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Analog-type millimeter-wave phase shifters
based on MEMS tunable high-impedance
surface and dielectric rod waveguide
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Millimeter-wave phase shifters are important components for a wide scope of applications. An analog-type phase shifter for
W-band has been designed, analyzed, fabricated, and measured. The phase shifter consists of a reconfigurable high-
impedance surface (HIS) controlled by micro-electromechanical system (MEMS) varactors and placed adjacent to a silicon
dielectric rod waveguide. The analog-type phase shift in the range of 0–328 is observed at 75 GHz whereas applying bias
voltage from 0 to 40 V to the MEMS varactors. The insertion loss of the MEMS tunable HIS is between 1.7 and 5 dB, depend-
ing on the frequency.
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I . I N T R O D U C T I O N

Millimeter-wave phase shifters are important components for
a wide scope of applications such as automotive radars, high-
capacity communication systems, satellite communication,
etc. Existing millimeter-wave phase shifters change the
phase by adjusting either the geometrical parameters of the
device (e.g. changing the length of a transmission line using
switches), or material properties of its components (e.g. by
applying magnetic or electric field). Phase shifters based on
switched networks and distributed transmission lines may
be inconvenient, e.g. in phased arrays due to their relatively
large size. Besides they provide with a discrete phase shift
only, and of no more than 4.25 bits at frequencies above
60 GHz, e.g. [1–3], which restricts their usability. Using
materials with controllable parameters (e.g. ferroelectrics)
for phase shifter usually results in high insertion loss at milli-
meter wavelength frequencies, e.g. 10 dB for a continuous
phase shift up to 2208 at 60 GHz [4]. That is why we
propose an approach that combines micro-electromechanical
systems (MEMS) fabrication technology with the concept of
artificial electromagnetic surfaces for realization of analog-
type millimeter-wave phase shifters. MEMS technology

allows one to miniaturize electronic components, reduce
their cost in batch production, and effectively compete with
semiconductor and ferroelectric technology in terms of
losses. Combined with the artificial electromagnetic surfaces,
MEMS varactors enable tunability of unique engineered
properties of these surfaces. Previously, we proposed the
design of a novel MEMS tunable high-impedance surface
(HIS), analyzed its electromagnetic properties analytically
and numerically, studied possible applications, and fabricated
and measured several non-tunable prototypes, as well as
tunable MEMS capacitors [5–12]. In this work we present
for the first time the measurement results of the
MEMS-based HIS that is tunable in an analog way and is
employed in an analog-type phase shifter.

I I . M E M S T U N A B L E H I S

Conventional HIS [13] consists of a capacitive two-
dimensional periodic grid of electrically small metal patches
placed on a thin dielectric substrate with a ground plane. As
the period of the structure is much smaller than the wave-
length of the field above it, an effective surface impedance
model can be used to analyze the electromagnetic behavior
of the HIS. The grid of metal patches provides a capacitive
response to the incident electromagnetic field, whereas the
thin grounded dielectric substrate provides an inductive
response. As a result, the HIS is a resonant structure, and at
the resonance frequency the effective input impedance
becomes very high, and the phase of the reflection coefficient
changes from 180 to 08. The HIS was proposed for such
applications as an improvement of antenna radiation
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parameters, suppression of the surface waves, and leaky
wave antennas [14, 15]. Tunable HIS controlled with diode
varactors and InP quantum barrier varactors were utilized
for demonstrating beam steering [16] and metal waveguide
phase shifting [17], respectively. However, at W-band these
tunable elements exhibit high losses. That is why we proposed
to employ MEMS varactors for reconfiguring the HIS [5].
The MEMS tunable HIS, consequently, consists of a two-
dimensional periodic arrangement of MEMS varactors
placed on a grounded Si substrate with a period
much smaller than the wavelength of a field above the HIS,
see Fig. 1.

The bias voltages applied to a MEMS varactor controls
its capacitance value by changing the gap between the
upper membrane and lower patch, affecting accordingly the
effective input impedance of the whole structure. Fig. 2
shows frequency dependence of the effective surface
impedance of the HIS. The phase of the reflection coefficient
of the MEMS tunable HIS for different values of the gap
between the upper membranes and lower patches is given in
Fig. 3.

I I I . A N A L O G - T Y P E P H A S E S H I F T E R

A) Design
The MEMS tunable HIS can be used to control the phase factor
of the propagation constant of a dielectric rod waveguide
(DRW) placed adjacent to the HIS at a distance d, see Fig. 4,
forming thus an analog-type phase shifter as soon as the bias
voltage changes the capacitance value of the MEMS varactors
gradually. The value of the phase shift is proportional to the
length w of the HIS. The device can be used as a dielectric
rod antenna with integrated phase shifter if the wave radiates
to the free space from Port 2. Furthermore, a phase array
antenna can be formed by placing n DRW one above another
and adjacent to n HIS controlled individually. These HIS can
be fabricated on a single chip will dramatically reduce complex-
ity and, consequently, the cost of the array antenna.

