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Abstract 

The transmission performance of MIMO systems can be highly improved under 

stationary channel conditions where the channel statistics are constant. 

Unfortunately, mobile radio channels are not stationary all the time. Instead, they 

are stationary for finite time durations, so-called the stationarity regions. If these 

stationarity regions are relatively large, then the channel statistics can be utilized 

during each stationarity region to enhance the transmission performance. 

Therefore, it is necessary to examine the stationarity of mobile channels and 

characterize the stationarity regions. 

This thesis investigates the non-stationarity of measured MIMO channels and 

proposes some stationarity metrics to measure it. These metrics are: the CMD 

proposed by [1], NCMD and DES. Each one of the metrics is relevant to different 

types of transmission schemes and scenarios. The CMD may not be accurate for 

some transmission scenarios; therefore, the NCMD, which is a normalized version 

of CMD, is proposed. Theoretically, the NCMD can be at most 100% higher than 

the CMD for a 4x4 MIMO system. For beamforming scenario, the DES metric can 

be used to describe the non-stationarity of few eigenvectors taken from the 

channel variance. Under the measured MIMO channels, it was found that the 

CMD overestimates the stationarity regions compared to the NCMD and DES 

metrics particularly under the NLOS routes. 

 

 

 

 

 

 

 

 

 

 



iv 

 

Acknowledgments 

I would like to express my thanks and gratitude to my advisor, Mats Bengtsson for 

giving me the opportunity to work on this thesis with the Signal Processing 

Laboratory at KTH. I would like also to thank him for his endless help, advice and 

patience. 

I would like also to thank my opponent, Ali Al-Enezi for his opinions, support and 

contributions. 

Very special thanks to my family for their love and nonstop support during my 

studies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 

 

Acronyms 

CCF Channel Correlation Function 

CMD Correlation Matrix Distance 

DES Distance between Equidimensional Subspaces  
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LTE Long term Evolution 

LTV Linear Time Variant 
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SISO Single Output Single Input 

SVD Singular Value Decomposition 
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Chapter 1  

Introduction 

Since the invention of Multiple-Input Multiple-Output (MIMO) technology from 

more than a decade ago, a lot of wireless transmission schemes have been 

developed to improve the performance and reliability of MIMO systems. The main 

reason behind these large interests is to achieve higher data rates or to increase 

the system reliability with the same amount of power and bandwidth compared 

to typical Single-Input Single-Output (SISO) systems as theoretical analysis of 

MIMO communications promises. However, according to [2] a large number of 

the developed MIMO communication transmission schemes have not been 

examined under real MIMO channel conditions so far. 

The optimum transmission performance of MIMO channels can be achieved if the 

instantaneous channel gains are known at both the transmitter and receiver.  For 

mobile channels, where the channel gains are fast varying with time, the 

instantaneous channel knowledge cannot be obtained at the transmitter. 

Therefore, the channel statistics are used instead of the instantaneous values. In 

this case, the transmission performance of the channel will be slightly lower than 

the optimum, in general, and close to the optimum for some transmission 

schemes and scenarios[3]. 

Consequently, some of the advanced MIMO transmission schemes are based on 

the channel statistics knowledge. However, these types of transmission schemes 

cannot be utilized under non-stationary channel conditions where the MIMO 

channel statistics change very quickly, since the receiver will not be able to feed 

back the channel statistical information to the transmitter. On the other hand, if 

the channel statistics are constant (quasi-stationary) during some relatively large 

stationarity region, then these schemes can be applied within this stationarity 

region. Therefore, it is very important to estimate the stationarity regions of real 

MIMO channels to see whether these types of transmission schemes are 

applicable or not. 

According to [1], unlike real Single-Input-Single-Output (SISO) channels, real 

MIMO channels depends on the spatial structure of the antennas (angles of the 

transmit and receive antennas) and multipath components more strongly. 

Therefore, the stationarity of such channels depend mainly on the spatial 

structure in addition to time and frequency.  
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In KTH Signal Processing Lab, we have a large data set of real measured MIMO 

channels. We would like to examine and evaluate the stationarity of these 

channels and try to characterize and evaluate the stationarity regions within it. 

1.1 Previous work 

The non-stationarity of SISO channels has been investigated by Matz [4]. There, a 

Channel Correlation Function (CCF) was introduced to estimate the stationarity 

region of SISO channels. For the SIMO channels, a stationarity measure relevant 

to the beamforming scenario has been introduced by [5] so-called F-eigen ratio. F-

eigen ratio measures the similarity between the out-dated and new channel 

covariance matrices with respect to the largest ܨ  eigenmodes. The non-

stationarity of MIMO channels have been investigated by Herdin in his thesis [1]. 

There, he provides a function that measures the dissimilarity of two different 

matrices called the Correlation Matrix Distance (CMD). However, CMD may not be 

very precise in evaluating the non-stationarity of MIMO channels if the two 

matrices are high rank (i.e. have more linearly independent columns). In this case, 

the CMD can be very small even if the two matrices are different. 

1.2 Objective 

We will try to apply different methods to evaluate the non-stationarity of the 

measured MIMO channels versus the separation in a specific domain (time, 

frequency or space). In general, these methods measure the distance 

(dissimilarity) between two matrices and produce a single value that ranges from 

zero to one. For instance, the CMD calculates the distance between two 

correlation matrices ܀ଵ and ܀ଶ  by using the inner product as: 

݀஼ெ஽ሺ܀૚ǡ ૛ሻ܀ ൌ ͳ െ   ሼ܀૚܀૛ሽԡ܀૚ԡிԡ܀૛ԡி 

Where ԡήԡி is the Frobenius norm and   ሼήሽ is the matrix trace. Matrix distance 

measures can achieve a maximum value of 1 indicating that the two matrices are 

orthogonal, and a minimum value of 0 indicating that the two matrices are equal 

except for a scaling factor. We will try to find different methods to measure the 

distance between two matrices and then we will use them to evaluate the non-

stationarity region of the measured MIMO channels.  
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Chapter 2  

Background 

2.1 Classifications of Radio Channels 

In this section, we will discuss some basic classifications of mobile radio channels 

for typical Single-Input-Single-Output (SISO) systems. 

Mobile radio channels are time and frequency varying due to movements in the 

communication medium and multipath components. Therefore, a mobile radio 

channel can be seen as linear time varying (LTV) filter ݄ሺݐǡ ߬ሻ. If ݏሺݐሻ is the 

transmitted signal through ݄ሺݐǡ ߬ሻ then the received signal is given as:  

ሻݐሺݎ ൌ න ݄ሺݐǡ ߬ሻ ݏሺݐ െ ߬ሻஶ
ఛୀିஶ ݀߬ 

Alternatively, the channel can be written as a time and frequency varying function ܪሺݐǡ ݂ሻ by using Fourier transform with respect to ߬ as: 

ǡݐሺܪ    ݂ሻ ൌ න ݄ሺݐǡ ߬ሻ ݁ି௝ଶగ௙ఛஶ
ఛୀିஶ ݀߬ 

2.1.1 Coherence Time and Frequency 

The coherence time ௖ܶ of ݄ሺݐǡ ݂ሻ is defined as the time duration at which the 

channel can be assumed constant over time. If we transmit two pulses through 

the channel at different time instances ݐଵ and ݐଶ then: ܪሺݐଵǡ ݂ሻ ൎ ଶǡݐሺܪ ݂ሻ,   for   ȁݐଵ െ ଶȁݐ ൏ ௖ܶ 

Similarly, the coherence bandwidth ܤ௖ of ܪሺݐǡ ݂ሻ is defined as the frequency band 

at which the channel can be assumed constant over frequency. If we transmit two 

sinusoid signals through the channel at different frequencies ଵ݂ and ଶ݂ then: ܪሺݐǡ ଵ݂ሻ ൎ ǡݐሺܪ ଶ݂ሻ,   for   ȁ ଵ݂ െ ଶ݂ȁ ൏  ௖ܤ

2.1.2 Fading Channels 

Time-variant channels are classified to different categories based on the 

coherence time and coherence bandwidth. If the transmission through the time-

variant channel is made over the symbol duration ܶ and bandwidth ܤ, then the 

channel is said to be: 
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 Slow Fading Channel: If the coherence time is much larger than the 

symbol duration ( ௖ܶ ب ܶ). Here, the channel can be assumed time 

invariant: ݄ሺݐǡ ߬ሻ ൎ ݄ሺ߬ሻ 

and the received signal through this channel is: 

ሻݐሺݎ ൌ න ݄ሺ߬ሻ ݏሺݐ െ ߬ሻஶ
ఛୀିஶ ݀߬ 

 Frequency Flat Channel: If the coherence bandwidth is much larger than 

the system bandwidth (ܤ௖ ب  Here, the channel can be assumed .(ܤ

frequency invariant : ܪሺݐǡ ݂ሻ ൎ  ሻݐሺܪ

and the received signal through this channel is: ݎሺݐሻ ൌ ݄ሺݐሻ ݏሺݐሻ 

 Fast Fading Channel (time selective): If the coherence time is smaller 

than or equal to the symbol duration ( ௖ܶ ൑ ܶ). In this case, the channel 

cannot be assumed time invariant.  

 Frequency Selective Channel: If the coherence bandwidth is smaller than 

or equal to the system bandwidth (ܤ௖ ൑  In this case, the channel .(ܤ

cannot be assumed frequency invariant. 

