeling of dimension that was mentioned in the beginning of this section is
called the Topological dimension. Topology is the study of the geometrical properties of
an object that remains unchanged when continuously transforming the object [Kay94].
Thus, the lines in Figure 5.4 both have topological dimension 1, since we could stretch
them both to fit each other, and we know that a line has dimension 1.

U\ \JV

a) b)

Figure 5.4: a) A straight line, and b) a rugged line. Both a) and b) have Topological
dimension 1.

We need the following definitions [Edg90]:

Definition 5.2.1: If A and B are two covers of a metric space, S, then B is a refinement
of A if and only if for every B € B there is A € A with B C A. We say that B refines
A. (E.g. a subcover of A is a refinement of A.)

Definition 5.2.2: The order of a family A of sets is < n if and only if any n + 2 of
the sets have empty intersection. It has order n if and only if it has order < n but does
not have order <n — 1.

The Topological dimension of a set is always an integer, and is 0 if the set is totally
disconnected. The set should be considered zero-dimensional if it can be covered by
disjoint sets. The Topological dimension of R™ is n (this can be proven, but we will not
do that now.) Formally, the topological dimension is defined as [Edg90]:

Definition 5.2.3: Let A be a set, and n > —1 be an integer. We say that A has
Topological dimension dimt A < n if and only if every finite open cover of A has an
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open refinement of order < n. The Topological dimension is n if and only if the covering
dimension if <n but not <n — 1. If the Topological dimension if < n for no integer n,
then we say that dimt A = oco. The only set with Topological dimension -1 is the empty
set, i.e. dimp () = —1.

In Figure 5.5 you can see, more descriptively, how the topological dimension of the
line in Figure 5.4 b) is found. This version of the Topological dimension (there are
several different definitions of Topological dimension, which in general are equivalent)
is called the Covering dimension.

5.2.2 Similarity Dimension

Imagine measuring the length of a seashore coastline, if we try to approximate the
length of the coastline using a fixed sized ruler, we would find that the length increases
as the length of the ruler decreases, because we are taking finer and finer details into
account. The ruler is therefore inadequate to describe the complexity of a geographical
curve [Man67].

The von Koch curve is a theoretical equivalence of a coastline, and as we saw in
Example 5.1.2, the length of the von Koch curve tends to infinity as k tends to infinity
(i.e. when we use a shorter ruler). But also, since the von Koch curve is created from
finite line segments, we know that the curve must occupy zero area in the plane. Thus,
we cannot use neither length, nor area to describe the size of the curve. See [vK04] for
details.

Mandelbrot suggests in [Man67] that dimension should be considered a continuous
quantity that ranges from 0 to infinity, and in particular that curves could have their
ruggedness described by a real number between 1 and 2 that describes their space-filling
ability [Kay94]. This is what we will investigate in this and the following sections.

A transformation S : R™ — R™ is called a congruence or isometry if it preserves
distances (and thus also angles), i.e. |T(x) —T(y)| = |z — y|, for all z,y € R™. The
mapping is thus done without deforming the object [Roe03]. A similar transformation
is a mapping T : R™ — R™ where there is a constant ¢ such that |T'(z) —T(y)| = c|lx —y|,
for all z,y € R [Fal90].

Consider a unit line segment, which thus is 1-dimensional in the classical sense. If

Figure 5.5: A cover on the rugged line from Figure 5.4 b), and its refinement. Note
that every point on the line is an element of at most two subsets of the refinement cover.
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a)

Figure 5.6: a) A unit length line magnified two times will make the magnified object
be made up of two identical unit line segments. b) A unit square magnified two times
gives four cubes of unit size. ¢) A unit cube magnified two times gives eight unit cubes.

we magnify the line segment twice, we will have two connected line segments both of
the same length as the original one, see Figure 5.6 a). Now we look at a unit square in
the plane, a 2-dimensional object. Magnify it twice (the side lengths, not the area) and
we will have a similar square, made up of four connected unit squares, see Figure 5.6 b).
A unit cube, 3-dimensional of course, magnified two times will result in a cube made up
of eight cubes of unit size, see Figure 5.6 c).

Note that the number of copies of the original object when magnified two times is
two to the power of the dimension. That is

mP =N, (5.1)

where m is the magnification, D is the dimension, and N is the number of copies of
the original object when magnified m times. Now, if we solve for D in Equation 5.1 we
obtain

log N
D=2" (5.2)
logm
Of course, this is accurate for the objects in Figure 5.6, because 1 = log2/log?2,

2 = log4/log2, 3 = log8/log2, but what happens with the more complex objects
of Example 5.1.2 and Example 5.1.37
The von Koch curve gives, in Ejy1, four copies of Fj, of size 1/3. Thus, we find D

as the number
log4

log1/3

It is more than 1-dimensional, but less than 2-dimensional. This agrees with the idea
that neither length nor area can describe the curve, simple because it is more than a
line (the length between any two points on the curve is infinite), but does not fill the
plane either (it has zero area).

The Sierpinski triangle is in Ey41 made up of three copies of Ej, of size 1/2, thus the
dimension is

=1.2618....

_ log3
~ logl/ i
All triangles are replaced by smaller triangles, and the area of each triangle tends to
zero. Note that the dimension of the Sierpinski triangle is higher than that of the von
Koch curve, we say that the Sierpinski triangle fills the plane more than the von Koch
curve does.
The number obtained in the above way is called the Similarity dimension of a set, and
might appear to be a suitable way to calculate the dimension. However, the Similarity

=1.5849....
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dimension can only be calculated for a small class of strictly self-similar sets. In the
following sections we will describe some other definitions of dimension that are much
more general [Fal90].

5.2.3 Hausdorff Dimension

The similarity dimension is not general enough to describe all sets, and also, as we will
see in Chapter 6, it can easily be fooled to give a too large value for the dimension.

The most general notion of dimension is the Hausdorff dimension, which is defined
for all metric spaces. This dimension is the topic of the current section. To be able to
understand the more general notions of dimension, such as the Hausdorff dimension, we
first need to set the basics with some elementary Measure Theory.

The Notion of a Measure

Before delving into the mathematics of fractal dimensions, we need to briefly look at
some notions of measure. We use measures in the definition of dimension, and in any
case, measures are important in fractal geometry, in some form or another, and we need
to set the basics here.

A measure is exactly what the intuitive feeling tells us it is; a way to give a numerical
size to a set such that the sum of the sets in a collection of disjoint subsets have the
same measure as the whole set (the union of the subsets). The numerical size of a set
could e.g. be the mass distribution, or the electrical charge of the set. We define a
measure, u, on R™ as follows [Fal90]:

Definition 5.2.4: The measure p assigns a non-negative value, possibly co, to subsets
of R™ such that:

a) u() = 0; (5.3)
b) u(A) < u(B) if A C B; (5.4)

c) If A1, Ag, ... is a countable (or finite) sequence of sets then

1t (U Ai> < Zu(Ai) (5.5)

with equality in Equation 5.5, i.e.

z (U Ai> = u(A) (5:6)

=1

if the A; are disjoint Borel sets.

This follows our intuitive feeling that an empty set has no size (a), that a smaller
set has smaller size (b), and, as noted above, that the sum of the sizes of the pieces is
the size of the whole, Equation 5.6.

If A D B, we can express A = B U (A\B), and thus, by Equation 5.6, if A and B
are Borel sets, we have:

H(A\B) = pu(A) — u(B). (5.7)
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In fact, if X is a set, a set £ C X is called p-measurable if and only if every set A C X
satisfies
i(A) = (AN E) + p(A\E), (5.8)

A probability measure is a measure p on a set A, such that p(A) = 1.

The support of a measure is the set on which the measure is concentrated. The
support of a measure p, written spt p, is the smallest closed set with complement of
measure zero. More formally we define the support of a set as [Fal90]:

Definition 5.2.5: The support of measure, i, is the smallest closed set, F C R", such
that
w(R™MX) =0. (5.9)

We say that p is a measure on a set A, if A contains the support of p.

If 11 is a measure on a set A, the set is said to be finite or have finite measure if
u(A) < co. The set A is said to be o-finite or have o-finite measure if there exists a
countable sequence of sets {A;} such that A = Uf; A; and p(A4;) < oo.

The Lebesgue Measure

The Lebesque measure, £, extends the idea of a length to a large collection of subsets of
R. For open and closed intervals, we have £(a,b) = £*a,b] = b—a. If A =J,[ai,b;]
is a finite or countable union of disjoint intervals we let £*(A) = Y (b; — a;) be the
length of A, which leads to the formal definition of Lebesgue measure [Fal90]:

Definition 5.2.6: The Lebesgue measure, £ of an arbitrary set is:

Z1(A) :inf{i(bi —a;): AC D[ai,bi]} (5.10)

This measure follows our intuitive feeling of a length in R, but extends also to areas
in R2, volumes in R?, and to the volume of n-dimensional hypercubes in R™:

vol"(A) = Z"(A) = (b1 — a1)(ba — a2) -+ - (bn — an). (5.11)

The n-dimensional Lebesgue measure, .£" may be thought of as an extension to the n-
dimensional volume for a large collection of sets. By simply extending Definition 5.2.6,
we obtain [Fal90]:

Definition 5.2.7: The Lebesgue measure on R™ of an arbitrary set is:

ZL"(A) = inf { ivoln(Ai) A C D Ai} (5.12)

We have the following proposition [Edg90]:

Proposition 5.2.8: The Lebesque measure fulfills the properties of Definition 5.2.4.
That is, we have
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a) L
b) £
c) Dg/pn
d) £

0)=0;

A) < 2"(B) if AC B;

Uiz, Ai) < 3575, 27 (Ai);

Ui, Ai) = D2, L™(Ai) if A; are disjoint Lebesque measurable sets.

—~ T N

Proof. For a), note that ) is the subset of any arbitrarily small set, i.e. the subset of a
set with Lebesgue measure zero. For b), any cover of B is also a cover of A. See [Edg90]
for proofs of ¢) and d) for .£1. O

The following example illustrates the use of the above rules, and how to use the
Lebesgue measure on sets:

Example 5.2.9: The Cantor dust has Lebesque measure 0.

Calculation. The Cantor set, C, is the limit of C' = limy_. o, E%, as described in Exam-
ple 5.1.1. The set consists of 2¥ disjoint intervals of length 37%. Thus, Z*(C) < 2+#3~*
by Proposition 5.2.8 ¢). This limit is 0, so Z1(C) = 0. Le. the length of the Cantor set
is 0, as we showed in Example 5.1.1. O

Results are sometimes said to hold for almost all subsets, or almost all angles, and
so on. The meaning of this is the following:

Definition 5.2.10: A property that holds for almost all members of any given set will
mean all members of the set with the exception of a subset of measure zero.

The following example illustrates the consequences of the above definition:

Example 5.2.11: We can say that almost all real numbers are irrational with regard to
the Lebesque measure. The rational numbers are countable, i.e. Q = {x1,x2,...}, and
thus we can use Proposition 5.2.8 ¢) and write p(Q) < Y72, u({z;}) = 0, since every
x; is a point. Thus p(Q) = 0.

Not all sets are Lebesgue measurable, but all normal sets, and all sets we are dealing

with are. We have the following propositions [Edg90]:

Proposition 5.2.12: A compact set K C R™ is Lebesque measurable. An open set
U C R” is Lebesgue measurable.

Proof. See the proof in [Edg90]. The proof is in R, but extends to R™ trivially. O

Lemma 5.2.13: Let A C R™. Then A is measurable if and only if, for every ¢ > 0,
there exists an open set U and a closed set F with F C A CU and ZL"(U\F) < e.

Proof. Omitted, see [Edg90]. O

Proposition 5.2.14:
a) Both ) and R™ are Lebesgue measurable.
b) If A CR" is Lebesgue measurable, then so is its complement R™\ A.
c) If A and B are Lebesgue measurable, then so are AU B, AN B and A\B.
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d) If A, is Lebesgue measurable for n € N, then so are |J, ey An and (e An-

neN

Proof. For a), note that £ () = 0 and R" N [—n,n] X -+ X [—n,n] is measurable for
all n.

For b), note that if U C A C V, then R"\V C R"\ A C R"\U and (R™"\U)\(R"\V) =
V\U.

For the intersection in ¢), note that if Uy € A C V; and Uy C B C Va, then
U1 n UQ g ANB g Vé n Vé and (V1 n %)\(Ul n UQ) g (Vl\Ul) U (‘/Q\UQ) This shows
that ANB is measurable. Now, AUB = R™\ ((R™\A4) N (R™\B)), so AUB is measurable.
And A\B = AN (R™\B), so A\B is measurable.

Finally, for d), note that by ¢) we may find disjoint measurable sets B,, with the
same union as A,, so that Proposition 5.2.8 is applicable. The intersection follows by
taking complements. O

This leads us to the following result [Edg90]:
Corollary 5.2.15: FEvery Borel set in R™ is Lebesgue measurable.

Proof. Open sets are measurable by Proposition 5.2.12. Countable (or finite) unions
and intersections of open sets are measurable by Proposition 5.2.14. Hence, the Borel
sets of R™ are Lebesgue measurable by Definition 4.1.7. O

The Hausdorff Measure

The Hausdorff dimension is the oldest, and probably the most important. As opposed
to many of the other definitions of dimension, the Hausdorff dimension is defined for all
sets, and is convenient for mathematicians since it is based on measures — The Hausdorff
measure. We have the following definitions [Fal90, Edg90]:

Definition 5.2.16: Let F be a subset of S, a metric space, and s € RT, then for any
0 >0 we let

A5’ (F) = inf { i(diam U:)® : {U;} is a §-cover of F} (5.13)

=1

We try to minimize the sum of the s-powers of the diameters of the covers of F' with
diameter at most 4. When § decreases, the class of possible covers of F' is reduced, and
J°(F) increases, and thus approach a limit as § — 0. We define [Fal90, Edg90]:

Definition 5.2.17: Let
H°(F) = %ir% 257 (F). (5.14)

This limit exists for all subsets of a metric space S, but is usually 0 or co. We call
H°(F) the s-dimensional Hausdorff measure of F.

It can be shown that the definition above is invariant of the choice of metric when
calculating the diameter in Equation 5.13 [The90].
¢ fulfills the properties of Definition 5.2.4. We have the following proposition:

Proposition 5.2.18: The Hausdorff measure fulfills the properties of Definition 5.2.4.
That is, we have
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a) H*
b) x*
c) H®
d) 7

M) =0;
A) < #5(B) if AC B;

U2y Ai) < 2052, 70°(Ad);
U A;) = Zi:l H(A;) if A; are disjoint Borel sets.

