
Metadata Management in Multi-Grids
and Multi-Clouds

Daniel Espling⇤

LICENTIATE THESIS, SEPTEMBER 2011
DEPARTMENT OF COMPUTING SCIENCE

UMEÅ UNIVERSITY
SWEDEN

⇤ Previously Henriksson.



Department of Computing Science
Umeå University
SE-901 87 Umeå, Sweden

espling@cs.umu.se

Copyright c� 2011 by the author(s)
Except Paper I, c� Elsevier B.V., 2010

Paper II, c� IEEE Computer Society Press, 2009
Paper III, c� IEEE Computer Society Press, 2011

ISBN 978-91-7459-281-8
ISSN 0348-0542
UMINF 11.08

Printed by Print & Media, Umeå University, 2011



Abstract

Grid computing and cloud computing are two related paradigms used to access and use
vast amounts of computational resources. The resources are often owned and managed
by a third party, relieving the users from the costs and burdens of acquiring and man-
aging a considerably large infrastructure themselves. Commonly, the resources are
either contributed by different stakeholders participating in shared projects (grids), or
owned and managed by a single entity and made available to its users with charging
based on actual resource consumption (clouds). Individual grid or cloud sites can form
collaborations with other sites, giving each site access to more resources that can be
used to execute tasks submitted by users. There are several different models of collab-
orations between sites, each suitable for different scenarios and each posing additional
requirements on the underlying technologies.

Metadata concerning the status and resource consumption of tasks are created dur-
ing the execution of the task on the infrastructure. This metadata is used as the primary
input in many core management processes, e.g., as a base for accounting and billing,
as input when prioritizing and placing incoming task, and as a base for managing the
amount of resources allocated to different tasks.

Focusing on management and utilization of metadata, this thesis contributes to a
better understanding of the requirements and challenges imposed by different collab-
oration models in both grids and clouds. The underlying design criteria and resulting
architectures of several software systems are presented in detail. Each system ad-
dresses different challenges imposed by cross-site grid and cloud architectures:

• The LUTSfed approach provides a lean and optional mechanism for filtering
and management of usage data between grid or cloud sites.

• An accounting and billing system natively designed to support cross-site clouds
demonstrates usage data management despite unknown placement and dynamic
task resource allocation.

• The FSGrid system enables fairshare job prioritization across different grid
sites, mitigating the problems of heterogeneous scheduling software and local
management policies.

The results and experiences from these systems are both theoretical and practical,
as full scale implementations of each system has been developed and analyzed as
a part of this work. Early theoretical work on structure-based service management
forms a foundation for future work on structured-aware service placement in cross-
site clouds.

iii



iv



Popul

¨

arvetenskaplig

Sammanfattning

Grid computing och cloud computing är två besläktade metodiker för att komma åt och
nyttja stora mängder datorresurser, exempelvis för att göra omfattande beräkningar
och simuleringar eller till lagring av väldigt stora mängder data. Datorresurserna ägs
och underhålls ofta av en tredje part, vilket besparar användarna kostnaderna och
mödan att införskaffa och underhålla den stora infrastrukturen själva, speciellt som
den stora mängden datorkraft oftast bara behövs under kortare perioder. Vanligtvis
är resurserna antingen ägda av flera oberoende parter som deltar i gemensamma pro-
jekt (grid), eller ägda av en enda organisation och görs tillgängliga för allmänheten
(eller en begränsad mängd användare) för att sedan debitera användare för datorkraften
de faktiskt använder (clouds). Enskilda grids eller clouds kan samarbeta med andra
aktörer för att få tillgång till än större mängder resurser som kan användas till att
köra jobb åt användarna. Det finns flera olika samarbetsmodeller mellan aktörer som
lämpar sig för olika tillfällen, och varje modell medför ytterligare krav på den under-
liggande tekniken.

När jobb körs på infrastrukturen skapas metadata, information om statusen hos
jobbet och mängden resurser som förbrukas när jobbet körs. Dessa metadata är det
huvudsakliga underlaget för flera interna processer i infrastrukturen. Exempelvis
används det som bas för fakturering, som beslutsunderlag för att välja vilken ordning
man ska prioritera jobb och som en indikation för när mängden resurser som tilldelats
ett jobb behöver ökas eller minskas.

Med fokus på hanteringen och nyttandet av jobbmetadata bidrar denna avhandling
till en djupare förståelse för de problem och krav som uppkommer i grids eller clouds
som använder datorresurser från flera olika aktörer. Underliggande designkriterier
och de resulterande arkitekturerna för flera mjukvarusystem presenteras i detalj. Varje
system fokuserar på olika delar av de utmaningar som sammarbetsmodeller för grids
och clouds medför:

• LUTSfed bidrar med filtrering och hantering av metadata mellan flera grids och
clouds på ett minimalistisk och smidigt sätt.

• Ett system för bokföring och fakturering från grunden designat för att stödja
flera clouds demonstrerar hur användningsdata kan hanteras utan kännedom om
var jobben körs eller vetskap om hur mycket resurser jobbet kräver.

v



Populärvetenskaplig Sammanfattning

• FSGrid möjligör prioritering baserad på tidigare förbrukningsdata på ett en-
hetligt sätt över flera grids, oavsett skillnader i underliggande mjukvaror eller
lokala policies.

Resultaten och erfarenheterna från dessa system är inte enbart teoretiska, eftersom
fullskaliga implementationer av samtliga system har utvecklats och analyserats som
en del av det här arbetet. Tidiga teoretiska resultat med fokus på placering av jobb i
clouds där den interna strukturen hos jobbet tas i beaktning skapar en grund för vidare
arbete inom ämnet.

vi



Preface

This thesis contains an introduction to grid and cloud computing, with focus on meta-
data management, and the below listed papers. The author changed surname from
Henriksson to Espling just prior to printing this thesis, which is why the articles in-
cluded in this thesis are printed under a different name than the thesis itself.

Paper I E. Elmroth and D. Henriksson. Distributed Usage Logging for Federated
Grids. Future Generations Computer Systems, 26(8):1215–1225, 2010.

Paper II E. Elmroth, F. Galán, D. Henriksson, and D. Perales. Accounting and
Billing for Federated Cloud Infrastructures. In GCC ’09: Proceedings of
the 2009 Eighth International Conference on Grid and Cooperative Com-
puting, pages 268–275, Washington, DC, USA, 2009. IEEE Computer
Society.

Paper III L. Larsson, D. Henriksson, and E. Elmroth. Scheduling and Monitoring
of Internally Structured Services in Cloud Federations. In Proceedings of
IEEE ISCC 2011, pages 173–178, 2011.

Paper IV P-O. Östberg, D. Henriksson, and E. Elmroth. Decentralized, scalable,
Grid Fairshare Scheduling (FSGrid). 2011. Submitted.

This research was conducted using the resources of the High Performance Com-
puting Center North (HPC2N) and the UMIT research lab. Financial support has been
provided by The Swedish Research Council (VR) under contract 621-2005-3667, by
the European Community’s Seventh Framework Programme ([FP7/2001-2013]) under
grant agreement no. 215605 (RESERVOIR) and no. 257115 (OPTIMIS).

In addition to the publications included in the thesis, the following papers on re-
lated subjects has also been produced in the context of this work:

• M. Lindner, F. Galán, C. Chapman, S. Clayman, D. Henriksson, and E. Elmroth.
The Cloud Supply Chain: A Framework for Information, Monitoring, Account-
ing and Billing. In 2nd International ICST Conference on Cloud Computing
(CloudComp 2010).

• M. B. Yehuda, O. Biran, D. Breitgand, K. Meth, B. Rochwerger, E. Salant,
E. Silvera, S. Tal, Y. Wolfsthal, J. Cáceres, J. Hierro, W. Emmerich, A. Galis,
L. Edblom, E. Elmroth, D. Henriksson, F. Hernández, J. Tordsson, A. Hohl,
E. Levy, A. Sampaio, B. Scheuermann, M. Wusthoff, J. Latanicki, G. Lopez,

vii



Preface

J. Marin-Frisonroche, A. Dörr, F. Ferstl, S. Beco, F. Pacini, I. Llorente, R. Mon-
tero, E. Huedo, P. Massonet, S. Naqvi, G. Dallons, M. Pezzé, A. Puliato, C. Ra-
gusa, M. Scarpa, and S. Muscella. RESERVOIR - an ICT infrastructure for
reliable and effective delivery of services as utilities. Technical report, IBM
Haifa Research Laboratory, 2008.

• G. Katsaros, G. Gallizo, R. Kübert, T. Wang, J. O. Fito, and D. Henriksson. A
Multi-level Architecture for Collecting and Managing Monitoring Information
in Cloud Environments. In CLOSER 2011 : International Conference on Cloud
Computing and Services Science (CLOSER), 2011. Accepted for publication.

viii



Acknowledgments

First and foremost, I would like to thank my supervisor Erik Elmroth for creating
(and maintaining) a pleasant, supportive, and inspiring research environment, and for
always finding the time despite being a resource constantly subject to overbooking.
I am also very grateful for the help and feedback given by my co-supervisor, Johan
Tordsson, who took the time to give feedback on this thesis in mid July despite being
on vacation and despite Tour de France running on TV.

A big thank you to all collaborators, colleagues in and outside our group, and
coauthors of papers both within and outside the bounds of this thesis. You are too
numerous to be mentioned by name, but interacting with the lot of you and sharing
your views of things to solve shared problems is what makes this job interesting.
We are also blessed with a very competent, kind, and understanding administrational
staff, both for technical and non-technical tasks. Thank you for making our everyday
working lives easier and for never backing down from challenges such as installing
software we produce, or sorting my post-laundry traveling receipts.

A special thanks to Lars Larsson, my constant 2vX ally. Not only for daily com-
pany, support, and interesting discussions, but also for teaching me to leverage obscure
tools and features, and for explaining countless times why things like gqap are per-
fectly sane commands to learn by heart.

Last but definitely not least I would like to thank my closest family and my friends
for providing an outstanding environment to grow up, live, and hopefully grow old in.
To my recently wedded wife Maria Espling, with whom I share everything (including
the hassle of changing name halfway through a PhD): Du är mitt guld också.

Umeå, September 2011
Daniel Espling

ix



x



Contents

1 Introduction 1

2 Grid Computing 5

2.1 Grid as an Infrastructure 6
2.2 Federated Grids 7

3 Cloud Computing 11

3.1 Virtualization 13
3.2 Cloud as an Infrastructure 14
3.3 Grids and Clouds Compared 16
3.4 Cloud Collaborations 17

3.4.1 Cloud Computing Scenarios 19

4 Task Metadata Management 23

4.1 Monitoring 23
4.2 Accounting and Billing 25
4.3 Scheduling and Placement 27
4.4 Elasticity 28

5 Summary of the Papers 29

5.1 Paper I 29
5.2 Paper II 30
5.3 Paper III 30
5.4 Paper IV 30

6 Future Work 33

6.1 Service Monitoring 33
6.2 Accounting and Billing 33
6.3 Fairshare Scheduling 34

Paper I 53

Paper II 69

Paper III 81

Paper IV 91

xi



xii



Chapter 1

Introduction

Computing capacity available as a utility similar to water or electricity has
been a vision for a very long time, with the predictions of John McCarty dating
from the early sixties often seen as the starting point [62, 64]. Fifty years later
there have been several incarnations of this paradigm, with the same underlying
goal of computing capacity as a utility. Most often, the new paradigm does not
entirely overlap with the previous paradigms in scope, leaving niches for several
generations of paradigms to coexist.

Two of the most recent paradigms for computing as a utility are grid
computing and cloud computing. We refer to the paradigms at large simply
as grids and clouds, and use the terms site or provider to emphasize a single
supplier in either paradigm. Work units sent to a grid are usually denoted
jobs while those sent to a cloud are called services1. As cloud computing is a
quite wide term (see Chapter 3), a cloud service can denote several di↵erent
things. As most of this thesis focus on infrastructure management, we use
service to denote self-contained work units supplied to infrastructure providers
for execution. We also use the term taskto denote both grid jobs and cloud
services, and each term separately when referring only to either.

Grids and clouds are both fundamentally ways to group existing (hetero-
geneous) computer resources into an abstract pool of resources, and making
those resources available to users as a virtual coherent infrastructure. Starting
out with similar objectives, grids have evolved into reliable, high performing
platforms mostly used for large-scale scientific computing while clouds has
emerged as a remote hosting and execution option for many di↵erent kinds of
software. Chapter 2 and Chapter 3 describe these paradigms in more detail.

Other relevant paradigms are, e.g., High Performance Computing (HPC) [44]
and High Throughput Computing (HTC) [111]. HPC systems focus on running
parallel jobs on centralized, dedicated hardware with very high performance
in terms of, e.g., computational speed and network latency. HTC on the other
hand focuses on maximizing the use of distributed, widely heterogeneous, and

1
Not to be confused with Web Services [30] as a technology.

1



unreliable resources not for the sake of a single job but for the general system as
a whole. Even though, from a management perspective, HPC and HTC avoids
many of the challenges of grids and clouds covered by this thesis, concepts such
as those in Paper I (accounting data management) and Paper IV (decentralized
fairshare scheduling) can be applied to HPC and HTC environments as well.

