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Abstract 

The transmission performance of MIMO systems can be highly improved under 

stationary channel conditions where the channel statistics are constant. 

Unfortunately, mobile radio channels are not stationary all the time. Instead, they 

are stationary for finite time durations, so-called the stationarity regions. If these 

stationarity regions are relatively large, then the channel statistics can be utilized 

during each stationarity region to enhance the transmission performance. 

Therefore, it is necessary to examine the stationarity of mobile channels and 

characterize the stationarity regions. 

This thesis investigates the non-stationarity of measured MIMO channels and 

proposes some stationarity metrics to measure it. These metrics are: the CMD 

proposed by [1], NCMD and DES. Each one of the metrics is relevant to different 

types of transmission schemes and scenarios. The CMD may not be accurate for 

some transmission scenarios; therefore, the NCMD, which is a normalized version 

of CMD, is proposed. Theoretically, the NCMD can be at most 100% higher than 

the CMD for a 4x4 MIMO system. For beamforming scenario, the DES metric can 

be used to describe the non-stationarity of few eigenvectors taken from the 

channel variance. Under the measured MIMO channels, it was found that the 

CMD overestimates the stationarity regions compared to the NCMD and DES 

metrics particularly under the NLOS routes. 
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Acronyms 
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OFDM Orthogonal Frequency Division Multiplexing 
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Notation 

 寓 Boldface and upper case characters for matrices 軍 Boldface and lower case characters for vectors 岫ゲ岻脹 Transpose of a matrix 岫ゲ岻茅 Conjugate of a scalar or matrix 岫ゲ岻張 Hermitian of a matrix 押ゲ押庁 Frobenius norm of a matrix 押ゲ押態 Norm two of a vector    岶ゲ岼 Vectorization of a matrix 愚 Kronecker product 継岷ゲ峅 Expected value of a random variable or a stochastic process 
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Chapter 1  

Introduction 

Since the invention of Multiple-Input Multiple-Output (MIMO) technology from 

more than a decade ago, a lot of wireless transmission schemes have been 

developed to improve the performance and reliability of MIMO systems. The main 

reason behind these large interests is to achieve higher data rates or to increase 

the system reliability with the same amount of power and bandwidth compared 

to typical Single-Input Single-Output (SISO) systems as theoretical analysis of 

MIMO communications promises. However, according to [2] a large number of 

the developed MIMO communication transmission schemes have not been 

examined under real MIMO channel conditions so far. 

The optimum transmission performance of MIMO channels can be achieved if the 

instantaneous channel gains are known at both the transmitter and receiver.  For 

mobile channels, where the channel gains are fast varying with time, the 

instantaneous channel knowledge cannot be obtained at the transmitter. 

Therefore, the channel statistics are used instead of the instantaneous values. In 

this case, the transmission performance of the channel will be slightly lower than 

the optimum, in general, and close to the optimum for some transmission 

schemes and scenarios[3]. 

Consequently, some of the advanced MIMO transmission schemes are based on 

the channel statistics knowledge. However, these types of transmission schemes 

cannot be utilized under non-stationary channel conditions where the MIMO 

channel statistics change very quickly, since the receiver will not be able to feed 

back the channel statistical information to the transmitter. On the other hand, if 

the channel statistics are constant (quasi-stationary) during some relatively large 

stationarity region, then these schemes can be applied within this stationarity 

region. Therefore, it is very important to estimate the stationarity regions of real 

MIMO channels to see whether these types of transmission schemes are 

applicable or not. 

According to [1], unlike real Single-Input-Single-Output (SISO) channels, real 

MIMO channels depends on the spatial structure of the antennas (angles of the 

transmit and receive antennas) and multipath components more strongly. 

Therefore, the stationarity of such channels depend mainly on the spatial 

structure in addition to time and frequency.  
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In KTH Signal Processing Lab, we have a large data set of real measured MIMO 

channels. We would like to examine and evaluate the stationarity of these 

channels and try to characterize and evaluate the stationarity regions within it. 

