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Summary 

 

A situation frequently encountered in medical studies is the comparison 

of several treatments with a control. The problem is to determine whether or 

not a test drug has a desirable medical effect and/or to identify the minimum 

effective dose. In this Bachelor’s thesis, some of the methods used for testing 

hypotheses of ordered alternatives are reviewed and compared with respect to 

the power of the tests. Examples of multiple comparison procedures, 

maximum likelihood procedures, rank tests and different types of contrasts are 

presented and the properties of the methods are explored. 

Depending on the degree of knowledge about the dose-responses, the 

aim of the study, whether the test is parametric or non-parametric and 

distribution-free or not, different recommendations are given which of the 

tests should be used. Thus, there is no single test which can be applied in all 

experimental situations for testing all different alternative hypotheses. 
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Introduction 

 

A common problem in medical studies is to determine whether or not a test drug has 

a desirable biological effect. One objective of such a study is to test if there exist an 

ordered treatment effect among different doses of a test drug and/or to identify the lowest 

dose of the drug that will cause a desirable effect. In this type of experiments several 

doses in increasing order of the medicine are distibuted to separate groups and compared 

with a control or placebo group. The treatment units are randomly allocated to one of k 

groups representing each dose level or to a control group. The mean response of the 

treatments is denoted by i where 0 is the control group mean and i (i = 1, 2, ... , k) is 

the k dose-group means. 

In this paper, the null hypothesis is always 

 

 H0 : 0 = 1 = ... = k    (0) 

 

i.e. there is no treatment effect. 

Depending on the object of the medical study and the degree of knowledge about 

the effect of the test drug, the alternative hypothesis may be formulated in different ways. 

If nothing is known about the shape of the response or if the k groups representing 

different treatments cannot be ordered, the alternative hypothesis is 

 

 H1 : 0  i   i = 1, 2, ... , k  (1) 

 

with at least one strict inequality. Bartholomew (1961) called this the simple tree order 

alternative hypothesis. 

On the other hand, if we are interested in whether the responses increase 

monotonically with dose level, the alternative hypothesis is 

 

 H1 : 0  1  ...  k    (2) 

 

with at least one strict inequality. This hypothesis is often referred as simple order 

alternative. 

In many cases a more specific alternative hypothesis than (1) is more reasonable to 

the researcher but still not as strict as (2). A set of hypothesis that lie between these two 

extremes is 

 H1 : 0 = 1 = ... = i  j j = i+1, ... , k for any given i  k (3) 

 

This hypothesis is used when the researcher is interested in finding the minimum effective 

dose (MED) (Ruberg 1989). 

However, if it is known that the treatment effects are monotonically increasing up to 

a point followed by a monotonic decrease due to toxic effects of the drug at high doses, 

the treatment effects are said to follow an umbrella pattern (Mack & Wolfe 1981). The 

alternative hypothesis in this case is 

 

 H1 : 1  ...  p  ...  k  for some p, 1  p  k,  (4) 

 

with at least one strict inequality. 
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Since the early 1950s several methods have been developed to test the null 

hypothesis of no treatment effect against above described ordered alternative hypotheses. 

The requirement of controlling the type 1 error rate, i.e probability of rejecting a true H0, 

has been one of the reasons to continue the development of the different tests. Tukey 

(1985) introducded the commonly used terminology trend test which is defined as ”test 

for progressiveness of response with increasing dose including controls as zero dose”. To 

avoid misunderstandings the term test for ordered alternatives will be used consequently 

throughout this paper since it also include the term trend test. 

 

The purpose of this paper is to give a chronological summerize and comparison of 

the methods used for testing hypotheses of ordered alternatives; multiple comparison 

procedures, maximum-likelihood procedures, rank test and contrast procedures. The 

properties of the methods are explored and compared with respect to the power of the 

tests. 

 

Literature suvey 

All information in this paper has been obtained by help of Current Index to 

Statistics, 1995 edition. The main search terms were: ordered alternatives, trend test, 

increasing dose, multiple comparison and dose finding. 

 

Tests for ordered alternatives 

 

Several different methods and procedures have been developed to test for ordered 

alternatives. An ordered alternative is a hypothesis that specifies a particular ordering of 

the i prior to observation of the data where i (i = 0, 1, ... , k) represent location 

parameters e.g. treatment means for k populations. In this paper, a review of some of the 

methods used will be presented. Firstly, a multiple comparison procedure, namely 

Dunnett’s procedure, is described, followed by the most commonly used maximum 

likelihood procedures namely; Bartholomew’s (1959, 1961) test and Williams’ (1971, 

1972) test. Finally, some examples of rank tests and different types of contrasts are 

discussed and some examples of step up and step down procedures are briefly reviewed. 

Multiple comparison procedure 

A situation frequently encountered in medical/drug trials is the comparison of 

several treatments with a control or standard. The problem is to decide whether the 

treatments are better than the control or not. A large number of procedures have been 

proposed for problems involving several treatments for instance Duncan’s, Newman-

Keul’s and Tukey’s test but none of these procedures take consideration of a control 

group. Dunnett’s (1955) multiple comparison procedure is one of the best known tests 

that include a control group and will be summerized below. 

Dunnett’s multiple comparison procedure 

Dunnett (1955) proposed a test that rejects H0 for large values of 
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and Xij (j = 1, ... , ni; i = 0, ... , k) are independent normal observations with means i and 

common variance 
2
. The critical values for equal sample sizes and one-sided 

comparisons were tabulated by Dunnett in 1955 and tables for two-sided comparisons 

were published in 1964. 

Dunnett’s test is appropiate to test H0 versus H1 - H0 i.e. H1 but not H0, where H1 is 

the simple tree alternative (1), but it can also be used for identifying the MED (Ruberg 

1989). If m is the smallest index for which Di is significant then the mth dose level will be 

MED. When all the treatment means are equal, Dunnett’s test has good power (Murkerjee, 

1987) but its power function vary considerably over alternative regions. If one has no 

further information indicating a proper alternative hypothesis other test would be 

preferred. 