Individual grids and clouds can be joined into even bigger pools of resources
through collaborations. These multi-grid and multi-cloud environments pose
additional challenges for the management of submitted tasks, and several
di↵erent collaboration models with unique challenges exists [55, 57]. One such
collaboration model is federations of grids or clouds, where a single grid or
cloud may utilize resources from other sites, commonly as part of bilateral
resource exchange agreements. For grids, large projects such as the Large
Hadron Collider (LHC) [108] has outgrown the capacity of any single grid and
require cross-grid solutions to cope with the high resource demand. Similarly,
clouds form collaborations to cope with surges in demand when local resources
are not su�cient, giving the impression of clouds as endless pools of resources.
In some cases, the collaborating cloud may in turn outsource the execution to a
third cloud site, creating a chain of delegation from the originating site to the
site where the task is finally executed. Clients for grids and clouds should be
kept unaware and unconcerned about whether the infrastructure is part of a
collaboration or not, and will normally not be aware of on which collaborating
site a submitted task is finally executed (as long as the job does not have
explicit restrictions on placement). Therefore, the underlying infrastructure
itself must deal with any heterogeneity or additional complexity imposed by
the collaborative environment, for example the task metadata management.

Metadata concerning, e.g., the resource consumption or duration of a task
are collected during (or after) the execution of a task. This metadata has to be
collected and managed equally regardless of if the task executes locally or at
a collaborating site, as the data is commonly used as basis for many internal
processes in both grids and clouds. The process of collecting, sharing, and
managing run time information about a task is calledmonitoring. Grids normally
only use monitoring information regarding the state of physical resources, and
utilize job metadata generated upon job completion for tasks such as accounting,
billing, and job scheduling. Clouds typically rely solely on run time monitoring
data for internal management processes, as cloud services does not have a fixed
execution time.

The focus of thesis is how to collect, manage, and utilize task metadata in
di↵erent collaboration models of grids and clouds. The thesis investigates how
these fundamental tasks are a↵ected by the barriers imposed by collaborations
such as federations, e.g., technical heterogeneity, distributed and (site-wise)
self-centric decision making, and incomprehensive information on the state and
availability of remote resources. Papers I and II focus primarily on the collection
and management of task metadata, while papers III and IV focus on how to
utilize the task metadata for resource allocations in clouds and grids.

The following summarizing chapters presented prior to the papers provides

2



a general introduction and context to topics relevant to the presented papers:
Chapter 2 presents a basic overview of grid computing.Chapter 3 describes cloud
computing, including a detailed explanation of the infrastructure management
of clouds and several di↵erent collaboration scenarios. Chapter 4 presents an
overview of task metadata management in both grids and clouds. Papers are
summarized in Chapter 5 and potential directions for future work are outlined
in Chapter 6 before the bibliography finalizes the summarizing chapters.

3



4



Chapter 2

Grid Computing

The foundation of an open networking structure that would later emerge into
the Internet was laid by the National Science Foundation (NSF) [123] back in
1986, when the NFSNET backbone was built to connect five supercomputers
in the U.S. [62, 107]. Twenty five years later the Internet has evolved into a
general utility used by more than two billion people [119]. Meanwhile, grid com-
puting [62] has emerged as a technology and paradigm focusing on the original
intent of the Internet – interconnecting resources to form supercomputers.

The analogy between the Internet and grid computing runs deep. The
Internet started out as several isolated networks (for example CSNET [35] and
ARPANET [2]) only available to specific research communities [107]. Since then,
it has evolved into a ubiquitous, unified, and commonly available communications
utility. Grid computing stems from the vision of o↵ering computer resources
as easily and transparently as electricity using the power grid (and hence the
name), while in reality the concept of The Grid is still at the stage of early
Internet; existing grids are isolated networks targeting specific communities,
primarily used for large-scale research projects.

Grid computing as a concept has grown vast enough to encompass many
di↵erent tools for many di↵erent tasks, becoming a group of related technologies
rather than a single unified utility. This, and the fact that there is no absolute
definition distinguishing grids from other distributed environments, leads to some
confusion on what should be considered a grid. Among many definitions [21, 36,
155], the most commonly used definition by Foster [60] comes in the form of a
three point checklist, defining grids as systems that: ”coordinates resources that
are not subject to centralized control ...”, ”using standard, open, general-purpose
protocols and interfaces ...”, ”to deliver nontrivial qualities of service”.

Foster’s definition is widely accepted but not standardized, and there are
major grid e↵orts (such as the LHC Computing Grid (LCG) [97]) that groups
resources under centralized control while still being referred to as a grid. The
view on grids underlying the work presented in this thesis is very similar to
Foster’s definition, with emphasis on decentralized control of resources and

5



autonomy of participating sites.
Since the initial vision of o↵ering general-purpose computational capacity

as a utility, grid computing has evolved into a tool mostly used to enable
infrastructure for large-scale scientific projects, such as the Large Hadron
Collider (LHC) [108], the World-wide Telescope [159], and the Biomedical
Informatics Research Network [73]. In many cases, grids are not only means
to share raw computational resources but also makes it possible to share data
from important scientific instruments. The project-oriented business model,
technical problems (often related to software dependencies), and interoperability
issues are a some reasons why the use of grid resources are mostly restricted
to specific scientific communities [11, 64]. For these communities, however,
grids have made it possible to address problems previously out of reach in
terms of computational resource requirements or available scientific tools. A
comprehensive overview of grid computing and its implications and uses in
several fields (bioinformatics, medicine, astronomy, etc.) is given by Foster and
Kesselman [62]. Although this book dates from 2004, the conceptual aspects of
grids have not changed notably since.

2.1 Grid as an Infrastructure

The overall purpose of grid computing is to interconnect resources which may
be owned by di↵erent actors in di↵erent countries, have di↵erent physical
characteristics (CPU frequency, CPU architecture, network bandwidth, disk
space, etc.) and run di↵erent operating systems and software stacks. These
resources are consumed by users commonly organized in collaborating scientific
communities, Virtual Organizations [63].

A wide variety of grid middlewares including [8, 13, 47, 61, 97, 156, 161, 167]
are used as intermediate software layers for job submission and job management
in grids. The vast set of di↵erent middlewares has created interoperability
problems between the middlewares themselves [55], creating an additional niche
for software to ease the burden to work with di↵erent middlewares [5, 51, 70,
144, 170].

Grid jobs can normally be seen as a self-contained bundle of computational
jobs and input data which can be executed independently across di↵erent nodes
to generate a set of output data. The jobs are batch-oriented and normally
no user interaction with the job is required or even possible during execution
time, which limits the scope of applications suitable for execution on grids. For
non-trivial jobs, however, there is commonly considerable amounts of inter-
process communication required during job execution. The Job Submission
Description Language (JSDL) [9] is a widely accepted standard for specifying
job configuration properties such as hardware requirements, execution deadlines,
and sets of input and output file required or generated by the computations.

When running a job on a grid, the first step is to select which of the available
resources to execute on. This can either be done manually by the user, or

6



by the support of a resource broker [26, 54, 99]. Once a suitable resource has
been selected, the job is submitted for execution to the local scheduler of that
resource. Common technologies for local resource scheduling includes Maui [84]
and SLURM [181]. In contrast to the local scheduler, the broker does not
have full control over the resources and must rely on best-e↵ort scheduling of
jobs [146].

The lack of user interactions makes it possible for a grid to schedule (and
re-schedule) jobs, as there are normally no strict restrictions on when the job
should run. Advance reservations allows users to reserve specific execution
times if required, most often at the expense of overall resource utilization
due to creation of small unusable gaps prior to the start-time of the reserved
jobs [149]. Backfilling techniques [121, 154] are commonly used to increase
resource utilization, and may also be used to mitigate the loss of utilization
caused by reservations. There are many di↵erent strategies to grid job scheduling,
some focusing on, e.g, scheduling for the benefit of a single application [18],
optimizing the job wait time [77], optimizing the total system throughput [82],
avoiding starvation1, or to o↵er advance reservations. An early overview and
performance comparison of grid scheduling techniques can be found in [79].

Another parameter commonly used in scheduling is fairness. The concept,
originating from [88], is commonly used in scheduling to take previous consump-
tion and user shares into account, prioritizing jobs for users higher if that user
has a lot of unspent shares. There are several approaches to fairshare scheduling
in grids, e.g., [38, 43, 45, 49, 94, 96]. The definition of fairness varies between
the di↵erent approaches, some measuring the total resource utilization, others
the number of accepted jobs or the number of missed deadlines per user [129].
All approaches uses some historical utilization data as input in the scheduling
process.

A modern batch system scheduler can be configured in many ways to strive
towards one or more objectives, normally using weighed combinations of several
parameters. The scheduler prioritizes the jobs dynamically and submits jobs for
execution on the local resources. After job completion, a usage record [112] is
generated with metadata concerning the job. This information is subsequently
used for internal grid process such as accounting and fairshare scheduling. For
more information about metadata management, see Chapter 4.

2.2 Federated Grids

As mentioned in the Internet analogy at the start of the chapter, grids emerged
as isolated islands similarly to the early isolated networks now made a part of the
unified Internet. The initial vision of grid was a wide spanning resource network
functioning as a utility, and there are several e↵orts to create federations
of grids [20, 65, 106, 132], where grids unifies (parts of) their resources for

1
Starvation occurs when some jobs are constantly neglected in favor or other jobs, starving

them of resources.

7



common use while still retaining full control over the local infrastructure. For
example, the Swedish and Norwegian national grids [125, 150] are two of the
actors contributing resources to the Nordic Data Grid Facility (NDGF) [124]
consortium. Even though the resources are acquired, owned, and managed by
each national grid, a subset of the jobs executed on these resources are run
on the behalf of NDGF. In a federation of grids, each site must remain a fully
functional autonomous grid in itself, unlike regular computational resources
constituting a normal grid which may rely on common grid functionality in
order to function. Therefore, federated grids require fully decentralized, but
interoperable, solutions in particular for scheduling and metadata management.

The motivations behind federations of grids are not only technical, but often
economical or political to consolidate resources and promote collaborations. For
instance, EGEE (originally Enabling Grids for E-science in Europe) project [105]
is a series of projects initiated by the European Union to create a wide spanning
computational grid infrastructure based mainly on the gLite [104] middleware.
European Grid Initiative (EGI) [98] is a substantial European initiative to
further unify national grids across Europe, largely continuing on the EGEE
e↵ort but with a significant focus on seamless interoperability and integration
of several di↵erent underlying technologies.

Interoperability between di↵erent grid deployments is a considerable chal-
lenge. Field et al. [58] present a comprehensive overview of challenges in grid
collaborations, based on their experiences from work on the EGEE project
and co-chairing the Grid Interoperation Now (GIN) [136] e↵orts. The authors
describe several approaches to achieve technical interoperability, and conclude
that standardization e↵orts is the best way to achieve technical interoperability
despite demonstrating that enforcing standardization is a time consuming and
non-trivial task [58]. Field et al. also emphasize the need to not only consider
technical di�culties, but also the di↵erences in operational processes which
may prevent seamless interoperability [58]. Task metadata management and
compatible monitoring are two of the challenges highlighted by Field et al. that
are also within the scope of this thesis.

The TeraGyroid project [132] also presents experiences from federated re-
source usage. In this project they execute tasks on resources belonging to the US
TeraGrid [28] and the UK e-Science Grid [80]. They found that they had to port
and configure the application to each resource on the grids on which it should be
run, and also had to spend considerable e↵orts to persuade site administrators
in both grids to accept certificates issued by the other party [132].

Boghosian et al. [20] provide invaluable insights on the challenges and ad-
vantages of grid federations. In this project, the e↵orts o↵ three di↵erent groups
are united to create a federated environment to execute applications which are
not embarrassingly parallel. Similarly to the TeraGyriod project [132], these
groups spent large e↵orts on interoperability at the user and middleware layers,
saying that the ”...the probability of success is likely to decrease exponentially
with every additional independent grid.”. They also state that ”Interoperation
between Grids today requires much more than just tedious manual e↵ort; it

8



requires almost heroic e↵ort.”, Boghosian et al. found that the primary barrier
was not technical, but rather ”... the varying levels of evolution and maturity
of the constituent Grids.” as a result of di↵erences in purposes, priorities, and
expertise of the collaborating sites [20].

One of the biggest challenges in federated grids is scheduling [20, 40, 56],
especially of non-trivial jobs as the correct execution of a parallel job often
means that the job has to be executed in parallel across di↵erent sites. The way
in which jobs are shared between a set of grids decides the structure and relations
of grids within a federation. Fundamental work on distributed scheduling for
independent tasks is presented in [106], using meta-schedulers to schedule a
common queue of jobs in and between di↵erent grids. Other solutions are based
on hierarchically organizing grids [17, 83]. Here, a local grid can regard another
grid as a very large local resource with special characteristics, and outsource
job execution to another grid using standard interfaces.

De Assunção et al. outline the InterGrid [40], a solution based on inter-grid
routing analogous to connecting di↵erent ISP networks [40, 116], and provides
a good overview on the challenges associated with a unified grid. Unfortunately,
there are no indications of implementations or practical evaluations of this
approach.

9



10



Chapter 3

Cloud Computing

Cloud computing has emerged as a broad concept for remote hosting and
management of applications, platforms, or server infrastructure, while still
o↵ering interactions with remote resources as if they where provisioned locally.
The term cloud computing originates from the custom of representing computer
(or telephone) networks using a drawing of a cloud, hiding the exact location
of where things are located or how they are connected. The same analogy
applies to computational clouds; the location and other underlying details of
remote resources are abstracted and hidden from the user, and the resources
are available “on the cloud”.