1.1 Previous work 

The non-stationarity of SISO channels has been investigated by Matz [4]. There, a 

Channel Correlation Function (CCF) was introduced to estimate the stationarity 

region of SISO channels. For the SIMO channels, a stationarity measure relevant 

to the beamforming scenario has been introduced by [5] so-called F-eigen ratio. F-

eigen ratio measures the similarity between the out-dated and new channel 

covariance matrices with respect to the largest 繋  eigenmodes. The non-

stationarity of MIMO channels have been investigated by Herdin in his thesis [1]. 

There, he provides a function that measures the dissimilarity of two different 

matrices called the Correlation Matrix Distance (CMD). However, CMD may not be 

very precise in evaluating the non-stationarity of MIMO channels if the two 

matrices are high rank (i.e. have more linearly independent columns). In this case, 

the CMD can be very small even if the two matrices are different. 

1.2 Objective 

We will try to apply different methods to evaluate the non-stationarity of the 

measured MIMO channels versus the separation in a specific domain (time, 

frequency or space). In general, these methods measure the distance 

(dissimilarity) between two matrices and produce a single value that ranges from 

zero to one. For instance, the CMD calculates the distance between two 

correlation matrices 栗怠 and 栗態  by using the inner product as: 

穴寵暢帖岫栗層┸ 栗匝岻 噺 な 伐   岶栗層栗匝岼押栗層押庁押栗匝押庁 

Where 押ゲ押庁 is the Frobenius norm and   岶ゲ岼 is the matrix trace. Matrix distance 

measures can achieve a maximum value of 1 indicating that the two matrices are 

orthogonal, and a minimum value of 0 indicating that the two matrices are equal 

except for a scaling factor. We will try to find different methods to measure the 

distance between two matrices and then we will use them to evaluate the non-

stationarity region of the measured MIMO channels.  
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Chapter 2  

Background 

2.1 Classifications of Radio Channels 

In this section, we will discuss some basic classifications of mobile radio channels 

for typical Single-Input-Single-Output (SISO) systems. 

Mobile radio channels are time and frequency varying due to movements in the 

communication medium and multipath components. Therefore, a mobile radio 

channel can be seen as linear time varying (LTV) filter 月岫建┸ 酵岻. If 嫌岫建岻 is the 

transmitted signal through 月岫建┸ 酵岻 then the received signal is given as:  

堅岫建岻 噺 豹 月岫建┸ 酵岻 嫌岫建 伐 酵岻著
邸退貸著 穴酵 

Alternatively, the channel can be written as a time and frequency varying function 茎岫建┸ 血岻 by using Fourier transform with respect to 酵 as: 

   茎岫建┸ 血岻 噺 豹 月岫建┸ 酵岻 結貸珍態訂捗邸著
邸退貸著 穴酵 

2.1.1 Coherence Time and Frequency 

The coherence time 劇頂 of 月岫建┸ 血岻 is defined as the time duration at which the 

channel can be assumed constant over time. If we transmit two pulses through 

the channel at different time instances 建怠 and 建態 then: 茎岫建怠┸ 血岻 蛤 茎岫建態┸ 血岻,   for   】建怠 伐 建態】 隼 劇頂 

Similarly, the coherence bandwidth 稽頂 of 茎岫建┸ 血岻 is defined as the frequency band 

at which the channel can be assumed constant over frequency. If we transmit two 

sinusoid signals through the channel at different frequencies 血怠 and 血態 then: 茎岫建┸ 血怠岻 蛤 茎岫建┸ 血態岻,   for   】血怠 伐 血態】 隼 稽頂 

2.1.2 Fading Channels 

Time-variant channels are classified to different categories based on the 

coherence time and coherence bandwidth. If the transmission through the time-

variant channel is made over the symbol duration 劇 and bandwidth 稽, then the 

channel is said to be: 
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 Slow Fading Channel: If the coherence time is much larger than the 

symbol duration (劇頂 伎 劇). Here, the channel can be assumed time 

invariant: 月岫建┸ 酵岻 蛤 月岫酵岻 

and the received signal through this channel is: 

堅岫建岻 噺 豹 月岫酵岻 嫌岫建 伐 酵岻著
邸退貸著 穴酵 

 Frequency Flat Channel: If the coherence bandwidth is much larger than 

the system bandwidth (稽頂 伎 稽). Here, the channel can be assumed 

frequency invariant : 茎岫建┸ 血岻 蛤 茎岫建岻 

and the received signal through this channel is: 堅岫建岻 噺 月岫建岻 嫌岫建岻 

 Fast Fading Channel (time selective): If the coherence time is smaller 

than or equal to the symbol duration (劇頂 判 劇). In this case, the channel 

cannot be assumed time invariant.  