Maximum likelihood procedures 

Now, two of the most commonly used maximum likelihood procedures namely; 

Bartholomew’s and Williams’ test, will be discussed. These tests estimate the treatment 

means under the alternative hypothesis (2) by the method of maximum likelihood. 

Bartholomew’s test for ordered means 

Bartholomew (1959) constructed a likelihood ratio test statistic for testing the null 

hypothesis against the alternative hypothesis H1 : 0  1  ...  k (decreasing order) with 

at least one strict inequality for which the rank order of the means is known. He proposed 

the statistic 
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and the independent observations Xi (i = 1, ... , k) are assumed to be normally distributed 

with mean i and with known standard deviation 
2
, and i* is the value of i which 

maximize (5) subject to the condition 1*  2*  ...  k*. 

In 1961, Bartholomew extended his test statistic to include the case of unknown 

standard deviation 
2
 and provided extended tables of significant points for equal and 

unequal group sizes. The test statistic is 
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i* is the maximum likelihood estimate of the ith group mean, k is the number of groups 

and ni the size of ith group. 

This test can be applied in a stepwise manner, firstly applying it to all the treatment 

groups then, if a treatment effect is found, exclude this dose level mean and applying the 

test to the rest of the means and so on. 
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Williams’ test 

Williams (1971, 1972) considered the case in which one assume not only that the 

treatment means are greater than the control but also that the ordering among the 

treatment means is completely known. One application of this order restriction on the k 

treatment means and the control mean is the comparison of increasing dosage levels of a 

drug with a zero-dose control. Williams’ test assumes that the dose effect, if any, satisfies 

(2) and can be applied in a stepwise fashion to determine the MED. 

The maximum likelihood estimates of the treatment means i (i = 1, ... , k) are 

obtained analytically from the sample means, x i
_

, and the number of observations in the 

samples, ni, by the formula 
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can be calculated, where s
2
 is the estimate of the residual variance, n0 is the number of 

observations in the control group and x0

_
 is the control group sample mean. Williams’ test 

is designed for the analysis of normally distributed data with equal group variances. The 

statistic tk is then compared with the value of tk*obtained from the tables provided by 

William (1972). If the the statistic tk is significant then the statistic tk-1 is calculated in the 

same way and compared with the value of tk-1* given in the tables. This procedure 

continues until a non-significant tm-1 is obtained for some dosage level, m-1. Since m* is 

the smallest dose group mean that is declared different from the control mean response the 

mth dose group is the MED. In other words, the estimate of MED, MED* = m, if m is the 

smallest index for which H0 is rejected. If there is no such m then conclude that there is no 

dose level as the MED or MED is higher than the dose level k. 

Williams compared the power of his test with Bartholomew’s test (1961) and 

Dunnett’s test for comparing several treatments with a control (1955, 1964). He found his 

test to be superior to Dunnett’s test, but slightly less powerful than Bartholomew’s test 

which becomes more powerful as k increases. Bartholomew’s test is generally more 

powerful than Williams’ test when four or more groups are compared. This however 

refers only to the detection of effects at the highest dose level. Williams’ test is generally 

the superior when only two or three groups are compared. 

A tests based on modifications to Williams’ test is proposed by Shirley (1979) and 

is discussed later on page 11 in this paper. 

Rank tests 

One of the simplest questions that can be asked in a comparison of k treatments is 

whether  there is any difference among these treatments. If the difference between 

treatments is sufficiently large, it will be reflected in the rank avarages. 

Let ni be the sample size and Ri

_
 be the avarage rank for the ith group, then the most 

commonly used procedure, the Kruskal-Wallis (1952), is based on the statistic 
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Now, suppose that the treatments are ordered, of course before the responses have 

been observed. Then, the Kruskal-Wallis test is no longer appropiate since it rejects H0 

whenever the rank averages Ri

_
 are sufficiently different, regardless of their order. Testing 

equality against ordered alternatives using ranks has been the subject of many papers; 

among them Terpstra (1952), Jonkheere (1954), Chacko (1963) and Le (1988). The tests 

proposed by these authors will be discussed below. 

Jonkheere’s (or Jonkheere-Terpstra’s) test for ordered alternatives 

Two of the earliest works in the area of testing for ordered alternatives were made 

by Terpstra (1952) and Jonkheere (1954). Here it is assumed that the ordering is 1  2  

...  k. Jonkheere recognized the similarity to problems of monotone trend and developed 

tests for ordered alternatives in the one-way layout based on Kendall’s test for rank 

correlation. Terpstra presented a test that is equivalent to Jonkheere but in a slightly 

different form. This test is in the literature known as Jonkheere’s test or as Jonkheere-

Terpstra’s test. 

In the original article by Jonkheere a statistic S was proposed to test the hypothesis 

that the k populations are identical against the alternative that the populations are 

stochastically ordered in a specified manner i.e. 

 

 H0: F1(x) = F2(x)= ... = Fk(x)  for all x versus 

 

 H1: F1(x)  F2(x)  ...  Fk(x) with at least one strict inequality for 

    some x where Fi is cumulative 

    distribution functions (cdf) 

 

Test procedure 

Assume we are given random samples of size n1, n1, n2, ... , nk respectively from 

each of the k populations. Denote by Xij the jth observation in the sample from the ith 

population (j = 1, ... , ni, i = 1, ... , k). Denote Fi the continous cdf of Xij. For i  1, define 

(Xij) to be the number of observations from the first (i-1) populations which are less than 

Xij. Let 

 

 S X and S Si i j i
i

k

j

ni

 


 ( )
21

 

 

Test the null hypothesis, H0 versus the alternative hypothesis, H1. H0 is rejected if S 

 S where S is tabulated critical value. Jonkheere proposed the test statistic of the form 

2S-M where M is the maximum possible value of S. 

The computation of Jonkheere’s statistic is simple and straightforward. The data is 

arrayed in k treatment columns in the left-to-right order implied by the alternative 

hypothesis. Then 
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where u and w are treatment subscripts with ranges u = 1, ... , k-1 and w = u+1, ... , k and t 

and v are observation subscripts with ranges t = 1, ... , nu and v = 1, ... , nw. The sum of the 

(Xtu, Xvw) over the ranges of all the subscripts is the test statistic with larger values 

favouring rejection of the null hypothesis. 