2.1.3 OFDM 

Under frequency selective channels, Orthogonal Frequency Division Multiplexing 

(OFDM) can be used to overcome frequency fading. In OFDM, the channel 

bandwidth is divided to orthogonal subbands and the transmission is made 

through each subband with independent signal. If each subband is smaller than 

the coherence bandwidth, then the signal in one OFDM subband exhibits flat 

fading. The OFDM subband signal is given as: ݏ௞ሺݐሻ ൌ ௞ܣ      ሺʹߨ ௞݂ݐሻ 

Where ܶ is the symbol duration. If the fading channel is given by ܪሺݐǡ ݂ሻ, then the 

received signal is: 

 
ሻݐሺݎ ൌ ǡݐሺܪ ௞݂ሻݏ௞ሺݐሻ ൌ  ሻݐ௞ሺݏሻݐ௞ሺܪ

 
( 1 ) 

where ܪ௞ሺݐሻ is a time varying and frequency flat channel. 
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2.1.4 Stochastic Channels 

If the channel in equation ( 1) is a time selective channel, then ܪ௞ሺݐሻ changes in 

unpredictable manner during the symbol time ܶ  and the value of ܪ௞ሺݐሻ  is 

unknown. Therefore, it is reasonable to model ܪ௞ሺݐሻ as a stochastic process. If 

the channel is stationary stochastic process, the channel statistics, like the mean 

and variance, are not time varying and can be estimated at the receiver side and 

then feed back to the transmitter. For MIMO channels, the channel statistics 

knowledge increases the performance of the MIMO communication systems 

compared to the performance when no channel knowledge is available. In the 

Sec. 2.4, we will discuss the stationarity of radio channels in more details.  
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2.2 MIMO Communication Systems 

Communication systems can have different setups regarding the number of 

antennas at the transmit and receive sides. Typically, communication systems use 

one transmit antenna and one receive antenna, so-called single-input single-

output (SISO) systems. On the other hand, multiple-input multiple-output (MIMO) 

communication systems use multiple antennas at both the transmitter and 

receiver as shown in Figure 1. MIMO transmit antennas can send different signals 

at the same time and frequency. At the receiver side, each antenna receives 

multiple signals from all the transmit antennas.  Thus, MIMO transmit and receive 

signals are represented as vectors while the MIMO channel function is 

represented as a matrix. 

In the next section, we will give a brief overview of the MIMO system described in 

[6] and [3]. 

 

 

 

 

 

 

 

 

 

 

 

RX 

 

 

TX 

Figure 1: MIMO system setup with multiple antennas at transmit and receive 

sides. 
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2.2.1 MIMO System Model 

Consider a MIMO system with ்݊ transmit antennas and ݊ோ receive antennas. The 

time-invariant and frequency flat MIMO channel is given as ݊ோ ൈ ்݊ matrix: 

۶ ൌ ێێۏ
ۍ ݄ଵଵ ݄ଵଶ݄ଶଵ ݄ଶଶ ڮ ݄ଵ௡೅݄ଶ௡೅ڭ  ڭ ڰ ௡ೃଵ݄ڭ ݄௡ೃଶ ڮ ݄௡ೃ௡೅ۑۑے

ې
                                          ( 2 ) 

where ݄௜௝  is the channel gain of the path between the transmit antenna number ݆ 
and the receive antenna number ݅ . If  ܛሺݐሻ ൌ ሾݏଵሺݐሻ ݏଶሺݐሻ ǥ ݏ௡೅ሺݐሻሿ்  is the 

transmitted signal vector through the above MIMO channel matrix then the 

received signal vector ܚሺݐሻ ൌ ሾݎଵሺݐሻ ݎଶሺݐሻ ݎ ڮ௡ೃሺݐሻሿ  is given as: 

 
ሻݐሺܚ ൌ ሻݐሺܛ ۶ ൅  ሻݐሺܖ

 

( 3 ) 

 

where ܖሺݐሻ ൌ ሾ݊ଵሺݐሻ ݊ଶሺݐሻ ǥ ݊௡ೃሺݐሻሿ் is the noise vector. Time invariant and 

frequency flat MIMO channel has a favorable property. Since the channel gains 

are constant, they can be estimated at the receiver by using training sequence 

and then forwarded to the transmitter. Thus, the transmitter can allocate power 

through the strongest channel paths, as will be discussed in the next section. 

2.2.2 Constant MIMO Channel Capacity 

The MIMO channel capacity ܥ (the maximum mutual information between the 

input and the output) over a time invariant and frequency flat MIMO channel ۶ is 

given by:  

ܥ ൌ    ԡۿԡୀ௉    ଶ     ሺ۷௡ೃ ൅ ͳܰ଴  ۶ுሻۿ۶
where ۿ is the input covariance matrix, ܲ is the total transmit power and ଴ܰ is the 

noise power. The optimal input covariance matrix ۿ can be exploited if the 

channel is completely known at both the transmitter and the receiver. To 

illustration this, we need to decompose the channel matrix ۶ using Singular Value 

Decomposition (SVD) as follows: ۶ ൌ  ு܄઱܃

where ܃ and ܄ are, respectively, ݊ோ ൈ ݊ோ and ்݊ ൈ ்݊ unitary matrices and ઱ is ݊ோ ൈ ்݊ diagonal matrix contains the singular values of ۶ sorted from maximum 

to minimum as ߪଵ ൒ ଶߪ ൒ ൒ ڮ   .୫୧୬ሺ௡ೃǡ௡೅ሻߪ
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In general, parallel data streams can be utilized if the MIMO channel ۶ is known 

at the transmitter and receiver. For instance, if ܛ෤ሺݐሻ is the data vector at the 

transmitter, then we can set the transmitted vector ܛሺݐሻ as: ܛሺݐሻ ൌ   ሻݐ෤ሺܛ ܄
Consequently, we will have the following received vector ܚሺݐሻ:           ܚሺݐሻ ൌ ሻݐሺܛ ۶ ൅ ሻ                                        ൌݐሺܖ ሺ܃઱܄ுሻ ൫ܛ ܄෤ሺݐሻ൯ ൅ ሻ                       ൌݐሺܖ ሻݐ෤ሺܛ ઱܃ ൅  ሻݐሺܖ

At the receiver, we can extract the received data vector ܚ෤ሺݐሻ as: ܚ෤ሺݐሻ ൌ ሻ                                  ൌݐሺܚ ு܃ ሻݐ෤ሺܛ ઱܃ ு܃ ൅ ሻ                   ൌݐሺܖு܃ ઱ܛ෤ሺݐሻ ൅  ሻݐ෥ሺܖ

Alternatively, ܚ෤ሺݐሻ can be written as: ݎǁ௜ሺݐሻ ൌ ሻݐǁ௜ሺݏ ௜ߪ ൅ ෤݊௜ሺݐሻ 

In this case, the optimal input covariance matrix ۿ is given by: 

 
ۿ ൌ  ு܄۾܄

 

( 4 ) 

 

where ۾ ൌ     ሺ ଵܲǡ ଶܲǡ ǥ ǡ ௡ܲ೅ሻ is a ்݊ ൈ ்݊ power matrix and  ௜ܲ is the power 

of ݏǁ௜ሺݐሻ allocated as:  

 ௜ܲ ൌ ቆߤ െ ͳߪ௜ଶቇା
 ( 5 ) 

 

where ݔା indicates maximumሺݔǡ Ͳሻ and  ߤ is selected such that σ ௜ܲ௡೅௜ୀଵ ൌ ܲ. The 

power allocation in equation ( 5 ) will allocate more power in the largest singular 

values of ۶ and no power will be allocated for low singular values.  

Nevertheless, if the channel information is unknown at the transmitter, then the 

power allocation will be uniformly distributed over the transmit antennas i.e. ௜ܲ ൌ ܲȀ்݊ and ۿ ൌ ܲȀ்݊ ۷௡೅ . In this case, the channel mutual information will 

be lower than the channel capacity. 
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2.3 Time-Variant MIMO Channels 

The MIMO channel capacity can be achieved if the MIMO channel gains are 

known at both the transmitter and receiver. Unfortunately, mobile MIMO 

channels are time and frequency selective. In general, the MIMO channel impulse 

response is given as a linear time varying filter:  

 
۶ሺݐǡ ߬ሻ ൌ ێێۏ

ۍ ݄ଵଵሺݐǡ ߬ሻ ݄ଵଶሺݐǡ ߬ሻ݄ଶଵሺݐǡ ߬ሻ ݄ଶଶሺݐǡ ߬ሻ ڮ ݄ଵ௡೅ሺݐǡ ߬ሻ݄ଶ௡೅ሺݐǡ ߬ሻڭ              ڭ ڰ ǡݐ௡ೃଵሺ݄ڭ ߬ሻ ݄௡ೃଶሺݐǡ ߬ሻ ڮ ݄௡ೃ௡೅ሺݐǡ ߬ሻۑۑے
ې
 

 

( 6 ) 

 

If ܛሺݐሻ is the transmitted signal through ۶ሺݐǡ ߬ሻ then the received signal can be 

written as: 

 
ሻݐሺܚ ൌ න ۶ሺݐǡ ߬ሻ ܛሺݐ െ ߬ሻஶ

ఛୀିஶ ݀߬ ൅  ሻݐሺܖ

 

( 7 ) 

 

The frequency spectrum of the channel is given by the Fourier transform of ۶ሺݐǡ ߬ሻ with respect to ߬: 

 
۶ሺݐǡ ݂ሻ ൌ න ۶ሺݐǡ ߬ሻ ݁ି௝ଶగ௙ఛஶ

ఛୀିஶ ݀߬ 

 

( 8 ) 

Using OFDM, the channel will be only time selective: 

 
ሻݐሺܚ ൌ ۶ሺݐሻ ܛሺݐሻ ൅  ሻݐሺܖ

 

( 9 ) 

 

Unfortunately, it is not possible to use the instantaneous channel gains under a 

time selective channel since the channel is changing over time in a random 

manner within the transmission time. Alternatively, the channel in equation ( 9) 

can be modeled as a stationary stochastic process. Under the stationarity 

assumption, the statistics (i.e. the mean and covariance) of the channel matrix are 

constant and can be estimated at the receiver instead of the deterministic 

channel values. However, if the MIMO channel is not stationary, then the channel 

statistics may also change very fast with time and, hence, further investigation of 

the channel stationarity is needed to examine the feasibility of the channel 

statistics utilization.  

In the next sections, we will try to investigate the stationarity of MIMO channels 

and find suitable methods to measure the stationarity. These methods can be 

applied one time for off-line recorded channels, since the non-stationarity of 
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MIMO channels is generally due to the non-stationarity of the spatial properties 

of the communication environment. 

 

2.4 Stationarity of Radio Channels 

In this section, we will discuss the stationarity of stochastic mobile channels. We 

will start with the SISO case then extend it to MIMO based on [1]. 