A/—\/\/—\

Proof. For a), by the definition, .7;* tends to zero when § — 0 for any cover of (). For
b), any cover of B is also a cover of A, so that for each positive 0, J4°(A) < 3 (B),
let § — 0 and the proposition follows. The proofs of ¢) and d) are omitted. O

We have the following corollary
Corollary 5.2.19: If a set F is countable or finite, then S°(F) =0, for all s > 0.

Proof. Follows from the definition and Proposition 5.2.18. |

We also have the following proposition [Edg98]:

Proposition 5.2.20: The 0-dimensional Hausdorff measure is a counting measure.
Every subset A C S is measurable; if A is an infinite set, then H°(A) = oo; if n is a
non-negative integer and A is a set with n elements, then #°(A) = n.

Proof. Follows from the definition. See details in e.g. [Edg98]. O

The Hausdorff measure generalizes to the intuitive idea of length, area, and volume.
We have the following proposition [Edg90]:

Proposition 5.2.21: In the metric space R, the one-dimensional Hausdorff measure,
S, coincides with the Lebesque measure, L.

Proof. Omitted, see [Edg90]. O

In the general case, for subsets of R", the s-dimensional Hausdorff measure is just a
constant multiple of the Lebesgue measure [Edg90, Fal90]:

Proposition 5.2.22: If F' is a Borel set of R™, then there exists positive constants such
that
anL™(F) < H(F) < b, L™ (F), (5.15)

and in particular, such that

HF) = 0l (F). (5.16)

Proof. See [Edg90] for a proof in R? of Equation 5.15, the proof generalizes to higher
dimensions. Equation 5.16 follows from Equation 5.15. O

The scaling properties of normal measures applies to Hausdorff measures as well, and
thus, on magnification by a factor A the length of a curve is multiplied by A, the area of
a figure in the plane is multiplied by A2, the volume of an object in space is multiplied
by A3, and in general, the s-dimensional Hausdorff measure scales with a factor \*. We
have the following proposition [Fal90]:
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Proposition 5.2.23 (Scaling property of the Hausdorff measure): If F C R™ and A > 0
then

JO(NF) = N H°(F). (5.17)

Proof. If {U;} is a d-cover of F then {A\U,} is a Ad-cover of AF. Hence
H5OF) < SO = X ST U < A (F) (5.15)
since this holds for any d-cover {U;}. Letting 6 — 0 gives that J€5(AF) < N55%(F).
Replacing A by 1/X and F by AF gives the opposite inequality required. [l

There is a very nice proof of Pythagoras’ theorem using the above proposition, which
is demonstrated with the following example [Bar88]:

Example 5.2.24: A right-angle triangle in R? is made up of two smaller copies of itself
(this need also be proven, but is done with some elementary geometry; see i.e. [Roe03]),
as in Figure 5.7. Clearly both transformations are similarities. The scaling factors are
b/c and a/c (see [Roe03] for a proof.) The Hausdorff measure of the triangle, T, is thus
HAT) = (b/c)?2(T) + (a/c)?>#%(T) by Proposition 5.2.18 and Proposition 5.2.23.
Multiplying by ¢ and dividing by S*(T) (assuming H#*(T) > 0) on both sides yields
the famous
a? +b% =2

a

Figure 5.7: A proof of Pythagoras’ theorem using the Scaling property of the Hausdorff
measure. The region bounded by a right-angle triangle is the union of two similar scaled
copies of itself.

How Measure Relate to Dimension

We begin with the following observation about the Hausdorff measure [Fal90]:

Proposition 5.2.25: Studying Equation 5.13 we note that for any set F and § < 1,
JE° is non-increasing with s, and thus J€° is non-increasing as well. Ift > s and {U;}

is a d-cover of ', we have
Z|U7:|t < 5t_SZ|Ui|S- (5.19)
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Thus, taking the infimum of both sides, we get
HLF) < 8 A (F). (5.20)
If we let 6 — 0 we see that if #°(F) < co then S (F) =0 when t > s.

Now, if we plot J#°(F) against s we see that there is a critical point at which
H8(F) jumps from oo to 0, see Figure 5.8. This critical value is known as the Hausdorff
dimension (sometimes called the Hausdorff-Besicovitch dimension) of F', and is denoted
dimH F.

0 T 1
0 dimyg F n
s

Figure 5.8: A plot of 7°(F) against s for some set F. The Hausdorff dimension of
F is the value s = dimyg F' at which the graph jumps from oo to 0.

Formally, we define the Hausdorff dimension as follows [Fal90]:
Definition 5.2.26: The value
s =inf{s: H°(F) =0} = sup{s: S°(F) = oo} (5.21)

such that
o if s < dimyg F

HE) = { 0 if s> dimy F (5:22)

is called the Hausdorff dimension of the set F', and is denoted dimy F. If s = dimy F,
then % (F) may be zero or infinite, or may satisfy

0 < #°(F) < oo.

This jump is easily understood by considering the dimension when measuring i.e.
the length of lines, the area of squares and the volume of cubes. We can fit an infinite
number of points on a line, but the area of a line is zero. The length of a square is
infinite, i.e. we can fit an infinite number of lines (or a curve with infinite length) on the
square, but the volume of a square is zero. A cube has infinite area in the sense that
we can fit an infinite number of planes (or a plane curve with infinite area) in the cube.
Thus, if we use a too small dimension when measuring a set, the measure is infinite, and
if we use a too large dimension when measuring, the measure is zero.

The Hausdorff dimension relates to the Topological dimension by the following propo-
sition [Edg90]:
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Proposition 5.2.27: Let S be a (possibly compact) metric space. Then dimr S <

Proof. Omitted, see [Edg90] and the references therein. O

The Hausdorff dimension fulfills the following properties:

Proposition 5.2.28: Let A, B C R"
a) If A C B then dimg A < dimy B;
b) dimyg A <n;
¢) If A is a single point, then dimpy A = 0.

d) The Hausdorff dimension is finitely stable. Ie. let A; C R™, fori=1,...,k,

then
k

dimpg g A, = 1rél%xk dimpg A4;. (5.23)

e) The Hausdorff dimension is countably stable. Le. let A; C R", fori=1,2,...,
then -

dimpyg U A; = sup dimyg A;. (5.24)

i=1 1<i<o0

Proof. a) Follows from the monotonicity of the Hausdorff measure, Proposition 5.2.18.
b) Holds by a) since A C R™ and dimy R™ = n. c) follows from the definition. A single
point can be covered by a set with arbitrarily small diameter. d) and e) are proven in
Section 9.1. O

Corollary 5.2.29: If a set F' is countable or finite, then dimy F' = 0, for all s > 0.

Proof. The proof for finite sets follows from Proposition 5.2.20 but we state a full proof
here for completeness. We note that for a single point set, Fyy, we have

A (Fy) =1 (5.25)

by the definition. Then we have, by Corollary 5.2.19 (or by Proposition 5.2.25) and the
definition of Hausdorff dimension, that dimyg Fy = 0. IL.e., by Proposition 5.2.28 we have

dimg F = dimg | J F; =0 (5.26)
=1
if F' is countable, and
dimg F = dimg | J F; =0 (5.27)
=1
if F is finite. g

We can also deduce the result of the following proposition:

Proposition 5.2.30: Let FF C R™. If F' contains an open ball, then dimyg F' = n. Also,
since R™ contains an open ball, dimyg R™ = n.
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Proof. The open ball has finite diameter, and therefore finite Lebesgue measure. We
know from Proposition 5.2.22 that

4 L(F) < A™EF) < by L"(F),

and thus the n-dimensional Hausdorfl measure of F' is finite; hence F' has Hausdorff
dimension n. [l

A consequence of Proposition 5.2.23 is the following [Edg90]:

Proposition 5.2.31: Let f(S) =S, where r > 0. Let s be a positive real number, and
let F C S be a Borel set. Then °(f(F)) = r*%(F), and thus dimyg f(F) = dimyg F.

Proof. By Proposition 5.2.23 we know that 72°(f(F)) = r*¢°(F') and thus dimy f(F) =

The problem with the Hausdorff dimension is that it is difficult to calculate, or
measure, in practice (it is not feasible to find the infimum, or the supremum, in Equa-
tion 5.21) [Fal90]. Because of this mathematicians felt the need for some other general
definition of dimension, that could also easily be calculated in practice. The answer to
this problem was the Box or Box-counting dimension, which we describe in the following
section.

5.2.4 Box-Counting Dimension

The Box-counting dimension is one of the most common in practical use. This is mainly
because it is easy to calculate mathematically and because it is easily estimated empir-
ically.

We note that the number of line segments of length § that are needed to cover a line
of length [ is [/§, that the number of squares with side length § that are needed to cover
a square with area A is A/62, and that the number of cubes with side length § that are
needed to cover a cube with volume V are V/§%. The dimension of the object we try to
cover is obviously the power of the side length, §. Now, can we generalize this to find
the dimension of any set using this method?

Let the number of boxes of side length ¢ that we need to cover an object be Ns.
Following the discussion above, the number of boxes needed to cover the object is pro-

portional to the box size [Fal90]:
C

Ns ~ 5 (5.28)
when § — 0. Thus, for the constant C' we have
Ns
li =C. 2
520 55 ¢ (5.29)
Taking the logarithm of both sides gives:
;in%(log Ns + slogd) = log C. (5.30)
We solve for s and get an expression for the dimension as
log N5 — 1 log N,
5= fim 08No —logC'_ | logNo (5.31)

520 —logd | 650 logo
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We let F be a bounded non-empty subset of R™ and Ns(F') be the smallest number of
sets of diameter at most § that covers F. Then we have the following definition [Fal97]:

Definition 5.2.32: The lower and upper Box-counting dimensions of a set F are de-
fined as
log Ns(F)

dimgF = 1ign_)i£1f ~Tog? (5.32)
and low N(F
T F = lim sup 288 (5.33)

6—0 - 1Og 4
respectively. If their values are equal, we refer to the common value as the Box-counting
dimension of F'

log Ns(F
dmszymfgiLl

.34
—0 —logd (5.34)

This says that the least number of sets of diameter § that can cover F is of the
order §~° where s = dimp F'. The dimension reflects how rapidly the irregularities of
the object develop as § — 0 [Fal90].

There are a number of equivalent definitions of the Box-counting dimension. The
differences mainly concerns the shape of the box used to cover the set. However, the
shape of the box is of no importance, and we can use both squares and circles, and their
higher dimensional equivalences. In fact, we can even use general subsets of R™ with
diameter §. As a matter of fact, any decreasing sequence d; such that dx4+1 > ¢y, for
some 0 < ¢ < 1, with ¢ tending towards 0 will do equally well; see [Fal90] for details.
In the limit, the shape will not matter [Fal97].

The following proposition establishes that we can use (hyper) cubes with side length
0 to cover a set in R™ to calculate its Box-counting dimension, and that this method is
equivalent to using sets with maximal diameter ¢ [Bar88]:

Proposition 5.2.33 (The Box-counting Theorem): Let A C R™. Cover A by closed
square bozes of side length 6 = 27™. Let N5(A) denote the number of bozes of side length
0 = 27" which intersects A. Then

. ... .logNj(A)
dimg A = th_}SIf “Togd (5.35)
and | ”
_ N
dimp A = lim sup L‘S(), (5.36)

6—0 - 10g5

is the upper and lower box-counting dimension of A, and if their values are equal, we
refer to the common value as the Box-counting dimension of F'

. . log N§(A)
A= lim —————. .
dimp lim — Togd (5.37)

Proof. The proof is from [Fal90]. Since N§(A) is the number of d-cubes that intersect
A, they are a collection of sets with diameter 6/n that cover A. Thus,

Nsa(A) < N5(A).
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For small enough §, we have §y/n < 1 and then

log N5 /= (A) < log N§(A)

—logdy/n ~ —logy/n —logé
so taking limits as § — 0
. .. JogNi(A)
dimg A < 11?L1£If nga (5.38)
and low N (A
dimpA < limsup L‘S(). (5.39)

6—0 - log d

On the other hand, any set of diameter at most J is contained in 3™ mesh cubes of side
0. Thus
N}(A) < 3"Ny(A),

and taking logarithms, dividing by logd and letting § — 0 yields

.. .log N;(A) .
th_ng “Togd dimp A (5.40)
and low N (A
lim sup log N5(4) < dimpA. (5.41)
6—0 - log d
Thus, we can equally well let N5(A) be the number of J-cubes that intersect A. O

The above proposition is widely used in practice for estimating the Box-counting
dimension of a set. Put a d-mesh on the set, and count the number of cubes that
intersect the set for various small §. The dimension is the logarithmic rate at which Ns
increases when § — 0, and this may be estimated as the slope of a log-log plot of log N5
against log 6. We will explain this in more detail in Section 5.3.

There is a very nice connection between the Lebesgue measure and the Box-counting
dimension, that the following proposition establishes [Fal90]:

Proposition 5.2.34: If FF C R"”, then

dimpF =n — lir;:s(l)lp % (5.42)
and

dimpF =n — 1ign_)i£1f % (5.43)
where Fy is the d-parallel body to F'.
Proof. Omitted, but can be found in [Fal90]. O

The above proposition is the reason why the Box-counting dimensions sometimes is
referred to as the Minkowski dimension.

The relationship between the Hausdorff dimension and the Box-counting dimension
is established by the following proposition [Fal90]:
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Proposition 5.2.35: The following is true for FF C R"
dimg F < dimp F < dimpgF (5.44)

Proof. If a set F© C R™ can be covered by Ns(F) sets of diameter ¢, then, by Defini-
tion 5.2.17,
A5 (F) < Ns(F)6°.

If 1 < 2°(F) = lims_ 2’ (F) then taking logarithms gives log Ns(F) + slogd >
log1 = 0 if ¢ is sufficiently small. Thus s < liminfs_¢log Ns(F)/ — logd so the propo-
sition follows for any F' C R™ because of Definition 5.2.32. O

The above proposition does not in general have equality. The Hausdorff and Box-
counting dimensions are only equal for reasonably regular sets, but there are several
examples where the inequality is strict [Fal90].

We have the following proposition:

Proposition 5.2.36: The Boz-counting dimension of R™ is n, i.e. dimg R™ = n.