Although Jonkheere developed this distribution-free and non-parametric test as an 

extension of Kendall’s test for rank correlation a more convenient equivalent formulation 

is now used. If we assume Fi(x)=F(x-i) for some unknown cdf, F, the problem becomes  

 

 H0 : 1 = 2 = ... = k versus 

 H1 : 0  1  ...  k 

 

The modified Jonkheere statistic J (Potter and Sturm, 1981) is defined as 
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where Uuv is the Mann-Whitney count between samples u and v i.e. 
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For large values of J the null hypothesis is rejected in favor of the alternative hypothesis. 

Tabulated values are published by Jonkheere (1954) and Odeh (1971). 

 

In the case of large samples, when F is not continous or when ties exist (e.g. due to 

round off) an approximate test is used based on the fact that J is asymptotically normally 

distributed when mini{ni}  (Hollander and Wolfe, 1973, tables and formulas). The 

approximate test rejects H0 in favor of the à priori ordering when the right-tail -level 

critical value of the standard normal is exceeded by 
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Nelson and Toothaker (1975) investigated the power of Jonkheere’s test and found 

that the test is sensitive to ordered location differences and it is also sensitive to general 

cumulative distribution differences. They recommended to use the Jonkheere’s test to test 

hypothesis concerning ordered distributions. 
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Other tests and comparisons 

Among other rank tests developed for ordered alternatives in the one-way layout 

two are described below; Chacko’s test and Le’s test, both using the treatment rank sums 

R1, ... ,Rk based on the combined ranking of all N observations. 

Chacko’s test 

Chacko (1963) proposed a rank test similar to the test by Kruskal-Wallis for 

stochastic ordering of populations for the case of equal sample sizes. Let k independent 

random samples of equal size n be drawn from k univariate population with unknown 

cumulative distributions Fi (i = 1, ... , k) respectively. It is assumed that each Fi is 

continous to avoid problem of ties. The hypothesis that the k populations are identical is 

tested against the alternative that the populations are stochastichally ordered. 

Chacko (1963) proposed a test procedure for ordered alternatives: 

Let R1*  ...  Rk* be the isotonic regression of the average ranks R Rk1

_
, ... ,

_
 under the 

order restriction 1  ...  k. For a discussion of the algorithm for obtaining R1*, ... , Rk* 

see Barlow (1972). Chacko’s rank test rejects H0 for large values of 
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where i = ni / N (i = 1, ... , k). 

When k=2 the test is the same as the one-tail test of Wilcoxon. The test based on 

Chacko’s statistics, X k
2

_

, show larger power than Jonkheere’s test when there is 

considerable variation in the differences between consecutive means but Chacko’s test is 

only valid for equal sample sizes. 

Le’s test 

The distribution free test against ordered alternatives proposed by Jonkheere is 

based on the Kendall’s rank correlation. Le (1988) proposed a test based on Spearman’s 

rank correlation instead of Kendall’s and the test has similar functional structure as the 

Kruskal-Wallis test. 

Le proposed the statistic 
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and ni is sample size of treatment group i (i = 1, ... , k) and Ri .
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 the average rank for the ith 

group (j = 1, ... , ni). The statistic W is a linear contrast among rank averages Ri .
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The exact null moments of W are  
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If min{ni}  the statistic is approximately normally distributed with null mean 

zero and null variance given in (6). The test based on W possesses two important 

optimality properties. When i are equally spaced and F is logistic cdf, Hajek and Sidák 

(1967) showed W to be locally most powerful rank test and to be asymptotically most 

powerful (fixed k, min{ni} ) among all rank tests. 

Shirley’s test 

Shirley (1977) suggested a non-parametric version of Williams’ (1971, 1972) test. 

As in Williams’ test, one is interested in comparing increasing doses of a test substance 

with a control and also, one uses the prior information that the responses to the substance 

are monotonically ordered. Shirley’s test can be used to determine the lowest dose level at 

which there is evidence of a difference from the control. 

 

Test procedure 

Let n0 be sample size of control group and ni be sample size of treatment group i (i = 

1, ... , k). Calculate the average rank for the ith treatment group Ri

_
 where R0

_
 is the 

average rank for the control group. Shirley proposed the test statistic for the case of equal 

sample sizes 
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which is approximately distributed as Williams’ test statistic, tk*, with infinite degrees of 

freedom. Tables for is tk* given by Williams’ (1972). 

Thus, the statistic tk is compared with the value of tk* and if tk is significant then the 

statistic tk-1 is calculated and compared with the value of tk-1*. This procedure continues 

until a non-significant ti is obtained for some treatment group i that is, the dose level i is 

concluded as the MED. 

If the sample size of the control group is different from the sample sizes of the 

treatment groups, the statistic 
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should be used. This statistic is also distributed as the tk statistic with infinite degrees of 

freedom. 
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If ties occur in the rankings, calculate the average ranks and make the corrections 

for ties by replacing the term N(N+1)/12 by 
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where there are s groups of ties with ts observations tied in the sth group. 

Compared with Williams’ test, Shirley’s test uses the mean ranks of each group 

instead of sample means and the estimated variance s
2
 is replaced by  
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Rank tests for umbrella pattern 

Non-parametric procedures for comparing several treatments with a control in a 

one-way layout have been studied extensively. However, many of these procedures do not 

us any prior information about the pattern of treatment effects. 

Usually, in a drug study increasing dosage levels may be compared with a zero-dose 

control or placebo. It is belived that the higher the dose of the drug is applied the higher 

will be the treatment effect. However, often it is known that the subject may suffer from 

toxic effect at high doses thereby decreasing the treatment effects. In this case, an ordering 

in the treatment effect that is monotonically increasing up to a point followed by a 

monotonic decrease is foreseen. This increasing-decreasing ordering is said to follow an 

umbrella pattern (Mack and Wolfe, 1981). The point that separates the ordering is called 

the peak of the umbrella. 