Similarly to grids, cloud computing lacks a crisp and commonly accepted
definition and there are many di↵erent views (e.g. [64, 68, 75, 176]) as to what
constitutes a cloud, and what di↵ers a cloud from a grid (see Section 3.3). Two
of the most commonly used definitions originates from the National Institute
of Standards and Technology (NIST) [166], and Vaquero et al. [169]. NIST
defines [115] cloud computing as:

“... a model for enabling ubiquitous, convenient, on-demand network
access to a shared pool of configurable computing resources (e.g.,
networks, servers, storage, applications, and services) that can be
rapidly provisioned and released with minimal management e↵ort or
service provider interaction.”

This definition is general enough to encompass practically all di↵erent cloud
approaches, while the one by Vaquero et al. [169] has additional (non-strict)
conditions of Service Level Agreements (SLAs) that guarantees capacity to
consumers:

“Clouds are a large pool of easily usable and accessible virtualized re-
sources (such as hardware, development platforms and/or services).
These resources can be dynamically reconfigured to adjust to a vari-
able load (scale), allowing also for an optimum resource utilization.

11



This pool of resources is typically exploited by a pay-per-use model
in which guarantees are o↵ered by the Infrastructure Provider by
means of customized SLAs.”

The above definitions overlap to a large extent, focusing on easy, on-demand
access to hardware, application platforms, or services with low delays in the
release and provisioning of additional resources. Both definitions employs three
widespread service models / scenarios to subdivide the area of cloud computing
into subareas:

Infrastructure as a Service (IaaS)
In IaaS solutions, hardware computing resources are made available to
consumers as if they were running on dedicated, local machines. The im-
pression of dedicated hardware is commonly achieved by utilizing hardware
virtualization techniques, making it possible to host several virtualized
system on the same physical host. Some examples of IaaS providers
includes Amazon Elastic Compute Cloud (EC2) [7], Rackspace [135], and
VMware vCloud Express [172].

Platform as a Service (PaaS)
Instead of o↵ering access to (virtualized) hardware resources, PaaS sys-
tems o↵ers deployment of applications or systems designed for a specific
platform, such as a programming language or a custom software envi-
ronment. PaaS systems includes Google App Engine [71], Saleforce’s
Force.com environment [177], and upcoming projects such as 4Caast [1],
CumuloNimbo [37, 131], and Contrail [120], all supported by the European
Seventh Framework Programme.

Software as a Service (SaaS)
Web-based applications including, e.g., Microsoft O�ce Live [117], Google
Apps [72] (not to be confused with App Engine), and the gaming platform
OnLive [126] are available to consumers online without the need to install
and manage the software locally. The software is instead hosted and
managed on remote machines, making it possible to run software (including
graphic intensive computer games) on remote servers instead of the local
machine.

Of these subareas, SaaS and PaaS are normally developed and maintained
by a single administrative unit while IaaS sometimes makes use of resources
from several di↵erent clouds (similarly to federation of grids). Therefore, the
remainder of this thesis focuses on IaaS concepts of clouds, and more specifically
on the implications imposed by considering and utilizing resources from more
than one infrastructure provider. However, many of the managerial concepts
described in Chapter 4 can be applied to, e.g., PaaS and SaaS environments as
well.

12



3.1 Virtualization

Hardware virtualization techniques [14, 134] provide means of dynamically
segmenting the physical hardware, making it possible to run several di↵erent
Virtual Machines (VMs) on the same physical hardware at the same time. Each
VM is a self contained unit, including an operating system, and booting a VM is
very much like powering on a normal desktop computer. The physical resources
are subdivided, managed, and made available to the executing VMs through a
Hypervisor (also called VM Monitor).

The concept of virtualization dates from the late 1960s but have been
largely unused for quite some time, until it gained renewed interest in the late
1990s. The oft cited reason is that the widespread x86 processor technology
was cumbersome and impractical to virtualize compared to its predecessors,
and also became cheap enough to increase the number of computers instead
of focusing on virtualization [95]. The late 1990s saw e�cient software-based
virtualization of the x86 platform, and hardware support for virtualization in
processors was released in the mid 2000s [3, 22].

Virtualization is the underlying packaging and abstraction technology for
basically all IaaS clouds, and there are also several initiatives for using virtual-
ization in HPC and grid computing. For example, Keahey et al. [90] suggest
using VMs in grids to, e.g, better meet quality of service demands and provide
easier portability between execution environments. Haizea [151] is a scheduling
framework utilizing VMs as a tool to maximize utilization while still supporting
advance reservations by suspending and resuming VMs. This way,small gaps
between jobs can be utilized by resuming a previously suspended VM. An
analysis and comparison of virtualization technologies for HPC is presented by
Walters et al. [174].

There are several di↵erent technologies for virtualization, which Walters et
al. [174] present and organize into four di↵erent categories:

Full Virtualization Uses a hypervisor to fully emulate system hardware, mak-
ing it possible to run unmodified guest operating systems at the expense
of performance. Well known implementations include VirtualBox [175],
Parallels Desktop [130], and Microsoft Virtual PC [81].

Native Virtualization Native virtualization makes use of hardware support
in processors to make the costly translations of instructions from full vir-
tualization in hardware instead of software. Known technologies includes
KVM [95], Xen [14], and VMware [171].

Paravirtualization In Paravirtualization [178], the operating system in the
virtual machine [147] is modified to make use of an API provided by
the hypervisor to achieve better performance than full virtualization.
Xen [14] and VMware [171] are two well established technologies supporting
Paravirtualization.

13



Operating System-level Virtualization Unix based virtualization systems
such as OpenVZ [128] can provide operating system-level virtualization
without hypervisors by running several user instances sharing a single
kernel.

Virtualization techniques in di↵erent categories are generally incompatible,
and for paravirtualization there might be interoperability issues even between dif-
ferent versions of the same hypervisor technology. The hardware support makes
native virtualization perform almost at the same level as paravirtualization,
keeping the losses imposed by virtualization at a couple of percent [3, 14].

There are several benefits of using virtualization in system management
(see, e.g., [142]), but the most important ones in the context of this thesis are:
VMs are self contained systems, making it possible to execute the VM on all
compatible hypervisors; VMs can be paused and resumed; and VMs can be
migrated (moved) either by pausing them and resuming them on another host
or by moving them without suspending them. Migration a VM without (non-
neglectable) downtime is known as live migration [32]. There are several schemes
for optimizing the migration process, and live migration of VMs can be done
with marginal downtime [23, 32, 158]. Being able to execute VMs on remote
hosts without severe software dependencies, and the ability to relocate VMs
without major e↵ort or downtime forms the core of multi-site cloud computing
concept.

3.2 Cloud as an Infrastructure

The starting point of cloud computing as an infrastructure is arguably Ama-
zon [7] o↵ering the provisioning of their resources to anyone, without the need
of any application process or long-term commitments, and charging users only
for the resources they actually consume.

The quick provisioning of resources makes it possible for consumers to adapt
their current resource requirements with very short delays by starting up or
stopping VMs according to their needs. To avoid having to customize large
amounts of VMs individually, a VM template (or type) is often used to start up
several identical instances1.

When starting several instances of VMs it is the responsibility of the software
running inside each VM to synchronize with the other running instances, for
example by registering with a load balancer. Some configuration settings, such
as the IP of the load balancer, cannot be encoded into the template itself, either
because it is not available until run time or because it needs to be unique for
each VM instance. The process of configuring each instance automatically is
called contextualization [90, 91, 165]. Contextualization is usually performed
just prior to booting a VM, and pausing or resuming (or migrating) a VM does
not cause another round of contextualization.

1
These terms are not to be confused with ”Instance Types“, which are predefined hardware

configurations of VMs o↵ered by, e.g., Amazon EC2 [7].

14



There are three main actors involved in cloud infrastructures, illustrated
in Figure 1. The Infrastructure Provider (IP) owns and manages the physical
resources and any supporting software that is required for infrastructure man-
agement. The Service Provider (SP) is responsible for the contents the service
itself, installing and managing the software running inside the VMs. End users
are the consumers of the service o↵ered by the SP.

Even though the actors are conceptually separate, the same organization
may of course both own the infrastructure, host services on the infrastructure,
and be the end users of their own service. There is also a many-to-many relation
between the SPs and IPs, and a single IP normally hosts services from many
SPs in a multitennant manner (using the isolation of VMs to keep them from
interfering each other). Similarly, a single SP may run services (or even parts
of services) on several IPs.

Service Provider (SP)

Figure 1: Three main actors for cloud IaaS: the Infrastructure Provider(s) make
resources available to Service Provider(s), who in turn o↵er a software service
to End Users.

The IaaS service model is normally o↵ered by the IP, but may have supporting
functionality running in the SP. The software running inside the service managed
by the SP may consist any type of software, which may (or may not) be other
flexible platforms such as PaaS or SaaS solutions. Notably, PaaS or SaaS
systems are not required to be hosted on underlying IaaS infrastructures by the
service providers, but the variation in resource requirements of PaaS or SaaS
systems lends itself well to such solutions. Similarly, SaaS systems may (or may
not) be hosted with the support of an underlying PaaS system.

From a resource management perspective, deploying a service to an IP is
very much like starting a normal computer application – its lifetime and usage
patterns are unknown to the underlying operating system, but the system is
still responsible for managing and multitasking di↵erent applications without
detailed instructions from the user. In an operating system, less prioritized tasks
are often neglected in favor of higher prioritized ones, mitigating the problem
of insu�cient available resources. Similarly, some cloud vendors makes use of

15



less prioritized instances (such as Amazon’s Spot Instances [6]) to increase the
utilization when the system is not under heavy load. When resources are running
low, the IP can may either free up resources by stopping less prioritized services,
or by outsourcing the executions of some VMs to other IPs (see Section 3.4).

Security and privacy concerns are commonly seen as the main limiting factor
of clouds as a general utility [64, 85]. Compared to grids, where access usually
is preceded by face-to-face identity validations and certificate generation, clouds
has a relaxed security model reminiscent of regular Internet sites, using Web
based forms for sign up and management, and emails for password retrievals [64].
This relaxed security is a great benefit in terms of usability, but limits the trust
of major companies considering using clouds for business-sensitive applications.
While the ongoing work on cloud security is progressing (see e.g., [31, 85]),
privately hosted and managed clouds has become an option for dealing with
sensitive data while still gaining some benefits from the cloud computing
paradigm.

Early results of scientific computing using clouds are presented in [89],
although most of the results are based on ”clouds” where a user has to apply
by email for the free execution of a VM during short period of time (hours).
The lack of quick on-demand provisioning, the need for manual interactions
with the providers prior to execution, and the lack of a utility based business
model makes it highly debatable whether the systems used in [89] should be
considered clouds at all, or rather an extension of the authors earlier published
work on Virtual Workspaces in grids [90].

3.3 Grids and Clouds Compared

While both technologies can be seen as enabling technologies to utilize all
kinds of computational infrastructure, the main di↵erences are primarily not
about technical solutions; as already mentioned, the utilization of virtualized
environments to ease deployment and execution for tasks was known in grids
before the cloud era [90]. Instead, clouds and grids have emerged as two di↵erent
paradigms due to approaching the vision of computing capacity as a utility
from di↵erent angles.

• Grids are designed to support sharing of pooled resources (normally high
performing parallel computers) owned and administered by di↵erent orga-
nizations, primarily targeting users with hardware requirements surpassing
the capacity of commodity hardware (e.g. thousands of processor cores or
hundreds of terabytes of storage).

• The development of clouds as a technology is driven by economies of
scale [148], where the increased utilization of existing (often commodity)
hardware resources o↵ers lower operational expenses for the infrastructure
providers, which in turn makes it possible for such providers to o↵er
hardware leasing at prices comparable to in-house hosting.

16



The di↵erences in scope between the paradigms cause considerable di↵erences
in e.g. business models, architecture, and resource management. In the context
of this thesis, the most interesting di↵erences are those between grid jobs and
cloud services, including how resources are provisioned to the supplied tasks.
More in-depth comparisons between clouds and grids can be found in, e.g., [64].

Grid jobs by nature are computational jobs executed on infrastructures with
very high (combined) performance, granting exclusive access to resources for
the job until it is completed before assigning the resources to the next job in the
queue. The capacity requirements and execution time of grid jobs are normally
known beforehand, and used as input in job scheduling. Cloud services, on the
other hand, are expected to start almost immediately after they are submitted
and to run without a fixed execution time until the service is explicitly canceled.
The service runs on its assigned share of resources, which may increase or
decrease during service execution. Conceptually, the way resources are managed
is analogous to time-sharing [137] (grids) vs. space-sharing [157] (clouds) in
operating systems.

The extensive use of VMs in cloud computing also means that the delays
for starting up and terminating jobs are greater than those of grid computing,
as VMs adds quite a bit of overhead in data transfer and start-up times. To
generalize, grids are inherently more suitable for applications with high demands
on stability and performance by guaranteeing them exclusive access to resources
over a short period of time. Clouds are more suitable for less critical long-running
tasks suitable for execution on public or shared hardware, and normally o↵ers
support for scaling up and down the amount of allocated resources according to
the current needs.