Proof. We use Proposition 5.2.33 and note that for a hypercube, H, with side 1 in R™
we have Ni(H) = 1, Ny-1(H) = 2", Ny2(H) = 4™ and in general N, «(H) = 2*7.
Thus, for a hypercube with side length 2=% we have 2¥" hypercubes, i.e.

log No—x (H) . log 2F™ . nklog2

1 H = 1' _— = _— =
dims i —log2—* i —log2-k ol klog2

The above is in fact true for any hypercube in R", i.e. a hypercube with side length .
Let I — oo and the result follows. O

The above proposition is demonstrated with the following example [Bar88]:

Example 5.2.37: Consider the unit square in the plane, Us. It is easy to see that
Ni(Uz) = 1, Ny-1(Uz) = 4, Ny—2(Usz) = 16, No-3(Uz) = 64 and in general that
Ny« (Up) = 4F for k =1,2,3,.... By Proposition 5.2.36 we see that

log No—« (U- log 4%
dimp Uy = lim %27"(2) — lim 28

= = 2.
k—oo —log2~k koo —log 2~k

The Boz-counting dimension of a unit cube in the plane is thus 2.

The Box-counting dimension fulfills the following properties:

Proposition 5.2.38: Let A, B C R"
a) If A C B then dimp A < dimgp B;
b) dimg A < n;
¢) If A is a single point, then dimpg A = 0.

d) The upper Boz-counting dimension is finitely stable. ILe. let A; C R™, for
i=1,...,k, then
k
dimyg U A = 1r£lagxk dimygA;. (5.45)

i=1
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Proof. a) It is immediate that Ns(A) < Ns(B) for all § > 0. Thus, for all0 < § < 1, we
have
log N5(A) _ log N5(B)

0<
- —logd — —logd

Taking limits yields the result. b) This follows from a) and Proposition 5.2.36, since
A C R" and dimg R"™ = n. ¢) For each § > 0 we have N5(A) = 1. Since logl = 0, it
follows that dimg A = 0. d) is proven in Section 9.1. O

Corollary 5.2.39: The Boz-counting dimension of a finite set is 0.

Proof. This is immediate from Proposition 5.2.28 ¢) and d). But in fact it follows from
the the definition of the Box-counting dimension as well. Let A C S be the set in its
metric space (S, p), let k be the number of elements in A and let r = min{p(x,y) : z,y €
A}. Then, for any § < r/2, we have N5(A) = k. Thus, the Box-counting dimension of
Ais
dimp A = lim logk =
6—0 —logd

O

There is a problem with the Box-counting dimension, however, which at first might
seem appealing, but has undesirable consequences [Fal90]:

Proposition 5.2.40: Let F denote the closure of F. Then
dimpF = dimpF (5.46)

and -
dimBF = dlmBF (547)

Proof. Let By, ..., By be a finite collection of closed balls of radii 4. If the closed set
UX_| B; contains F, it also contains F. Hence the smallest number of closed balls of
radius 0 that cover F' is enough to cover the larger set F'. The result follows. O

Let F' be the countable set of rational numbers between 0 and 1. Then F is the entire
interval [0, 1], so that dimpF' = dimgF = 1. Thus, countable sets can have non-zero
Box-counting dimension. The Box-counting dimension of each rational number is zero,
but the countable union of these points has dimension 1.

5.2.5 Properties of Dimensions

The above definitions for the Hausdorff and upper and lower Box-counting dimensions
have several important properties in common. Some of them are the following [Fal97]:

Monotonicity: If F; C E5 then dim E; < dim Fs.

Finite sets: If F is finite then dim £ = 0.

Open sets: If F is a (non-empty) open subset of R™ then dim E = n.

Smooth manifolds: If F is a smooth m-dimensional manifold in R™ then dim E' = m.

Lipschitz mappings: If f: E — R™ is Lipschitz then dim f(F) < dim E.
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Bi-Lipschitz invariance: If f : E — f(F) is bi-Lipschitz then dim f(E) = dim E.

Geometric invariance: If f is a similarity or affine transformation then dim f(F) =
dim F.

We have already proven some of these in the sections above. The Hausdorff and the
upper Box-dimensions are also, as we have seen, finitely stable, that is dim U§:1Ei =
maxi<;<k dim E;, for any finite collection of sets { E1, ..., Ex}. The lower Box-counting
dimension is, however, not in general finitely stable. The Hausdorff dimension is also
countably stable, meaning that dimy U2, E; = sup,«; ., dimg F;. This is not true for
the Box-counting dimension, however, as was described above.

Most definitions of dimension will take on values between the Hausdorff dimension
and the upper Box-counting dimension. Thus, if dimyg F = dimgF then all normal
definitions of dimension will take on this value [Fal97].

5.3 Estimating the Fractal Dimension

The difficulty with implementing the Hausdorff dimension for numerical applications is
the need for finding the infimum and supremum for all coverings, described in Equa-
tion 5.21. When we relax this requirement, and e.g. considers a fixed-size grid instead,
we can numerically estimate the Box-counting dimension, as mentioned above, and thus
find an upper bound for the Hausdorff dimension as Proposition 5.2.35 suggests. How-
ever, as will be explained in the following chapters, and according to Proposition 6.4.5,
the Hausdorff and Box-counting dimensions are equal for most sets that are of interest
to us [The90].

When numerically estimating the fractal dimension of a set, we are faced with an
immediate problem. The number of points in a constructed set is inevitably finite, and
thus the theoretic dimension of the sets under consideration is always zero (see Sec-
tion 5.2.5). However, estimating blindly the dimension of the underlying set according
to the definitions yields, in general, very good results.

Most definitions of dimension is based on the idea of a measurement at scale §.
For each §, we look at properties of the set, but ignoring irregularities smaller than
J, and look at how these measurements change when § — 0 [Fal90]. Remember from
Section 5.2.4 that the number of bozes needed to cover a set is:

C
N§(F) ~ g,
which gives the dimension as
. log N5(F")
s =lim —=———=.
§—0 —logd

In [Man67], Mandelbrot says that geographers cannot be concerned with minute
details when they measure the length of a coastline. Simply because below a certain
level of detail, it is no longer the coastline that is being measured, but other details that
affects the length of the curve. There is no clear cross-over either, so one simply have
to choose a lower limit of geographically interesting features. A similar problem occurs
with e.g. digital images, but here we have a strictly imposed lower limit of measurement
granularity in the single pixel being the smallest measurable unit. Thus, we cannot let
0 — 0, but have to stop when § = 1. This means we will not get the true value for the
dimension this way. However, if we use successively smaller value of §, say J;, and let
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1 log Ns(F)
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Figure 5.9: Least-squares fit to the points of log Ns(F') against logd.
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Figure 5.10: Different ways to find the Box-counting dimension. We have the set F
in a), b) the number of closed balls with radius 6§ that cover F, c) the least number of
bozes of side 0 that cover F', d) the number of 6-mesh cubes that intersect F', e) the least
number of sets of diameter at most ¢ that cover F' and f) the greatest number of disjoint
balls of radius § with centers in F.

0 — 0 when k — oo, then each value of s, will differ from the correct value by just a
small amount. We can now estimate the value of s by plotting log Ns(F') against — log ¢
and take the slope of a least-squares fit to the points as the value of s, see Figure 5.9.
The dimension is thus the logarithmic rate at which Ns(F') increases as § — 0, and the
best we can do here is estimate the slope of the points we get in the bi-logarithmic plot.

It doesn’t matter what shape the boxes have when we estimate the Box-counting
dimension. Actually, it doesn’t even have to be boxes, any set with diameter § will
do equally well. In [Fal90], an argument for five different shapes can be found, but as
stated, the list could be made longer, and in the end it is the particular application that




42 Chapter 5. Fractal Geometry

decides which to use. In Figure 5.10 we can see the different methods with which we
can cover the set F.




Chapter 6

Generating Fractals

In this chapter we describe two methods, or algorithms, to create fractals. The methods
generate fractals from a set of transformations using a method called Iterated Function
Systems. The Iterated Function Systems approach is explained and proofs to its validity
are given.

There is a dimension connected with the Iterated Function System that is the general
case of the similarity dimension explained in Chapter 5. This dimension is easily fooled,
however, why a constraint called an open set condition is needed. With the constraint
active, the similarity dimension equals the Hausdorff and Box-counting dimensions.

6.1 Iterated Function Systems

Many fractals are self-similar, i.e. they are made up of parts that are similar to the

whole, but often scaled and translated. These self-similarities are not only properties of

the fractals but, as we will see, can in fact be used to generate them as well [Fal90].
We begin with the following definitions [Edg90]:

Definition 6.1.1: If S and T are two metric spaces, then a function f : S — T is
called an isometry if

pr(f(z), f(y)) = ps(z,y)

for all x,y € S. The metric spaces S and T are isometric.

Definition 6.1.2: A function g : S — T is called a similarity if there is a positive
number r such that

pr(9(),9(y)) = rps(z,y)

for all x,y € S. The number r is the ratio of g. The metric spaces S and T are said to
be similar.

Definition 6.1.3: A function h : S — S is called a contraction or a contraction
mapping if there is a constant r with 0 < r < 1 such that

p(h(x), h(y)) < rp(x,y) (6.1)

forallxz,y € S.

43
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We have the following lemma [Bar88§]:

Lemma 6.1.4: Let f : S — S be a contraction mapping on the metric space (S, p).
Then f is continuous.

Proof. Let € > 0 be given. Let s > 0 be the contractivity factor for f. Then

p(f(z), f(y)) < sp(z,y) <e (6.2)

whenever p(z,y) < §, where 6 = ¢/s. O

Definition 6.1.5: A point x is called a fixed points of a function f if and only if
f(@) = 2.

We now have a useful proposition on these definitions [Bar88]:

Proposition 6.1.6 (The Contraction Mapping Theorem): Let f : S — S be a con-
traction mapping on a complete metric space (S,p). Then f has a unique fized point
Ty E S.

Proof. Omitted, see [Bar88] or [Edg90]. O

The above theorem implies that it is possible to construct this fixed point [Edg90]:

Corollary 6.1.7: Let f be a contraction mapping on a complete metric space S. If x¢
is any point of S, and

Tnt1 = f(zn) forn >0,

then the sequence x,, converges to the fixed point of f.

An Tterated Function System is defined as follows [Bar88]:

Definition 6.1.8: An iterated function system (IFS) consists of a complete metric
space (S, p) together with a finite set of contraction mappings (or similarities) f; : S —
S, with corresponding ratios r;, for i =1,...,n. The contraction factor, or ratio of the
IFS is r = max{r;,i =1,...,n}.

The functions of an iterated function system are said to realize, or be a realization of
the corresponding ratio list. We note that a similarity is a special case of a contraction,
thus all results that are valid for contractions are equally well valid for similarities.

We need the following definition:

Definition 6.1.9: Let f1,..., fn be contractions, then we say that the set F' is trans-
formation invariant or an invariant set for the iterated function system if and only if

F=Jfi(p). (6.3)

We have the following theorem [Hut81]:
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Proposition 6.1.10: Let (S,p) be a complete metric space. For arbitrary A C S,
let {f1.....fn} be a set of contractions and F(A) = U], fi(4). Let FO(A) = A,
F1(A) = F(A) and FP(A) = F(FP~Y(A)) for p > 2. Then there is a unique compact
set K that is invariant with respect to F'. Le.

K = F(K) = | f(K). (6.4)

If A C S is any non-empty bounded set, then

Jim [y (oo B, (A) )] =0, (6.5)

and the limit is the fized point of the contraction F; (---F,

i, (A)---). In particular, we
have that

K= ﬁ FP(A) (6.6)

in which K is called the attractor of the iterated function system.

Proof. Equation 6.5 follows from Proposition 6.1.6. The rest is omitted, see [Hut81]
or [Bar8§]| for details. O

What the above theorem says is that for a contracting transformation (mapping)
on a set, there is always some set that is invariant of the transformation, and also,
the repeated application of the transformations on any set yields better and better
approximations to the set which is invariant to the transformations.

The above proposition is illustrated with the following example [Bar88]:

Example 6.1.11: Consider an IFS on R, with contraction mappings fi(x) = %x,
fa(z) = %x + % We will show that this is an IFS with contractivity factor r = %,
and that if B = [0,1] and F(K) = U]_, fi(K) then the set C = limy_.oc F(B) is the
Cantor set (see Figure 5.1 on page 22); verifying that indeed C = %C U {%C + %}

Calculation. We first find the contractivity factor, by finding it for fi and fo:

= 2 lr —yl = 3p(z.y) (67)

1
3 3

o(f1(2), (Fry)) = \% _L

o)) = | (o4 3) = (u+3) | =glo vl = poten) 69

Thus, r = max{ri,ro} = max{%,1} = 1 is the contractivity factor of the IFS. We
denote the application of the IFS on B as B,, = F°"(B). Now, let [a, b] be a component
of By, k < n, then out hypothesis is that

1 1
la.a+3(b-a)Ub—3(b—a)b (6.9)

and

(a+%(b—a),b—%(b—a))ﬂ3k+1:(Z). (6.10)
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This is true for the first case, since for B = [0, 1]:

Luid (6.11)

B =F(B) = fi(B)U f2(B) = [0,5]U[5

Now suppose that [a,b] € B, is a component of B,, then there is a component of
[a',b'] € B,,—1 whose image is [a,b] under fi or fa. The component [a’, '] has its middle
third removed in B,,. Then [a,b] is replaced in B, 11 by the set

!/ !/ 1 / !/ / 1 / !/ / _ 1 1
fi(ld',a —l—g(b —a")]Ulb —g(b —a),b])—[a,a—|—§(b—a)]u[b—g(b—a),b] (6.12)

for ¢ = 1 or 2. Hence, the operation of f; removes the middle third of an interval, and
the hypothesis follows by induction.

We can see that if A = [0, 1], defining f1 and f as above yields S*(E) = Ej, where
E}, is described in Example 5.1.1 on page 22, and the Cantor set is obtained when k
tends to infinity, see Figure 5.1 d). Le. the attractor of the IFS is the Cantor set. O

6.2 The Deterministic Algorithm

In this section we will describe a deterministic algorithm for generating fractals with an
iterated function system.

Let f1,...,fn be an iterated function system on a metric space (S, p). Choose a
compact set Ag C S. Then compute each A, successively as

Apgr = fi(An) (6.13)
i=1
for i = 1,2,.... Le. construct a sequence of sets {A;}. By Proposition 6.1.10 this

sequence converges to the attractor of the IFS for i — oc.

When choosing the initial set Ag C S, it does not matter what set we choose, any
compact set will work equally well. See Figure 6.1 for an illustration of how the algorithm
works.

6.3 The Random Iteration Algorithm

In this section, we will describe two versions of the random iteration algorithm for
generating fractals using an iterated function system.

Let fi1,..., fn be an iterated function system on a metric space (.9, p). Choose an
initial point zy € S. Then choose recursively and independently

Ty € {fl(xn—l)w--7,fn(xn—1)}; (614)

for n > 1. Le. construct a sequence of points {z,} C S. The sequence {x,} converges
to the attractor of the IFS by Proposition 6.1.10 also, when n — oc.