Mack and Wolfe’s test 

Let Xij, (j = 1, ... , ni; i = 1, ... , k) be k independent random samples with Xij having 

absolutely contionous distribution functions Fi(x). One is often interested in testing the 

hypothesis that all k samples come from a single common distribution. If the alternative 

hypothesis is that at least two of the k distributions have different medians, a well-known 

distribution-free test procedure is that of Kruskal-Wallis (1952). But if à priori 

information about the possible alternatives is available it would be better to choose a test 

that is designed for detecting these alternatives. Jonkheere (1954) and Terpstra (1952) 

were first to consider the case of monotonically ordered alternatives. In 1981, Mack and 

Wolfe designed a distribution-free k-sample rank test for the alternative hypothesis 

 

 H1 : F1(x)  ...  Fp(x)  ...  Fk(x)  

 

with at least one strict inequality for at least one x. 

This type of alternative is appropiate when evaluating response to increasing dosage 

levels where the treatment effects are increasing up to a point and then decreasing due to 

for example toxic effects of the drug. Mack and Wolfe (1981) proposed two different tests 

for the case where the peak of the umbrella is known and where the peak is unknown à 

priori. 
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Test procedure in the case of known umbrella peak 

 

Reject H0 for large values of the test statistic 

 

 A U Up i j
i j p

ji
p i j k

  
     1

   (7) 

 

where Uuv = is the Mann-Whitney statistic between uth and vth samples. 

 

Asymptotic properties 

 

If each ni   as N=ni    (i = 1, ... , k) such that 
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The complete exact null distribution of Ap is presented in the article (Mack and Wolfe, 

1981) for different values values of k, p and ni. 

 

Test procedure in the case of unknown umbrella peak 

 

Mack and Wolfe (1981) proposed a test procedure where one first use the data to estimate 

the unknown umbrella peak p and then use the corresponding statistic given in (7). Thus, 

reject H0 for large values of the statistic 

 

 A A A Ap t t
t

k

t t* ( ( )) / ( ) 



1

0 0   

 

where At is the peak-known-statistic given in (7) with the peak at the tth group, 0(At) and 

0(At) are the corresponding null mean and variance and the random variables {1,...,k} 

indicate which group(s) has been estimated by the samples to be the peak group(s). Their 

values are determined by the following procedure. Let  
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Note that Zt is actually a two-sample Mann-Whitney statistic computed between the tth 

sample and the remaining k-1 samples. 
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are the null mean and variance of Zt. 

Let r (1  r  k) equal the number of populations tied for having the largest Zt* 

sample value. Set t = 1/r, if the tth population is among those tied for the largest Zt* 

value and 0 otherwise. 

A Monte Carlo study demonstrated that the Ap* procedure is superior to either the 

Kruskal-Wallis test or to the Jonkheere’s test for umbrella alternatives with unknown 

peak p. When the peak is known à priori the Ap statistic is even better but if there is any 

doubts about the true peak the Ap* statistic should be used since the power of Ap can be 

low when an incorrect peak is chosen. 

Chen and Wolfe’s test 1 

One should be aware of that, to ensure the distribution-free property, the Mack and 

Wolfe’s (1981) test require the assumption that the continous populations have the same 

shape. Chen and Wolfe (1990a) proposed a rank test based on modification of the Mack-

Wolfe test without making the assumption that the underlying populations have the same 

shape (under null hypothesis). In both these tests, the expected values are the same, but 

when the underlying populations have different shapes the variances are changed. Chen 

and Wolfe (1990a) found the respective variances of Zt and At (t = 1, ... , k) (when not 

assuming that the populations have the same shape) to be 
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For the case of the known peak umbrella alternative, H0 is rejected for large values of 
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For the case of unknown peak, first estimate the group p* such that 
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Reject H0 for large values of 
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The statistic Ap
  has an asymptotic null distribution that is standard normal. Thus, 

the test based on Ap
  is asymptotically distribution-free under null hypothesis. A Monte 

Carlo study demonstrated the fact that the modified tests are exactely distribution-free 

when the distributions are identical and the powers are higher than those of the original 

test (Mack and Wolfe, 1981) even though for small sample sizes the powers of the 

modified test are slightly lower than in the original tests. 

Chen and Wolfe’s test 2 

When the peak (p) of the umbrella is known à priori, Chen and Wolfe (1990b) 

generalized Chacko’s statistic to obtain a test for umbrella alternatives by 
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where R1*  ...  Rp*  ...  Rk* is the isotonic regression of R Rk1

_
, ... ,

_
 with weights 1, 

... ,k. We want to minimize 
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The following algorithm can be applied to obtain the isotonic regression R1*  ...  

Rp*  ...  Rk*. If R1*  ...  Rp*  ...  Rk* then Ri* = Ri

_
 (i = 1, ... , k). Otherwise start 

with Rp

_
 the average rank of the peak group. Look for violators, where Ri

_
 is a violator if 

Ri

_
  Ri1

_
 for i = 1, ... ,p-1 or Ri

_
  Ri1

_
 for i = p+1, ... , k. 

Start the algorithm by choosing a violator and pooling it with its preceding average 

rank to form a weighted average rank. The violator and its preceding average rank will 

then be replaced by the weighted average rank. The weighted average rank compared with 

the adjacent rank average and so on. This procedure is continued until a set of quantities 

satisfying (8) is obtained. Chen and Wolfe (1990b) proved that for p = 1, ... , k 
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where the maximum is taken over selections of c1, ... ,ck such that 
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Hettmansperger and Norton’s test 

Hettmansperger and Norton (1987) proposed two non-parametric procedures for 

testing null hypothesis against the umbrella alternatives for the case of known and 

unknown peak. 

For the case of known umbrella peak p and equally spaced treatments which 

correspond to i = 0 +i for i = 1, ... , p and i = 0 +(2p-i) for i = p+1, ... , k they 

proposed rejecting H0 for large values of the statistic 
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  (9) 

 

For description of i, ci and Ri

_
 (i = 1, ..., k), see Chen and Wolfe’s test 2. 

For the unknown umbrella peak p, (equally spaced alternative) they proposed 

rejecting H0 for large values of 

 

 V
t k
Vtmax max 

 1
 where Vt is given by (9) for t = 1, ... , k. 