2.4.1 Stationary SISO Channels 

SISO time-variant and frequency selective mobile channels can be seen as two 

dimensional stochastic process in ݐ and ߬. If the stochastic process is stationary, 

then the channel first and second order statistics are constant over absolute time 

and frequency. Thus, they can be utilized instead of the instantaneous values of 

the channel that varies over time and frequency. Typically, the second order 

statistics (i.e. the variance or the autocorrelation function) are used while the 

mean value of the mobile channel is assumed to be zero. The autocorrelation 

function of ݄ሺݐǡ ߬ሻ is given by 4-dimensional function: ܴ௛ሺݐǡ ߬Ǣ ȟݐǡ ȟ߬ሻ ൌ ݐሾ݄ሺܧ ൅ ȟݐǡ ߬ ൅ ȟ߬ሻ݄כሺݐǡ ߬ሻሿ 
If the channel is assumed to be wide sense stationary (WSS) in time, then ܴ௛ will 

depend on the time separation ȟݐ only and does not depend on the absolute 

time ݐ. The autocorrelation function of WSS channel can be written as: ܴ௛ௐௌௌሺ߬Ǣ ȟݐǡ ȟ߬ሻ ൌ ݐሾ݄ሺܧ ൅ ȟݐǡ ߬ ൅ ȟ߬ሻ݄כሺݐǡ ߬ሻሿ 
Furthermore, if the two signal components received with different time delays are 

uncorrelated, then ܴ௛ is zero for ȟ߬ ് Ͳ and the channel is called uncorrelated 

scattering (US). The autocorrelation function of the wide sense stationary 

uncorrelated scattering (WSSUS) channel can be written as: ܴ௛ௐௌௌ௎ௌሺ߬Ǣ ȟݐǡ ȟ߬ሻ ൌ ܴ௛ሺ߬Ǣ ȟݐሻߜሺȟ߬ሻ ൌ  ሾ݄ሺݐ ൅ ȟݐǡ ߬ሻ݄כሺݐǡ ߬ሻሿߜሺȟ߬ሻ 

It can be shown that WSSUS channels are stationary in frequency [7]: ܴுௐௌௌ௎ௌሺȟݐǡ ȟ݂ሻ ൌ ǡݐሺܪሾܧ ݂ሻכܪሺݐ ൅ ȟݐǡ ݂ ൅ ȟ݂ሻሿ 
Therefore, the correlation function of WSSUS is also independent of the 

frequency. The variance of the channel is a constant value and can be found by 

setting ȟݐ ൌ ȟ݂ ൌ Ͳ .The double Fourier transform of ܴுௐௌௌ௎ௌሺȟݐǡ ȟ݂ሻ  with 

respect to ȟݐ and ȟ݂ is called the scattering function and it is given by: 
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௛ௐௌௌ௎ௌሺ߬ǡܥ ሻݒ ൌ ඵܴ௛ሺȟݐǡ ȟ݂ሻ ݁ି௝ଶగ௩୼௧݁ି௝ଶగఛ୼௙ ݀ȟݐ ݀ȟ݂ 

where ݒ is the Doppler frequency shift. This function shows the signal power for 

different time delays and Doppler shifts. In the WSSUS case, we see that the 

scattering function is independent of time and frequency. 

 

2.4.2 Non- Stationary SISO Channels 

Unfortunately, mobile radio channels are not WSSUS over all time and frequency 

periods. As the communication environment may has different propagation 

conditions, the channel statistics change accordingly. Instead, the channel is 

assumed quasi-WSSUS (QWSSUS). This implies that the channel can be assumed 

WSSUS within a limited time and bandwidth, so-called stationarity region. If the 

stationarity region is sufficiently large, the channel statistics can be exploited at 

the receiver and transmitter. On the other hand, for relatively short stationarity 

region, the channel statistics change very quickly and it is not possible to exploit 

the channel statistics at the transmitter. Thus, it is important to examine and 

measure the stationarity regions. 

For non-WSSUS channels, a local correlation function (LCF) that depends on time 

and frequency is given as: ܴுሺݐǡ ݂ǡ ǡݐ߂ ሻ݂߂ ൌ ǡݐሺܪሾܧ ݂ሻכܪሺݐ ൅ ȟݐǡ ݂ ൅ ȟ݂ሻሿ 
The stationarity time ௦ܶ and bandwidth ܤ௦ is defined as: ܴுሺݐଵǡ ݂ǡ ǡݐ߂ ሻ݂߂ ൎ ܴுሺݐଶǡ ݂ǡ ǡݐ߂ ଵݐሻ  for  ȁ݂߂ െ ଶȁݐ ൏ ௦ܶ  ܴுሺݐǡ ଵ݂ǡ ǡݐ߂ ሻ݂߂ ൎ ܴுሺݐǡ ଶ݂ǡ ǡݐ߂ ሻ  for   ȁ݂߂ ଵ݂ െ ଶ݂ȁ ൏  ௦ܤ

Within the stationarity time and bandwidth, the autocorrelation function can be 

assumed constant: ܴுሺݐଵǡ ଵ݂ǡ ǡݐ߂ ሻ݂߂ ൎ ܴுሺݐଶǡ ଶ݂ǡ ǡݐ߂ ଵݐሻ  for  ȁ݂߂ െ ଶȁݐ ൏ ௦ܶ and ȁ ଵ݂ െ ଶ݂ȁ ൏  ௦ܤ

For the SISO case, an estimation of the stationarity region for a non-WSSUS 

correlation function was introduced in [4][8]. Based on this, a channel correlation 

function in time, frequency, time delay and Doppler is given as: 

ǡݐ߂௛ሺܣ Ǣ݂߂ ǡ߬߂ ሻݒ߂ ൌ ඵܴ௛ሺݐǡ ݂Ǣ ǡ ݐ߂ ȟ݂ሻ ݁ି௝ଶగሺ௧୼௩ି௙୼ఛሻ ݀ݐ ݂݀ 
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where ܣ௛ is called the Channel Correlation Function (CCF). The maximum time 

delay separation for which ܣ௛ is approximately nonzero is denoted by  ߬߂௠௔௫ 

while the maximum Doppler separation for which ܣ௛  is nonzero denoted 

by ௠௔௫ݒ߂  . According to [4], the stationarity time ௦ܶ  and the stationarity 

bandwidth ܤ௦  are defined by: 

௦ܶ ؜ ͳȟݒ௠௔௫ ǡ ௦ܤ ؜ ͳȟ߬௠௔௫ 

If the channel is WSSUS, then ߬߂௠௔௫ ൌ ௠௔௫ݒ߂ ൌ Ͳ. 

 

2.4.3 Doubly Underspread 

One important property of non-WSSUS channels is called Doubly Underspread [9]. 

If the quasi-stationarity region of the non-WSSUS is much larger than the 

coherence region, then the non-WSSUS channel can be called Doubly 

Underspread (DU). This property is very useful when channel averaging around 

some stationarity region is needed. If the channel is DU, then the number of 

independent fading realizations within the stationarity region is large. Therefore, 

averaging around the stationarity region is sufficient in this case since the 

stationarity region contains a large number of independent fading realizations. 

The DU channel condition is given by: 

 ௦ܶܤ௦ ب ௖ܶܤ௖ ب ͳ 

 

( 10) 

According to [9] and [1], if the channel is not Doubly Underspread, then the 

estimation of the CCF from a single channel realization may not be reliable. 

 

 

 

 

 

 

 



13 

 

2.5 Stationary MIMO Channels 

The investigation of MIMO channels non-stationarity has been introduced by 

Herdin [1], where the LCF and the CCF have been extended and simplified for 

MIMO channels. 

The MIMO channel matrix in equation ( 6 ) can be formulated as 4-dimensional 

function in time, frequency, transmit and receive antenna domain: 

ǡݐሺܪ ݂ǡ ்݊ ǡ ݊ோሻ ൌ න ݄௡ೃ௡೅ሺݐǡ ߬ሻ ݁ି௝ଶగ௙ఛஶ
ఛୀିஶ ݀߬ 

In order to find the full correlation function of MIMO channels, we must consider 

the correlations among all the four dimensions of the channel. As found in [1], the 

correlation function ܴு of MIMO channels is given as 8-dimensional function and 

can be written as: ܴு൫ݐଵǡ ଶǡݐ ଵ݂ǡ ଶ݂ǡ ்݊ǡଵǡ ்݊ǡଶǡ ݊ோǡଵǡ ݊ோǡଶ൯ ൌ ଶǡݐ൫ܪൣ  ଶ݂ǡ ்݊ǡଶǡ ݊ோǡଶ൯כܪ൫ݐଵǡ ଵ݂ǡ ்݊ǡଵǡ ݊ோǡଵ൯൧ 
( 11 ) 

For stationary MIMO channels in all the 4-dimensions, the correlation function 

depends on the separation in all the four dimensions and does not depend on the 

absolute dimension: ܴுௌ ሺȟݐǡ ȟ݂ǡ ȟ்݊ ǡ ȟ݊ோሻ ൌ ଶǡݐ൫ܪൣܧ ଶ݂ǡ ்݊ǡଶǡ ݊ோǡଶ൯כܪ൫ݐଵǡ ଵ݂ǡ ்݊ǡଵǡ ݊ோǡଵ൯൧ 
However, for a non-uniform antenna array (i.e. the spacing in-between antennas 

is not the same), the separation in the antenna domain is different for different 

antennas. In this case, the correlation function is often not stationary in the 

antenna domain. Therefore, only time-frequency stationarity can be assumed: 

 

ܴுௌ൫ȟݐǡ ȟ݂ǡ ்݊ǡଵǡ ்݊ǡଶǡ ݊ோǡଵǡ ݊ோǡଶ൯ൌ ଶǡݐ൫ܪൣܧ ଶ݂ǡ ்݊ǡଶǡ ݊ோǡଶ൯כܪ൫ݐଵǡ ଵ݂ǡ ்݊ǡଵǡ ݊ோǡଵ൯൧ 
 

( 12 ) 

 

By setting ȟݐ ൌ ȟ݂ ൌ Ͳ, the variance of the WSSUS MIMO channel is given as: 

 
ܴுௌ൫்݊ǡଵǡ ்݊ǡଶǡ ݊ோǡଵǡ ݊ோǡଶ൯ ൌ ൫்݊ǡଶǡܪൣܧ ݊ோǡଶ൯כܪ൫்݊ǡଵǡ ݊ோǡଵ൯൧ 

 

( 13 ) 

 

and is called the full correlation matrix. In order to simplify the estimation of 

equation ( 13 ) further, different MIMO channel models were proposed, as will be 

described in the next section. 
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2.6 MIMO Channel Models 

In order to estimate the spatial correlation function of equation ( 12 ), we need to 

find a suitable analytical model to simplify it. Based on what is found in [2] and 

[10], two basic models will be illustrated: the full spatial correlation channel 

model and the Kronecker MIMO channel model. Both of the two models assume 

that the MIMO channel is stationary in time and frequency. 