We can now construct fractals by letting an initial set of only one single point xg be
transformed in the above way. Select the initial point xg, let it be any point. Randomly
select a contraction f;, from f1,..., fr and let 1 = f;, (zo). Iterate this, choosing
randomly a contraction in each iteration. For large k, the points will be indistinguishably
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a) b)

Figure 6.1: Applying the discrete algorithm to the Box fractal generates the Sierpinski
triangle. Successive application of Equation 6.4 yields better and better approximations
of the Sierpinski triangle. a) The original Box fractal. b) One round of the algorithm,
i.e. Equation 6.4 is applied once. c¢) Three rounds of the algorithm. d) After several
iterations, the attracting set is apparent.

close to the fractal. Thus, plotting the points xg, z1, ..., xx will yield an image of the set
which is the attractor of the IFS. If the point zy was chosen arbitrarily, the hundredth
or so first points may be ignored, since they might not have gotten close enough to the
attractor, but if xy was chosen so that zo € F, F the attractor, then it will always stay
in F. See Figure 6.2 for illustrations of how the algorithm works.

There is an alternative implementation of the above algorithm. Instead of starting
with just one point, and iterate recursively on random contractions, we could start with
any set, and for each point in the set apply one of the contractions randomly. More

formally: Let fi,..., f, be an iterated function system on a metric space (S, p). Choose
a compact set Ay € S and compute
Apii={ze{fily),.... fa(y)} :y € An} (6.15)

for n > 1. Le. construct a sequence of sets {A,}. The sequence {x,} converges to the
attractor of the IFS when n — oo just like in the case when we started with one single
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Figure 6.2: For the Sierpinski triangle we have three contractions: Si(x) = (0.5 0.5) -
x,S2(z) = (0.50.5)-24(0.25 0.5), S3(z) = (0.5 0.5) -z + (0.5 0.0). a) The first siz points
of the IFS are found. Adjacent points are connected by line segments. b) 100 points of
the IFS are found, note that only the first few are outside the triangle lines. ¢) 10,000
points of the IFS are found, the fractal structure is apparent.
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point, xg, above. See Figure 6.3 for illustrations of how the algorithm works.

This method could be considered as selecting several initial points, and recursively
applying a randomly selected contraction on them, but instead of keeping all interme-
diate points, we keep just the last step for each point of the original set.

6.4 The Dimension of the Attractor of an Iterated
Function System

We described the intuitive view of the Similarity dimension in Section 5.2.2 on page 25.
What was described there is only a special case of a more general theory which we lay
out here.

We have the following definition:

Definition 6.4.1: Let f1,..., f, be an iterated function system on a metric space,
(S, p), with contraction ratios ri,...,r, respectively, with the attracting set F. The
Similarity dimension, dimg I’ of the attracting set F is the unique number s such that

n

=1 (6.16)

i=1

In Section 5.2.2 we only discussed the special case in which ry = --- = r,, with the
common value r, and defined the similarity dimension to be the number s satisfying

nr® =1, (6.17)
or perhaps better recognized when solving for s as

_ logn
o= logl/r

(6.18)

However, it is not in general true that dimg F' = s, where F' is the attractor of an
IFS. Consider the IFS fi(x) = (0.5 0.5) - z, fa(xz) = (0.5 0.5) - x 4+ (0.25 0.5), f3(x) =
(0.50.5) -z + (0.5 0.0) for the Sierpinski triangle, with the ratio list (0.5,0.5,0.5). Now,

r

a) b)

Figure 6.3: Applying the alternative random iteration algorithm on the set that con-
stitutes the Box fractal yields the Sierpinski triangle. a) The original Box fractal. b)
About % of the points are in each of the three smaller versions of the Boz-fractal. c)
Three rounds of the algorithm. d) After several iterations, the altracting set is apparent.
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if we create another IFS by adding the function f4(z) = (0.5 0.5) - = to the IFS for the
Sierpinski triangle. The attractor is, of course, the same, but since we now have the
ratio list (0.5,0.5,0.5,0.5), we get a similarity dimension of the attractor as

0.5° +0.5°4+0.5°4+0.5° =1

which yields
log 4

* T log(1/05)

while the attracting set obviously is the same as before (and in fact, as we will see, the
set has Hausdorff dimension log 3/log?2).

The problem is, obviously, that the contractions f; and f; overlap too much. We
need the following definition, called the open set condition [Mor46, Hut81]:

Definition 6.4.2: An iterated function system satisfies Moran’s open set condition if
there exists a non-empty open set O such that

a) fi(0)N f;(0) =0 fori# j;

b) 0 UL, £i(U).

Without the open set condition, we have the following proposition for the Hausdorff
dimension [Edg90]:

Proposition 6.4.3: Let K be the invariant set of an iterated function system with
similarity dimension dimg K = s in a complete metric space. Then dimpy K < dimg K.

Proof. Omitted, see [Edg90]. O

And we have the following for the Box-counting dimension [Fal90]:

Proposition 6.4.4: Let K be the invariant set of an iterated function system with
similarity dimension dimg K = s in R®. Then dimgK < dimpK < dimg K.

Proof. Omitted, see [Fal90]. O

But if the open set condition is satisfied, we have the following relation [Edg90, Fal90]:

Proposition 6.4.5: Let K be the invariant set of an iterated function system with
similarity dimension dimg K = s in R™. If Moran’s open set condition is satisfied, then
dimyg K = dimg K = dimg K. Moreover, for this value of s, 0 < 7°(K) < oo.

Proof. Omitted, see [Edg90] and [Fal90]. O

If Moran’s open set condition is not satisfied, we can in fact say even more than we
did above. We have the following proposition [Fal90]:

Proposition 6.4.6: Let f; be contractions on R™ with ratios r;. If F is the invariant
set of the IFS with similarity dimension dimg F' = s, then, if the open set condition is
not satisfied, we have dimyg F' = dimp F < s.

Proof. Omitted, but can be found in [Fal90]. O
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The above theorem says that for sets that do not overlap too much, and that are
made up of similar copies of the whole, the Hausdorff and Box-counting dimensions are
equal. E.g. this holds for the Cantor set, the Sierpinski triangle, the von Koch curve,
and all other such self-similar fractals.

We can now state the following beautiful corollary about the relations between the
different dimensions we have discussed in this thesis:

Corollary 6.4.7: For any set FF C R":
dimt F < dimy F < dimgF < dimgF < dimg F, (6.19)

when all dimensions are defined for F'.
Let K be the invariant set of an iterated function system with similarity dimension
dimg K = s in a complete metric space. Then the following is true

dimt K < dimpg K = dimp K = dimgK < dimg K. (6.20)
And if Moran’s open set condition is satisfied, then we have the stronger relation
dimr K < dimyg K = dimg K = dimgK = dimg K. (6.21)

Proof. This is immediate from the previous relations stated, Proposition 6.4.4 and
Proposition 6.4.5. |

Thus, if the set is self-similar, and the open set condition is satisfied, we have a very
simple method to compute the Hausdorff and Box-counting dimension of the set.




Chapter 7

Graph-directed Constructions

The self-similar sets that have been described earlier is actually just a special case
of a much broader class of sets — graph-directed constructions. The graph-directed
constructions that are described in this chapter are created by a recurrent scheme that
creates fractal sets by composition of different and different shaped sets.

Firstly, the Hausdorff dimension of the classical self-similar sets is found by algebra,
then the composition of two self-similar sets is described as a way to intuitively describe
how the graph-directed sets look and work. Then the general case is described as well
as how to find the Hausdorff dimension of such sets.

The reader might need to read Chapter 4 first to fully appreciate this chapter.

7.1 The Hausdorff Dimension of Self-similar Sets

With the following calculations, we can easily deduce that the Hausdorff dimension of

the Cantor set is 122 § The Cantor set, C, is constructed using two similarity trans-

formations, S1(z) = £ and Sa(z) = £ + 2. We have that C' = $1(C) U S3(C). Since
S1(C) N S3(C) = ) we have that

H3(C) = 7°(81(C)) + 77 (S2(C)). (7.1)

Now, by the scaling property of the Hausdorff measure, Proposition 5.2.23 on page 32,
we have that

w0 = (3) ) (.2
" w500 = (3) ) 73)
" 2°(C) = (%)S%S(C) + <%>S%S(C) —9 <%)S%S(C) (7.4)

This means that
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and thus

log 2
T log3’
the Hausdorff dimension of C', the Cantor set. Obviously, this argument is invalid if not
0 < s°(C) < o0, but it can easily be proven that if s = igig then 0 < J2°(C) < o0,
and since it is finite and non-zero the Hausdorff dimension of C'is necessarily log 2/ log 3.
Equation 7.5 is perhaps recognized from before. We write the contraction factors %

as 1 and 19 for S; and Ss respectively. Then the formula becomes

(7.6)

L=ri+r5=Y 1. (7.7)

which is exactly Equation 6.16 on page 48.

7.2 Hausdorff Dimension of Recurrent Self-similar Sets

Consider the set, F', in Figure 7.1. The set is constructed using two sets, U and V,
with two associated similarity transformations each; namely Ty 1, Ty2, Tv,1 and Ty2
respectively. The transformation Ty, has contraction r; = % and rotates U by 30 degrees
counterclockwise. The transformation T2 has contraction ro = i and rotates U by 60
degrees clockwise. For V, we have the transformation 7Ty,; which has contraction r3 = %
and rotates V' by 90 degrees counterclockwise. The transformation 7y,2 has contraction
Ty = % and rotates V by 120 degrees clockwise.

We have that

U = Tua(U) UTya(V) (79)
and
V=Tv1(U)UTya(V). (7.10)
Now, since Ty 1(U) NTy2(V) =0 and Tv,1(U) N Ty2(V) = O we have that
H°(U) = °(Tua(U)) + 7°(Ty2(V)) (7.11)
_ ™~
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Figure 7.1: Two-part dust, a recurrent self-similar set.
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and
(V) =°(Tva(U)) + °(Tv2(V)). (7.12)

Thus, by the scaling property of the Hausdorff measure we get

H(U) =7 (U) +ry°(V) (7.13)
and

V) =r50°(U) + g ° (V). (7.14)

This is a linear relationship, and thus we can write the above equations as
_( ) (o
(), (1) -
which gives the neat linear equation

v =Myv. (7.16)

We notice that v is an eigenvector of M, with eigenvalue 1 and move right along to the
next section.

7.3 Hausdorff Dimension of Graph-directed Construc-
tions

There is a generalization to self-similar sets that allow us to study the dimension of a
much larger class of sets. The theory of the last two sections is generalized to directed
multigraphs, representing a set, from which the Hausdorff and Box-counting dimensions
are extracted.

With a finite set of vertices and directed edges, allowing more than one edge between
vertices, self-similar sets can be described. Each node corresponds to a subset of the
set, and the weight on an edge corresponds to a similarity ratio. Given such a graph,
G = (V, E), an iterated function system realizing the graph is set up as follows. Each
vertex, v, corresponds to a compact metric space, U;, and each edge, e € E, corresponds
to similarities S., with similarity ratio w(e) such that T, : R"™ — R™. The invariant set
for such an iterated function system is such that for each 4

U = H{T5(U) : (i, ) € B}, (7.17)

and the construction object is defined by
F=|]JU. (7.18)

We assume that all similarity mappings are disjoint.

The set of similarities, {T. : e € E}, is called a graph-directed iterated function
system, and the sets {Uy,...,Uy,} are called graph-directed sets.

The dimension of such graph-directed sets is given by an associated n x n adjacency

matrix with elements o)
Ai,sj = Z w(e)®. (7.19)
EGELJ‘
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Such a matrix is easily created from a given graph. Remember the set, F', from the
last section, see Figure 7.1 on page 52. The graph of this set would look like the graph
in Figure 7.2. The matrix for the graph in Figure 7.2 would thus be

18 S
s) _ 2
AB) = < 1s 3s ) (7.20)
2

As we saw in the previous section, the eigenvalues and eigenvectors of the adjacency
matrix are important. Indeed they are, and we need the following definition of the
spectral radius of a matrix before we continue:

EN[SSENNE

Definition 7.3.1: Let \q,..., A\, be the eigenvalues of a matrix M. Then the spectral
radius, p(M) of M is defined as

p(M) = max [Aql- (7.21)
It is easily shown that p(M) = limy,_.o || M*||/*, for any matriz norm || - ||, see Propo-

sitton 8.4.9.

We need the following lemma to continue [Axe96]:

Lemma 7.3.2 (The Perron-Frobenius Theorem): Suppose A is a real, non-negative
n X n matrixz whose underlying directed graph, G, is strongly connected. Then

a) p(4) is a positive real eigenvalue of A.
b) There is a positive eigenvector that corresponds to p(A).
c) p(A) increases if any element a;; of A increases.

d) p(4) is a simple eigenvalue of A.

We know the following about the spectral radius of a matrix A(®) [MW8S]:

Lemma 7.3.3: Let ®(s) = p(A®)). &(0) > 1, ® is continuous, strictly decreasing and
limy_ ®(k) = 0.

Thus, by Lemma 7.3.3, there is a unique value for which p(A(S)) = 1, which is what
we need from Equation 7.16 on the preceding page. This value of s is, as we shall see,
the Hausdorff dimension of the set.

For the matrix in Equation 7.20 it is easily verified that p(A(l)) = 1, and thus the
Hausdorff dimension of the two-part dust should be dimy F' = 1.

We have the following theorem [Fal97):

1/4

1/2 3/7
1/2

Figure 7.2: Graph construction for the two-part dust.
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Theorem 7.3.4: Let Ey, ..., E, be a family of graph-directed sets, and {T(; ;)}, be a
strongly connected graph-directed iterated function system without overlaps. Then there
is a number s such that dimg F; = dimgE; = dimpFE; = s and 0 < J#*(E;) < oo for
alli=1,...,n. Also, s is the unique number satisfying p(A®)) = 1.

Proof. Omitted, but can be found in [Fal97].
The proof establishes that, indeed

A% (Er) H4(Er)
: =AW : : (7.22)
H4(Ey) A4 (Ey)

for s = dimpy E;. It uses Lemma 7.3.2 to say that (#°(Ey),...,#°(E,))T is a positive
eigenvector of A(®) with eigenvalue 1, and that this must be the largest eigenvalue of
A®) Thus, p(A®)) = 1, and since p(A®)) is strictly decreasing with s by Lemma, 7.3.3,
5 is uniquely specified by the condition p(A®)) = 1. O

The condition that the graph be strongly connected can be omitted. We have the
following theorem [MW88]:

Theorem 7.3.5: Fach graph-directed construction has dimension s = max{sy : H €
SC(G)}, where sy is the unique number such that p(H®H)) = 1. The construction
object, F, has positive and o-finite £° measure. Further, 7°(F) < oo if and only if
{H € SC(G) : sy = s} consists of pairwise incomparable elements. This number s is
such that dimp F' = dimp F' = dimpF = s.