 

Simpson and Margolin’s test 

Simpson and Margolin (1986) investigated the relationship between an increasing 

dose-response when there is a potential for a drop in response at high doses. They 

suggested a recursive procedure using the non-parametric test for monotone trend 

proposed by Jonkheere and Terpstra. Set 

 

 Q Uj i j
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1

  for j = 2, ... , k where Uij  is the Mann-whitney 

   statistic. 

Let 
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 be the Jonkheere-Terpstra statistic for the first t 

   samples (t = 2, ... , k). 
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The Simpson-Margolin test rejects H0 for large values of 
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Rom et al. (1994) concluded that the Simpson-Margolin test has good power under the 

down-turn alternative and is a useful procedure when normality cannot be assumed. 

Chen and Wolfe’s test 3 

Chen and Wolfe (1993) developed a non-parametric distribution-free procedure to 

test whether there is at least one treatment that is better than the control when prior 

information about the umbrella pattern is available. 

Suppose that X Xi in i1 , ... ,  (i = 0, 1, ... , k) are k+1 independent random samples 

from population with continous distribution functions Fi(x)=F(x-i) i = 0, 1, ... , k 

respectively. As usual the zero populations, i = 0, is the control group and the other k 

populations are treatment groups. One is interested in testing the null hypothesis that no 

treatment has any effect against i   0 for at least one i under the assumption that the 

treatments follow an umbrella pattern. Chen and Wolfe (1993) proposed one distribution-

free test for comparing umbrella pattern treatment effects with a control when the peak of 

the umbrella is known à priori and two distribution-free tests in the case of unknown 

peak. They also suggested a way to estimate the lowest dose that is more effective than 

the control. 

 

Test procedure in the case of known umbrella peak 

Let Rij be the rank of Xij among the N=ni observations and let R R ni ij
j

n

i

i_
/




1

 be 

the average rank of the ith sample, i = 0, 1, ... , k. Suppose that the peak of the umbrella is 

known to be at the group p (1  p  k). Assume that n0 is sample size of the control group 

and that all the treatment groups have same sample size, n1 = ... = nk = n. Let R1*  ...  

Rp*  ...  Rk* be the isotonic regression of R Rk1

_
, ... ,

_
 under the restriction 1  ...  p  

...  k for some p. The algoritm how to obtain the Ri* is discussed on page 15. Reject the 

null hypothesis for large value of  

T
R R

N N n n
Note that R
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Shirley’s (1977) test for comparing ordered treatment effects with a control is 

eqvivalent to this test based on Tk. Suppose that N  in such a way that n/(n+n0)   

with 0    1. Then the statistic Tp  converges in distribution to the statistic 
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1
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where the random vector (w1 , ... , wk) has a multivariate normal distribution with 

E(wi)=0, Var(wi)=1 and Cov(wi,wj)= , i  j = 1, ... , k. 

If the test rejects the null hypothesis, one can determine which dosage levels are 

more effective than the control by letting tp(; n, n0, k) be the value such that 

 

 pr{Tp  tp (; n, n0, k) H0}= . 

 

Make the decision that i  0 for u  i  v where 1  u  p  v  k if  

 

 Ru*- R0

_
  tp(; n, n0, k)[{N(N+1)/12}(1/n+1/ n0)]

1/2
 

and 

 Rv*- R0

_
  tp(; n, n0, k)[{N(N+1)/12}(1/n+1/ n0)]

1/2
 

If ties are present in the rankings one can modify the test based on Tp by replacing 

N(N+1)/12 with 
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1 12 12 13  

 

where G is the set of group ties and tg is the number of observations tied in the gth group. 

 

Test procedure in the case of unknown umbrella peak 

 

If prior information suggest that the peak group of the umbrella is relatively close to 

the kth group one can estimate the unknown peak, ps* by a method suggested by Simpson 

and Margolin (1986). 

Let Uij be the Mann-Whitney statistic corresponding to the number of observations 

in the sample j that exceed observations in sample i and let  
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If no information about the location of the peak group is available let 
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First choose the group pm* such that 
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Reject the null hypothesis for large values of 
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To determine which treatments are significantly better than the control let t
ps
 (; n, 

n0, k) and t
pm
 (; n, n0, k) be the upper th percentiles of the null distributions of T

p s
  and 

T
p m
  respectively. If the test recects H0, use the same procedure as in the case of known 

umbrella peak but substitute to the critical value t
ps
  (; n, n0, k) or t

pm
 (; n, n0, k). 

Contrasts 

When a new drug is developed one is interested in identifying the minimum 

effective dose, MED (Ruberg, 1989) i.e. the smallest dose that produces a response that is 

shifted in location from the control response. In the experiment the response from a 

control group is compared with the response from k groups representing increasing dosage 

levels or different treatments. 

If the k groups representing different treatments cannot be ordered or if the only 

knowledge about the drug effects is in which direction the effect is, the alternative 

hypothesis (simple tree order) is  

 

 H1 : 0  i  i = 1, ... , k  with at least one strict inequality. 

 

Murkerjee, Robertson and Wright (1987) proposed a family of orthogonal contrasts that 

can be applied in this situation. 

 

Assume that we have observations Xij (i = 0, ... , k ; j = 1, ... , n) from k treatments 

and control (i = 0)with sample means X X X k0 1

_
,
_
, ... ,

_
. Test H0 against H1 - H0 that is H1 

but not H0. Make the assumption that {Xij} are iid normal variables with means {i} and 

common variance 
2
. Let N=ni (i = 0, ... , k) and m=N-k-1. Then (mS

2
)/ 

2
 has a chi-

squared distribution with m df where 
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_
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is the pooled esimate of the common variance 
2
 which is independent of the mean vector 


_

. 

Abelson and Tukey (1963) proposed a contrast for the case of simple tree and equal 

sample sizes, which is cosen to maximize the minimum power over all alternatives at a 

fixed distance from H0. Schaafsma and Smid (1966) generalized this contrast to the case 

of unequal sample sizes for the treatments. Murkerjee, Robertson and Wright (1987) 

proposed a family of ortogonal contrasts useful for the simple tree alternative. 
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Test procedure (Murkerjee, Robertson and Wright, 1987) 

 

Assume equal sample sizes i.e. n1 = n2 = ... = nk = n . 