2.6.1 The Full Spatial Correlation Channel Model 

In the full spatial correlation channel model, the channel correlation matrix ܀ு 

(also called the full correlation matrix) is given by: ܀ு ൌ  ሾ   ሼ۶ሽ   ሼ۶ሽுሿܧ
where ۶  is ݊ோ ൈ ்݊  MIMO channel matrix with ݊ோ  receive antennas and ்݊ 

transmit antennas. Since    ሼ۶ሽ has ݊ோ்݊ elements, ܀ு will have ݊ோ்݊ ൈ ݊ோ்݊ 

elements which are very large and increase rapidly as we increase the number of 

antennas at the transmit or receive side.  

2.6.2 The Kronecker Channel Model 

On the other hand, Kronecker MIMO channel model has the following channel 

correlation matrix:  

ு܀ ൌ ͳ  ሼ܀ோ௫ሽ்܀௫  ோ௫܀ٔ

where ٔ is the Kronecker product, ்܀௫ and ܀ோ௫ are the transmit and receive 

correlation matrices, respectively. They can be separate from each other as the 

following: ்܀௫ ؜ ோ௫܀  ሿ , andכሾ۶்۶ܧ ؜  ሾ۶۶ுሿܧ
where ்܀௫ and ܀ோ௫ are ்݊ ൈ ்݊ and ݊ோ ൈ ݊ோ matrix respectively. In this way, we 

deal only with ்݊ଶ ൅ ݊ோଶ elements divided in two matrices instead of ሺ݊ோ்݊ሻଶ 

elements in the previous model. The major disadvantage of this simplified model 

is the low accuracy in describing a real MIMO channel particularly if the number 

of antennas is increased[11]. However, in this thesis we use this model for non-

stationarity evaluation and not for capacity estimation. 
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2.7 Non-Stationary MIMO Channels 

In [1], the local correlation function ܴு of the non-stationary MIMO channel is 

given as 8-dimensional function: ܴு൫ݐଵǡ ଶǡݐ ଵ݂ǡ ଶ݂ǡ ்݊ǡଵǡ ்݊ǡଶǡ ݊ோǡଵǡ ݊ோǡଶ൯ൌ ଶǡݐ൫ܪൣܧ ଶ݂ǡ ்݊ǡଶǡ ݊ோǡଶ൯כܪ൫ݐଵǡ ଵ݂ǡ ்݊ǡଵǡ ݊ோǡଵ൯൧ 
( 14 ) 

The CCF of MIMO channel is also 8-dimensional and therefore the estimation of it 

is too complex. Unfortunately, estimating the CCF or LCF from a single MIMO 

channel realization, according to [1], is impassible. Therefore, we have to limit the 

correlation function to either time-frequency correlation over ݐ and ݂, or spatial 

correlation over ்݊ and ݊ோ. However, the spatial structure of the channel plays a 

central role in MIMO systems. For instance, some techniques like spatial 

multiplexing and beamforming (as seen in Sec. 2.2.2) are strongly sensitive to the 

changes of the spatial structure of the MIMO channel. Consequently, MIMO 

stationarity is evaluated mainly through the correlations in the spatial domain and 

hence equation ( 11) can be simplified to: ܴு൫ݐǡ ݂ǡ ்݊ǡଵǡ ்݊ǡଶǡ ݊ோǡଵǡ ݊ோǡଶ൯ ൌ ǡݐ൫ܪൣܧ ݂ǡ ்݊ǡଶǡ ݊ோǡଶ൯כܪ൫ݐǡ ݂ǡ ்݊ǡଵǡ ݊ோǡଵ൯൧ 
Alternatively, ܴு can be rewritten in square matrix form of size ݊ோ்݊ ൈ ݊ோ்݊ as: 

ǡݐுሺ܀  ݂ሻ ൌ ǡݐሾ   ሼ۶ሺܧ ݂ሻሽ   ሼ۶ሺݐǡ ݂ሻሽுሿ ( 15 ) 

It is possible to estimate ܀ுሺݐǡ ݂ሻ in equation ( 15) from one time-frequency 

channel realization ۶ሺݐǡ ݂ሻ. If we assume that the spatial correlation matrix ܀ுሺݐǡ ݂ሻ does not change (i.e. the channel is stationary) within some averaging 

time ௩ܶ and bandwidth ܤ௩ (more details will be given in Sec. 3.3). In this case, we 

can rewrite ܀ுሺݐǡ ݂ሻ as a discrete time-frequency function as: ܀ுሺ݊ǡ݉ሻ ൌ ௧ܧ ቂܧ௙ሾ   ሼ۶ሺݐǡ ݂ሻሽ   ሼ۶ሺݐǡ ݂ሻሽுሿቃ 
for  ݐ א ሾ݊ ௩ܶ ǡ ሺ݊ ൅ ͳሻ ௩ܶሿ, ݂ א ሾ݉ܤ௩ ǡ ሺ݉ ൅ ͳሻܤ௩ሿ 

( 16) 

The spatial correlation may be different for different values of ݊ and ݉. If the 

averaging bandwidth ܤ௩ is larger than the channel bandwidth, then equation ( 16) 

can be reduced to ܀ுሺ݊ሻ as: 
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ுሺ݊ሻ܀ ൌ ௧ܧ ቂܧ௙ሾ   ሼ۶ሺݐǡ ݂ሻሽ   ሼ۶ሺݐǡ ݂ሻሽுሿቃ 
for  ݐ א ሾ݊ ௩ܶ ǡ ሺ݊ ൅ ͳሻ ௩ܶሿ, ݂ א ሾͲǡ  ሿܤ

( 17) 

where ܤ is the channel bandwidth. Moreover, ܀ுሺ݊ሻ can be separated to ்܀௫ሺ݊ሻ 
and ܀ோ௫ሺ݊ሻ, as discussed in Sec. 2.6.2. 

2.7.1 Stationarity Region for MIMO channel 

The spatial stationarity region of a MIMO channel ۶ሺݐǡ ݂ሻ can be defined as the 

region (time or distance in meters) at which the correlation matrix described by ܀ுሺ݊ሻ stays constant: ܀ுሺ݊ଵሻ ൌ ுሺ݊ଶሻ  for  ȁ݊ଵ܀ െ ݊ଶȁ ௩ܶ ൏ ௦ܶ 

This can be estimated by comparing two correlation matrices ܀ுሺ݊ଵሻ and ܀ுሺ݊ଶሻ 

that corresponds to two different regions.  

Consequently, we need to define a function that compares two matrices and 

produces a value that is proportional to the dissimilarity between them, we call it 

Matrix Metric. This comparing function will be denoted by ܯሺ܀ுሺ݊ଵሻǡ  ுሺ݊ଶሻሻ܀
and it ranges from a minimum value of zero (in this case we can say ܀ுሺ݊ଵሻ and ܀ுሺ݊ଶሻ are similar) to a maximum value of one for totally different matrices. 

The matrix metrics can be formulated in different ways depending on the 

transmission technique, channel type and sensitivity to different parameters. In 

the following section, we will cover some of the matrix metrics and illustrate the 

properties and performance of each one of them. 
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2.8 Matrix Metrics Methods 

2.8.1 Correlation Matrix Distance (CMD) 

The Correlation Matrix Distance (CMD) proposed by [1] is one method to compare 

two matrices. Basically, it measures the dissimilarity between two matrices using 

the inner product between them. If we have two different matrices ܀ሺ݇ሻ and ܀ሺ݈ሻ 
both of them have the same size (݊ ൈ ݊), then the inner product of them is 

defined by: 

ሺ݇ሻሻǡ܀ሺ   ۃ     ሺ܀ሺ݈ሻሻۄ ൌ ෍෍ ሺ݈ሻ௝௜݆݅ݎሺ݇ሻ݆݅ݎ ൌ   ሼ܀ሺ݇ሻ܀ሺ݈ሻሽ 
 

( 18 ) 

 

The maximum value of the inner product above can be given using Cauchy-

Schwarz inequality as:   ሼ܀ሺ݇ሻ܀ሺ݈ሻሽ  ൑  ԡ܀ሺ݇ሻԡிԡ܀ሺ݈ሻԡி  

֜          ሼ܀ሺ݇ሻ܀ሺ݈ሻሽԡ܀ሺ݇ሻԡிԡ܀ሺ݈ሻԡி  ൑  ͳ                                          
where ԡήԡி is the Frobenius norm. The equality of the above holds if ܀ሺ݇ሻ ൌ  .ሺ݈ሻ܀

Accordingly, the CMD between two positive semi-definite Hermitian matrices ܀ሺ݇ሻ and ܀ሺ݈ሻ is given by: 

ሺ݇ሻǡ܀൫ܦܯܥ ሺ݈ሻ൯܀ ൌ ͳ െ   ሼ܀ሺ݇ሻ܀ሺ݈ሻሽԡ܀ሺ݇ሻԡிԡ܀ሺ݈ሻԡி  
The CMD can ranges from zero to one. Apparently, the CMD is inversely 

proportional to the inner product of the two matrices. If the two matrices are 

orthogonal, the inner product between them will be zero and the CMD will be 

equal to 1. This indicates that the two matrices are totally different in the sense of 

dot product. On the other hand, if the two matrices are parallel, the normalized 

inner product of the will be equal to 1 while the CMD will be zero, indicating that 

the two matrices are equal. 