Proof. Omitted, but can be found in [MWS8S].

It follows from Theorem 7.3.4 that dimpg /' = dimpF = dimpF = s, since each
strongly connected component is a graph-directed iterated function system in its own
right. [l

These theorems are best illustrated with an example.

Example 7.3.6: Consider the curve in Figure 7.3. The curve in Figure 7.3 a), is made
up of a reflected half size copy of a) and a reflected half size copy of b). The curve in
Figure 7.3 b), is made up of a rotated copy of ¢) and a one-third size rotated copy of

] ol
e "‘”7%%% } . )/ﬂ ,WS/\ 2& ﬁwﬂmﬂww

a) b) ¢)

Figure 7.3: An example of a graph-directed fractal set. The set in a) is made up of a
reflected half size copy of itself and a reflected half size copy of b). The set in b) is made
up of a rotated copy of ¢) and a one-third size rotated copy of a). The set in c) is made
up of a reflected quarter size copy of b) and a reflected three-quarter size copy of itself.
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a). The curve in Figure 7.3 ¢), is made up of a reflected quarter size copy of b) and a
reflected three-quarter size copy of ¢). The graph looks like the graph of Figure 7.4.
The matriz for this graph is thus

S

12 1% 9
2 2

A = 1% g 1 (7.23)
0 3 1

Finding p(A®)) = 1 yields that s ~ 1.128, and thus, this is the dimension of the
graph.

We can also note that Equation 7.1 on page 51 is exactly the one-node case of
Equation 7.22 with two edges, i.e. Equation 7.8 on page 52 is the general case for the
one-node case, the case with one node with n edges, each corresponding to a similarity
or a contraction with contraction ratio r;. Thus, Figure 7.5 is the graph for the set
described by Equation 7.1.

1/2 1

1/2 3/%
1/3 1/4

Figure 7.4: A graph-directed construction of the set in Figure 7.3

C

Ce< D

1/3 1/3

Figure 7.5: The graph for the one-node case




Chapter 8

Tree Constructions

The recursive structure of the iterated function system that was described in Chapter 6
suggests a tree structure as a means to describe the recursion. This is all right, but
trees can in fact be seen as metric spaces in their own right, and therefore they have for
example both Hausdorff measure and dimension.

Trees can also be described with two properties called branching number and growth
rate. These numbers relate, as we will see, to the Hausdorff dimension and to the lower
and upper Box-counting dimensions.

Some of the theory in this chapter is not as complete as it is in the other chapters.
This thesis does not go in-depth on measure theory, and some of the more advanced
topics that are needed for some of the arguments are not covered here. The reader should
hopefully not have any problems to follow the text, however, and if more information is
wanted, citations for further studies are given where appropriate.

The reader might need to read Chapter 4 first to fully appreciate this chapter.

8.1 The Tree — A Space of Strings

Most of the notation, and theory in this chapter (especially in this and the next section)
is from [Edg90]. The theory is added here for completeness and out of courtesy to the
reader. It is understood that it is more convenient to have the theory spelled out, than
to have the reader refresh the notation and results from the source. However, it should
also be noted that many of the proofs in this section are done by the author.

Consider finite rooted trees, i.e. trees in which each vertex has a finite number of
edges connected to them, and which has a unique distinguished root. We denote the
root as A and will consider the tree as a directed graph, in which each edge has the
direction away from the root.

Consider a finite set of at least two symbols, or letters, e.g. E = {0,1}, called an
alphabet and consider strings made up of these symbols, e.g. 1011011. The symbols can
be anything, but we will in general have N symbols and number them as 0,1,..., N —1.
The number of symbols in a string is called the length of the string and is written as ||
where « is a string. There is a unique string of length 0, the empty string, denoted by
A.

If & and B are two strings, then we may form the string a8 by concatenating the
strings « and 3, i.e. the symbols of « followed by the symbols of 3.

57
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We can let the edges of a tree be labeled with the symbols of our alphabet. For
example, a binary tree is a tree in which each vertex has exactly two children. Let the
two edges from a vertex be labeled with one of the symbols, 0 and 1, respectively.

The strings under consideration are then paths in the tree with A as its root. I.e.,
the set of all finite strings from the alphabet E can be identified with an infinite tree.
In the binary tree example, the root is A, and if « is a string, a0 is the left child, and
al is the right child of «.

We will write E(™ for the set of all strings of length n from the alphabet E. We
write E*) for the set of all finite strings. Le.

E® —pEOUEODUED UE® y...

is the set of all finite strings.

The string « is called an ancestor of the string g if we can write 8 = ary, for some .
Le. « is the initial segment, or prefiz of 5. If so, we will write o < 3. If || > m, then
« [ n is the initial segment of « of length n. We denote the set of all infinite strings of
the alphabet E as E«).

The longest common prefiz for the strings in a set A € E“) is the greatest lower
bound for the set, i.e. the unique longest string 3 such that 8 < + for all v € E(). The
following proposition proves that the greatest lower bound in fact is unique:

Proposition 8.1.1: Every nonempty subset A of an infinite tree E*) has a unique
greatest lower bound.

Proof. Let v € A and n = |y|. From the integers 0 < k < n, there is some k which is
the unique lower bound, ~ [ k, for A. Let v | ko be the greatest lower bound for A and
let B be any other lower bound. Then § <« and thus § =~ [ k, for some 0 < k < n.
We know that k < kg, and therefore 5 <~ [ kg. This implies that + [ kg is the greatest
lower bound of A. If both o and § are greatest lower bounds for A, then each is less
than or equal to the other, and thus they are equal. O

We can also state the following equivalent proposition:

Proposition 8.1.2: Every nonempty subset A of a tree E“) of infinite strings has a
unique greatest lower bound.

Proof. Let v € A. There is some integer k for which v [ k is a greatest lower bound for
A. Let 8 € A and § [ I be some other lower bound for A. Then 5 [ I <~ | k and thus
B 11=~11and therefore 0 <[ < k for some [. Then v | k really is the greatest lower
bound of A. If two strings o, 5 € E(*) are both greatest lower bounds for A, then each
is less than or equal to the other, and therefore they are equal. O

If a € E®), let
[0 ={c e E¥) :a <o}

be the set of all strings from the alphabet E that begins with the string a. We have the
following proposition for the sets [a]:

Proposition 8.1.3: The set [a] has diameter 1%l for all a € E™).
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Proof. Any two strings o, 7 € [a], where o € E™*) have at least |a| letters in common.
Le. the diameter of [a] cannot be greater than rlol since for any integers [ and k such
that [ > k we have r* > r! and |o|, |7| > |a|. This is of course true for all a. O

We can define a function, h : E“) — R, to act on the set of strings of E(), and
map each string to a real number. Consider for example the binary tree: If h adds a
decimal point to the left of the string, and is considered a decimal expansion in base 2,
the range of h is exactly [0, 1].

The sets of interest, such as [0,1], are related to E©) | the “model”, by a function
h: B — R, called the “model map”. Sometimes, the string o is called the address of
the points h(o).

We define a metric, p,, 0 < r < 1, on E“) as follows. We want strings that have the
same prefix to be considered similar, and, of course, if they are equal, they should have
distance zero, i.e. p(o,7) = 0 if 0 = 7. If two strings are not equal, they have some
number of letters in common, possibly none. We can write

!
= Qo

T = at,

and « is the longest common prefix of o and 7. Let k = |a|, then we define the metric

to be

plo,7) =¥,

We have the following proposition:
Proposition 8.1.4: The set E“) is a metric space with metric p,..

Proof. Obviously p,(o,7) > 0, since k > 0. p.(0,7) = p-(7,0) is also clear. If o # T,
then p,.(o,7) =7F > 0.

Let 0,7,0 € E®). If any of the three strings are equal, the following is trivial, so
assume that they are all different. Let o be the longest common prefix of ¢ and 6, and
let B be the longest common prefix of § and 7. Let n = min{|«/|, |3|}. Then we know
that the first n letters of o are equal to the first n letters of 8, and also that the first n
letters of 6 are equal to the first n letters of 7. Thus, the longest common prefix of o
and 7 is of length at least n, i.e.

pu(oir) < g = puindlallol}
= max{rla‘,r‘ﬁl}
= max{p,(0,0), pr(6,7)}
< pr(o,0) +pr(0, 7).

For the next proposition we first need the following two definitions [Edg90]:

Definition 8.1.5: A Cauchy sequence in a metric space S is a sequence (x,,) satisfying:
for every e > 0 there is N € N so that p(xy, zm) < € for alln,m > N.

Definition 8.1.6: A metric space S is called complete if and only if every Cauchy
sequence in S converges in S.
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Now we claim that [Edg90]:
Proposition 8.1.7: The space (E“), p,) is complete.

Proof. Let (0,) be a Cauchy sequence in E“). Let ¢ € E“); we will construct a
sequence that converges to 7. For each k, there is an ny € N so that for all n,m > ng
we have p,(0,,0m) < 7F. Thus, 0, | k = o | k for all m > ng. We define 7 as:
The kth letter of 7 equals the kth letter of oy, , thus 7 [ k = oy, [ k, for all k. Let
e > 0 and choose k so that r* < e. Then for m > n; we have o,, | k = 7 | k, so

pr(om,7) <7k <e. le. o, — 7. O

For the next proposition we first need some definitions and a lemma [Edg90):

Definition 8.1.8: Let S be a metric space and let A C S. A point x € S is an
accumulation point of A if and only if, for every € > 0, the open ball B2(xz) contains
points of A other than x.

Definition 8.1.9: A metric space S is called countably compact if and only if every
infinite subset of S has at least one accumulation point in S.

Definition 8.1.10: A metric space S is called compact if it is countably compact.

Lemma 8.1.11: A countably compact metric space is separable.

Proof. Omitted, see [Edg90] for details. O

Proposition 8.1.12: The space (E“), p,) of N symbols, E € {0,...,N—1} and N > 2,
is compact and separable.

Proof. We prove that E() is countably compact, then it follows from Definition 8.1.10
and Lemma 8.1.11 that it is compact and separable.

Let Ag € E) be infinite. Then at least one of Ag N [0], Ag N [1],..., A9 N[N — 1]
is infinite. Select one of the infinite subsets, and call it Ay = Ag N [i], where ¢ is the
first symbol of the infinite subset. Now, since A; is infinite, at least one of Ay N [o],
o € E@ is infinite. Select one of the infinite subsets and call it Ay = A; N [o]. This
argument holds forever since every A; is infinite, and thus, the distance between strings
in [o] tends towards zero. Therefore, there is some € > 0 for which an open ball centered
in A; contains more than one point. O

A more useful way of defining a metric on E“), at least for our purposes, than we
have done before is the following. Assign a positive real number w, to each node a of
the tree E(). With the correct conditions, this is a metric on E“) such that [a] have
diameter exactly w,. We have the following proposition [Edg90]:

Proposition 8.1.13: Let a family w, of real number be given for each node o of the
tree E®). Define a metric p as follows. If o = 7 then p(o,7) = 0. If ¢ # T, then
p(0,7) = wa, where « is the longest common prefix of o and 7. If

Wo > wg when o < 3
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and
lim wqp, =0 for a € E(“’),

n—oo

then p is a metric on E“) such that diam[a] = w, for all c.

Proof. p(o,7) > 0 from the definition. If o # 7, then p(c,7) = w, > 0, where « is the
longest common prefix of o and 7. p(o,7) = p(7,0) is immediate. Thus, left to prove
is the triangle inequality. Assume that o, 7,0 are all different. Let « be the longest
common prefix of ¢ and 8, 3 be the longest common prefix of § and 7, and v be the
longest common prefix of ¢ and 7. Thus, since both « and (§ are prefixes of 6, then if
a < [ then « is a prefix of both ¢ and 7, so o < v, and therefore

p(o,7) = wy S wa = p(0,0) < max{p(c,0),p(0,7)} < p(0,0) + p(0, 7).

If 6,7 € [a], then the longest common prefix of ¢ and 7 is 8 > «, so p(o,7) =
ws < w,. Thus diama] < w,. Let E = {\,...,\,}. Choose any 0 € E®).
Then alio,...,a 0 € [a] and p(ad;o,al;jo) = w,, for any 1 < 4,5 < n. There-
fore diam[a] > ws. O

The particular metric used for the metric space E“) is of no importance when it
comes to topological properties of the space. This is proven for our two different kind
of measures in the following propositions (the first proposition is from [Edg90]):

Proposition 8.1.14: The metric spaces constructed from E“) using the metric p,, for
all v, are all homeomorphic to each other.

Proof. Let 0 < r,s < 1. If h : E“) — E“) is the identity function h(c) = o, then h is a
homeomorphism from (E“), p,.) to (E“), p,). It is enough to show that h is continuous,
since interchanging r and s shows that A~! is continuous.

Let € > 0, and choose k such that s* < e and § = r*. If 0,7 € E®) with p,(0,7) < 6,
then p,.(0,7) < ¥, so o and 7 have at least their k first letters in common. But then
ps(0,7) < s < e. Thus, h is continuous. O

Proposition 8.1.15: (E“), p) is homeomorphic to (E“), p,).

Proof. Let h : E@) — E() be h(c) = o, the identity function. Given ¢ > 0, choose a k
such that 7% < e. Also let § = w, when |a| = k. Thus, if 0,7 € E“) with p(o,7) < §
then o and 7 have at least k letters in common, and therefore p,(0,7) < 7% < ¢. Te.
h is continuous.

Now, let h=! : B« — E“) is h=1(0) = 0. Given § > 0, choose k such that w, < 6,
when |a| = k. Let ¢ = r—%. Then, if 0,7 € E“) with p.(0,7) < € then ¢ and 7
have at least k letters in common, and therefore p(o,7) < w, < 6. Hence, h~! is also
continuous, and therefore (E“), p) and (E“), p,) are homeomorphic. O

The following proposition tells us a little more about the sets from E(«).

Proposition 8.1.16: The set [a] is an open ball in the space (E“), p,).
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Proof. Let x € E®) and z € [a] where v = x | k for some k. Also, let y € B, ().
Then p,(z,2) < max{p.(2,),pr(y,x)} < rl®l. Thus, for any z the distance to z is
pr(z,x) < rlel hence [a] C B, (2).

rlel
But also, we have that p,(y,z) < max{p,(y, ), pr(z,2)} < rl®l. Le. all points of
B¢ () is within distance rlel of any point of [a]. Hence, [a] D BS. (). O

Surprisingly enough, we have the following proposition as well:

Proposition 8.1.17: The set [a] is a closed ball in the space (E“), p,).