Define weight vector w = (w0, w1,..., wk) where w0 = n0 / n and wi = ni / n =1 (i = 1, ... , k). 

Also, define 
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and the cosine of the angle between x and y is (x, y)/  x   y . Let 
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H1’ is a closed, convex, pointed cone which is a subset of the k-dimensional subset of 

R
k+1

 orthogonal to H0. The cone H1’ is generated by non-negative multiples and convex 

combinations of the k corner vector: 

 

 ei = (ei0 , ei1 , ... , eik)     (10)

    = (-1, -1, ... , -1, w0+k-1, -1, ... ,-1)  i=1, ... ,k where ei,i = w0 + k-1. 

 

The angle between any two corners is cos
-1

 {-(w0+k-1)
-1

}. By symmetry the cone has a 

unique centre 

 

 c = ei = (-k,w0, w0,..., w0)    (11) 

 

which is in H1’ and makes equal angles with all of the corners. 

The Abelson-Tukey contrast test modified by Schaafsma-Smid rejects H0 for large values 

of 

 

 T
SA 

( ,
_
)c X

. 

 

Under H0, (n
1/2

 TA)/  c  has a Student-t distribution with m df. 

Murkerjee, Roberson and Wright (1987) noted that this contrast test is very 

powerful when H1 is the simple tree alternative and if prior knowledge is available that all 

of the differences i-0 are approximately equal. The contrast test has reasonable power 

when the H1’ cone is ”narrow” but the minimum power is very low when the cone H1’ is 

”wide” for instance in the case of the simple tree. This test provides good power when the 

treatment means are approximately equal but is not recommended otherwise. Instead, 

Murkerjee, Robertson and Wright (1987) suggested a class of ortogonal contrast test 

based on the statistics 
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1

0 1   (12) 

where 

 ci(r) = rc + (1-r)ei i = 1, 2, ... , k  (13) 
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They proposed a class of tests given by (12) for a value of r = r0, that makes the {ci(r)} in 

(13) mutually orthogonal. The value of r0 is given by 
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First compute r0 and then compute for i = 1, 2,.., k the vectors 

 

 c1’ = roc+(1-r0)ei   and 

 ci = c1’/ c1’   using (10 and 11) and then 

 T
S

c X w

Si

i j j j

j
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) ( ,
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 (j = 0, ... , k; i = 1, 2, ... , k). 

 

Reject H0 for large values of 
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1
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The random variables {STi} are independent, STi is distributed as N( (ci, ), 
2
/n) and STi 

has zero mean if  satisfies H0. 

In general, Murkerjee et al. did not recommend the ortogonal contrast test due to the 

relatively low power, but this test is recommended in the case where one has no prior 

information about the relative effectiveness of the new drug due to its simplicity and 

uniform power characteristics. This test protects against all alternatives in H1-H0. 

 

On the other hand if one is interested in testing whether the treatments are 

monotonically ordered and interested in finding the MED there are several contrast tests 

developed for this situation (Ruberg, 1989). Here we consider an experiment where k 

increasing dose levels are compared with a placebo control (i = 0). The observations yij 

are mutually independent (j = 1, 2, ... , ni; i = 1, ... , k) where ni is the number of 

experimental units at the ith dose level. Let y i

_
 be the sample means and let s

2
 be an 

unbiased estimate of the common variance 
2
 based on v df where v n ki

i

k

  


 ( )1
0

 df. 

Here, only the case of equal sample sizes n0 = n1 = ... = nk = n is considered. 

The alternative hypothesis is now 

 

 H1 : 0 = 1 = ... = i  j   j = i+1, ... , k for any given i < k. 

 

The j are not assumed to be monotonically ordered. Both Dunnett’s and William’s 

tests can be used for testing this hypothesis but Ruberg (1989) proposed three families of 

k contrasts for which the ith contrast in a given family is associated with identifying the 

ith as the MED. The three families of contrast are step contrast, an extension of the step 

contrast namely basin contrast and Helmert contrast. 
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Contrasts of the form 

 

 a y a y a y where ai i i k k i j
j

k

0 0 1 1
0

0
_ _

...
_

   


  

 

are used for testing H0. 

Step contrast 

The coefficients for step contrast (Ruberg 1989) are given by 

 

 a
k i j i

i j i ki j 
    







( ) , ... ,

, ... ,

1 0 1
 

 

The ith step contrast compares the average of the means of the highest k-i+1 dose 

levels with the average of all lower dose levels. The step contrasts are not othogonal but 

they can be used to determine the MED by the following procedure proposed by Ruberg 

(1989). 

 

Test procedure 

If ai (i = 1, 2, ... , k) are the vectors of contrast coefficients and y
_

 is the random 

vector of treatment means, then under Ho the random variable (S1, S2, ... , Sk) where 

 

 Si = (ai’y
_

)/(ai’ais
2
/n)

1/2
 

 

has a k-variate t distribution with v df and a correlation matrix {ij}where ij = corr(Si, Sj) 

(i  j). 

Let S = maxi {Si} and let 

Tk v i j, ,{ }
  be such that under H0  Pr(S > Tk v i j, ,{ }

 )  . 

If S = Sm > Tk v i j, ,{ }
  then dm is the MED. 

In other words, the contrast that best matches the vector of observed means is used to 

identify MED. 

Basin Contrast 

The coefficients for basin contrasts (Ruberg 1989) are given by 

 

 a
k i k i j i

a k j i ki j
i j


      

  



 

( )( ) / , ... ,

, ... ,,

1 2 2 0 1

11

 

 

The ith basin contrast compare the average of the means of the k-i+1 highest dose 

levels (1  i  k) with the average of the means of the zero dose level and the first i-1 dose 

levels. The means of the k-i+1 highest dose levels are weighted and the weights increase 

linearly with the dose level. This contrast is not orthogonal. 
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Test procedure 

If ai (i = 1, 2, ... , k) are the vectors of contrast coefficients and y
_

 is the random 

vector of treatment means, then let ( B1, B2, ... , Bk) where 

 

 Bi = (ai’y
_

)/(ai’ai s
2
/n)

1/2
  

 

which has a k-variate t-distribution with v df and a correlation matrix {ij}. 