The boundaries between grids and clouds are not absolute and generous
definitions of either terms creates a large potential overlap. The technologies can
also be used in combination. For example, deployment of the Sun Grid Engine
(SGE) [69] in a cloud infrastructure is one of the use cases of the RESERVOIR
project (see Section 3.4)[141], showing the plausibility of utilizing the flexibility
of clouds to host a grid middleware. To make use of the flexibility of the
infrastructure, the SGE was deployed using a master VM for job distribution
and several instances of worker VMs for job execution, adapting the amount of
worker nodes according to the amount of jobs waiting to be executed [33].

Another e↵ort to run cluster software on IaaS infrastructure presented by
Keahey et al. is called Sky Computing [92]. In this approach, resources from
three di↵erent Universities are combined into ”Virtual Clusters”. Hadoop [179]
and Message Passing Interface (MPI) [74] cluster software is hosted on the
di↵erent VMs, creating a cluster utilizing resources from three university sites.

3.4 Cloud Collaborations

Similarly to federations of grids, clouds can be joined together in di↵erent
collaboration models to take advantage of the joint infrastructure. While the

17



main advantage of federated grids is the increased capacity, clouds may also take
advantage of collaborations to, e.g., o↵er geographical redundancy or execute
services at geographically advantageous locations otherwise outside the available
infrastructure. The economical model of clouds gives rise to several di↵erent
forms of collaborations, described in Section 3.4.1. In some scenarios, a cloud
may provision resources from one or more remote cloud(s) using the regular
client interfaces, removing the need for prior resource exchange agreements.

In the basic case, the SP interacts with a single IP and is kept unaware of
whether the IP uses resources as a part of a collaboration or not. In collaborative
cases, the original IP site where the service was submitted is referred to as the
primary site, while any collaborating sites are the remote sites. The control
of the service and responsibility towards the SP remains in the primary site
regardless of where the service is actually executed, and the primary site is also
responsible for ensuring that SLAs are maintained or compensated for. To be
able to utilize remote resources, the use of resources between IP sites may be
governed by separate SLAs or framework agreements [24], stipulating the terms
of resource exchange between IPs.

As with grid computing, the use of several clouds introduces a lot of hetero-
geneity problems that ultimately only can be resolved using standardization
e↵orts. Native (hardware) virtualization is a first major step to standardization
on the lowest hardware level. There are also e↵orts to create standardized and
general formats for specifying virtual machines and virtual hard drives [42, 118]
and general cloud APIs [34, 41, 113, 127], but neither standard has yet emerged
as a generally accepted candidate.

VM incompatibility issues aside, there are a number of operational challenges
imposed by the used of collaborative clouds. Since each site retains its full
autonomy, and its own policies and objectives, the internal workings of each
site are largely obscured to other sites in the collaborations. This means each
site only has details available regarding local resources, and at best incomplete
information regarding the state in other sites. Service provisioning across
clouds therefore has to be based on probabilities and statistics rather than
complete information. Another challenge not present in single clouds is that
sites participating in collaborations may have external events a↵ecting the state
of a service and resource availability of the infrastructure. For example, a remote
site may place services on the infrastructure of the primary site, or force the
withdrawal of VMs running on the infrastructure of the remote site and therefore
forcing the primary site to re-plan the placement across the infrastructure.

The RESERVOIR (Resources and Services Virtualization without Barri-
ers) [138, 139, 140, 180] project focus on creating and validating the concept
of cloud federations across several infrastructure providers through several use
cases, including running SGE [69] and SAP [145] applications on the federated
infrastructure. One of the results of the project is the design and creation of
Virtual Application Networks (VANs) [78]. These overlay networks, extending
previous work from e.g. [164], o↵ers one solution to allow VMs being a part of
internal private networks to be migrated to other sites in the federation without

18



being disconnected. These VANs can be used to manage monitoring information
for services spanning several cloud sites, see Section 4.1. The RESERVOIR
project also outlines a common specification for cloud services [66, 139] to
facilitate interoperability, made by extending the standard Open Virtualization
Format [42].

The OPTIMIS [57] project targets the creation of a toolkit of components
able to (among other things) support multiple cloud scenarios without extensive
changes to the software itself. The project [57] also outlines interesting conflicts
of interest between the di↵erent actors (SPs and IPs). For example, the ambition
of the IP to maximize profit is usually contradictory to the SP ambitions of
hosting services at a low cost without neglecting the service performance.

3.4.1 Cloud Computing Scenarios

The relation between di↵erent clouds in collaboration is commonly modeled as
di↵erent deployment scenarios [57, 139], depending on the type of interactions
between the di↵erent sites in the collaboration. We divide the scenarios into
three main categories, federated clouds, multi-clouds, and private clouds, each
described and illustrated in the coming subsections. Di↵erent scenarios can
also be combined into hybrid clouds, with bursted private clouds commonly
used as an example. Note that all collaboration scenarios are multi-clouds in
the sense that they span more than one cloud. The term is used in this more
general sense in the title of this thesis, but used in a more specific case in this
subsection to describe a specific collaboration scenario. This is done in order to
stay in line with, e.g., [57].

Figure 2a shows a simplified model of a standard cloud which is used as the
starting point when describing the other deployment scenarios. As previously
mentioned in Chapter 3, a single IP normally hosts the services of several SPs,
although only a single SP is shown in the illustrations.

Federated Clouds

Federations of clouds (Figure 2b) are formed at the IP level, making it possible
for infrastructure providers to make use of remote resources without involving
or notifying the SP owning the service. Gaining access to more resources is not
the only potential benefit of placing VMs in a remote cloud. Other reasons
include fault tolerance, economical incentives, or the ability to meet technical
or non-technical constraints (such as geographical location) [138] which would
not be possible within the local infrastructure.

Provisioning of remote resources through federations can be done with several
remote sites at the same time, using factors such as cost, energy e�ciency, and
previous performance to decide which resources to use [57]. In some cases, a
service may be passed along from a remote site for execution at a third party
site, creating a chain of federations. As each participant in the chain is only

19



Service Provider (SP)

(a) A standard cloud de-

ployment.

Service Provider (SP)

(b) Two cloud IPs form a federation.

Figure 2: The illustration on the left shows a standard cloud scenario, where
one or more SPs are using the resources of a single IP. In the federated case,
shown on the right, an IP may employ other IPs to host (parts of) the running
services without involving the SP.

aware of the closest collaborating sites, special care has to be taken in the VM
management and information flow in such scenarios [53].

Multi-Clouds

The scenario where the SP itself is involved in moving and prioritizing between
di↵erent IP o↵erings is called a Multi-cloud [57] scenario. In this case, illustrated
in Figure 3, the SP is responsible for planning, initiating, and monitoring the
execution of services running on di↵erent IPs. Any interoperability issues has
to be detected and managed by the SP, a↵ecting the set of sites which can be
used for multi-cloud deployments.

The automatic selection and management of di↵erent alternatives using
brokers is a well known approach for, e.g., grid computing [56, 93]. As shown
in [57, 163], brokers can also be used as an intermediate component in multi-
cloud scenarios. In this case, illustrated in Figure 4, the broker is placed between
the SP and the IP. The broker may act as an SP to the IP and as an IP to the
SP, containing a lot of the complexity of multi-cloud deployments within the
broker itself [57].

Tordsson et al. [163] provide an overview and practical experiences of cloud
brokering, including quantified results of performance gained from the brokering
of resources belonging to di↵erent cloud providers.

Private Clouds

Private clouds, shown in Figure 5a are cloud deployments hosted within the
domain of an organization or a company not made available for use by the
general public [10]. Such deployments circumvents many of the security concerns
related to hosting services in public clouds by keeping the execution within
the same security domain, while still o↵ering a computational infrastructure to
internal users.

20



Service Provider (SP)

Figure 3: In multi-cloud scenarios, the SP itself may control and decide the
deployment of a service using several di↵erent IPs.

Broker

Figure 4: In brokered multi-cloud, a dedicated broker component is used by the
SP to simplify the deployment and management process.

Similarly to grids, private clouds only have a finite set of resources and
therefore the infrastructure must at some point, prioritize, enqueue, or reject
service requests in order to satisfy SLA agreements [153]. It is also likely that
private clouds are based on collaboration models between peers rather than
pay-per-use alternatives. This creates a need for a service model closer to that
of grids than public clouds, and so far there has been little focus in literature
on the specific challenges of private clouds.

Hybrid Clouds

Hybrids between di↵erent scenarios can be used to overcome limitations of single
usage scenarios. For example, to avoid the problem of finite resources in private
clouds, such clouds may temporarily employ the resources of external public
cloud providers. These bursted private clouds (described in e.g., [153]) o↵ers a
combination of the security and control advantages of private clouds and the
seemingly endless scalability of public clouds, but requires very sophisticated
placement policies to guarantee the integrity of the system. The relation between
private and bursted private clouds is illustrated in Figure 5.

Sotomayor et al. [153] outline the general concepts of hybrid clouds and
provides an overview of di↵erent cloud technologies and their support for hybrid
models. In their work, OpenNebula [152] is used to create hybrid cloud solutions

21



Private Cloud

Service Provider (SP)

(a) Private cloud.

Private Cloud

Service Provider (SP)

(b) Bursted private cloud (hybrid)

Figure 5: Private clouds o↵er stronger guarantees on control and security as
the whole infrastructure can be administered within the same security domain.
If needed, private clouds may have less sensitive tasks be executed on a public
cloud instead, forming a hybrid cloud scenario commonly referred to as bursted
private cloud.

based on a private infrastructure and a set of cloud drivers used to burst to
di↵erent external providers such as Amazon EC2 [7] or ElasticHosts [46].

22



Chapter 4

Task Metadata

Management

The primary focus of this thesis is the collection, management, and use of
task metadata in distributed and multi-provider infrastructures such as grids
and clouds. Previous chapters have introduced the fundamental concepts of
the main paradigms, including di↵erent collaboration models, and this chapter
outlines internal infrastructure procedures related to task metadata.

The task metadata contains information about, e.g., the duration, status,
and resource consumption of a running task, and forms the primary source of
feedback for di↵erent internal procedures in the infrastructure. The following
sections covers gathering and managing of task metadata, and describes di↵erent
internal grid and cloud infrastructure processes using the metadata as the
primary input.

4.1 Monitoring

Monitoring is the process of gathering information about infrastructure or a
service during run time. In grid systems, the focus of monitoring lies on the
health, performance, and status of the infrastructure resources [173, 183]. This
information is subsequently used for fault detection and recovery, prediction of
resource performance, and also to tune the system for better performance [162].
Grid monitoring is slightly out of scope regarding task metadata management,
as monitoring is normally not performed regarding the grid jobs themselves
(see [183] for a comprehensive overview of grid monitoring). Instead, metadata
concerning the result and status of a grid job is collected once the job has
terminated (in the shape of usage records), regardless of if the job succeeded to
complete successfully or not. Creation and management of these records are
further discussed in Section 4.2.

Monitoring of running services is fundamental in clouds as monitoring data

23



is the primary input used in most internal management procedures. The lack of
compatible monitoring is one of the main incompatibility hurdles of cross-site
clouds [10, 103]. There are three di↵erent kinds of monitoring data used in
clouds, measurements from the infrastructure, the hypervisor, or from within
the service itself:

• Infrastructure specific measurements showing the health and utilization
of physical resources. Monitoring the state of infrastructure resources is
not a specific problem for cloud computing, and the same tools used for
general purpose system monitoring (such as Nagios [16], Ganglia [114], or
collectd [59]) can be used also in these contexts.

• Data concerning the resource consumption of individual VMs running on
the hardware can be obtained by communicating with the VM hypervisor,
or by using tools (such as the libvirt [109] API) that are capable of
operating across several di↵erent hypervisors. The VM information is
commonly used to perform the fulfillments of SLAs or as input to elasticity
and service profiling.

• Service specific Key Performance Indicators (KPIs) are used to measure
and manage monitoring values specific to the service. These values are
normally only available from inside the service software itself, and might
constitute values such as the current number of active sessions to a Web
based application or the number of concurrent transactions in a database
system. These values can be used to perform, e.g., elasticity.

Measuring and managing monitoring KPIs from inside the service itself is an
interesting problem that is not yet well studied [86]. Some cloud solutions (such
as RESERVOIR [139]) have a strong separation between service management
and the VM itself, in the sense that the VM is unaware of the location of the
management components, and the management components are unaware of the
location of the VM. This location unawareness [48, 53, 78] has a great influence
on what techniques can be used to make the service specific data available to
the cloud infrastructure from inside the VMs.

An important factor to consider in cloud collaborations is that more than
one site might be interested in the monitoring data produced for a given service.
For this reason, naive solutions such as sending the data from inside the VM to
an external internet endpoint cannot be used in, e.g., federation scenarios, as
the data would not be visible to the infrastructure on the remote site1. There
is also no guarantee that all VMs of a service has external network access [78].
Instead, the monitoring data has to flow back from the executing site to the
primary site through any intermediaries (if any).

The Lattice framework [33] presents a solution for service level monitoring
based on customized virtual networks (VANs [78]) to pass measurements from
inside the VMs to the infrastructure on the outside without external network

1
Recall that VMs are not re-contextualized when they are migrated.

24



access. In this solution, the functionality of the network broadcast directive
is overridden and used for monitoring tasks instead. However, without the
customized virtual networks this solution would not be possible, and so this is
not a generally applicable alternative.

An alternative based on File System in User Space (FUSE) [160] is outlined
in [53]. In this solution, FUSE is used to create a small application that simulates
a hard drive partition. File system calls (such as writes) result in a normal
programmer controlled method call in the application, and the complexity of
externalizing the data can be hidden inside the FUSE based application. The
problems of actually externalizing the data without knowing the location of
some management component remains unsolved, however.