Proof. We know from Proposition 8.1.16 that [] is an open ball. Then, if o is the center
of [a], any other point, 7 € [a], is within distance p(o, 7) < r1®! from o. Let B, o/ (0) be
a closed ball centered in o, then [a] C B,ja|(0).

But also, if we let v € B,jai(0) then p,.(y,7) < max{p,(7y,0),pr(0,7)} < rlol. Le.
all points of B, () is within distance r®! of any point of [a] and therefore [a] D
B,jai(0). O]

Thus, the sets [a] are clopen sets. In fact we can say even more about the open balls
of E). We have the following proposition.

Proposition 8.1.18: The countable set {[a] : « € E™} is equal to the set {B2(o) :
o€ E@ e >0} of all open balls, and to the set {B.(0) : o0 € E®) e >0} of all closed
balls.

Proof. The only possible distances are r* for all k, and for each k there is an open, and
equally closed, ball that is a set [a] for some a € E®*). Therefore there are no other
open, or closed, balls. O

Now, the sets [a] makes up a special class of sets. We have the following proposition:

Definition 8.1.19: A family & of open subsets of a metric space S is called a base for
the open sets of S if and only if for every open set A C S, and every x € A, there is
U e B such that x € U C A.

Proposition 8.1.20: In the metric space (E“), p,), the set
{la] : « € E®}
is a countable base for the open sets.

Proof. The set {[a] : a € E™} is trivially countable. The number of strings of length &
is finite, and thus enumerable. Start with £ = 0 and let k£ — oc.
Let A € E“ be an open set and let o € A. Now, by the definition of an open set,
there is some € > 0 such that
x € B2(0) C A.

Now, since [a] is an open ball by Proposition 8.1.16, select an a for which the radius is
< ¢, and thus {[a] : @ € E®} is a base for the open sets by Definition 8.1.19. O
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An ultrametric space S is a metric space in which the metric p satisfies the ultrametric
triangle inequality:
p(z,y) < max{p(z,z), p(zy)}.
We state the following proposition, which we actually have already proven:

Proposition 8.1.21: The metric spaces (E“), p,) and (E“), p) of two or more symbols
are ultrametric spaces.

Proof. We proved in Proposition 8.1.4 that in fact, for o, 7,0 € E“),

pr(o;7) < max{p,(0,0), pr(0,7)}.

and in Proposition 8.1.13 that

plo,7) < max{p(,0),p(0,7)}.

O

Ultrametric spaces are somewhat exotic, and fulfills some non-intuitive properties.
We state and prove some of these in the following lemma:

Lemma 8.1.22: Let S be an ultrametric space with metric p. Then

a) Every triangle is isosceles: If x,y,z € S, then at least two of p(x,y), p(z,z),
p(y, z) are equal.

b) A ball B2(x) of radius r has diameter at most r.
¢) Every point of a ball is a center: If y € B2(x), then B2(x) = B2(y).
d) A closed ball is an open set.
e) An open ball is a closed set.
Proof. a) If p(z,y), p(x, z), p(y, z) are all equal, the result is trivial, so assume that at

least two of them are different. We must then have p(x,y) < p(z, z). If not, interchange
the variables to fit the argument. Then we have

max{p(z,y), p(y, 2)}
Py, 2)
max{p(y, ), p(z,2)}
p(x, 2),

p(z,y) < p(z, 2)

VAN VAR VAN VA

and thus p(z, z) = p(y, 2).

b) Assume that y, z € S are as far away from each other as possible, i.e. the diameter
of B2(x) apart. Then r = p(x,y) = p(z,z), but p(y,z) < max{p(y,x),p(z,z)} <
p(y,x) = p(x, z) = r. Le., the diameter is at most r.

¢) We know from the definition of an open ball, B2(z) = {2z € S : p(z, z) < r}, that
p(z,y) < r and p(z,z) < r. We also know that p(z,y) < max{p(z,z2),p(z,y)} < r by
b), and thus also p(y, z) < max{p(y,x),p(x,z)} < r. Le. all points within distance r
from x are within distance r from y.

d) We know from the definition of a closed ball, B,(x) = {z € S : p(z,z) < r}, that
p(z,y) < r and p(z,z) < r. We also know that p(z,y) < max{p(z,z),p(z,y)} < r by
b), and thus also p(y, z) < max{p(y,x),p(x,z)} < r. Le. all points within distance r
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from x is within distance r from y. Thus, all points of B,.(x) is an interior point, since
for all y € S, B:(y) C By-(x), for e =r. Le. B,(z) is an open set.
e) Follows directly from c). O

Since both (E“), p,.) and (E“), p) are ultrametric spaces, they have the above prop-
erties.

We will now define measures on the space E(“). Let E be an alphabet with at least
two symbols. Suppose a non-negative number w,, is given for each finite string a.. The
set [a] is the disjoint union of the sets [3] when f is anyone of the children of «, i.e.
B = ae, where e € E. We have the following proposition [Edg90]:

Proposition 8.1.23: Suppose the non-negative number w,, satisfy

Wo = Zwae (8.1)

ecE
for all a € E™). Then there is a measure on E“) with p([a]) = we.

Proof. Omitted. The particular measure theory required is not covered by this thesis.
See [Edg90] for details. O

We could deduce many useful results from the above proposition, but for out pur-
poses, we are more interested in path forests, and therefore dedicate the next section to
such constructions.

8.2 Hausdorff Dimension of Path Forests

Consider the constructions by graphs in Chapter 7 — the same sets can be represented
by trees. We will consider the set E*) of all finite paths in a graph, G = (Vg, Eg),
which naturally has the structure of a tree. If o is a path, then the children of « are
«e, where e € E. Since we have a finite number of “natural” roots of the tree, i.e. each
note of the multigraph, this if not a tree, but more accurately a disjoint union of trees,
one tree Eg*) corresponding to each node v € Vi of the graph. A disjoint union of trees
is sometimes called a forest and we will therefore call them path forests.

Naturally, we will also denote the set of all infinite path starting in v € V' by B,
Thus, there will be one of these path spaces for each note in the graph or equivalently,
one for each tree in the path forest.

Using the terminology we have already introduced, the set of all paths that begins
with a are the paths of the set [a] = {0 € E&) : a < o}.

We can introduce metrics on these path spaces Ei(,w) just as was done before, but we
must be aware of such cases as when some node does not have any children, or only one
child. If [o] have no children, then naturally [a] = (), and therefore its diameter must
be 0. If & has only one child j, then [a] = [5] and so diam[«a] = diam[5].

We define the metric similarly to how we did before. Let w,, be a family of positive
real numbers, one for each node in the path forest F(*). We define several disjoint
metrics, one for each metric space Ei(,w). The family w, satisfies

we >wg ifa<p (8.2)




8.2. Hausdorff Dimension of Path Forests 65

and
lim w, =0 for o € B, (8.3)

n—oo

The definition for the metric is as before. If o,7 € Eq()w), and o # 7, then they have

at least the longest common prefix A,. So we define p(o,7) = w,, for a the longest
common prefix of ¢ and 7.

Now, let (r1,...,7,) be a contraction ratio list, and E®) be the space of infinite
strings from the alphabet E as before. The letters of E are of no importance, but we
need to have a one-to-one mapping such that (r¢)ecg for (r1,...,7r,).

For each letter e € F there is a function f. : E“) — E) called a right shift, which
is defined as

fe(o) = eo. (8.4)

Now, there is a metric on F“) such that the right shifts form a realization of the ratio
list.

The metric is defined as follows. For each node a € E™*) | if there are at least two
letters in E, then there are numbers w, such that diam[a] = w,. We define this as

WA = 1, (8.5)

Wae = Ware for a € E®) and e € E. (8.6)

Thus, w, is the product of the ratios r. corresponding to the letters e that make up a.
We now have the following proposition [Edg90]:

Proposition 8.2.1: The functions (f.)ecr is an iterated function system that realizes
the ratio list (re)eck-

Proof. Suppose 0,7 € E“ have longest common prefix . If e € E, then the longest
common prefix of ed and et is eq, so

p(fe(U), fe(T)) = Wea = TeWq = Te/)(@ 7')- (8.7)
Thus, f. is a similarity on (E“), p) with ratio r,. O

The metric space (E“), p) is complete, and thus the right-shift realization (fe)ecr
has a unique nonempty compact invariant set. The invariant set is the whole space
(E“)| p). The space (E“), p) together with the right-shifts is called the string model of
the ratio list (re)e. 5.

We have the following proposition [Edg90]:

Proposition 8.2.2 (The String Model Theorem): Let S be a nonempty complete metric
space and let (fe)ecr be any iterated function system realizing the ratio list (1e¢)ecr in S.
Assume that ro < 1 for all e. Then there is a unique continuous function h : E“) — §
such that

h(ea) = fe(h(0)) (8.8)

for all 0 € E®). The range h(E“) is the invariant set of the iterated function system

(fe)eeE'

Proof. Omitted, since it rely on some theorems that we have not stated and some theory
that we have not explained. It can be found in [Edg90], however. O
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With the map h, the infinite string o € E“) is sometimes referred to as the address
of the point = = h(o).

Now, just as in Proposition 8.1.23, we can define measures on the path spaces EY.
Select a vertex v. Suppose that non-negative numbers w,, are given, one for each o €

ESY. The set [a] is the disjoint union of the sets [3] when ( is anyone of the children of
a, i.e. = ae, where e € E. We have the following proposition [Edg90]:

Proposition 8.2.3: Suppose the non-negative number w,, satisfy

Wo = Z Weve (8.9)

for all o € ESY. Then there is a measure 1 on B with p([a]) = we.

Proof. Omitted. The particular measure theory required is not covered by this thesis.
See [Edg90] for details. O

When we have a measure in a metric space, we can compute dimensions of sets of
that space. We have the following example [Edg90]:

Example 8.2.4: Let E = {0,1} be a two-letter alphabet, let E“) be the space of all
infinite strings using £, and let py/o be the metric for E) . The Hausdorff dimension

of (E(‘“),pl/g) s 1.

Calculation. We will not give a complete proof of this, since we have not covered all
theory, but the idea is as follows. We define a set function C([a]) = (3) ‘al, and create
a measure, fi1 /2, from this function. Now, the measure of E@) ig M2 (E(‘“)) =1, using
this set function; this can be shown fairly easy. So the proof is showing that J#1 = /25

which implies that dimg E) = 1. By the definition of the kind of measure we created
we can show that 71 < p1/2 and J > p1/2- See the details in [Edg90]. O

We have the following proposition [Edg90]:

Proposition 8.2.5: Suppose non-negative numbers w,, satisfy

Wy = Z Wee (8.10)

for a € ES). Let w be the measure (mentioned above in Proposition 8.2.3) such that
u([a]) = wa. If p is a metric on ES) and s > 0 satisfy wu([a]) = (diam[e])® for all
a € ES), then w(B) = 5°(B) for all Borel sets B C ESY.

We will now give an example where the above proposition is used [Edg90]:

Example 8.2.6: We will consider the Cantor set. The ratio list is (r1,r2) = (3, %)
The string model is the set E®), with the alphabet E = {0,1}, and the metric py ;5. The

similarities are the right-shifts, fo and f1, defined as

fo(o) =00 (8.11)




8.2. Hausdorff Dimension of Path Forests 67

and
fi(o) = 1o (8.12)

Thus, (fo, f1) is a realization of the ratio list (%, %), with invariant set E), by Propo-
sition 8.2.2.

Now, the Hausdorff dimension for E®“) with metric piy3 is log2/log3. This, with
the correct mapping, tells us that the Hausdorff dimension of the Cantor set is also
log2/log3.

Calculation. Let s = log2/log3. The measure j;/ is used as before without further
explanation. If the length |o| = k, then i1 /5([a]) = 27F = (37%)% = (diam[a])®. Thus,
by Proposition 8.2.5 and Example 8.2.4, 5°(E“)) = p o(E®)) = 1. So, dimy E®) =
s =log2/log3.

Now, the model map h : E(“) — R that satisfy

h(0o) = @ (8.13)
h(lo) = h("fj 2 (8.14)

is bi-Lipschitz with
5717500, 7) < 1h(0) = h()| < py /s, 7). (5.15)

(See [Edg90] for details.) A bi-Lipschitz function preserves Hausdorff dimension, as
was stated in Section 5.2.5, therefore the Hausdorff dimension of the Cantor set is
log 2/ log 3. O

Now, to generalize this, we use the metric defined before, where we defined the
measure p so that diam[a] = w, for each node o € E™). We define

WA = 1, (8.16)
Wae = WaTe, (8.17)
foree F.
Also, a ratio list (r1,...,r,) is given, with n > 1, such that
> =1, (8.18)
i=1

where s is the Similarity dimension (remember Section 6.4). Then p is the metric such
that the right-shifts realize the ratio list.
Now we create a measure on the string space E®) such that

p(la]) = w, = Z(wan)s (8.19)

for all .. L.e., s was chosen so that p([a]) = (diam[a])®, and hence, by Proposition 8.2.5,
we have u(B) = #°(B) for all Borel sets B C E“). Thus, we have proven the following
theorem [Edg90]:
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Theorem 8.2.7: The Hausdorff dimension of the string model E“) is equal to the
similarity dimension s.

The translation to other metric spaces, such as R”, is governed by the the model
map h : E®) — S. The dimension of the realization in other metric spaces is given by
the following theorem [Edg90]:

Theorem 8.2.8: Let K be the invariant set of a realization of similarities or contrac-
tions in a complete metric space S of a ratio list with Similarity dimension s. Then
dimg K < s.

Proof. This follows immediately from the fact that the model map is a Lipschitz function.
See [Edg90] for details. O

But if we put some restrictions on the iterated function system, such as an open set
condition, then we get a much nicer result. Moran’s open set condition, Definition 6.4.2
on page 49, implies for strings that f,(U) N f3(U) = 0 for two strings o, 3 € E™) unless
one is an initial segment of the other. We have the following theorem [Edg90]:

Theorem 8.2.9: Let (r.)ecr be a ratio list. Let s be its dimension, and let (fe)ecer be a
realization in R™. Let K be the invariant set. If Moran’s open set condition is satisfied,
then dimyg K = s.

Now, going back to the path forests again, that we discussed above. Consider Fig-
ure 7.1 in Section 7.2. Each of the subsets U and V corresponds to one of the trees of
the path forest, and the full set F' is described by the entire path forest, see Figure 8.1.

The dimension of the path model can be computed in much the same way as was
done for the single tree case above. However, a separate metric for each path space, i.e.
for each tree in the path forest, need to be defined. Also, the diameters of [a] will be
defined similarly, but with a small difference.