However, CMD may not be very precise in evaluating the non-stationarity of 

MIMO channel. For instance, if the two correlation matrices are full rank then 

CMD can be very small even if the two matrices are different. Moreover, during 

our evaluation of the outdoor measured MIMO channel, CMD rarely exceeds 0.7 

and never achieves 0.9. Therefore, we will try to find different methods to 

compare two matrices and then we will use it to evaluate the non-stationarity of 

the measured MIMO channel. 
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2.8.2 Normalized Correlation Matrix Distance (NCMD) 

In general, if we have a matrix ܀ሺ݇ሻ, then there is a nonzero matrix ܀ሺ݈ሻ such that 

the CMD value between them is 1, (i.e. ܀ሺ݇ሻ and ܀ሺ݈ሻ are orthogonal and the 

inner product    ሼ܀ሺ݇ሻ܀ሺ݈ሻሽ ൌ Ͳ). However, since the correlation matrices have a 

particular structure, the maximum possible CMD value for a correlation matrix ܀ሺ݇ሻ may be less than one for any positive semi-definite Hermitian matrix ܀ሺ݈ሻ. In 

this case, we need to divide the CMD with a normalization factor so that the 

maximum difference between the correlation matrices can achieve 1. 

In order to find the normalization factor, we need to find the maximum value of 

the CMD given one of the correlation matrices (in our case ܀ሺ݇ሻ). The second 

matrix ܀ሺ݈ሻ can be any Hermitian nonzero matrix. Mathematically, we have the 

following maximization problem: 

   ԡ܀ሺ௟ሻԡಷஷ଴ܦܯܥ൫܀ሺ݇ሻǡ ሺ݈ሻ൯܀ ൌ    ԡ܀ሺ௟ሻԡಷஷ଴ቆͳ െ   ሼ܀ሺ݇ሻ܀ሺ݈ሻሽԡ܀ሺ݇ሻԡிԡ܀ሺ݈ሻԡிቇ 

Alternatively, we can minimize the inner product term as: 

    ԡ܀ሺ௟ሻԡಷஷ଴   ሼ܀ሺ݇ሻ܀ሺ݈ሻሽԡ܀ሺ݇ሻԡிԡ܀ሺ݈ሻԡி 

 

( 19 ) 

 

The exact solution of the above equation is rather difficult. If we take the gradient 

of the above equation with respect to every ݎ௜௝ሺ݈ሻ element and equate it with 

zero, we will end up with a nonlinear equation that depends on the remaining 

unknown ܀ሺ݈ሻ elements. However, without the loss of generality, a solution can 

be found by making the following assumptions: ܀ሺ݇ሻ ؜ ሺ݈ሻ܀ ு܃઩ሺ݇ሻ܃ ؜  ு܃઩ሺ݈ሻ܃

where ܃ is an unitary matrix, ઩ሺ݇ሻ and ઩ሺ݈ሻ is a diagonal matrix containing the 

eigenvalues of ܀ሺ݇ሻand ܀ሺ݈ሻ, respectively. The eigenvalues in ઩ሺ݇ሻ and ઩ሺ݈ሻ are 

sorted in decreasing order from maximum ߣଵ to minimum ߣ௡. Substitute the 

above in the equation ( 18) we have: 

   ሼ܀ሺ݇ሻ܀ሺ݈ሻሽ ൌ   ሼ܃઩ሺ݇ሻ܃ு ܃઩ሺ݈ሻ܃ுሽ ൌ    ሼ܃઩ሺ݇ሻ઩ሺ݈ሻ܃ுሽ ൌ   ሼ઩ሺ݇ሻ઩ሺ݈ሻሽ ൌ ෍ߣ௜ሺ݇ሻ ߣ௜ሺ݈ሻ ௡
௜ୀଵ  

 

( 20 ) 
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 In order to make equation ( 19) as small as possible, we can set ߣ௜ሺ݈ሻ ൌ Ͳ for all  ݅ ് ݊ except for ߣ௡ሺ݈ሻ which can be chosen to be any value larger than zero since 

it corresponds to the smallest eigenvalue of ܀ሺ݇ሻ. In this case, we can write 

equation ( 19) as: 

    ԡ܀ሺ௟ሻԡಷஷ଴   ሼ܀ሺ݇ሻ܀ሺ݈ሻሽԡ܀ሺ݇ሻԡிԡ܀ሺ݈ሻԡி ൌ ሺ݈ሻԡி܀ሺ݇ሻԡிԡ܀௡ሺ݈ሻԡߣ ௡ሺ݇ሻߣ ൌ  ሺ݇ሻԡி ( 21 )܀௡ሺ݇ሻԡߣ

 

where the last equality is due to ԡ܀ሺ݈ሻԡி ൌ  ௡ሺ݈ሻ. The solution in equation ( 21)ߣ

holds for any Hermitian matrix ܀ሺ݇ሻ. In general, equation ( 20) can be rewritten 

as: 

   ሼ܀ሺ݇ሻ܀ሺ݈ሻሽ ൌ   ሼ܀ሺ݇ሻ܃઩ሺ݈ሻ܃ுሽ ൌ    ሼ܃ு܀ሺ݇ሻ܃઩ሺ݈ሻሽൌ ሾ܃ு܀ሺ݇ሻ܃ሿ௡௡ ߣ௡ሺ݈ሻ 

 

( 22 ) 

 

where ሾήሿ௜௝  refers to the entry at row ݅ and column ݆. If ܝ௜  is the ݅th column of ܃, 

then the last term of equation ( 22) can be simplified as: 

   ሼ܀ሺ݇ሻ܀ሺ݈ሻሽ ൌ ሾ܃ு܀ሺ݇ሻ܃ሿ௡௡ ߣ௡ሺ݈ሻ ൌ  ௡ሺ݈ሻߣ ௡ܝሺ݇ሻ܀௡ுܝ
 

( 23 ) 

 

Since ܀ሺ݇ሻ is Hermitian it can be decomposed to the following: 

ሺ݇ሻ܀  ൌ ு܄઩ሺ݇ሻ܄ ൌ ෍ܞ௜ܞ௜ு ߣ௜ሺ݇ሻ ௡
௜ୀଵ  ( 24 ) 

 

Substituting equation ( 24) in ( 23) gives: 

  ሼ܀ሺ݇ሻ܀ሺ݈ሻሽ ൌ ෍ܝ௡ுܞ௜ܞ௜ுܝ௡ ߣ௜ሺ݈ሻ ߣ௡ሺ݇ሻ ൌ ෍ሺܝ௡ுܞ௜ሻଶ ߣ௜ሺ݈ሻ ߣ௡ሺ݇ሻ ௡
௜ୀଵ

௡
௜ୀଵ  

 ൑  ߣ௡ሺ݈ሻ ߣ௡ሺ݇ሻ෍ሺܝ௡ுܞ௜ሻଶ ௡
௜ୀଵ ൌ  ௡ሺ݇ሻߣ ௡ሺ݈ሻߣ 

 

( 25 ) 

 

where that last equality holds since ܞ௜  is orthonormal for all ݅  and hence σ ሺܝ௡ுܞ௜ሻଶ ൌ ͳ ௡௜ୀଵ for any vector ܝ௡ such that ԡܝ௡ԡଶ ൌ ͳ. Substituting equation ( 

25) in ( 19) gives the same result of equation ( 21). 

Consequently, the maximum value of the CMD is: 

   ԡ܀ሺ௟ሻԡಷஷ଴ܦܯܥ൫܀ሺ݇ሻǡ ሺ݈ሻ൯܀ ൌ ͳ െ ሺ݇ሻԡி܀௡ሺ݇ሻԡߣ ൌ ͳ െ ௡ሺ݇ሻටσߣ ௜ଶሺ݇ሻ௡௜ୀଵߣ  
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From the above expression, we can write the new normalized CMD (NCMD) 

matrix metric as: 

ሺ݇ሻǡ܀൫ܦܯܥܰ ሺ݈ሻ൯܀ ൌ ሺ݇ሻǡ܀൫ܦܯܥ ሺ݈ሻ൯ͳ܀ െ ௡ሺ݇ሻටσߣ ௜ଶሺ݇ሻ௡௜ୀଵߣ
ൌ ሺ݇ሻǡ܀൫ܦܯܥ ேܭሺ݈ሻ൯܀  

where ܭே is the normalization factor. If the smallest eigenvalue of ܀ሺ݇ሻ is equal 

to zero, then the normalization factor will be equal to one and hence the NCMD is 

the same as CMD. On the other hand, if ܀ሺ݇ሻ has equal eigenvalues, then the 

minimum value of ܭே is achieved and is equal to ͳ െ ͳȀξ݊. 

For small values of ݊ (i.e. small number of transmit or receive antennas), the 

maximum value of the NCMD is 3.4 times higher than CMD for two antenna 

system and 2.3 times higher for three antenna system. For our case, we have a 

4x4 MIMO channel; therefore, the minimum normalization factor is 0.5 which 

increases the NCMD two times above CMD. However, for low rank matrices, the 

minimum eigenvalue is zero and, hence, both the two methods will have similar 

performance. 

 

2.8.3 Distance between Equidimensional Subspaces (DES) 

The last distance measure between two matrices used in this thesis is the 

Distance between Equidimensional Subspaces (DES) method [12]. In this method, 

we extract the eigenvectors of the two correlation matrices and take only the first ݌ eigenvectors that correspond to the largest eigenvalues then we compare these 

eigenvectors based on the DES between them.  

To illustrate this, let ܀ሺ݌ሻ and ܀ሺݍሻ be two Hermitian matrices to be compared. 

Accordingly, the ܀ሺ݌ሻ can be written as: ܀ሺ݌ሻ ൌ ሻ݌ଵுሺܝሻ݌ଵሺܝሻ݌ଵሺߣ ൅ ሻ݌ଶுሺܝሻ݌ଶሺܝሻ݌ଶሺߣ ൅ڮ൅  ሻ݌௡ுሺܝሻ݌௡ሺܝሻ݌௡ሺߣ

where ߣ௜ሺ݌ሻ and ܝ௜ሺ݌ሻ are the eigenvalue and eigenvector of ܀ሺ݌ሻ, respectively. 

We define ܀௞ሺ݌ሻ as: ܀௞ሺ݌ሻ ൌ ሻ݌ଵுሺܝଵሺ݇ሻܝሻ݌ଵሺߣ ൅ ሻ݌ଶுሺܝሻ݌ଶሺܝሻ݌ଶሺߣ ൅ڮ൅  ሻ݌௞ுሺܝሻ݌௞ሺܝሻ݌௞ሺߣ
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where  ݌ ൏ ݊ corresponds to the largest ݌ eigenvalues of ܀ሺ݌ሻ. After that, we can 

compare ܀௞ሺ݌ሻ and ܀௞ሺݍሻ using the DES method. The distance between ܀௞ሺ݌ሻ 

and ܀௞ሺݍሻ can be computed by the following algorithm. 