Let B = maxi{Bi}. 

If Tk v i j, ,{ }
  is a critical value such that Pr(B > Tk v i j, ,{ }

 )   under H0 and if B = Bm > 

Tk v i j, ,{ }
  then dm is the MED. 

 

Tamhane et al.(1996) pointed out that both the step and basin contrasts have an 

excessive familywise error rate (FWE) which is defined  

 

 FWE = P{at least one true H0 is rejected}. 

 

Since in both cases the statistic has a non-central rather than a central t-distribution, 

the basin and step contrasts do not control the type 1 error rate and FWE and thus, tend to 

reject H0 too often. Instead, Tamhane et al. proposed the Helmert, the linear and the 

pairwise contrasts for identifying the MED. In these cases, the general form of the t-

statistic is given by 
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The critical points depend on the joint distribution of the ti which is a multivariate t-

distribution with v df and a correlation matrix {ij} where ij is the correlation coefficient 

between the ith and jth contrasts 1  i  j  k. 

Helmert contrast 

The ith Helmert contrast (Ruberg 1989) is defined by 
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j i
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1
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where aij is the jth coefficient (j = 0, 1, ... , k) in the ith contrast (i = 1, 2, ... , k) The ith 

contrast compares the average of all lower dose level means with the ith dose level mean. 

Helmert’s contrasts are mutually orthogonal. 
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Test procedure (Ruberg, 1989) 

If ai (i = 1, 2, ... , k) is the vector of contrast coefficients and y
_

 is the random vector 

of treatment means, then under H0  

 

 Hp = (ai’y
_

)/(ap’ap s
2
/n)

1/2
 

 

has a t distribution with v df. 

Since the ai are mutually orthogonal the ij = 0 when n0 = n and the critical value for each 

test, M k v,

  is obtained from the Studentized maximum distribution (Hochberg and 

Tamhane, 1987). 

 

If H1 > M k v,

  then 1 is the MED; 

if H1 < M k v,

  and H2 > M k v,

  then 2 is the MED. 

This procedure continues until 

i. Hm > M k v,

  for some 1  m  k where m is the MED or 

ii. Hk < M k v,

  where H0 cannot be rejected. 

Linear contrats 

The general form of these linear contrast (Rom et al. 1994) is given by 
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Pairwise contrasts 

The ith pairwise contrast is y yi

_ _
 0  (1  i  k) . The t-statistic is given by  

 t
y y

s
n n

i ki

i






 

_ _

0

0

1 1
1  

 

The correlation coefficients are given by i j
n

n n



0

. 

Stepwise testing procedure 

For the Helmert, linear and pairwise contrasts, Tamhane et al. (1996) described two 

types of stepwise testing procedure; step-down and step-up, for testing the null hypothesis 

against the alternative hypothesis i.e. 

 

 H0i : 0 = 1 = ... = i 

 

 H1i : 0 = 1 = ... = i-1  i  (1  i  k) 
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The ith dose is identfied as the MED and the i are not assumed to be monotonically 

ordered. 

Marcus et al. (1976) proposed a closed testing procedure that controls the FWE in 

this type of multiple hypothesis testing procedure. Firstly, one must form a closure of the 

family of hypotheses {H0i; 1  i  k} for any set of indices 1  i1  i2 . ...  im  k 

 
 H H H Hi i i im m0 0 0 01 2

   ... . 

 

Then, separate -level tests of the individual H0i are performed. 

In the step down procedure, first order the t-statistics t1  t2  ...  tk and order the 

corresponding hypotheses H0(1)  H0(2)  ...  H0(k). Then a hypothesis H0i is rejected at 

level  iff all the hypotheses H0j are significant at level  for j  i. Thus, the procedure is 

performed in a step down manner. 

The step up procedure proposed by Dunnett and Tamhane (1992) is based on a set 

of critical constants c1  c2  ...  ck (to determine c see next page) which is compared 

with the corresponding t-statistic. The step up procedure start by testing the smallest t-

statistic and work upward, accepting one hypothesis at a time. When ti  c the procedure 

is stopped by rejecting the hypothesis H0(i), H0(i+1) , .... , H0(k). 

 

Stepdown procedure 1 (Marcus 1976) 

 

At the ith step let ki be the number of hypotheses still to be tested. 

Relabel the order statistics t t tk i1 2  ...  and the corresponding hypotheses as 

 

 H0(1) , H0(2) , ... , H0(k) . 

 

Test H ki0( )  by comparing t ki  with c tk k vi i
 , ,

  (tabels in Marcus, 1976) 

Reject H ki0( )  if t tk k vi i
 , ,

  and all hypotheses whose rejection is implied by it and go to 

the next step, otherwise stop testing. 

When testing is stopped, estimate the MED as the minimum index of the rejected 

hypotheses. 

 

Step down procedure 2 (Rom et al. 1994) 

 

This is a simpler and a more flexible procedure which controls the FWE and does 

not require ordering of the t-statistics and controls the FWE. 

Reject H0(i) iff each H0(j) is significant for all j  i using an -level t-test i.e. 

tj  c = tv

 where tv


 is the upper critical point of Student’s t-distribution with v df. 

 

Step up procedure 1 (Dunnett and Tamhane 1992) 

 

Let c1  c2  ...  ck be the critical constants for step up for given k, v, , and  

(tables in Dunnett and Tamhane 1992). 

Order the t-statistics; t1  t2  ...  tk. 

Test the hypothesis H0(i) iff tj < cj for j = 1, ... , i-1. 
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If ti > ci then proceed to test H0(i+1) otherwise, stop testing and reject the hypotheses 

 

 H0(i), H0(i+1) , .... , H0(k)  

 

and any hypotheses whose rejection is implied by them. 

Estimate the MED as  

 

 MED* = i* = min{(i), ... ,(k)}. 

 

Dunnett and Tamhane showed that the step up procedure strongly controls the FWE. 