The letters e € E are thought of as leading to a node o € Eg*). Thus, if e is a child
of alpha, then we can write & — ae. We have done this already above, and it does not

U V

Tu,1(U) Tu,2(V) Tv,1(U) Tv,2(V)

Tu1eTua Tu10Tvu,2 Tua OTU&UZOTLW TviaeTva Ty,20Tv,1 Ty,10Tv,2 Tv2oTv,2
o o o o o o o

Figure 8.1: Tree construction for the two-part dust. Fach tree represent one of the sets
U and V, and the forest represent the set F.
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change any of the theory from before, but will make the arguments here make much
more sense.

We define metrics for each path space, so that diam[a] = w,, as before. But the
diameters of the sets [a] is now defined as

WA, = Qu, (8.20

Wea = TeWea, (8.21
for e € E and where g, is the diameter of the tree rooted at the node v. Thus, diam[A,] =
wp, = ¢y and diam[ea] = r, - diam[a] = Weq = TeWq.-

We need the right-shifts to realize the ratios r. corresponding to the letters of the

string space alphabet, i.e. the e € E, and such that f. is a similarity with ratio r.. The
right-shifts are defined as before by

fe(o) = eo, (8.22)

but are now though of as mapping a path space to another such that if o € Eq(,w) then
the mapping is to Eq(f), when e = u.

For each path «, we let w, be defined as above, so that it is the product of the
numbers r, for each letter of a. For o € Eq(ﬁ,) we have diam[a] = waq,, where g, is the

constant mentioned above. Now, the metrics for the spaces Ei(,*) satisfy
plea,et) =rep(o,T) (8.23)

for o, 7 € Ei(,*).
The measures on the path spaces are defined as follows. Suppose w,, satisfy

Wo = Y Wae (8.24)

for all a € Eq()*), as in Proposition 8.2.3, then the diameters of the sets [a] satisfy

(diam[a])® = Z (diam[ce])®, (8.25)

a—xe

for some s. Then there exists a measure on each of the spaces B satisfying p([a]) =
(diam[a])® for all o € ES*. Thus, by Proposition 8.2.5, 7% (ES)) = u(EX)) = ¢5 and
since 0 < g, < 0o we have dimyg ng) =s.

We now want to translate this to sets in S a general metric space, such as R", that
we are really interested in. This is done with the model maps, just as is done in the
single tree case above. We have the following theorem [Edg90]:

Theorem 8.2.10: Let (K, ), where v represents a tree in the path forest, be non-empty
compact sets in R™. Let s be the number defined above. Then dimy K, < s for all v.

For the lower bound we also need the following definition [Edg90]:

Definition 8.2.11: If (f.) is a realization of a ratio list in R™, then it satisfies the open
set condition if and only if there exist non-empty open sets U, one for each tree v, with

Uu 2 fo(U,) (8.26)
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for all trees u and v and e € Ey, and
fe(Uv) N ,fe/(Uv’) == (Z) (827)

for all trees w and v and e € E,,,, € € E,, where e # €.

Now we can state the following nice result [Edg90]:
Theorem 8.2.12: If, in addition to Theorem 8.2.10, the realization, which consist of
similarities or contractions, satisfies the open set condition of Definition 8.2.11, then
dimyg K, = s.

8.3 Equivalence of Graph and Tree Constructions

Rearranging Equation 8.25, by equations Equation 8.20 and Equation 8.21, we see that

=) ri-a, (8.28)

eeEuv
v a tree
for all trees w.
Expanding the above equation for each tree vy, ..., v, we get
S — S .08 - s .08
qu - Tevlvl qu + + Tevl un q'U'n
S — S .0° - S .a°
qvn - Tevn vy qu + + re’un vn q'U'n
which can be rewritten in matrix form as
S S S
qf,l [ SR Cuyup (]51
S S S S S
s, e, rs o N q
21 v2v2 v Un 1
— . (8.29)
S S S S S
qvl re'Un’Ul re’U'n’UZ e revn Un q’U1

Hence, by Proposition 8.2.5, we can rewrite the above equation as

A5 (v7) Tewior Tewivy o0 Teulo, H°(v1)
%S (UQ) = TZ'“2’U1 rg’vz’vz T TZ’UZUH %S (UQ) (8 30)
H°(vy) Teny Tewnwy oo Tewnon H° (vn)
and this equation can in turn be rewritten as
A (ED) HED)
A5 (Byy S5 (Ey,
E) | _ | 0 ED | )

5B #5(EX)
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where
Al — | e TCze T (8.32)
We note that
%%ng;)
‘%ﬂ(E ) (8.33)
()

is an eigenvector of A(®) with eigenvalue 1, and conclude that this is exactly Equa-
tion 7.22 on page 55 as described in Chapter 7.

Thus, if the ratios are known, we can find the eigenvector with only positive values
corresponding to eigenvalue 1. Following the arguments in Chapter 7: By the Perron-
Frobenius theorem, Lemma 7.3.2, there is only one vector with positive values that
corresponds to eigenvalue 1. Finding the s for which this is fulfilled gives the Hausdorft
dimension of the underlying set.

Rellick, Edgar and Klapper used this fact in [REK91] to find the Hausdor{f dimension
of certain trees occurring naturally when describing enzymatic reaction pathways. Each
edge of the tree represents the probability of a monomer (a constituent of a polymer,
a chain of molecules) being added to the chain. Such a setting can be rewritten as
a, not necessarily strongly connected, graph. This graph has an associated Hausdorff
dimension, which can be used to determine the thermodynamic and kinetic consequences
of a certain reaction. The authors show that it is possible to determine the Hausdorff
dimension of systems which are modeled as tree structures. This thesis shows that results
in the opposite direction are also possible, i.e. systems which are naturally modeled as
graphs can be transformed to trees and investigated that way.

8.4 Representation by Trees

We will in general use the notation of [Lyo90] in this section. We label an edge by the
label of its vertex farthest away from the root, i.e. a vertex has the same label as its
preceding edge.

A cutset II of a tree I' is a finite set if vertices not including A such that for every
vertex o € T', either ¢ < 7 for some 71 €T or 7 < o for some 7 €, or {T €T :0 < 7}
is finite. L.e., there is no pair o,7 € Il with o < 7. A special cutset is the sphere of
radius n, S, = {o € II : |o| = n}. We write |II| = min{|o| : ¢ € II} and M,, = card S,,.
A special type of tree is the n-tree, where I' is said to be an n-tree if every vertex of '
has exactly n children.

With the above definitions at hand, we state the following definitions on trees [Lyo90]:
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Definition 8.4.1: The branching number of a tree I', denoted by br " is defined by

brI' = inf{A>0:liminf Y A7l7l=0 (8.34)
Moo &=

= sup {)\ >0: 1\11'?Ilinf Alel = oo} (8.35)
— 00 I

. . —lo| _
1nf{>\>0.1r1_1[f2)\ o}. (8.36)

oell

Definition 8.4.2: The upper and lower growth rate of a tree I' is defined by

grT = liminf M}/" (8.37)
and
gr ' = limsup M}/™ (8.38)

respectively. When their values are equal, we call the common value the growth rate of
the tree and denote it by

grl = liminf M}/™ (8.39)
= inf {)\ >0:liminf Y A7l = 0} (8.40)
geSy

Neither of the above definitions depend on the choice of root. We have the following
relation

Proposition 8.4.3: Let I' be a tree. If gr is defined, then
brI" <grl. (8.41)

Proof. Let 6(o) be the sum of the weights of all the edges leaving o. If there is some o
for which (o) < A~l°l, then

M, > > 1> Ng(o) = Amo(n). (8.42)

lo|=n lo|=n

Take the nth root of each side, and let n — oo, we get

n—oo n—oo

liminf M/ > lim inf ((A")””&(A)l/") =\ (8.43)

Corollary 8.4.4: Obviously, by the above proposition, we have also that

brl < grl’ < grl. (8.44)
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b

Figure 8.2: An example of a) a finite graph, and b) its directed cover.

Now, there are several interesting results for a special type of tree — periodic trees.
The periodic tree is defined as follows [Tak97]:

Definition 8.4.5: A periodic tree I' is a rooted tree with a finite number of edge types.
Le. the root is of type A and for each vertex type o there are n(o,T) children of type .

Periodic trees can be constructed from finite directed graphs. Let the graph, G, have
at least one cycle, then the directed cover, I', of G is the set of finite directed paths in
G. T is a tree rooted at the empty set, with each path formed by the possible paths
from the current vertex. See Figure 8.2 for an example of a finite graph and its directed
cover.

Obviously, every directed cover I' is a periodic tree, since the only possible children
for a particular type of vertex, o, are the vertices which have directed edges from o.
It then turns out that every periodic tree is isomorphic to a directed cover of a finite
directed graph [Lyo90].

The periodic tree is a special case of a type of trees called spherically symmetric
trees. A spherically symmetric tree is a tree in which the degree of a vertex is only
dependent on its distance from the root. We have the following lemma:

Lemma 8.4.6: IfT" is a spherically symmetric tree, then
br["=grl. (8.45)
Proof. This is immediate from the definitions. O

Now, if we want to compute the branching number of the directed cover, I', of a
directed graph, G, we can go about as follows. Let A be the directed adjacency matrix
of G, where A,, is the number of edges from u to v. We know from Lemma 7.3.2 that
the spectral radius of A is equal to its largest eigenvalue, p(A). We will soon prove
that this coincides with br I', where T is the directed cover of G. We need the following
lemmas:

Lemma 8.4.7: Let A be an n x n matriz, and let p(A) be its spectral radius. Then

lim A* =0 (8.46)

k—o0

if and only if p(4) < 1.
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Proof. Take any non-zero vector, x, and express it by the eigenvectors, v;, 1 < i < n, of
A. Le.
T =c101 + -+ CpUn. (8.47)

Multiply both sides in the above equation by A. By the definition of eigenvectors we
get
Axr = c1Avy + -+ e, Avy, = et A v1 + - -+ e AU, (8.48)

where \;, 1 < ¢ < n, are the eigenvalues of A. If we repeatedly multiply by A, i.e. k
times, we get
AFg = ey Ay + -+ e, AR, = cl)\’fvl + et cn)\ﬁvn. (8.49)
Now, assume that eigenvalues of A are sorted such that
p(A) = M| = [Aa| = -+ > [An]. (8.50)

Then, if and only if p(A) = [A1| < 0, the terms ¢;A\Fv; will tend towards zero, and thus
so will also the left-hand side do. O

Lemma 8.4.8: Let A be an (possibly directed) adjacency matriz, with entry
Ay = {number of edges from u to v}.

Then, if the entry of A* in row i and column j, Aﬁj, is non-zero, there are Aﬁj paths
of length k from i to j.

Proof. The i,j entry of A? is the sum AnAij + -+ AinAynj. The number A Ay;
is 0 if there is no path of either ¢ to k or k to j. If there is a path, the product of
the number of different paths between them corresponds to all possible combinations of
paths between them. I.e. the number of two-node paths between i and j. If we want to
find all three-node paths, we multiply A% by A, and so on. O

Now we have the following proposition [Lyo90, Wik07]:

Proposition 8.4.9 (Gelfand’s Formula): Let G = (V, E) be a directed graph, and T
be its directed cover. Then the branching number of T, brI' equals the spectral radius
of the directed adjacency matriz with Ay, = {number of edges from u to v}. ILe., for
M,, = card{o € I1 : |o| = n}, where Il is a cutset, we have

brI' = lim M}™ = lim ||A"|Y" = p(A), (8.51)
where || - || is any matriz norm.

Proof. That brI' = lim,,_, AL p(A) is proven in [Lyo90]. We note that the number

of paths of length k in G, is A* by Lemma 8.4.8, which is obviously the same value as
My +1. Thus, we have
lim MY™ = lim ||4,|Y", (8.52)

n—oo

with the appropriate matrix norm.
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For the right-hand part of the equality, and a proof for any matrix norm, we go
about as follows. For any € > 0, consider the matrix

B = (p(A) +¢)7'A. (8.53)
B has spectral radius ”
_ P
p(B) = 7/)(14) e < 1. (8.54)

This means, by Lemma 8.4.7, that

lim B* = 0. (8.55)

k—o0

Thus, there exists a positive integer ny, such that ||B¥|| < 1 for all k > n;. This means
that || A*|| < (p(A) + €)¥, or equivalently that

Jim | A*||VE < p(A) + € (8.56)

for all £ > n;. Now we consider the matrix

C=(plAd)—etA (8.57)
instead. Then we get ”
__p
p(B) = 7/)(14) — > 1, (8.58)

which means that |C*|| grows without bounds for increasing k, by Lemma 8.4.7. By
the same argument as above, there exists a positive ny for which

Jim | AF||1E > p(A) — e, (8.59)

when k > na. Let n = max{ni,n2} and combine Equation 8.56 and Equation 8.59 to
get

p(A) — e < Tim [[ A% < p(4) + ¢ (8.60)

for all £k > n. Let € — 0, and we get the desired result
Tim [ 4¥]/% = p(4), (8.61)
for k > n. O

Using the above proposition, we can easily find the branching number of a periodic
tree, I', by transforming it to its corresponding graph, G. We then generate the appro-
priate adjacency matrix, A, from the graph and compute its spectral radius, p(A4). This
method is deterministic and does not involve finding limits, which the other definitions
do.

The last equality in the above proposition is a very useful result, and is also very
common in the literature. More information about it, and another proof, can be found
in [Rud66].

There is a very useful condition under which we have equality in Equation 8.44 on
page 72. Let I'* denote the subtree of I' formed by the descendants of x € T" rooted at
x. We have the following definition [LP05]:
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Definition 8.4.10: A tree is called subperiodic if, for all vertices x € T, there is an
isomorphism of I'* as a rooted tree to a subtree of I rooted at y € T.

We have the following lemma [LP05]:
Lemma 8.4.11: If T" is a subperiodic tree, then

brI" =grl. (8.62)

We now have the following corollary to Proposition 8.4.9:

Corollary 8.4.12: Let G = (V, E) be a directed graph defined as in Proposition 8.4.9,
and T" be its directed cover. Then the branching number of T, brI', and the growth of T,
grT, equals the spectral radius of the directed adjacency matriz. ILe., for M, = card{o €
IT: |o| = n}, where Il is a cutset, we have

brl'=grl' = lim MY" = lim ||A"|Y" = p(A), (8.63)
where || - || is any matriz norm.
Proof. This follows from Proposition 8.4.9 and Lemma 8.4.11. |

If we have a tree in which each vertex has a bounded degree, the following interpre-
tation is possible. Define an alphabet E = {0,1,...,r —1}; let the number of successors
of each node in the tree E(“) be at most 7 and label them with numbers of E. We have
the following proposition [Fur70, Lyo90]:

Proposition 8.4.13: If E={0,...,7 — 1} and T is a closed subset of E“). Let

T= {iairi L 0; € r} c[o,1], (8.64)

then brT = pdimuT o equivalently % =dimg .