An architecture and implementation of a service oriented monitoring frame-
work for use in cloud infrastructures is presented in [87]. This approach does
not seem to consider the problem imposed by service level management nor
federations, but instead focuses on monitoring of information from di↵erent
sources and for use in real-time applications.

4.2 Accounting and Billing

Accounting systems are responsible for metering and managing records on
resource consumption by users in grids or clouds. In grids, a Usage Record [112]
for a job is usually created once the job has finished executing. The usage record
contains a lot of general metadata about the job, such as when it was started and
finished, and may also contain a summary of the combined resource consumption
of a job in terms of, e.g., amount of data transferred on the network. Cloud
systems normally rely on run time monitoring of service resource consumption
as a basis for accounting.

In federations of grids, the accounting data generated upon job completion
is usually important both for the originating grid site, the executing grid site,
and possibly any consortium or organization linking these resources together.
Managing usage records in such environments is the subject of Paper I [52]. For
cross-site cloud computing, the aggregation of data from di↵erent site is usually
managed by the underlying monitoring system, as accounting is not the only
internal cloud process depending on the aggregated raw monitoring data.

One of the major di↵erences between grids and clouds is the underlying
economical model, which can be clearly linked to the origins of each paradigm
and to the niches they occupy today. For grids, the most common solutions
are based collaborative sharing models where the usage data is converted to
abstract currencies [15, 67, 133]. Abstract credits are normally awarded to users
through an out-of-band application procedure, in which a steering committee
allocates credits to di↵erent projects based on scientific merit. These credits
can then be exchanged for computing time on the infrastructure. There are
numerous suggestions on how to achieve economical models and architectures
for use in grids, commonly based on auctions or other market-based schemes,

25



some of which can be found in [12, 25, 27, 50, 101, 182]. Nakai and Van Der
Wijngaart [122] presents an in-depth economical analysis of the feasibility and
expectations of markets in grid scheduling, proving that the use of markets is
not generally applicable and may not lead to the desired outcomes [122].

Many grid accounting systems also support converting the abstract currencies
to real monetary units (at least by easily extending the core mechanisms), but
real economical models for grid usage has never been widely adopted. One
reason could be that the allocation of abstract credits means that stakeholders
can partly a↵ect the utilization of the infrastructure. The use of real money
could mean that smaller projects could be constantly outbid by other consumers,
preventing them from utilizing the common infrastructure.

In public clouds, users are free to request as much resources as they require on
the short term, and paying only for the resources they are currently requesting.
In such systems, the accounting data (based on monitoring) is used as input in
the billing process, converting the hardware measurements to real monetary
bills using di↵erent pricing schemes.

The two major payment models used in clouds are prepaid and postpaid,
used in the same manner as in the mobile-phone industry. Prepaid, where
credits are purchased in advance and consumed in accordance with resource
consumption, o↵ers greater control over the maximum costs but running out of
credits may cause the service to stop executing. Postpaid, where the consumer is
billed at regular intervals for the previous usage, is more sensitive to unexpected
amounts of resource consumption, but does not risk running out and hence
disturbing the service execution.

Many cloud providers employ overbooking strategies [143] and sell more
resources than is actually available, relying on probabilistic models that not
all resources are be requested at the same time [76]. However, overbooking
strategies ultimately leads to increased amounts of broken SLAs, and each
broken SLA generates compensations to the SP. Therefore, dealing with both
costs and compensations is a major requirements for accounting in clouds.
Birkenheuer et al. [19] show that overbooking schemes are valid options and
can achieve a 20% increase in profit even when considering compensations for
broken SLAs.

Deployment scenarios such as bursted private clouds or cloud federations
o↵ers seemingly unlimited hardware resources, as there may always be resources
available at collaborating sites. In theory, this means that also the amount
of accounting (and monitoring) data generated by services in the cloud is
unlimited. Accounting data is commonly considered financial data, with means
there are high demands on storing and managing such data over a long period
of time (at least ten years in some jurisdictions). This creates a resource
provisioning problem for the management of accounting data similar to the
problem addressed by cloud computing itself. Totally scalable solutions for such
data has not yet been fully established, but initial work on this subject can be
found in, e.g., [39, 110].

26



4.3 Scheduling and Placement

The process of assigning incoming tasks to available resources, usually denoted
Scheduling for grids and Placement for clouds (although scheduling is sometimes
used also for cloud services), is one of the internal processes often relying on
task metadata for future decisions.

In grid computing, fairshare scheduling [38, 45, 49] is a wide-spread approach
where the scheduler tries to distribute computational resources according to
predefined usage shares. The scheduler normally operate on aggregated task
metadata for each user and compares the previous usage to the users predefined
allocation of resources, using the di↵erence between promised and utilized
resources as a factor for prioritizing incoming jobs. The data used in the
fairshare process is usually based on usage records, obtained either by querying
the underlying accounting system or by receiving such records straight from
the infrastructure. The accuracy and availability of usage records and the
delay before the data is made available to the fairshare scheduler directly
a↵ects the performance and convergence time in the system. Preliminary
results in quantifying the relation between task metadata management and job
convergence is presented in Paper IV, and further evaluation of these factors
are part of future work.

Similarly to grid scheduling, cloud placement can be focused on several
objectives and the objectives of each autonomous site may be di↵erent [24].
Even within a single site there might be several conditions to consider, and there
is often a trade-o↵ between multiple factors such as maximizing the utilization
of the infrastructure while minimizing the risk of breaking SLAs. Currently,
the amount of broken SLAs seems to be the primary means of measuring the
suitability of a cloud deployment. The placement problem takes very di↵erent
forms in di↵erent cloud scenarios. The limited resources in private clouds
creates a need for similar solutions as employed in grid computing, as the total
amount of requested capacity will be larger than the available resources at some
point [153]. In public clouds, the resources are seemingly unlimited and solutions
of the placement problem for an IP can focus on optimizing the revenue while
minimizing the risk of breaking SLAs [24]. Hybrid scenarios such as bursted
private clouds have di↵erent challenges as the utilization of the limited local
resources must be balanced with the higher costs (and insecurity) of the public
resources. As shown by Van den Bossche et al. [168], approaches which perform
very well in public clouds may perform drastically worse in bursted private
cloud settings due to very large di↵erences in the required time to find an
optimal solution when considering also the internal resources. Similarly to
fairshare scheduling in grids, the quality and availability of monitoring data and
the delays imposed by collaborations is likely to have a great impact on cloud
placement, but quantification and further analysis of these areas are subject to
future work.

27



4.4 Elasticity

The ability to quickly request or release resources in response to the current load
of a service is one of the most prominent features of cloud computing. Elasticity
is the process of automating the decisions for when to scale up or down and
transfer the decision making from human administrators to processes running
in SP or in the infrastructure. By specifying a set of Elasticity Rules [141]
and include the rules in the service manifest [66], the rules for scaling a service
becomes an integral part of the service itself. The rules can be used to specify,
e.g., how many users can be served by each VM instance, which may be used
in combination with reactive or predictive models to calculate the number of
required instances [4].

There are two types of elasticity, horizontal elasticity and vertical elastic-
ity [4]. In horizontal elasticity, the number of VM instances of a certain type is
increased or decreased to correlate with the current load. In vertical elasticity,
the amount of hardware resources assigned to one or more VM(s) (such as the
amount of RAM or number of CPUs) is dynamically increased or decreased.
Horizontal elasticity puts additional strain on the application running inside
the VMs, as the system itself must synchronize the tasks between the di↵erent
instances. Vertical elasticity, on the other hand, requires that the operating
system and application running inside the VM is capable of making e�cient
use of, e.g., a dynamic amount of available RAM.

The elasticity process is normally based on monitoring data concerning
the hardware consumption of the VM, or on KPIs monitored from inside the
application itself. To shorten the reaction time, elasticity requires up do date
measurements regarding the state or KPIs of each VM regardless of where in
the (cross-site) infrastructure each VM is running. Normally, the time required
for instantiation of new VMs is a few minutes, but recent e↵orts by, e.g., Lagar-
Cavilla et al. [100] has shown that new VMs can be started up in the matter of
seconds using techniques similar to fork system calls. To avoid becoming the
bottleneck, performance is a key requirement for monitoring solutions designed
to support rapid elasticity.

28



Chapter 5

Summary of the Papers

The publications in this thesis focus on di↵erent aspects of task data man-
agement, including collecting of task data, management of the data within a
distributed grid or cloud environment, and how the collected data can be used
in di↵erent internal procedures such as accounting, billing, or job scheduling.

5.1 Paper I

Paper I [52] investigates how task data collected across autonomous nodes in
di↵erent distributed grid or cloud usage scenarios can be managed and shared
to other parties in the collaboration. The scenarios considered in this paper are
hierarchies of grids, mutual grid collaborations, and federations of clouds.

In the paper, we identify a set of requirements from the di↵erent usage
scenarios, and use these requirements to evaluate several di↵erent approached to
task data sharing in these environments. This process results in the implementa-
tion and evaluation of a light-weight component (LUTSfed) controlling the flow
of usage information between di↵erent parts of the collaboration. This process
is made non-intrusive and optional by reusing existing read and write interfaces
of the data management components, and adds support for di↵erent cardinality
(one-to-many, many-to-one, many-to-many) in usage sharing. We demonstrate
how the LUTSfed component can be used to realize the three di↵erent usage
scenarios by configuring and deploying the component in di↵erent ways, without
a↵ecting the operation of the already running data management components in
di↵erent parts of the collaboration.

The performance of the stand-alone LUTSfed component is evaluated in
di↵erent scenarios, including relations of di↵erent cardinality between the
number of source and target components and the performance losses inferred
by using the LUTSfed component.

29



5.2 Paper II

Paper II [48] investigates accounting and billing in the federated cloud environ-
ments introduced in the RESERVOIR project. The paper is based on two new
use cases not present in traditional grid and cloud environments; accounting
for cloud services for which the number of sub-components is dynamic and
unknown to the accounting system, and accounting for cloud services in which
also the placement of sub-components in the federated infrastructure is dynamic
and unknown.

A set of requirements for an accounting and billing system in federated clouds
is formulated based on the use cases and general non-functional requirements.
Existing grid accounting systems are evaluated based on these requirements, but
no existing alternative is found to fully support the set of requirements imposed
by this environment. Instead, a new architecture for a cloud focused accounting
and billing subsystem is proposed. This new architecture is designed from the
start to fulfill the requirements imposed by the federated cloud environment.
Paper II describes the proposed architecture is detail.

5.3 Paper III

Paper III [103] provides a unified view on a set of managerial challenges present
in cloud federations, namely representation, placement, and monitoring of
cloud services. A cloud service may constitute of several di↵erent subsystem,
such as internal networks and shared file storage nodes, and may also have
di↵erent requirements and restrictions for placement in di↵erent parts of the
service. Paper III presents a model for expressing the internal structure of cloud
services including, e.g., geographical or intra-component a�nities (placement
restrictions).

When performing placement of cloud services, the placement restrictions
expressed in the service structure must be considered. Migrating (moving) parts
of the service to another host may require cascading migrations in order to
adhere to the specified a�nities. We present a model for placement that abides
the specified constraints, and extend this model with a heuristic to determine
which parts of the service that are suitable for migration.

The placement process is partly based on monitoring data collected from
di↵erent parts of the cloud federation. The paper presents a data distribution
architecture based on semantic metadata annotations that may be used to
bridge the gap imposed by monitoring systems in di↵erent parts of the cloud
federations.

5.4 Paper IV

Paper IV [129] presents the design and functional evaluation of a grid-wide
support system for job prioritization based on fairshare allocations, based on

30



earlier work published in [49].
The proposed system is a distributed, stand-alone, support-system usable

by job schedulers to externalize the fairshare prioritization procedure. The
paper presents a distributed tree-based policy model for specifying user shares
hierarchically, making it possible for a project to subdivide its own share of
usage into specific shares per user and/or sub-project. The paper describes
an algorithm for prioritizing user jobs based on predefined user shares and
historical usage data. Finally, the decentralized architecture used to realize
the system is described in detail. The overall system behavior and its ability
to accurately prioritize jobs in di↵erent scenarios is demonstrated, showing
that system is capable of achieving grid-wide fairshare also in the presence of
dynamically changing policies and run-time site failures. Performance results
show that the convergence rate of the system is greatly a↵ected by delays in
data updates, highlighting the relation between task metadata management
and system performance.

31



32



Chapter 6

Future Work

As discussed in this thesis, task metadata management is a fundamental task
in both grids and clouds and the data is used as the primary input to many
di↵erent processes. The following sections present categories of future work
related to the topics described in the thesis.

6.1 Service Monitoring

As outlined in Section 4.1, the problem of monitoring of internal service data is
an open but important problem in cloud computing. The data extracted from
the application running in the VM is commonly used in, e.g., accounting and
elasticity, and data extraction must be coherent and with low delays regardless
of if the site is participating in a collaboration or not. A general solution for
extracting information from inside the VM and making it available to the cloud
infrastructure is one potential area for future work, possibly considering the aid
of the hypervisor software itself by employing specific system calls similar to
those used in paravirtualization.

6.2 Accounting and Billing

Research on accounting and billing is so far focused on IaaS clouds, quantifying
resource consumption in similar ways as in grid computing. A possible future
work direction is to investigate if and how these systems would have to evolve
to be applicable also to PaaS and SaaS environments.