 Frequency Selective Channel: If the coherence bandwidth is smaller than 

or equal to the system bandwidth (稽頂 判 稽). In this case, the channel 

cannot be assumed frequency invariant. 

2.1.3 OFDM 

Under frequency selective channels, Orthogonal Frequency Division Multiplexing 

(OFDM) can be used to overcome frequency fading. In OFDM, the channel 

bandwidth is divided to orthogonal subbands and the transmission is made 

through each subband with independent signal. If each subband is smaller than 

the coherence bandwidth, then the signal in one OFDM subband exhibits flat 

fading. The OFDM subband signal is given as: 嫌賃岫建岻 噺 畦賃      岫に講血賃建岻 

Where 劇 is the symbol duration. If the fading channel is given by 茎岫建┸ 血岻, then the 

received signal is: 

 
堅岫建岻 噺 茎岫建┸ 血賃岻嫌賃岫建岻 噺 茎賃岫建岻嫌賃岫建岻 

 
( 1 ) 

where 茎賃岫建岻 is a time varying and frequency flat channel. 
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2.1.4 Stochastic Channels 

If the channel in equation ( 1) is a time selective channel, then 茎賃岫建岻 changes in 

unpredictable manner during the symbol time 劇  and the value of 茎賃岫建岻  is 

unknown. Therefore, it is reasonable to model 茎賃岫建岻 as a stochastic process. If 

the channel is stationary stochastic process, the channel statistics, like the mean 

and variance, are not time varying and can be estimated at the receiver side and 

then feed back to the transmitter. For MIMO channels, the channel statistics 

knowledge increases the performance of the MIMO communication systems 

compared to the performance when no channel knowledge is available. In the 

Sec. 2.4, we will discuss the stationarity of radio channels in more details.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 

 

2.2 MIMO Communication Systems 

Communication systems can have different setups regarding the number of 

antennas at the transmit and receive sides. Typically, communication systems use 

one transmit antenna and one receive antenna, so-called single-input single-

output (SISO) systems. On the other hand, multiple-input multiple-output (MIMO) 

communication systems use multiple antennas at both the transmitter and 

receiver as shown in Figure 1. MIMO transmit antennas can send different signals 

at the same time and frequency. At the receiver side, each antenna receives 

multiple signals from all the transmit antennas.  Thus, MIMO transmit and receive 

signals are represented as vectors while the MIMO channel function is 

represented as a matrix. 

In the next section, we will give a brief overview of the MIMO system described in 

[6] and [3]. 

 

 

 

 

 

 

 

 

 

 

 

RX 

 

 

TX 

Figure 1: MIMO system setup with multiple antennas at transmit and receive 

sides. 
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2.2.1 MIMO System Model 

Consider a MIMO system with 券脹 transmit antennas and 券眺 receive antennas. The 

time-invariant and frequency flat MIMO channel is given as 券眺 抜 券脹 matrix: 

屈 噺 琴欽欽
欣 月怠怠 月怠態月態怠 月態態 橋 月怠津畷月態津畷教  教 狂 教月津馴怠 月津馴態 橋 月津馴津畷筋禽禽

禁
                                          ( 2 ) 

where 月沈珍  is the channel gain of the path between the transmit antenna number 倹 
and the receive antenna number 件 . If  慧岫建岻 噺 岷嫌怠岫建岻 嫌態岫建岻 ┼ 嫌津畷岫建岻峅脹  is the 

transmitted signal vector through the above MIMO channel matrix then the 

received signal vector 慶岫建岻 噺 岷堅怠岫建岻 堅態岫建岻 橋 堅津馴岫建岻峅  is given as: 