 

Step up procedure 2 (Tamhane et al 1996) 

 

This procedure is based on unordered t-statistics and a common critical constant c. 

Test H0i iff tj < cj for j = 1, ... , i-1. 

If ti  ci then stop testing and reject H0(i), H0(i+1) , ... , H0(k) otherwise go to the next step.  

If no hypotheses are rejected then no dose is declared as MED, otherwise MED is 

estimated as 

 

 MED* = i* = min {i: ti  c}. 

 

To determine c, consider any true hypothesis H0(i). Then  

 

 FWE = P{ reject H0i }  

          = 1-P{t1  c, ... , ti  c}  

 

where t1, ... , ti have an i-variate t-distribution with v df and common correlation . 

For determing c, solve the equation 

 

 P{ t1  c, ... , tk  c} = 1-  where c = tk v, ,
 . 

 

Tamhane et al. (1996) concluded that the best procedures based on a power study 

were; step down 1 for Helmert’s contrast, step down 2 for linear contrast and also 

William’s test (see page 6). In general, step down procedures were preferred over step up 

procedures and if the dose-response function was highly non-monotone the step down 2 

procedure should not be used. 

The step down 1 and 2 procedures for linear contrast and Williams’ test were the 

best procedures in terms of bias when the dose-response function was monotone. Fore 

non-monotone functions the step down 1 procedure for linear, Helmert and pairwise 

contrasts were recommended. 

In the case where the normal theory assumptions are not satisfied the only test 

recommended is the step down 2 procedure for pairwise contrast, but otherwise this test is 

low both in terms of power and bias. 
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Power comparisons and conclusions 

 

In this section, the relative powers of some of the different test procedures reviewed 

in this paper will be compared. Not by any means, I have no intention to give a complete 

comparison between all test procedures, only a selection of the most commonly used 

procedures are compared. 

The powers of Bartholomew’s test and Williams’ test were compared by Shirley 

(1979). It was found that Bartholomew’s test is more powerful than Williams’ test and 

therfore preferrable. But Williams’ test is a good alternative since there are more tables of 

significant points available for Williams’ test and it is just as powerful as Bartholomew’s 

test at detecting low dose effects.  

Shirley (1985) concluded that Jonkheere’s distribution-free and non-parametric test 

had higher type 1 error than both Bartholomew’s test and Williams’ test. Jonkheere’s test 

was not very powerful except when the responses are linear and it is recommended to be 

used to test hypotheses concerning ordered distributions. Compared with these three tests 

Dunnett’s test was slightly more powerful than Jonkheere’s test, but the type 1 error rate 

was unacceptably high. Also, Dunnett’s test should be used under normality assumptions 

but nothing is assumed about the response shape. In Williams’ test one assume that 

monotonicity of response is known to occur in a known direction. Williams (1971) found 

that his proposed test was superior to Dunnett’s test but slightly less powerful than 

Bartholomew’s test which becomes more powerful as k increases. This was also found by 

Marcus (1976). 

Also, Marcus compared the Bartholomew’s test and Williams’ test with the 

Abelson-Tukey contrast test. The Abelson-Tukey contrast test is only recommended to be 

used if prior information about the ordering of the means is available. Murkerjee et al. 

(1987) found that Abelson-Tukey contrast test has good power when the treatment means 

are approximately equal but otherwise it is not recommended at all. Instead the orthogonal 

contrast test is recommended due to its uniform power characteristics. The basin and step 

contrasts proposed by Ruberg (1989) are not recommended at all due to their inability to 

control the FWE. 

Tamhane et al. (1996) and Dunnett and Tamhane (1992) recommended the step 

down procedures over the step up procedures. Specially, the step down procedures for 

Helmerts contrast and linear contrast were most powerful. Here, the treatment responses 

are assumed to be normally distributed but not monotonically ordered. When the 

normality assumptions are not satisfied, the step down procedure for pairwise contrasts is 

recommended. 

The Jonkheere’s (1954) test, Chacko’s (1963) test, Mack and Wolfe test (1981) 

Hettmansperger and Norton’s (1987) test and Simpson-Margolin (1986) were compared 

in a power study by Chen and Wolfe (1990b). The Jonkheere’s test was found to be more 

powerful than Chacko’s test. When the umbrella alternative was considered, different 

conclusions were made depending on whether the peak of the umbrella was known or not. 

Mack and Wolfe (1981) recommended to use Jonkheere’s test in ordered settings and to 

use their proposed test in umbrella alternative settings, since their test has excellent power 

when used in the right situation. 

If the peak is known both the Mack and Wolfe’s test and Hettmansperger and 

Norton’s test was better than Chacko’s test. For equal spacing alternatives, 

Hettmansperger and Norton’s test was more powerful than Mack and Wolfe’s test. If the 

peak is unknown the Simpson and Margolin test is a more powerful test than the other test 
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but only in the case where the peak is close to the kth treatment group, otherwise this test 

has low power. 

The modified Mack and Wolfe’s test (Chen and Wolfe, 1990a) has slightly lower 

power than the original Mack and Wolfe test for small sample sizes but instead the 

modified tests are distribution-free. 

Finally, Chen and Wolfe (1993) proposed a new test statistics for umbrella 

alternatives. In general, the Mack and Wolfe (1981) test has higher power but in the case 

where one is confident about the location of the peak group, the proposed test statistic 

should be used. 

As Shirley (1985) pointed out there is no test which can be used in all experimental 

situations for testing all different alternative hypotheses. Depending on the degree of 

knowledge, for instance, whether or not the researcher knows if the dose-responses are 

monotonically ordered or not, different tests should be used. As in the case of the rank 

tests for umbrella alternatives, there are different tests depending on if the peak of the 

umbrella is known or not. Also, the tests differ with respect of whether the data is 

normally distributed or not, and if the test is parametric or non-parametric and 

distribution-free or not. Therefore, no simple recommendation can be given which test is 

the best. It depends on the degree of knowledge about the shape of the responses and the 

aim of the study. Thus, to maximize the power it is worthwile using more specialized tests 

when it is appropiate. 
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