Private (and hybrid) clouds are popular alternatives for hosting sensitive
applications, but so far accounting and billing for these kinds of clouds have
not been thoroughly explored. The usage models of private clouds is most
likely closer to those of a collaborative grid than a public cloud, and the
monetary based compensation system used in public clouds may therefore not
be applicable. Similarly, bursted private clouds probably has to incorporate

33



limitations on how much external resources may be provisioned, and by which
users [168].

As briefly mentioned in Section 4.2, the amount of accounting and billing data
in scenarios such as bursted private clouds or cloud federation can potentially be
unlimited. Since this data is commonly required to be stored and managed for
a long period of time provisioning resources for management of accounting and
billing data is a resource scaling problem yet unsolved. This problem is briefly
discussed in [110], outlining record data aggregation and scalable database
back-ends as two possible approaches to this problem. However, further work
is required to determine the implications on data consistency and durability
if using scalable database back-ends such as ElasTras [39], Cassandra [102] or
BigTable [29].

6.3 Fairshare Scheduling

Future work on fairshare scheduling in grids as outlined in Paper IV [129]
includes more in-depth analysis of di↵erent algorithms for calculating fairness
based on the historical usage and user allocations. Di↵erent algorithms and
di↵erent settings of parameters such as the amount of historical data to consider
is likely to have a large impact on the behavior of the system.

Early results on the impact of task metadata management on the accuracy
of fairshare is presented in Paper IV, and further analysis and quantification
within this area is subject to future work. As outlined in [49] the inclusion of
estimated times for running jobs in the fairshare process may also have a great
impact on the accuracy and convergence rate of the system, and is one possible
avenue for further studies especially with regard to the additional requirements
on metadata management associated with dealing also with running jobs.

Further integration work with di↵erent scheduler software and evaluation of
the system performance over a long time in a real deployment is also part of
future work.

34



Bibliography

[1] 4CaaSt project. Morfeo 4CaaSt. http://4caast.morfeo-project.org/,
September 2011.

[2] J. Abbate. From ARPANET to INTERNET: A history of ARPA-
sponsored computer networks, 1966-1988. 1994.

[3] K. Adams and O. Agesen. A comparison of software and hardware
techniques for x86 virtualization. In Proceedings of the 12th interna-
tional conference on Architectural support for programming languages and
operating systems, pages 2–13. ACM, 2006.

[4] A. Ali-Eldin, J. Tordsson, and E. Elmroth. An Adaptive Hybrid Elasticity
Controller for Cloud Infrastructures. 2011. Submitted.

[5] G. Allen, K. Davis, T. Goodale, A. Hutanu, H. Kaiser, T. Kielmann,
A. Merzky, R. Van Nieuwpoort, A. Reinefeld, F. Schintke, et al. The grid
application toolkit: toward generic and easy application programming
interfaces for the grid. Proceedings of the IEEE, 93(3):534–550, 2005.

[6] Amazon.com, Inc. Amazon EC2 Spot Instances. http://aws.amazon.

com/ec2/spot-instances/, September 2011.

[7] Amazon.com, Inc. Amazon Elastic Compute Cloud. http://aws.amazon.
com/ec2, September 2011.

[8] D. Anderson. BOINC: A system for public-resource computing and storage.
In 5th IEEE/ACM International Workshop on Grid Computing, pages
4–10, 2004.

[9] A. Anjomshoaa, F. Brisard, M. Drescher, D. Fellows, A. Ly, A. S. Mc-
Gough, D. Pulsipher, and A. Savva. Job Submission Description Language
(JSDL) specification, version 1.0. http://www.ogf.org/documents/GFD.
136.pdf, September 2011.

[10] M. Armbrust, A. Fox, R. Gri�th, A. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, et al. Above the clouds:
A berkeley view of cloud computing. EECS Department, University of
California, Berkeley, Tech. Rep. UCB/EECS-2009-28, 2009.

35



[11] H. Bal, C. de Laat, S. Haridi, K. Je↵ery, J. Labarta, D. Laforenza,
P. Maccallum, J. Mass, L. Matyska, T. Priol, et al. Next Generation Grid
(s) European Grid Research 2005–2010. Information Society Technologies,
European Commission, Expert Group Rep, 2003.

[12] M. Balazinska, H. Balakrishnan, and M. Stonebraker. Contract-based
load management in federated distributed systems. In Proceedings of
the 1st conference on Symposium on Networked Systems Design and
Implementation-Volume 1, pages 15–15. USENIX Association, 2004.

[13] J. Baldassari, D. Finkel, and D. Toth. SLINC: A Framework for Volunteer
Computing. In S. Zheng, editor, Proceedings of the 18th IASTED Inter-
national Conference on Parallel and Distributed Computing and Systems,
2006.

[14] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield. Xen and the art of virtualization. In
SOSP ’03: Proceedings of the nineteenth ACM symposium on Operating
systems principles, pages 164–177. ACM, October 2003.

[15] A. Barmouta and R. Buyya. GridBank: A Grid Accounting Services
Architecture (GASA) for Distributed Systems Sharing and Integration.
In Workshop on Internet Computing and E-Commerce, Proceedings of the
17th Annual International Parallel and Distributed Processing Symposium
(IPDPS 2003), IEEE Computer Society Press, USA, April, pages 22–26,
2003.

[16] W. Barth. Nagios: System and Network Monitoring. No Starch Press,
San Francisco, CA, USA, 2nd edition, 2008.

[17] C. Baumbauer, S. Goasguen, and S. Martin. Bouncer: A globus job
forwarder. In Proc. 1st TeraGrid Conf, 2006.

[18] F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail, M. Faerman,
S. Figueira, J. Hayes, G. Obertelli, J. Schopf, et al. Adaptive computing
on the grid using AppLeS. Parallel and Distributed Systems, IEEE
Transactions on, 14(4):369–382, 2003.

[19] G. Birkenheuer, A. Brinkmann, and H. Karl. The gain of overbooking. In
Job Scheduling Strategies for Parallel Processing, pages 80–100. Springer,
2009.

[20] B. Boghosian, P. Coveney, S. Dong, L. Finn, S. Jha, G. Karniadakis,
and N. Karonis. Nektar, spice and vortonics: Using federated grids for
large scale scientific applications. In Challenges of Large Applications in
Distributed Environments, 2006 IEEE, pages 34–42. IEEE, 2006.

36



[21] M. Bote-Lorenzo, Y. Dimitriadis, and E. Gómez-Sánchez. Grid charac-
teristics and uses: a grid definition. In Grid Computing, pages 291–298.
Springer, 2004.

[22] J. S. Bozman and G. P. Chen. Optimizing Hardware for x86 Server
Virtualization. White Paper.

[23] R. Bradford, E. Kotsovinos, A. Feldmann, and H. Schiöberg. Live wide-
area migration of virtual machines including local persistent state. In VEE
’07: Proceedings of the 3rd international conference on Virtual execution
environments, pages 169–179. ACM, June 2007.

[24] D. Breitgand, A. Marashini, and J. Tordsson. Policy-Driven Service
Placement Optimization in Federated Clouds. Technical Report H-0299,
IBM Research Report, 2011.

[25] J. Brunelle, P. Hurst, J. Huth, L. Kang, C. Ng, D. Parkes, M. Seltzer,
J. Shank, and S. Youssef. Egg: An extensible and economics-inspired
open grid computing platform, 2006.

[26] R. Buyya, D. Abramson, and J. Giddy. Nimrod/G: An architecture for a
resource management and scheduling system in a global computational
grid. In hpc, page 283. Published by the IEEE Computer Society, 2000.

[27] R. Buyya, D. Abramson, and S. Venugopal. The grid economy. Proceedings
of the IEEE, 93(3):698–714, 2005.

[28] C. Catlett. The philosophy of TeraGrid: building an open, extensible,
distributed TeraScale facility. In CCGrid, page 8. Published by the IEEE
Computer Society, 2002.

[29] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach, M. Burrows,
T. Chandra, A. Fikes, and R. Gruber. Bigtable: A distributed storage
system for structured data. In Proceedings of the 7th USENIX Symposium
on Operating Systems Design and Implementation (OSDI’06), 2006.

[30] R. Chinnici, J. Moreau, A. Ryman, and S. Weerawarana. Web services
description language (wsdl) version 2.0 part 1: Core language. W3C
working draft, 26, 2004.

[31] M. Christodorescu, R. Sailer, D. Schales, D. Sgandurra, and D. Zamboni.
Cloud security is not (just) virtualization security: a short paper. In
Proceedings of the 2009 ACM workshop on Cloud computing security,
pages 97–102. ACM, 2009.

[32] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield. Live Migration of Virtual Machines. In Proceedings of
the 2nd ACM/USENIX Symposium on Networked Systems Design and
Implementation (NSDI), pages 273–286. ACM, May 2005.

37



[33] S. Clayman, A. Galis, C. Chapman, G. To↵etti, L. Rodero-Merino, L. Va-
quero, K. Nagin, and B. Rochwerger. Monitoring Service Clouds in the
Future Internet. In Towards the Future Internet - Emerging Trends from
European Research, pages 115–126, Amsterdam, The Netherlands, The
Netherlands, 2010. IOS Press.

[34] Cloud Computing Interoperability Forum. Unified Cloud Interface Project.
http://www.cloudforum.org/, September 2011.

[35] D. Comer. The computer science research network CSNET: A history
and status report. Communications of the ACM, 26(10):747–753, 1983.

[36] CoreGRID. CoreGRID annual report 2007. http://www.coregrid.net/
mambo/content/view/310/301/, September 2011.

[37] CumuloNimbo project team. CumuloNimbo: Highly Scalable Transac-
tional Multi-Tier PaaS Main menu. http://www.cumulonimbo.eu/, July
2011.

[38] E. Dafouli, P. Kokkinos, and E. Varvarigos. Fair Execution Time Es-
timation Scheduling in Computational Grids. Distributed and Parallel
Systems, pages 93–104, 2008.

[39] S. Das, S. Agarwal, D. Agrawal, and A. El Abbadi. Elastras: An elastic,
scalable, and self managing transactional database for the cloud. 2009.

[40] M. De Assunção, R. Buyya, and S. Venugopal. InterGrid: A case for
internetworking islands of Grids. Concurrency and Computation: Practice
and Experience (CCPE), 20(8):997–1024, 2008.

[41] Distributed Management Task Force. Cloud Management Standards.
http://www.dmtf.org/standards/cloud, September 2011.

[42] Distributed Management Task Force, Inc. Open Virtualization Format
Specification. DMTF 0243 (Standard), Feb. 2009.

[43] N. Doulamis, E. Varvarigos, and T. Varvarigou. Fair Scheduling Algo-
rithms in Grids. IEEE Transactions on Parallel and Distributed Systems,
18:1630–1648, 2007.

[44] K. Dowd. High performance computing. O’Reilly & Associates, Inc., 1993.

[45] C. L. Dumitrescu, M. Wilde, and I. Foster. A model for usage policy-
based resource allocation in grids. Policies for Distributed Systems and
Networks, 2005. Sixth IEEE International Workshop on, pages 191 – 200,
June 2005.

[46] ElasticHosts Ltd. ElasticHosts. http://www.elastichosts.com/,
September 2011.

38



[47] M. Ellert, M. Grønager, A. Konstantinov, B. Konya, J. Lindemann,
I. Livenson, J. Nielsen, M. Niinimäki, O. Smirnova, and A. Wäänänen.
Advanced Resource Connector middleware for lightweight computational
Grids. Future Generation computer systems, 23(2):219–240, 2007.

[48] E. Elmroth, F. Galán, D. Henriksson, and D. Perales. Accounting and
Billing for Federated Cloud Infrastructures. In GCC ’09: Proceedings
of the 2009 Eighth International Conference on Grid and Cooperative
Computing, pages 268–275, Washington, DC, USA, 2009. IEEE Computer
Society.

[49] E. Elmroth and P. Gardfjäll. Design and evaluation of a decentralized
system for Grid-wide fairshare scheduling. In H. Stockinger et al., editors,
First International Conference on e-Science and Grid Computing, pages
221–229. IEEE CS Press, 2005.

[50] E. Elmroth, P. Gardfjäll, O. Mulmo, and T. Sandholm. An OGSA-Based
Bank Service for Grid Accounting Systems. In J. Dongarra et al., editors,
Applied Parallel Computing. State-of-the-art in Scientific Computing,
volume 3732 of Lecture Notes in Computer Science, pages 1051–1060.
Springer-Verlag, 2005.

[51] E. Elmroth, P. Gardfjäll, A. Norberg, J. Tordsson, and P.-O. Östberg.
Designing general, composable, and middleware-independent Grid in-
frastructure tools for multi-tiered job management. In T. Priol and
M. Vaneschi, editors, Towards Next Generation Grids, pages 175–184.
Springer-Verlag, 2007.

[52] E. Elmroth and D. Henriksson. Distributed Usage Logging for Federated
Grids. Future Generations Computer Systems, 26(8):1215–1225, 2010.

[53] E. Elmroth and L. Larsson. Interfaces for Placement, Migration, and
Monitoring of Virtual Machines in Federated Clouds. In Eighth Inter-
national Conference on Grid and Cooperative Computing (GCC 2009),
pages 253–260, Los Alamitos, CA, USA, August 2009. IEEE Computer
Society.