Proof. Omitted, see [Fur70], [Lyo90] and [LP05] for details. O

Every infinite path from A is a string composed of integers from [0, — 1], which is
interpreted as the base r expansion of a real number in [0,1]. The set T is the set of
all such numbers. See Example 8.4.14 for an illustration of how the proposition can be
used. The above proposition is naturally extended to any subset of R".

Example 8.4.14: The Cantor set can be described by a 2-tree, I', in a base three ez-
pansion. We use the alphabet E = {0,1,2}, but omit the number 1 in the expansion.
Every node of the tree has two children, namely 0, the left child, and 2, the right child.
Since it is a 2-tree, the branching number is brI' = 2. We have r = 3, and therefore we
get

— brI"  log2

~ logr log3

~ 0.6309. (8.65)

This is consistent with Equation 7.6 on page 52 in Chapter 7.
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Proposition 8.4.13 can be extended even further. The following proposition also
relate the growth rate of a tree to the Box-counting dimension [LP05]:

Proposition 8.4.15: If E ={0,...,r — 1} and T is a closed subset of E@) . Let

T= {iairi L0y € r} c[o,1], (8.66)

then o
br[ = pdima (8.67)
grl = pdimsT (8.68)
and _
gr = pdimel, (8.69)

Proof. Omitted, see [LP05] for details. O
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Chapter 9

Equivalence for Union

In this chapter we will discuss the arithmetic operation union that can be applied to
sets. We will describe how the operation works on the different types of representations
and how the results of graph-directed constructions relate to the classical theory of union
of fractal geometry.

9.1 Classical Fractal Geometry

We remember from Section 5.2.5 that the Hausdorff and upper Box-dimensions are
finitely stable. We formalize this property in the following theorems [Edg90]:

Theorem 9.1.1: The upper Boz-counting dimension is finitely stable, i.e.

k
RB U Fl‘ = 1I£IanRBFi, (91)

i<
i=1 ='=
for any finite collection of sets {F1,..., Fy}.

Proof. We prove first that dimp(F} U F2) = max{dimp Fy, dimp F5}. The general proof
then follows from iteration. Let Ns(F') be the number of cubes of side length § required
to cover the set F. We have that
max{Ns(F1), Ns(F2)} < Ns(Fy U Fy) < Ni(Fy) + Nao(F»)
That is
IIIELX{ZV(;(P&)7 Ng(FQ)} S N(S(Fl U FQ) S 2- I’I?laX{ZVl(P’l)7 NQ(FQ)}
Since a logarithm is monotonically increasing, we can rewrite this as
log max{Ns(F1), Ns(Fz)} < log Ns(Fy U Fy) < log2 + logmax{ Ny (Fy), Nao(F»)},

which we can rewrite as

max{log Ns(F1),log Ns(F3)} < log Ns(Fy U F») < log2 + max{log N1 (F1),log Na(F»)}.
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Now, we can divide by logd, and we get

ax log N5(F1) log Ns(F5) log Ns(Fy U F3)
logé *  logé - log &
< los2 1ogNa(F1),10gN(s(F2)
log o log § log 0

Let § — 0 and for some ¢ > 0 we have

max{dimp F,dimpFo} —¢ < dimp(Fy U Fy)
< 0+ max{dimpF;,dimpFs} + ¢
If we let € — 0, we get
dimp(Fy U ) = max{dimg F}, dimp F3 }, (9.2)
and the theorem is proven. O

Theorem 9.1.2: The Hausdorff and dimension is finitely stable, i.e.

k

dimy | J F; = max dimy F, (9.3)
=1 -

for any finite collection of sets {F1,..., Fx}.

Proof. We prove first that dimy (F} U Fy) = max{dimy F}, dimy F>}. The general proof
for the Hausdorff dimension follows from iteration. Let s > max{dimyg F;,dimg F5}.
Then s > dimy Fy, so s°(Fy) = 0. We get s°(F) = 0 similarly. Then J#°(F; U
Fy) < 5(F1) + 2°(Fy) = 0, and thus dimg(Fy U Fy) < s. This is true for all
s > max{dimyg F;,dimyg F5}, so we have dimy(F; U Fy) < max{dimyg Fy,dimg F5}.
But by the monotonicity property, Proposition 5.2.28 a), we have dimy(F; U Fy) >
max{dimy Fy, dimy F»}, and the theorem follows. O

For the Hausdorff dimension we have the stronger property of countable stability by
the following theorem [Fal90]:

Theorem 9.1.3: If F, Fs, ... is a countable sequence of sets, then
dimg | J F; = sup dimg F;. (9.4)
Par 1<i<oo
We say that the Hausdorff dimension is countably stable.

Proof. It has to be that dimg U2, F; > dimg Fj, for each j, since the Hausdorff di-
mension is monotonic. But if s > dimg F; for all ¢, then S#°(F;) = 0, so that
A% (U2, F;) = 0, and thus we have the opposite inequality. O

The above theorem implies that the dimension of any countable set has Hausdorff di-
mension zero, which the Box-counting dimension does not need to say. See the following
example [Fal97]:
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Example 9.1.4: F = {0, 1, %, %, ...} is a compact set with dimp F = %

Calculation. If |U| = § < % and k is the integer satisfying 1/(k — 1)k > ¢ > 1/k(k + 1)
then U can cover at most one of the points {1, %, ce %} Thus at least k sets of diameter
0 are required to cover F', so

log Ns(F) < log k
—logd T logk(k+1)

Letting 6 — 0 gives dimpF" > % On the other hand, if % > § > 0, take k such that
1/(k—1)k > 8§ > 1/k(k+1). Then (k + 1) intervals of length ¢ cover [0,1/k], leaving
k — 1 points of F' which can be covered by another & — 1 intervals. Thus

log Ns(F) < log 2k
—logd ~ logk(k—1)

giving dimg F' < %, and the result follows. O

9.2 Graph-Directed Constructions

The union of two graphs, G; = (V1,E1) and Gy = (Va,Es), is G = G UGy = (3 U
Va, E1 UEy) = (V, E). See Figure 9.1 for an example. The following theorem states the
dimension of the union of graphs.

Theorem 9.2.1: Let G;, i = 1,...,n, be graph-directed constructions, and let A;,
i=1,...,n, be the corresponding adjacency matrices. For the union graph

¢=Je=Uv.Ur) (9.5)
it holds that
s=max{sy : H € SC(G)}, (9.6)

where sy is the unique number such that p(H®#)) = 1. The construction object, F,
has positive and o-finite F° measure. Further, 7°(F) < oo if and only if {H €

r“l F“l T T
| IR SN *
| L | | |

| | |
: |: o : 4 |
| I | | |

| | |
: |: o : ® |
L G b 6 | L__Gue |

Figure 9.1: An example of graph union.
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SC(G) : sy = s} consists of pairwise incomparable elements. The number s is such that
dimyg F' = dimg F' = dimpF = s.

Proof. Each of the G; can be considered a strongly connected component of G. Apply
Theorem 7.3.5 on G. If all G; are not strongly connected, apply Theorem 7.3.5 to each
of the non-strongly connected Gj. |

Finding the dimension of the union of two graphs is a trivial problem, by the following
corollary:

Corollary 9.2.2: Let two graphs, G1 and Gy be represented as adjacency matrices, Ay
and As, respectively. The union graph, G1 U Ga, then has the adjacency matriz

(4 o0
=l

i.e., the block-diagonal matriz with Ay and Ay on the diagonal. Let

AP o

Al —
0 AP

Then the value of s for which p(A®)) =1 is such that dimyg F = dimgF = dimpF = s.

Proof. The eigenvalues of A®) is trivially the eigenvalues of Ags) and Ags). Thus, the
maximum eigenvalue of A®) is from the strongly connected component with the largest
eigenvalue, and the result follows from Theorem 9.2.1. |

Thus, the theory of set union for traditional sets is extended to graph-directed con-
structions in a natural way, and the dimension of the union of graph-directed sets is
easily found from the block-diagonal matrices constructed from the disjoint parts of the
union graph.




Chapter 10

Results and Conclusions

In this chapter we discuss the results of the thesis. Results include testing the algorithm
for finding the Box-counting dimension and testing graph union.

We also give suggestions for future work, how this thesis and the areas it considers
could be used in other contexts.

10.1 Results

As we could see in Chapter 7, the classical self-similar sets are just special cases, with
one node, of the graph-directed constructions.

We also noted that the dimension of the union of two disjoint graphs is the maximum
of the two graph’s dimensions and that this is found from the block-diagonal matrix
created directly from the two graphs adjacency matrices. This result is equivalent to
the results obtainable from looking the actual sets, as was also proven in Chapter 9.
Even though this result was obtained using rather elementary methods, it should be
noted that the author has not seen the particular proposition, Proposition 9.2.2, stated
anywhere before.

Also, as was concluded in Section 8.3, it turns out that the tree constructions are
equivalent to the graph-directed construction approach; at least when it comes to finding
the Hausdorff dimension of the underlying set. But since a directed graph can be trans-
formed to an infinite tree, its directed cover, the methods of Graph-directed constructions
and Tree constructions are interchangeable, and we can obtain the dimension of a set
from either one of them describing the set. The approach was the same in [Edg90],
but the actual conclusion that any of the representation for recurrent sets can be used
interchangeable has not been found elsewhere, and is therefore thought to be new by
this thesis.

10.2 Conclusions

The area of fractal geometry is indeed very interesting and intriguing. The sets that are
created are often mind-blowing and fascinating. This thesis has merely scratched the
surface of the area, which grows for each day that goes by.

Many more results are likely to appear in the years to come, if they are not already
out there, for other equivalences than union between the classical fractal geometry and
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the graph-directed constructions. How is it, for example, with set intersections and
Cartesian product? These operations can very likely be solvable in a similar way as the
solution for union.

The most prominent conclusion that can be drawn from this work is that there is a
very close relationship between fractal geometry, graph theory and linear algebra.

A natural extension for the graph-directed constructions is to describe measures on
graph-directed sets using multifractal theory, just as has been done for the sets of the
classical fractal geometry, see for instance [L6f07] and [HJK'86]. This has been done
by Edgar and Mauldin in [EM92], but that is the only article found by the author, but
there is likely much more work done, and certainly more work will be done in this area
in the future.

10.3 Estimating the Box-Counting Dimension of Self-
Similar Sets

To see how well the Box-counting estimation algorithm works (see Section 5.3 on page 40),
test runs have been performed where the Box-counting dimension of a number of self-
similar sets were estimated. The true dimension of the test sets is of course known.
When the estimated dimensions are found for all test sets, the values can be compared
with the known true dimensions and conclusions can be drawn.

Tests were performed on point sets in R!, R? and R3. The results can be seen in
Table 10.1. The point sets that were created for testing consisted of 50,000 points. The
theory of Section 5.3 was used. The grid size was successively reduced seven times by
two, i.e. there were seven points in the estimate if the slope of log Ns against logd.

Table 10.1: Ezxperimental results for estimating the Boz-counting dimension of sets
with known dimensions. The results are grouped in 1D, 2D and 3D sets in the table,
starting with the 1D sets.

True dimension Estimated dimension Difference

0.631 0.703 0.072
1.000 1.000 0.000
1.262 1.406 0.144
1.465 1.524 0.059
1.585 1.567 0.018
1.893 1.923 0.030
2.000 2.000 0.000
1.893 2.072 0.179
2.000 1.994 0.006
2.585 2.449 0.136
2.727 2.564 0.163
3.000 2.661 0.339

The results of Table 10.1 are illustrated in Figure 10.1, and, as can be seen, the
estimation follows the true values rather well. Between dimensions zero and two there
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Estimating the box—counting dimension
3 T T T
True dimension
—O— - Estimated dimension

Error O
25F o B

151 9 g

Estimated dimension

0.5 1 15 2 25 3
True dimension

Figure 10.1: FExperimental results for estimating the Box-counting dimension of sets
with known dimensions. Lines are connecting 1D, 2D and 3D results. The solid line is
the true dimension of the set, the dashed and dotted lines are the estimated dimensions,
and the solid line at the bottom is the error of the estimations.

is a very small error, but when the true dimension increases to between two and three,
the error in the estimated dimension increases. This is a known problem with the
box-counting algorithm, as noted in i.e. [HLD94], but since, in general, the estimated
dimensions increases when the true dimension increases (i.e., there is a one-to-one cor-
respondence between the true values and the estimated values), the results still imply
that the algorithm can be used in e.g. a segmentation process.

10.4 Finding the Hausdorff Dimension of the Union
of Graph-Directed Self-Similar Sets

The Hausdorff dimension for a graph-directed construction can readily be found by
applying Theorem 7.3.5. This can be done numerically using the method of bisection.
This method is guaranteed to converge, but does so slowly. We select s < s and
Shigh > 8, such that p(AGew)) > 1 and p(Alsmien)) < 1. Then we select

__ Slow 1 Shigh
Snew = f

and if p(AGnew)) < 1 then
Shigh ‘= Snew

else we set

Slow ‘= Snew-
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Thus, by repeating the above calculations the p(A(®»+)) will become closer and closer to
1, at the same time that s,e,, become closer and closer to the true s. When |p(A(new)) —
1] < g, for some ¢, the algorithm can be stopped, knowing that the error is less than e.

Now, a number of graph-directed sets have been constructed and the dimensions of
their union have been found using the method just described. The result an be seen
in Table 10.2, where the maximum of a particular value in the top row, and the left-
most column should be equal to the corresponding value in the table. This is so for all
combinations that were tested.

Table 10.2: Finding the fractal dimension of the union of two graphs. The true dimen-
sions are in the top row and the left-most column. When graphs with these dimensions
are joined, the resulting dimension s calculated. The value in the ith row and jth col-
umn should be equal to the maximum of the corresponding values in the top row and
left-most column. It is so for all combinations.

0.6309 0.7369 1.0000 1.1279 1.5236
0.6309 | 0.6309 0.7369  1.0000 1.1279  1.5236
0.7369 | 0.7369 0.7369  1.0000 1.1279  1.5236
1.0000 | 1.0000  1.0000 1.0000  1.1279  1.5236
1.1279 | 1.127v9  1.1279 1.1279  1.1279  1.5236
1.5236 | 1.5236  1.5236  1.5236  1.5236  1.5236
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