2.8.3.1 DES algorithm 

1 .  Compute the QR factorization of ܀௞ሺ݌ሻ and ܀௞ሺݍሻ: ܀௞ሺ݌ሻ ൌ ሻݍ௞ሺ܀ ሻ݌ሺ܂ሻ݌ሺۿ ൌ  ሻݍሺ܂ሻݍሺۿ
where ܂ is upper triangular matrix. Note that the value of ۿ is ݊ ൈ ݇ 

matrix and can be found directly as ۿ ൌ ሾܝଵ ଶܝ ǥ  .௞ሿܝ
2.  Define ۱ ؜  .ሻݍሺۿሻ݌ுሺۿ
3.  Find the SVD of ۱:    ሺ۱ሻ ൌ  ு܄઱܃

where ઱ is a diagonal matrix. The minimum value of ઱ is the cosine of 

the largest principle angle between ܀௞ሺ݌ሻ and ܀௞ሺݍሻ i.e.    ሺߠ௠௔௫ሻ ൌ   ሺ઱ሻ. 

4.  Calculate the DES between ܀௞ሺ݌ሻ and ܀௞ሺݍሻ as:    ሺ܀ሺ݌ሻǡ ሻǡݍሺ܀ ݇ሻ ൌ    ሺߠ௠௔௫ሻ ൌ ඥͳ െ    ଶሺߠ௠௔௫ሻ ൌ ඥͳ െ   ሺ઱ሻ  
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Chapter 3  

Results 

In this chapter, the matrix metric methods will be applied to realistic measured 

MIMO channels. Then, these methods will be compared with each other, and a 

short conclusion will be stated. 

3.1 Measured MIMO Channel 

In signal processing laboratory at KTH, we have access to a large data set of 

realistic measured 4x4 MIMO channels for an outdoor environment made by 

Ericsson Company, and applicable to LTE standard. The measurements were 

performed in Kista, a suburb of Stockholm city in Sweden, for a driving car 

scenario.  

The center frequency and the bandwidth of the measured channels were 2.6 GHz 

and 20 MHz, respectively. Table 1 summarizes the properties of the measured 

used in this thesis. Note that, the measured channel matrix function is sampled in 

time and frequency; therefore, it can be written as a discrete function ۶ሺ݊ ௣ܶǡ݉ܨ௣ሻ or simply as ۶ሺ݊ǡ݉ሻ. 

The used track in this thesis is track number 3A shown in Figure 2.  Additionally, 

we separated the track to LOS route (highlighted in dashed red) and the NLOS 

route (highlighted in blue) based on visual inspections. 

Location Kista, Stockholm, Sweden 

Scenario Suburban, Driving car 

Transmit antennas 4 antennas , at base station 

Receive  antennas 4 antennas, at moving car 

Center frequency ௖݂ 2.6 GHz 

Wavelength ɉୡ 0.115 m 

Bandwidth 20 ܤ MHz 

Frequency sample spacing ܨ௣ 123 KHz 

Number of frequency samples ௙ܰ  162 

Time sample spacing ௣ܶ 5.33 ms 

Maximum receiver speed ݏ௠௔௫ 35 Km/hr 

Average receiver speed ݏ௔௩௚ 22 Km/hr 

Table 1: Properties of the measured MIMO channels 
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Figure 3: Antenna configuration of transmit and receive antennas. 

 

Figure 2: Track number 3A, the LOS and NLOS routes are highlighted in red and 

blue, respectively. 

The antenna structure of the transmit antennas (at base station) and receive 

antennas (at the car roof) are shown in Figure 3. As shown in Figure 3, the 

transmit antennas are segregated to two dual polarized antennas. In this thesis, 

small and large spacing between the dual polarized antennas were used. 

However, all the non-stationarity evaluation was made with the small spacing 

setup while the large spacing setup was used only for comparisons in Sections 

3.4.2.3 and 3.4.3.3. 
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3.2 Minimum Stationarity Region 

In order to estimate the correlation matrix, we first need to find the averaging 

time ௩ܶ  and bandwidthܤ௩ . The averaging time and bandwidth should be 

sufficiently large to create a reliable estimation of the correlation matrix.  

However, the averaging time and bandwidth should be smaller or equal to the 

minimum stationarity time ௦ܶ௠௜௡ and bandwidth ܤ௦௠௜௡, respectively to ensure that 

the statistics of the spatial structure are constant within the averaging time and 

bandwidth. Therefore, we have to define roughly the minimum stationarity region 

of the spatial structure before we estimate the exact stationarity region. 

3.2.1 Minimum Stationarity Time 

The statistics of the spatial structure can be assumed constant, if the receiver 

move a distance less than ͳͲ ɉୡ.   For a moving car scenario, as the case for our 

channel, the stationarity time can be roughly assumed as the time that 

corresponds to moving ͳͲ ɉୡ. Therefore, the stationarity time can be calculated 

as: 

௦ܶ௠௜௡ ൎ ͳͲ ɉୡݏ௔௩௚ ൌ ௔௩௚ݏ௦௠௜௡ܦ  

where ݏ௔௩௚  is the average car speed and ܦ௦௠௜௡  is the minimum stationarity 

distance. By using the average speed of the car, the average stationarity time is 

about 188.8ms. However, since the speed of the car ݏሺݐሻ is time varying, the 

instantaneous stationarity time is also varying. Thus, in order to make the 

correlation matrix independent of time, we need to express the channel as a 

function of distance rather than time. 

Fortunately our measured channel is equipped with a GPS data showing the 

position of channel samples every one second. Therefore, we can average over 

every  ܦ௩ ൌ ௦௠௜௡ܦ ൌ ͳͲ ɉୡ meter and the correlation matrix can be expressed in 

term of discrete distance steps as ܀ሺ݀ሻ ൌ  .௩݊ሻܦሺ܀
3.2.2 Minimum Stationarity Bandwidth 

Since the channel bandwidth is much smaller than the center frequency (the 

channel bandwidth is only 0.8% of the center frequency), we will assume that the 

spatial structure is stationary within all the channel bandwidth i.e. ܤ௩ ൌܤ௦௠௜௡ ൌ20MHz.   
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3.2.3 Doubly Underspread 

Recall the doubly underspread (DU) condition in equation ( 10) and :  

௩ܶܤ௩ ب ௖ܶܤ௖ ب ͳ 

In a similar analysis to what we found in [4], [13] and [14], the averaging time and 

frequency were calculated to be 188.8ms and 20MHz, respectively. The maximum 

Doppler shift is can be calculated as ݒ௠௔௫ ൌ ሺݏ௠௔௫Ȁܿሻ ௖݂ ൎ 53 Hz hence the 

coherence time ௖ܶ ൎ19ms. If we assume that the maximum delay travel 2km, as 

the total length of the track is 1km, then the value of the coherence bandwidth ܤ௖ ൌ ܿȀ݀ is roughly 150kHz. Therefore, the doubly underspread is satisfied as 

188msൈ20MHz 19 بmsൈ150kHz = 2850 1 ب. The total number of independent 

fading realization within the stationarity time and bandwidth is about ௩ܶܤ௩Ȁ௖ܶܤ௖ ൎ  1320 realizations. 

3.3 Estimation of Correlation Matrix 

Before we can start non-stationarity investigation of the measured channel, we 

need to estimate the correlation matrix of equation ( 17). Nevertheless, we have 

one discrete time and frequency realization of the measured channel. Therefore, 

the spatial correlation matrix can be estimated by averaging within a stationarity 

region (time and frequency) in which the spatial structure of the channel can be 

assumed constant as: 

෡ுሺ݀ሻ܀ ൌ ͳ௧ܰሺ݀ሻ ͳܰ௙ ෍ ෍    ሼ۶ሺ݊ǡ݉ሻሽ   ሼ۶ሺ݊ǡ݉ሻሽுே೑
௠ୀଵ

ே೟ሺௗሻ
௡ୀଵ  

where ௧ܰሺ݀ሻ is the number of time samples within the distance [݀ܦ௩ǡ ሺ݀ ൅ ͳሻܦ௩] 

and ௙ܰ  is the number of stationary frequency samples. Alternatively, we can 

estimate the Kronecker transmit and receive correlation matrix as: 

෡܀ ்௫ሺ݀ሻ ൌ ͳ௧ܰሺ݀ሻ ͳܰ௙ ෍ ෍ ۶୘ሺ݊ǡ݉ሻ۶כሺ݊ǡ݉ሻே೑
௠ୀଵ

ே೟ሺௗሻ
௡ୀଵ  

෡ோ௫ሺ݀ሻ܀ ൌ ͳ௧ܰሺ݀ሻ ͳܰ௙ ෍ ෍ ۶ሺ݊ǡ݉ሻ۶ுሺ݊ǡ݉ሻே೑
௠ୀଵ

ே೟ሺௗሻ
௡ୀଵ  
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3.4 Evaluation of MIMO Non-Stationarity 

3.4.1 Spatial Stationary Channel 

In this section, we will illustrate the performance of the matrix metrics for still 

transmitter and receiver to ensure proper functionality of the matrix metric 

functions. In the beginning of the measurements, the car was standing for 3 

seconds before it starts moving.  The channel has more than one multipath 

component and varies with frequency as shown in Figure 4.  

 

 

Figure 4: Spatial Stationary Channel versus time and frequency. 

 

In order to evaluate the matrix metrics under this type of channel, the correlation 

matrices as a function of time (܀෡ ்௫ሺݐሻ and ܀෡ோ௫ሺݐሻ) is needed here. Figure 5 

shows the matrix metrics values of the transmit and receive correlation matrices 

with respect to the first instant  ܀෡ሺݐ ൌ Ͳሻ. Here, the DES method is used with a 

base number k=1.  Apparently from Figure 5, all the matrix metrics stay below 

0.08 as an indication of spatial stationarity. 