[54] E. Elmroth and J. Tordsson. A Grid resource broker supporting advance
reservations and benchmark-based resource selection. In J. Dongarra,
K. Madsen, and J. Waśniewski, editors, Applied Parallel Computing -
State of the Art in Scientific Computing, Lecture Notes in Computer
Science vol. 3732, pages 1061–1070. Springer-Verlag, 2006.

[55] E. Elmroth and J. Tordsson. Grid Resource Brokering Algorithms En-
abling Advance Reservations and Resource Selection Based on Perfor-
mance Predictions. Future Generation Computer Systems. The Interna-
tional Journal of Grid Computing: Theory, Methods and Applications,
24(6):585–593, 2008.

39



[56] E. Elmroth and J. Tordsson. A standards-based Grid resource brokering
service supporting advance reservations, coallocation and cross-Grid in-
teroperability. Concurrency Computat.: Pract. Exper., 21(18):2298–2335,
2009.

[57] A. J. Ferrer, F. Hernández, J. Tordsson, E. Elmroth, A. Ali-Eldin, C. Zsigri,
R. Sirvent, J. Guitart, R. M. Badia, K. Djemame, W. Ziegler, T. Dimi-
trakos, S. K. Nair, G. Kousiouris, K. Konstanteli, T. Varvarigou, B. Hudzia,
A. Kipp, S. Wesner, M. Corrales, N. Forgó, T. Sharif, and C. Sheridan.
OPTIMIS: a holistic approach to cloud service provisioning. 2011. Ac-
cepted.

[58] L. Field, E. Laure, and M. Schulz. Grid deployment experiences: Grid
interoperation. Journal of Grid Computing, 7(3):287–296, 2009.

[59] Florian Forster. collectd. http://collectd.org/, September 2011.

[60] I. Foster. What is the grid? a three point checklist. GRID today, 1(6):32–
36, 2002.

[61] I. Foster. Globus Toolkit Version 4: Software for Service-Oriented Systems.
Journal of Computer Science and Technology, 21(4):513–520, 2006.

[62] I. Foster and C. Kesselman. The Grid: Blueprint for a new computing
infrastructure. Morgan Kaufmann, 2004.

[63] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid: Enabling
scalable virtual organizations. International Journal of High Performance
Computing Applications, 15(3):200–222, 2001.

[64] I. Foster, Y. Zhao, I. Raicu, and S. Lu. Cloud computing and grid comput-
ing 360-degree compared. In Grid Computing Environments Workshop,
2008. GCE’08, pages 1–10. Ieee, 2008.

[65] P. Fowler, S. Jha, and P. Coveney. Grid-based steered thermodynamic
integration accelerates the calculation of binding free energies. Philo-
sophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 363(1833):1999, 2005.

[66] F. Galán, A. Sampaio, L. Rodero-Merino, I. Loy, V. Gil, and L. M. Vaquero.
Service Specification in Cloud Environments Based on Extensions to Open
Standards. In Proceedings of the Fourth International ICST Conference
on COMmunication System softWAre and middlewaRE, COMSWARE
’09, pages 19:1–19:12, New York, NY, USA, 2009. ACM.

[67] P. Gardfjäll, E. Elmroth, L. Johnsson, O. Mulmo, and T. Sandholm.
Scalable Grid-wide capacity allocation with the SweGrid Accounting
System (SGAS). Concurrency Computat.: Pract. Exper., 20(18):2089–
2122, 2008.

40



[68] J. Geelan. Twenty One Experts Define Cloud Computing. Virtual-
ization, August 2008. Electronic Magazine, article available at http:

//virtualization.sys-con.com/node/612375.

[69] W. Gentzsch. Sun grid engine: Towards creating a compute power grid.
In Cluster Computing and the Grid, 2001. Proceedings. First IEEE/ACM
International Symposium on, pages 35–36. IEEE, 2001.

[70] T. Goodale, S. Jha, H. Kaiser, T. Kielmann, P. Kleijer, G. Von Laszewski,
C. Lee, A. Merzky, H. Rajic, and J. Shalf. SAGA: A Simple API for Grid
Applications. High-level application programming on the Grid. Computa-
tional Methods in Science and Technology, 12(1):7–20, 2006.

[71] Google Inc. Google App Engine. http://code.google.com/appengine/,
September 2011.

[72] Google, Inc. Google Apps. http://www.google.com/apps/, September
2011.

[73] J. Grethe, C. Baru, A. Gupta, M. James, B. Ludaescher, M. Martone,
P. Papadopoulos, S. Peltier, A. Rajasekar, S. Santini, et al. Biomedical
informatics research network: building a national collaboratory to hasten
the derivation of new understanding and treatment of disease. Studies in
health technology and informatics, 112:100–110, 2005.

[74] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: portable parallel
programming with the message passing interface. 1999.

[75] G. Gruman and E. Knorr. What cloud computing really means. InfoWorld,
April 2008. Electronic Magazine, available at http://www.infoworld.

com/d/cloud-computing/what-cloud-computing-really-means-031.

[76] R. Guerin, H. Ahmadi, and M. Naghshineh. Equivalent capacity and
its application to bandwidth allocation in high-speed networks. Selected
Areas in Communications, IEEE Journal on, 9(7):968–981, 1991.

[77] F. Guim and J. Corbalan. A job self-scheduling policy for HPC infrastruc-
tures. In Job Scheduling Strategies for Parallel Processing, pages 51–75.
Springer, 2008.

[78] D. Hadas, S. Guenender, and B. Rochwerger. Virtual Network Services For
Federated Cloud Computing. Technical Report H-0269, IBM Technical
Reports, Nov. 2009.

[79] V. Hamscher, U. Schwiegelshohn, A. Streit, and R. Yahyapour. Evaluation
of job-scheduling strategies for grid computing. Grid Computing GRID
2000, pages 191–202, 2000.

[80] T. Hey and A. Trefethen. The UK e-science core programme and the grid.
Future Generation Computer Systems, 18(8):1017–1031, 2002.

41



[81] J. Honeycutt. Microsoft Virtual PC 2004 Technical Overview. Microsoft,
Nov, 2003.

[82] B. Hong and V. Prasanna. Distributed adaptive task allocation in hetero-
geneous computing environments to maximize throughput. In Parallel and
Distributed Processing Symposium, 2004. Proceedings. 18th International,
page 52. IEEE, 2004.

[83] E. Huedo, R. Montero, and I. Llorente. A recursive architecture for
hierarchical grid resource management. Future Generation Computer
Systems, 25(4):401–405, 2009.

[84] D. Jackson, Q. Snell, and M. Clement. Core Algorithms of the Maui
Scheduler. In D. Feitelson and L. Rudolph, editors, Job Scheduling Strate-
gies for Parallel Processing, volume 2221 of Lecture Notes in Computer
Science, pages 87–102. Springer Berlin / Heidelberg, 2001.

[85] B. Kandukuri, V. Ramakrishna Paturi, and A. Rakshit. Cloud security
issues. In 2009 IEEE International Conference on Services Computing,
pages 517–520. IEEE, 2009.

[86] G. Katsaros, G. Gallizo, R. Kübert, T. Wang, J. O. Fito, and D. Henriks-
son. A Multi-level Architecture for Collecting and Managing Monitoring
Information in Cloud Environments. In CLOSER 2011: International
Conference on Cloud Computing and Services Science (CLOSER). Ac-
cepted for publication.

[87] G. Katsaros, G. Kousiouris, S. Gogouvitis, D. Kyriazis, and T. Varvarigou.
A service oriented monitoring framework for soft real-time applications.
In Service-Oriented Computing and Applications (SOCA), 2010 IEEE
International Conference on, pages 1–4. IEEE.

[88] J. Kay and P. Lauder. A fair Share scheduler. Commun. ACM, 31(1):44–55,
1988.

[89] K. Keahey, R. Figueiredo, J. Fortes, T. Freeman, and M. Tsugawa. Science
clouds: Early experiences in cloud computing for scientific applications.
Cloud computing and applications, 2008, 2008.

[90] K. Keahey, I. Foster, T. Freeman, and X. Zhang. Virtual workspaces:
Achieving quality of service and quality of life in the Grid. Scientific
Programming, 13(4):265–276, 2005.

[91] K. Keahey and T. Freeman. Contextualization: Providing one-click virtual
clusters. In eScience, 2008. eScience’08. IEEE Fourth International
Conference on, pages 301–308. IEEE, 2008.

[92] K. Keahey, M. Tsugawa, A. Matsunaga, and J. Fortes. Sky computing.
Internet Computing, IEEE, 13(5):43 –51, September – October 2009.

42



[93] A. Kertész and P. Kacsuk. A taxonomy of grid resource brokers. Distributed
and Parallel Systems, pages 201–210, 2007.

[94] K. H. Kim and R. Buyya. Fair resource sharing in hierarchical virtual
organizations for global grids. In GRID ’07: Proceedings of the 8th
IEEE/ACM International Conference on Grid Computing, pages 50–57,
Washington, DC, USA, 2007. IEEE Computer Society.

[95] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. kvm: the
Linux virtual machine monitor. In Proceedings of the Linux Symposium,
volume 1, pages 225–230, 2007.

[96] S. D. Kleban and S. H. Clearwater. Fair Share on High Performance
Computing Systems: What Does Fair Really Mean? In CCGRID ’03:
Proceedings of the 3st International Symposium on Cluster Computing
and the Grid, page 146, Washington, DC, USA, 2003. IEEE Computer
Society.

[97] J. Knobloch and L. Robertson. LHC computing Grid technical design
report. http://lcg.web.cern.ch/LCG/tdr/, September 2011.

[98] D. Kranzlmuller. The future European Grid Infrastructure - Roadmap
and challenges. In Information Technology Interfaces, 2009. ITI’09.
Proceedings of the ITI 2009 31st International Conference on, pages
17–20. IEEE, 2009.

[99] K. Krauter, R. Buyya, and M. Maheswaran. A taxonomy and survey
of Grid resource management systems for distributed computing. Softw.
Pract. Exper., 32(2):135–164, 2002.

[100] H. Lagar-Cavilla, J. Whitney, A. Scannell, P. Patchin, S. Rumble,
E. De Lara, M. Brudno, and M. Satyanarayanan. SnowFlock: rapid
virtual machine cloning for cloud computing. In Proceedings of the 4th
ACM European conference on Computer systems, pages 1–12. ACM, 2009.

[101] K. Lai, L. Rasmusson, E. Adar, L. Zhang, and B. Huberman. Tycoon: An
implementation of a distributed, market-based resource allocation system.
Multiagent and Grid Systems, 1(3):169–182, 2005.

[102] A. Lakshman and P. Malik. Cassandra-A Decentralized Structured Storage
System. In Workshop on Large Scale Distributed Systems and Middleware
(LADIS), 2009.

[103] L. Larsson, D. Henriksson, and E. Elmroth. Scheduling and Monitoring
of Internally Structured Services in Cloud Federations. In Proceedings of
IEEE ISCC 2011, pages 173–178, 2011.

43



[104] E. Laure, S. Fisher, A. Frohner, C. Grandi, P. Kunszt, A. Krenek,
O. Mulmo, F. Pacini, F. Prelz, J. White, et al. Programming the Grid with
gLite. Computational Methods in Science and Technology, 12(1):33–45,
2006.

[105] E. Laure and B. Jones. Enabling Grids for e-Science: The EGEE Project.
Grid computing: infrastructure, service, and applications, page 55, 2009.

[106] K. Leal, E. Huedo, and I. Llorente. A decentralized model for scheduling
independent tasks in Federated Grids. Future Generation Computer
Systems, 25(8):840–852, 2009.

[107] B. Leiner, V. Cerf, D. Clark, R. Kahn, L. Kleinrock, D. Lynch, J. Postel,
L. Roberts, and S. Wol↵. A brief history of the Internet. Internet Society,
10, 2003.

[108] LHC Project Webpage. http://lhc.web.cern.ch/lhc/, September
2011.

[109] libvirt development team. libvirt: The virtualization api. http://libvirt.
org/, September 2011.

[110] M. Lindner, F. Galán, C. Chapman, S. Clayman, D. Henriksson, and
E. Elmroth. The Cloud Supply Chain: A Framework for Information, Mon-
itoring, Accounting and Billing. In 2nd International ICST Conference
on Cloud Computing (CloudComp 2010).

[111] M. Livny, J. Basney, R. Raman, and T. Tannenbaum. Mechanisms for
high throughput computing. SPEEDUP journal, 11(1):36–40, 1997.

[112] R. Mach, R. Lepro-Metz, B. Hamilton, S. Jackson, and L. McGinnis.
Usage Record Format Recommendation. Draft Rec-UR-Usage, Global
Grid Forum, Usage Record WG, March, 2005.

[113] Manifesto, O.C. Open Cloud Manifesto. Availabe online: www.

opencloudmanifesto. org/ , 20, 2009.

[114] M. L. Massie, B. N. Chun, and D. E. Culler. The Ganglia Distributed
Monitoring System: Design, Implementation And Experience. Parallel
Computing, 30:2004, 2003.

[115] P. Mell and T. Grance. The NIST definition of cloud computing. National
Institute of Standards and Technology, 53(6), 2009.

[116] C. Metz. Interconnecting ISP networks. Internet Computing, IEEE,
5(2):74–80, 2001.

[117] Microsoft Corporation. Microsoft O�ce Live. http://www.officelive.
com, September 2011.