 
慶岫建岻 噺 屈 慧岫建岻 髪 契岫建岻 

 

( 3 ) 

 

where 契岫建岻 噺 岷券怠岫建岻 券態岫建岻 ┼ 券津馴岫建岻峅脹 is the noise vector. Time invariant and 

frequency flat MIMO channel has a favorable property. Since the channel gains 

are constant, they can be estimated at the receiver by using training sequence 

and then forwarded to the transmitter. Thus, the transmitter can allocate power 

through the strongest channel paths, as will be discussed in the next section. 

2.2.2 Constant MIMO Channel Capacity 

The MIMO channel capacity 系 (the maximum mutual information between the 

input and the output) over a time invariant and frequency flat MIMO channel 屈 is 

given by:  

系 噺    押粂押退牒    態     岫掘津馴 髪 な軽待 屈粂屈張岻 
where 粂 is the input covariance matrix, 鶏 is the total transmit power and 軽待 is the 

noise power. The optimal input covariance matrix 粂 can be exploited if the 

channel is completely known at both the transmitter and the receiver. To 

illustration this, we need to decompose the channel matrix 屈 using Singular Value 

Decomposition (SVD) as follows: 屈 噺 鍬鮮勲張 

where 鍬 and 勲 are, respectively, 券眺 抜 券眺 and 券脹 抜 券脹 unitary matrices and 鮮 is 券眺 抜 券脹 diagonal matrix contains the singular values of 屈 sorted from maximum 

to minimum as 購怠 半 購態 半 橋 半 購鱈辿樽岫津馴┸津畷岻.  
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In general, parallel data streams can be utilized if the MIMO channel 屈 is known 

at the transmitter and receiver. For instance, if 慧葡岫建岻 is the data vector at the 

transmitter, then we can set the transmitted vector 慧岫建岻 as: 慧岫建岻 噺 勲 慧葡岫建岻  
Consequently, we will have the following received vector 慶岫建岻:           慶岫建岻 噺 屈 慧岫建岻 髪 契岫建岻                                        噺 岫鍬鮮勲張岻 盤勲 慧葡岫建岻匪 髪 契岫建岻                       噺 鍬鮮 慧葡岫建岻 髪 契岫建岻 

At the receiver, we can extract the received data vector 慶葡岫建岻 as: 慶葡岫建岻 噺 鍬張 慶岫建岻                                  噺 鍬張 鍬鮮 慧葡岫建岻 髪 鍬張契岫建岻                   噺 鮮慧葡岫建岻 髪 契蕪岫建岻 

Alternatively, 慶葡岫建岻 can be written as: 堅┘沈岫建岻 噺 購沈 嫌┘沈岫建岻 髪 券葡沈岫建岻 

In this case, the optimal input covariance matrix 粂 is given by: 

 
粂 噺 勲隈勲張 

 

( 4 ) 

 

where 隈 噺     岫鶏怠┸ 鶏態┸ ┼ ┸ 鶏津畷岻 is a 券脹 抜 券脹 power matrix and  鶏沈 is the power 

of 嫌┘沈岫建岻 allocated as:  

 鶏沈 噺 峭航 伐 な購沈態嶌袋
 ( 5 ) 

 

where 捲袋 indicates maximum岫捲┸ ど岻 and  航 is selected such that デ 鶏沈津畷沈退怠 噺 鶏. The 

power allocation in equation ( 5 ) will allocate more power in the largest singular 

values of 屈 and no power will be allocated for low singular values.  