 

 

 

 

 

Time, sec

F
re

qu
en

cy
, 

M
H

z

 

 

0 0.5 1 1.5 2 2.5 3

5

10

15

20

-65

-60

-55

-50

-45



27 

 

Distance, m

F
re

qu
en

cy
, 

M
H

z

 

 

0 20 40 60 80 100 120 140
0

5

10

15

20

-65

-60

-55

-50

-45

0 0.5 1 1.5 2 2.5 3
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

time, s
a) at transmit side

M
at

rix
 m

et
ric

 v
al

ue

 

 

0 0.5 1 1.5 2 2.5 3
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

time, s
b) at receive side

M
at

rix
 m

et
ric

 v
al

ue

 

 

CMD
TX

NCMD
TX

DES
TX

(k=1)

CMD
RX

NCMD
RX

DES
RX

(k=1)

 

 

 

 

 

 

 

 

Figure 5: CMD, NCMD and DES of spatial stationary channel with respect to  ܀෡ ሺݐ ൌ Ͳሻ. 

 

3.4.2 LOS Channel Non-Stationarity 

The LOS region of the channel was detected by visual inspection of the channel 

spectrogram. The frequency spectrum of the LOS channel is flat, since the LOS 

component with zero delay is the dominate signal while the multipath signals are 

much lower. Figure 6 shows the distance-frequency LOS channel spectrogram 

while Figure 7 shows the eigenvalues variation of ܀෡ ்௫ and ܀෡ோ௫ versus distance. In 

the next sections, we will evaluate the LOS non-stationarity using matrix metric 

methods. 

 

 

 

 

 

 

 

 

 

Figure 6: LOS Spectrum versus frequency and distance. The color bar 

shows the channel strength in dB.  
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Figure 7: The eigenvalues of  ܀෡ ்௫ and ܀෡ோ௫  versus distance for the LOS route. 

 

3.4.2.1 Spatial Variation of LOS Channel  

Initially, the matrix metrics for the starting point of LOS route were evaluated 

using the estimated correlation matrices ܀෡ ்௫ሺ݀ሻ and ܀෡ ோ௫ሺ݀ሻ as a function of 

distance. Figure 8 shows the variation of the matrix metrics with distance when 

comparing the first correlation matrix  ܀෡ ሺͲሻ with the entire route. In general, the 

matrix metrics increase with distance as the spatial structure variance of the 

channel changes. However, both the CMD and the NCMD values do not exceed 

0.8 even with a large distance separation. As clearly observed from Figure 8, the 

NCMD method performance is very close to CMD method. In fact, the 

normalization factor was very close to one (0.99 and 0.98 for ܀෡ ்௫ሺͲሻ and ܀෡ ோ௫ሺͲሻ, 
respectively) due to the large ratio between the maximum and minimum 

eigenvalues of the correlation matrix, as seen in Figure 7. In this case, the NCMD is 

only 2% above CMD. On the other hand, the DES method appears to be more 

sensitive to the spatial variations with an average sensitivity gain of 0.2 above 

both the CMD and NCMD methods. 
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Figure 8: Different matrix metrics of the LOS route, in (a) ܯሺ܀෡ ்௫ሺͲሻǡ ෡܀ ்௫ሺ݀ሻሻ and 

in (b) ܯሺ܀෡ோ௫ሺͲሻǡ  .෡ோ௫ሺ݀ሻሻ܀

More illustration of the matrix metrics between all distance points is given in 

Figure 9. In this figure, the image diagonal corresponds to the matrix metrics 

between two similar points where ݀ଵ ൌ ݀ଶ and hence the matrix metrics value is 

zero. All the images show distinct sections of the spatial structure. For NCMD 

method at transmit side, Figure 9.a shows that the whole LOS route is stationary. 

On the other hand, the receive side in Figure 9.b has 6 separate stationarity 

sections that have similar spatial properties (the largest one is approximately from 

0 m to 50 m). 
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Figure 9: The NCMD and DES values between all distance points of the LOS route. 

 

On the other hand, the DES method shows more details for different spatial 

sections. Comparing the NCMD with DES of the receiver side (Figure 9.b and 

Figure 9.d), it can be seen that section [0m, 50m] seems to have one spatial 

structure when using NCMD method (Figure 9.b) while the same section appears 

to has different spatial structures when using DES ( Figure 9.d).  
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3.4.2.2 LOS Channel Stationarity Distance 

The local stationarity distance can be defined as the distance at which the matrix 

metric is lower than a certain threshold value. Mathematically, it can be 

expressed as: ܦ൫܀ሺ݀ଵሻ൯ ൌ    ݀ଶ  subject to: ܯ൫܀ሺ݀ଵሻǡ ሺ݀ଶሻ൯܀ ൏ ܿ 

where ܿ is the threshold value. Recall Figure 8, if a threshold value of 0.2 is used, 

the stationarity distance of point zero for the DES metric is about 10 m at the 

transmit side. Note that, ܯ൫܀ሺ݀ଵሻǡ ܿ ሺ݀ଶሻ൯ should stays below܀  all the way 

between ݀ଵ and ݀ଶǤ  
Based on the pervious definition, the stationarity distance of the LOS route is 

calculated with a threshold value of 0.2. Figure 10 shows the local stationarity 

distance of different matrix metrics. 

 

 

 

 

 

 

 

 

 

Figure 10: Local stationarity distance of different matrix metric methods in the 

LOS route with threshold value = 0.1. 

Again, the performance of the CMD and NCMD is very similar. According to CMD 

and NCMD metric, it can be seen that there is more than one stationarity section 

in the LOS route. For illustration, section [0m, 50m] is considered to be stationary 

with respect to NCMD and CMD for both transmit and receive sides since the 

CMD value for any two points inside this section is less than 0.2. On the other 

hand, the DES method appears to have much lower stationarity distances with 

few and short stationarity sections. For some transmission scenarios, 
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beamforming for instance, the CMD and NCMD will give much larger estimation of 

the stationarity distance. 

The average value and standard deviation of the CMD, NCMD and DES versus 

distance separation  ȟ݀ of the LOS route are shown in Figure 11. The standard 

deviation is shown as an error bar on each point. The total number of realizations 

used is about 110 realizations taken from the first 110 m of the LOS route. From 

Figure 11, it is possible to find the stationarity distance length based on different 

threshold values.  
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Figure 11: Mean value and standard deviation of CMD, NCMD and DES versus ȟ݀ 

for the LOS route. 
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3.4.2.3 LOS Non-Stationarity Using Different Transmit Antenna Spacing 

The second measurement of the LOS route was performed with exactly the same 

receive antenna type while the spacing between the dual polarized antennas was 

increased at the transmit side.  Figure 12 shows the average NCMD and DES 

versus the separation in distance for the small and large antenna spacing.  From 

the figure, the large antenna spacing has increased the non-stationarity at the 

transmit side compared to the small antenna spacing while the non-stationarity at 

the receive side is exactly the same. In the small antenna spacing, all the four 

transmit antenna elements approximately have the same LOS path and, hence, 

the small antenna spacing is more stationary than the large antenna spacing. 

 

 

Figure 12: Distance shift versus matrix metric at transmit and receive sides of the 

small and large antenna spacing at the transmit side for LOS channel.  
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3.4.3  NLOS Channel Non-Stationarity 

The NLOS channel changes rapidly with frequency and distance. In track 3A, the 

NLOS route was detected as shown in Figure 13. The channel data is measured 

using exactly the same antennas of the LOS route (small antenna spacing). 

Apparently, the NLOS channel has much lower signal strength than the LOS and 

hence much lower eigenvalues. 

Figure 14 shows the average eigenvalues of ܀෡ ்௫ and ܀෡ோ௫ for NLOS channel sorted 

from maximum to minimum. Comparing Figure 14 with Figure 7, the NLOS 

channel shows more closely eigenvalues than the LOS channel. This seems to be 

reasonable since LOS MIMO channels are low rank, in general.   

 

 

 

 

 

 

 

Figure 13: NLOS Spectrum versus frequency and distance. The color bar shows the 

channel strength in dB. 

 

 

 

 

 

 

 

Figure 14: The eigenvalues of  ܀෡ ்௫ and ܀෡ோ௫ versus distance for the NLOS route. 
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To evaluate the non-stationarity of the NLOS channel, the same methods used 

previously in LOS channel was applied here. Nevertheless, the DES method can be 

applied with different base number ݇, in this case. Since the eigenvalues of ܀෡ ்௫ 

are close to each other, different base number will result in different stationarity 

measure, as will be shown in next sections. 

3.4.3.1 Evaluation of the Spatial Variation of NLOS Channel 

 

Figure 15 shows the variation of the matrix metrics with distance of the NLOS 

channel when the first correlation matrix  ܀෡ ሺͲሻ is compared with the entire route. 

Here, the difference between the CMD and NCMD is relatively large compared to 

the LOS case (the normalization factor is 0.66, and the NCMD is 50% larger than 

CMD at the receive side).  

 

 

 

 

 

 

 

 

Figure 15: CMD, NCMD and DES of the NLOS with respect to ܀෡ ሺͲሻ. 
From  

Figure 15.a, it is clearly that there is a large difference between DES method 

compared to both CMD and NCMD. The DES method with base ݌ ൌ ͳ shows very 

large variations in the spatial structure while, in contrast, CMD and NCMD show 

lower spatial variation. 

The performance of the DES method with different base numbers at the transmit 

side is shown in Figure 16. In this figure, it can be seen that different base number 

produces different metric methods. Since the smallest DES variation corresponds 

to ݌ ൌ ʹ, it seems that the bases of the largest two eigenvalues are interchanging 

with each other while the bases of the remaining eigenvalues stay below them.  
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Depending on the MIMO transmission scenario, different bases number can be 

chosen when using the DES method.  

 

Figure 16: Different base numbers of DES of the NLOS route with respect to ܀෡ ்௫ሺͲሻ. 
The spatial variation at the transmit side of all points in the NLOS route with 

different base numbers for the DES method is shown in Figure 17. Comparing 

Figure 17 with Figure 9, the CMD, NCMD and DES values for the NLOS case seem 

to be higher than the LOS channel. 
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Figure 17: CMD, NCMD and DES with ݇ = 1 to 3 between all points in the NLOS 

route. 
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3.4.3.2 Evaluation of NLOS Channel Stationarity Distance 

The stationarity distance of the NLOS channel for 0.2 threshold value is shown in 

Figure 18. From this figure, the DES method at ݇ = 1 shows almost no local 

stationarity distance for the NLOS route at both transmit and receive sides. On the 

other hand, CMD method shows very large stationarity distance at both sides. At 

the transmit side, it shows that almost the entire NLOS route is stationary with 

distance. Since the NLOS channel is higher in rank than the LOS channel, the CMD 

metric underestimate the non-stationarity by a large amount.  