44



[118] Microsoft Corporation. Virtual Hard Disk Image Format Specification,
September 2011.

[119] Miniwatts Marketing Group. World Internet Usage Statistics News and
World Population Stats. http://www.internetworldstats.com/stats.
htm, September 2011.

[120] C. Morin. Open computing infrastructures for elastic services: contrail ap-
proach. In Proceedings of the 5th international workshop on Virtualization
technologies in distributed computing, pages 1–2. ACM, 2011.

[121] A. W. Mu’alem and D. G. Feitelson. Utilization, predictability, workloads,
and user runtime estimates in scheduling the IBM SP2 with backfilling.
IEEE transactions on parallel and distributed systems, 12(6):529–543,
2001.

[122] J. Nakai and R. Van Der Wijngaart. Applicability of markets to global
scheduling in grids. NAS Report, pages 03–004.

[123] National Science Foundation. US National Science Foundation (NSF).
http://www.nsf.gov/, September 2011.

[124] Nordic Data Grid Facility. http://www.ndgf.org/, September 2011.

[125] NorGrid. http://www.norgrid.no/, September 2011.

[126] OnLive, Inc. OnLive.com. http://www.onlive.com, September 2011.

[127] Open Grid Forum OCCI-WG. Open Cloud Computing Interface. http:
//www.occi-wg.org/, September 2011.

[128] OpenVZ project team. OpenVZ Wiki. http://www.openvz.org, Septem-
ber 2011.

[129] P.-O. Östberg, D. Henriksson, and E. Elmroth. Decentralized, scalable,
Grid Fairshare Scheduling (FSGrid). 2011. Submitted.

[130] Parallels. Parallels Optimized Computing. http://www.parallels.com/
eu/, September 2011.

[131] F. Perez-Sorrosal, M. Patiño-Martinez, R. Jimenez-Peris, and B. Kemme.
Elastic si-cache: consistent and scalable caching in multi-tier architectures.
The VLDB Journal, pages 1–25.

[132] S. Pickles, R. Blake, B. Boghosian, J. Brooke, J. Chin, P. Clarke,
P. Coveney, N. González-Segredo, R. Haines, J. Harting, et al. The
TeraGyroid experiment. In Proceedings of the Workshop on Case Studies
on Grid Applications at GGF, volume 10, page 2004, 2004.

45



[133] R. Piro, A. Guarise, and A. Werbrouck. An Economy-based Accounting
Infrastructure for the DataGrid. In Proceedings of the 4th International
Workshop on Grid Computing (GRID2003), 2003.

[134] G. Popek and R. Goldberg. Formal requirements for virtualizable third
generation architectures. Communications of the ACM, 17(7):412–421,
1974.

[135] Rackspace, US Inc. Rackspace Cloud. http://www.rackspace.com/

cloud/, September 2011.

[136] M. Riedel, E. Laure, T. Soddemann, L. Field, J. Navarro, J. Casey,
M. Litmaath, J. Baud, B. Koblitz, C. Catlett, et al. Interoperation
of world-wide production e-science infrastructures. Concurrency and
Computation: Practice and Experience, 21(8):961–990, 2009.

[137] D. Ritchie and K. Thompson. The UNIX time-sharing system. Commu-
nications of the ACM, 17(7):365–375, 1974.

[138] B. Rochwerger, D. Breitgand, A. Epstein, D. Hadas, I. Loy, K. Nagin,
J. Tordsson, C. Ragusa, S. C. E. Levy, A. Maraschini, P. M. H. Muñoz,
G. To↵etti, and M. Villari. RESERVOIR : When one cloud is not enough.
IEEE Computer, 2011. Accepted.

[139] B. Rochwerger, D. Breitgand, E. Levy, A. Galis, K. Nagin, I. Llorente,
R. Montero, Y. Wolfsthal, E. Elmroth, J. Caceres, M. Ben-Yehuda, W. Em-
merich, and F. Galán. The RESERVOIR model and architecture for open
federated cloud computing. IBM Journal of Research and Development,
53(4), 2009. Paper 4.

[140] B. Rochwerger, C. Váquez, D. Breitgand, D. Hadas, M. Villari, P. Mas-
sonet, E. Levy, A. Galis, I. Llorente, R. Montero, Y. Wolfsthal, K. Nagin,
L. Larsson, and F. Galán. An Architecture for Federated Cloud Computing.
Cloud Computing, 2010.

[141] L. Rodero-Merino, L. Vaquero, V. Gil, F. Galán, J. Fontán, R. Montero,
and I. Llorente. From infrastructure delivery to service management in
clouds. Future Generation Computer Systems, 26(8):1226–1240, 2010.

[142] M. Rosenblum. The reincarnation of virtual machines. Queue, 2(5):34–40,
2004.

[143] M. Rothstein. An airline overbooking model. Transportation Science,
5(2):180, 1971.

[144] M. Russell, P. Dziubecki, P. Grabowski, M. Krysinśki, T. Kuczyński,
D. Szjenfeld, D. Tarnawczyk, G. Wolniewicz, and J. Nabrzyski. The
vine toolkit: A java framework for developing grid applications. Parallel
Processing and Applied Mathematics, pages 331–340, 2008.

46



[145] SAP. SAP Enterprise Resource Planning. http://www.sap.com/erp,
visited April 2011, September 2011.

[146] J. Schopf. Ten actions when Grid scheduling. In J. Nabrzyski, J. Schopf,
and J. Wȩglarz, editors, Grid Resource Management State of the art and
future trends, chapter 2. Kluwer Academic Publishers, 2004.

[147] L. Seawright and R. MacKinnon. VM/370-A Study of Multiplicity and
Usefulness. IBM Systems Journal, 18(1):4–17, 1979.

[148] J. Silvestre. Economies and diseconomies of scale. The New Palgrave: A
Dictionary of Economics, 2:80–84, 1987.

[149] W. Smith, I. Foster, and V. Taylor. Scheduling with Advance Reservations.
In 14th International Parallel and Distributed Processing Symposium,
pages 127–132, 2000.

[150] SNIC. SweGrid - The Swedish GRID Initiative. http://www.snic.vr.

se/projects/swegrid, September 2011.

[151] B. Sotomayor, K. Keahey, and I. Foster. Combining Batch Execution and
Leasing Using Virtual Machines. In HPDC - The ACM/IEEE Interna-
tional Symposium on High Performance Distributed Computing, 2008.

[152] B. Sotomayor, R. Montero, I. Llorente, I. Foster, and F. de Informatica.
Capacity leasing in cloud systems using the OpenNebula engine. Cloud
Computing and Applications, 2008, 2008.

[153] B. Sotomayor, R. S. Montero, I. M. Llorente, and I. Foster. Virtual
infrastructure management in private and hybrid clouds. IEEE Internet
Computing, 13:14–22, 2009.

[154] S. Srinivasan, R. Kettimuthu, V. Subramani, and P. Sadayappan. Charac-
terization of backfilling strategies for parallel job scheduling. In Parallel
Processing Workshops, 2002. Proceedings. International Conference on,
pages 514–519. IEEE, 2002.

[155] H. Stockinger. Defining the grid: a snapshot on the current view. The
Journal of Supercomputing, 42(1):3–17, 2007.

[156] A. Streit, D. Erwin, T. Lippert, D. Mallmann, R. Menday, M. Rambadt,
M. Riedel, M. Romberg, B. Schuller, and P. Wieder. UNICORE - from
project results to production grids. In L. Grandinetti, editor, Grid
Computing: The New Frontiers of High Performance Processing, Advances
in Parallel Computing 14, pages 357–376. Elsevier, 2005.

[157] K. Suzaki and D. Walsh. Implementing the Combination of Time Sharing
and Space Sharing on AP/Linux. In Job Scheduling Strategies for Parallel
Processing, pages 83–97. Springer, 1998.

47



[158] P. Svärd, B. Hudzia, J. Tordsson, and E. Elmroth. Evaluation of delta
compression techniques for e�cient live migration of large virtual ma-
chines. In Proceedings of the 7th ACM SIGPLAN/SIGOPS international
conference on Virtual execution environments, pages 111–120. ACM, 2011.

[159] A. Szalay and J. Gray. The world-wide telescope. Science, 293(5537):2037,
2001.

[160] M. Szeredi. Filesystem in userspace. http://fuse.sourceforge.net/,
September 2011.

[161] D. Thain, T. Tannenbaum, and M. Livny. Distributed computing in
practice: The Condor experience. Concurrency Computat. Pract. Exper.,
17(2–4):323–356, 2005.

[162] B. Tierney, R. Aydt, D. Gunter, W. Smith, M. Swany, V. Taylor, and
R. Wolski. A grid monitoring architecture. 2002.

[163] J. Tordsson, R. Montero, R. Vozmediano, and I. Llorente. Cloud brokering
mechanisms for optimized placement of virtual machines across multiple
providers. 2010. Submitted for journal publication.

[164] M. Tsugawa and J. Fortes. A virtual network (ViNe) architecture for
grid computing. In Parallel and Distributed Processing Symposium, 2006.
IPDPS 2006. 20th International, pages 10–pp. IEEE, 2006.

[165] Ubuntu Community. CloudInit - Community Ubuntu Documentation.
https://help.ubuntu.com/community/CloudInit, September 2011.

[166] U.S. Department of Commerce. National Institute of Standards and
Technology. http://www.nist.gov, September 2011.

[167] H. Using Windows. Server 2008 job scheduler. Microsoft Corporation,
Published: June, 2008.

[168] R. Van den Bossche, K. Vanmechelen, and J. Broeckhove. Cost-Optimal
Scheduling in Hybrid IaaS Clouds for Deadline Constrained Workloads.
In 2010 IEEE 3rd International Conference on Cloud Computing, pages
228–235. Ieee, 2010.

[169] L. M. Vaquero, L. Rodero-Merino, J. Cáceres, and M. Lindner. A break
in the clouds: towards a cloud definition. SIGCOMM Comput. Commun.
Rev., 39(1):50–55, 2009.

[170] S. Venugopal, R. Buyya, and L. Winton. A Grid service broker for
scheduling e-science applications on global data Grids. Concurrency
Computat.: Pract. Exper., 18(6):685–699, May 2006.

48



[171] VMWARE. VMware VMotion: Live migration of virtual machines with-
out service interruption datasheet. http://www.vmware.com/files/pdf/
VMware-VMotion-DS-EN.pdf, September 2011.

[172] VMware, Inc. VMware vCloud Express. http://www.vmware.com/

solutions/cloud-computing/public-cloud/vcloud-express.html,
September 2011.

[173] A. Waheed, W. Smith, J. George, and J. Yan. An infrastructure for mon-
itoring and management in computational grids. Languages, Compilers,
and Run-Time Systems for Scalable Computers, pages 619–628, 2000.

[174] J. Walters, V. Chaudhary, M. Cha, S. Guercio Jr, and S. Gallo. A
Comparison of Virtualization Technologies for HPC. In 22nd International
Conference on Advanced Information Networking and Applications, pages
861–868. IEEE, 2008.

[175] J. Watson. Virtualbox: bits and bytes masquerading as machines. Linux
Journal, 2008(166):1, 2008.

[176] A. Weiss. Computing in the clouds. NetWorker, 11(4):16–25, 2007.

[177] C. D. Weissman and S. Bobrowski. The design of the force.com multitenant
internet application development platform. In Proceedings of the 35th
SIGMOD international conference on Management of data, SIGMOD ’09,
pages 889–896, New York, NY, USA, 2009. ACM.

[178] A. Whitaker, M. Shaw, S. Gribble, et al. Denali: Lightweight virtual
machines for distributed and networked applications. Technical report,
Citeseer, 2002.

[179] T. White. Hadoop: The Definitive Guide. Yahoo Press, 2010.

[180] M. B. Yehuda, O. Biran, D. Breitgand, K. Meth, B. Rochwerger, E. Salant,
E. Silvera, S. Tal, Y. Wolfsthal, J. Cáceres, J. Hierro, W. Emmerich,
A. Galis, L. Edblom, E. Elmroth, D. Henriksson, F. Hernández, J. Tords-
son, A. Hohl, E. Levy, A. Sampaio, B. Scheuermann, M. Wustho↵, J. La-
tanicki, G. Lopez, J. Marin-Frisonroche, A. Dörr, F. Ferstl, S. Beco,
F. Pacini, I. Llorente, R. Montero, E. Huedo, P. Massonet, S. Naqvi,
G. Dallons, M. Pezzé, A. Puliato, C. Ragusa, M. Scarpa, and S. Muscella.
RESERVOIR - an ICT infrastructure for reliable and e↵ective delivery of
services as utilities. Technical report, IBM Haifa Research Laboratory,
2008.

[181] A. Yoo, M. Jette, and M. Grondona. SLURM: Simple Linux Utility for Re-
source Management. In D. Feitelson, L. Rudolph, and U. Schwiegelshohn,
editors, Job Scheduling Strategies for Parallel Processing, volume 2862
of Lecture Notes in Computer Science, pages 44–60. Springer Berlin /
Heidelberg, 2003.

49



[182] J. Yu, S. Venugopal, and R. Buyya. A market-oriented grid directory
service for publication and discovery of grid service providers and their
services. The Journal of Supercomputing, 36(1):17–31, 2006.

[183] S. Zanikolas and R. Sakellariou. A taxonomy of grid monitoring systems.
Future Generation Computer Systems, 21(1):163–188, 2005.

50