Simulation results of the phase shift of the DRW with adja-
cent MEMS tunable HIS, when the gap of MEMS varactors
changes from 2 to 1.2 mm is shown in Fig. 5, demonstrating
promising phase shifting potential. Previously we also fabri-
cated a non-tunable prototype of the MEMS-based HIS for
the DRW phase shifter, measuring S-parameters with HIS
and a copper plate adjacent to the DRW for assessing the
maximum achievable phase shift while tuning the structure
from a high-impedance state to a low-impedance state [12].

B) Fabrication
A prototype of the MEMS tunable HIS with 24 × 120 MEMS
varactors placed on a silicon substrate with the period of

Fig. 1. MEMS tunable HIS (part of a large periodic arrangement is shown).

Fig. 2. Real and imaginary part of the effective surface impedance of the
MEMS based HIS, calculated.

Fig. 3. Reflection phase of the MEMS tunable HIS for different values of the
gap g between the upper membranes and lower patches, calculated.

Fig. 4. Phase shifter based on a MEMS tunable HIS of width w adjacent to a
DRW at a distance d (3D view).
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250 mm and total size of 6 × 30 mm2 has been fabricated, see
Fig. 6. All varactors are connected by bias voltage lines to two
contact pads.

In order to increase the tunability range of the MEMS var-
actors, special actuation electrodes of the thickness smaller
than the thickness of the lower patches are introduced into
the HIS model, which do not affect performance of the HIS
according to the both analytical and numerical analysis. For
a simple parallel plate MEMS varactor, the gap between the
upper membrane and lower patch can be decreased continu-
ously by the bias voltage applied to them only by one-third of
its initial value g to gmin ¼ g × 2/3 [18]. If more bias voltage is
applied, the membrane collapses to the lower patch, conse-
quently the maximum achievable capacitance ratio is 1.5.
On the other hand, if the additional actuation electrode of
small thickness te comparing with the thickness of the lower
patches tp is used for bias voltage, see Fig. 7, then the rule of

two-third is applied for the larger gap g + tp 2 te, and conse-
quently the maximum achievable capacitance ratio is

K = g
g − 1

3(g + tp − te)
. (1)

For g ¼ 1 mm, tp ¼ 1 mm, and te ¼ 0.2 mm, the capaci-
tance ratio is 2.5.

C) Measurements
The MEMS tunable HIS is placed adjacent to the silicon DRW
matched to WR-10 waveports of a vector network analyzer for
measuring S-parameters. The bias voltage from 0 to 40 V is
applied to all MEMS varactors simultaneously. An analog-
type phase shift is detected at Port 2 of the DRW, see Fig. 8,
where the phase of S21 of biased phase shifter is referenced
to the S21 at 0 V. The measured frequency dependence of
the phase shift at, e.g. 40 V bias voltage, corresponds to the
simulated results, see Fig. 5.

Dependence of the phase shift on the bias voltage is shown
in Fig. 9 for 75 and 110 GHz, where the value of the phase shift
is largest on the measured frequency range. The phase changes
gradually from 0 to 13 and 2328. Larger phase shift value can
be expected with higher bias voltage, and in case the HIS is

Fig. 6. SEM image of the fabricated prototype of MEMS tunable HIS.

Fig. 7. Schematic overview of a single cell of the MEMS-based HIS for
extended tuning range (side view).

Fig. 8. Measured analog-type phase shift of the DRW with adjacent MEMS
tunable HIS.

Fig. 9. Measured dependence of the phase shift on the bias voltage.

Fig. 5. Simulated phase shift of the DRW with adjacent MEMS tunable HIS.
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optimized so that the minimum phase shift would appear, e.g.
at 110 GHz.

The S21 of the DRW and DRW with adjacent HIS is given
in Fig. 10, showing that the insertion loss of MEMS tunable
HIS as a phase shifting element is between 3 and 5 dB.
Second fabricated prototype, showing larger phase shift of
up to 708, exhibited higher insertion loss. The losses can be
decreased by optimized fabrication procedure, choosing
better material of the DRW and improving matching of
DRW to the WR-10 ports of the VNA. It has been shown
that insertion loss of a DRW matched to WR-10 can be as
low as 0.4 dB [19].

I V . C O N C L U S I O N

We have designed, manufactured, and measured an analog-
type millimeter-wave phase shifters. The phase shifter com-
prises of a MEMS tunable HIS placed adjacent to a DRW.
The analog-type phase shift of up to 2328 has been demon-
strated at 75 GHz by applying bias voltages from 0 to 40 V.
Both the maximum phase shift value and the insertion loss
can be improved by optimizing the design of the structure
and the fabrication procedure. The proposed phase shifter
can be used in a phase array antenna for millimeter-wave
applications.
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