The stationarity distance for different base numbers for the DES method is shown 

in Figure 19. As expected, the less sensitive base number (݇ = 2) has the largest 

stationarity distance compared to other bases but still very low compared to CMD 

and NCMD. 

 

 

 

 

 

 

 

 

 

 

Figure 18: Local stationarity distance of CMD, NCMD and DES in the NLOS route. 
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Figure 19: Local stationarity distance of different base values of DES method in the 

NLOS route at the receiver side. 

Table 2 and Table 3 shows the average stationarity distance of the NLOS route at 

the transmit side and for 0.2 and 0.1 threshold value, respectively. Here, the CMD 

overestimates the real stationarity distance compared to the NCMD.  

 

Matrix Metric Average Stationarity Distance at TX (c=0.2) 

CMD 120 m 

NCMD 82 m 

DES (k=1) 0.63 m 

DES (k=2) 4 m 

DES (k=3) 0.5 m 

Table 2: The average stationarity distance at the transmit side of the NLOS route 

for 0.2 threshold value.  

 

Matrix Metric Average Stationarity Distance at TX (c=0.1) 

CMD 40 m 

NCMD 18 m 

Table 3: The average stationarity distance at the transmit side of the NLOS route 

for 0.1 threshold value. 

The mean value and standard deviation of the CMD, NCMD and DES versus the 

distance separation ȟ݀ at the transmit side of the NLOS route is shown in Figure 

20. 
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Figure 20: Mean value and standard deviation of the metric methods versus 

distance difference ȟ݀ for the NLOS route at the transmit side. 
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3.4.3.3 NLOS Non-Stationarity Using Different Transmit Antenna Spacing 

The second measurement of the NLOS route was performed with exactly the 

same receive antenna type while the spacing between the dual polarized 

antennas was increased at the transmit side. Figure 21 shows the average NCMD 

and DES versus the separation in distance for the small and large antenna spacing.  

From the figure, the large antenna spacing has slightly increased the non-

stationarity at the transmit side. Under the NLOS environment, the four transmit 

antenna elements no longer have the same path components; thus, the large 

spacing antenna slightly reduced the non-stationarity at the transmit side 

compared to the LOS case. 

 

 

Figure 21: Distance shift versus matrix metric at transmit and receive sides of the 

small and large antenna spacing at the transmit side for the NLOS route. 
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Chapter 4  

Discussion 

4.1 Conclusion 

In this thesis, the non-stationarity of MIMO channels was investigated. The main 

parts of the thesis were to find suitable non-stationarity metrics and to examine 

these metrics under a measured 4x4 MIMO channel that is applicable to LTE 

standard.  

The non-stationarity of MIMO channel depends strongly on the spatial properties 

(antenna structures, positions of transmit and receive antennas, etc) in addition 

to time and frequency. Therefore, it is very important to define a stationarity 

distance along with stationarity time and bandwidth. For this reason, three MIMO 

non-stationarity metrics were introduced, namely Correlation Matrix Distance 

(CMD) proposed by Herdin [1], Normalized CMD (NCMD) and Distance between 

Equidimensional Subspaces (DES). The three metric were applied to the measured 

channel and compared to each other. The measured channels were divided to 

LOS, NLOS. Different local stationarity distances were found within these 

channels. 

The CMD metric is based on inner product between two matrices. Under the 

measured MIMO channel, we found that the CMD does not exceed 0.7 in most 

cases, similar to the results found in [1]. Furthermore, the CMD underestimate the 

channel non-stationarity compared to DES for beamforming scenario (only one 

eigenvector is used), similar to the results found in [14], but our results show 

much more difference. This problem become more visible under NLOS channels 

were the correlation matrix is high rank and noisy. To resolve this, a normalization 

factor for the CMD was added to ensure that the CMD could achieve its maximum 

value and the new method was called NCMD. 

The normalization factor of the NCMD metric, theoretically, can increase the CMD 

value up to 100% for 4x4 MIMO system depending on the smallest eigenvalue of 

the correlation matrix. However, for correlation matrix that is not fully rank (i.e. 

the smallest eigenvalue is close to zero), the normalization factor will be close to 

one, as the case for our LOS route. In the NLOS route, we found that the CMD 

underestimate the non-stationarity by 46% on average compared to NCMD. 
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The inner product based metrics may not be suitable for some transmission 

schemes that are based on matrix properties like eigenvectors and eigenvalues. 

Therefore, we introduce the DES metric that is much more sensitive to the change 

in these properties. Under the measured channel, we found that these properties 

are not stationary for NLOS channel environment and fairy stationary for LOS 

channel. 

4.2 Future Work 

The field of MIMO non-stationarity has a large potential of improvements. The 

matrix metrics described so far are not compared yet to any type of transmission 

schemes. It is very important to relate the non-stationarity metrics to the 

degradation of the performance of different transmission schemes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



45 

 

Bibliography  

[1] Markus Herdin, "Non-stationary indoor MIMO radio channel," PhD 

dissertation, Faculty of Electrical Engineering and Information Technology, 

Vienna University of technology, Vienna, Austria, 

www.nt.tuwien.ac.at/mobile/theses_finished/PhD_Herdin/paper.pdf. 

[2] P. Almers et al., "Survey of channel and radio propagation models for 

wireless MIMO systems," EURASIP journal on wireless communication and 

networking, vol. 2007. 

[3] Ezio Biglieri et al., MIMO Wireless Communications. Cambridge University 

Press, 2007. 

[4] G. Matz, "On Non-WSSUS Wireless Fading Channels," IEE Transactions on 

Wireless Communications, vol. 4, September 2005. 

[5] H. Hofstetter, W. Utschick I. Viering, "Validity of spatial covariance matrices 

over time and frequency," in IEEE GLOBECOM '02 Global Telecommunications 

Conference , 2002, pp. 851 - 855 vol.1. 

[6] David Tse and Parmod Viswanath, Fundamentals of Wireless 

Communications. Cambridge University Press, 2005. 

[7] John G. Proakis and Masoud Salehi, Digital Communications, 5th ed., McGraw 

Hill, 2001. 

[8] G. Matz, "Statistical characterization of non-WSSUS," elektrotechnik und 

informationstechnik, pp. 80 -84, 2005. 

[9] Gerald Matz, "Doubly Underspread Non-WSSUS Channels: Analysis and 

estimation of channel statistics," IEEE Workshop on Signal Processing 

Advances in Wireless Communications, pp. 190 - 194 , 2003. 

[10] Markus Herdin et al., "Correlation matrix distance, a meaningful measure for 

evaluation of non-stationary MIMO channels," in Proceedings IEEE Vehicular 

Technology Conference (VTC 2005- Spring), May 2005. 

[11] M. Herdin, W. Weichselberger, J. Wallace, E. Bonek H. Ozcelik, Deficiencies of 



46 

 

'Kronecker' MIMO radio channel model, 2003, IEEE Electronics Letters. 

[12] Gene H. Golub and Charles F. Van Loan, Matrix Computations, 3rd ed., Johns 

Hopkins Studies in Mathematical Science, 1996. 

[13] Adrian Ispas et al., "Analysis of Local Quasi-Stationarity Regions in an Urban 

Macrocell Scenario," in IEEE 71st Vehicular Technology, 2010. 

[14] Adrian Ispas et al., "On Non-Stationary Urban Macrocell Channels in a 

Cooperative Downlink Beamforming Scenario," in IEEE 72nd Vehicular 

Technology Conference Fall , Ottawa, ON , 2010, pp. 1 - 5. 

[15] P.A. Bello, "Characterization of Randomly Time-Variant Linear Channels," IEEE 

Trans.Commun. Syst., vol. CS-11, pp. 360-393, 1963. 

[16] David Gesbert et al., "From theory to practice: an overview of MIMO space-

time coded wireless systems," IEEE Journal on Selected Areas in 

Communications, vol. 21, no. 3, pp. 281 - 302, Apr 2003. 

 


	Chapter 1
	1.1 Previous work
	1.2 Objective

	Chapter 2
	2.1 Classifications of Radio Channels
	2.1.1 Coherence Time and Frequency
	2.1.2 Fading Channels
	2.1.3 OFDM
	2.1.4 Stochastic Channels

	2.2 MIMO Communication Systems
	2.2.1 MIMO System Model
	2.2.2 Constant MIMO Channel Capacity

	2.3 Time-Variant MIMO Channels
	2.4 Stationarity of Radio Channels
	2.4.1 Stationary SISO Channels
	2.4.2 Non- Stationary SISO Channels
	2.4.3 Doubly Underspread

	2.5 Stationary MIMO Channels
	2.6 MIMO Channel Models
	2.6.1 The Full Spatial Correlation Channel Model
	2.6.2 The Kronecker Channel Model

	2.7 Non-Stationary MIMO Channels
	2.7.1 Stationarity Region for MIMO channel

	2.8 Matrix Metrics Methods
	2.8.1 Correlation Matrix Distance (CMD)
	2.8.2 Normalized Correlation Matrix Distance (NCMD)
	2.8.3 Distance between Equidimensional Subspaces (DES)
	2.8.3.1 DES algorithm



	Chapter 3
	3.1 Measured MIMO Channel
	3.2 Minimum Stationarity Region
	3.2.1 Minimum Stationarity Time
	3.2.2 Minimum Stationarity Bandwidth
	3.2.3 Doubly Underspread

	3.3 Estimation of Correlation Matrix
	3.4 Evaluation of MIMO Non-Stationarity
	3.4.1 Spatial Stationary Channel
	3.4.2 LOS Channel Non-Stationarity
	3.4.2.1 Spatial Variation of LOS Channel
	3.4.2.2 LOS Channel Stationarity Distance
	3.4.2.3 LOS Non-Stationarity Using Different Transmit Antenna Spacing

	3.4.3  NLOS Channel Non-Stationarity
	3.4.3.1 Evaluation of the Spatial Variation of NLOS Channel
	3.4.3.2 Evaluation of NLOS Channel Stationarity Distance
	3.4.3.3 NLOS Non-Stationarity Using Different Transmit Antenna Spacing



	Chapter 4
	4.1 Conclusion
	4.2 Future Work