Nevertheless, if the channel information is unknown at the transmitter, then the 

power allocation will be uniformly distributed over the transmit antennas i.e. 鶏沈 噺 鶏【券脹 and 粂 噺 鶏【券脹 掘津畷 . In this case, the channel mutual information will 

be lower than the channel capacity. 
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2.3 Time-Variant MIMO Channels 

The MIMO channel capacity can be achieved if the MIMO channel gains are 

known at both the transmitter and receiver. Unfortunately, mobile MIMO 

channels are time and frequency selective. In general, the MIMO channel impulse 

response is given as a linear time varying filter:  

 
屈岫建┸ 酵岻 噺 琴欽欽

欣 月怠怠岫建┸ 酵岻 月怠態岫建┸ 酵岻月態怠岫建┸ 酵岻 月態態岫建┸ 酵岻 橋 月怠津畷岫建┸ 酵岻月態津畷岫建┸ 酵岻教              教 狂 教月津馴怠岫建┸ 酵岻 月津馴態岫建┸ 酵岻 橋 月津馴津畷岫建┸ 酵岻筋禽禽
禁
 

 

( 6 ) 

 

If 慧岫建岻 is the transmitted signal through 屈岫建┸ 酵岻 then the received signal can be 

written as: 

 
慶岫建岻 噺 豹 屈岫建┸ 酵岻 慧岫建 伐 酵岻著

邸退貸著 穴酵 髪 契岫建岻 

 

( 7 ) 

 

The frequency spectrum of the channel is given by the Fourier transform of 屈岫建┸ 酵岻 with respect to 酵: 

 
屈岫建┸ 血岻 噺 豹 屈岫建┸ 酵岻 結貸珍態訂捗邸著

邸退貸著 穴酵 

 

( 8 ) 

Using OFDM, the channel will be only time selective: 

 
慶岫建岻 噺 屈岫建岻 慧岫建岻 髪 契岫建岻 

 

( 9 ) 

 

Unfortunately, it is not possible to use the instantaneous channel gains under a 

time selective channel since the channel is changing over time in a random 

manner within the transmission time. Alternatively, the channel in equation ( 9) 

can be modeled as a stationary stochastic process. Under the stationarity 

assumption, the statistics (i.e. the mean and covariance) of the channel matrix are 

constant and can be estimated at the receiver instead of the deterministic 

channel values. However, if the MIMO channel is not stationary, then the channel 

statistics may also change very fast with time and, hence, further investigation of 

the channel stationarity is needed to examine the feasibility of the channel 

statistics utilization.  

In the next sections, we will try to investigate the stationarity of MIMO channels 

and find suitable methods to measure the stationarity. These methods can be 

applied one time for off-line recorded channels, since the non-stationarity of 
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MIMO channels is generally due to the non-stationarity of the spatial properties 

of the communication environment. 

 

2.4 Stationarity of Radio Channels 

In this section, we will discuss the stationarity of stochastic mobile channels. We 

will start with the SISO case then extend it to MIMO based on [1]. 

2.4.1 Stationary SISO Channels 

SISO time-variant and frequency selective mobile channels can be seen as two 

dimensional stochastic process in 建 and 酵. If the stochastic process is stationary, 

then the channel first and second order statistics are constant over absolute time 

and frequency. Thus, they can be utilized instead of the instantaneous values of 

the channel that varies over time and frequency. Typically, the second order 

statistics (i.e. the variance or the autocorrelation function) are used while the 

mean value of the mobile channel is assumed to be zero. The autocorrelation 

function of 月岫建┸ 酵岻 is given by 4-dimensional function: 迎朕岫建┸ 酵┹ つ建┸ つ酵岻 噺 継岷月岫建 髪 つ建┸ 酵 髪 つ酵岻月茅岫建┸ 酵岻峅 
If the channel is assumed to be wide sense stationary (WSS) in time, then 迎朕 will 

depend on the time separation つ建 only and does not depend on the absolute 

time 建. The autocorrelation function of WSS channel can be written as: 迎朕調聴聴岫酵┹ つ建┸ つ酵岻 噺 継岷月岫建 髪 つ建┸ 酵 髪 つ酵岻月茅岫建┸ 酵岻峅 
Furthermore, if the two signal components received with different time delays are 

uncorrelated, then 迎朕 is zero for つ酵 塙 ど and the channel is called uncorrelated 

scattering (US). The autocorrelation function of the wide sense stationary 

uncorrelated scattering (WSSUS) channel can be written as: 迎朕調聴聴腸聴岫酵┹ つ建┸ つ酵岻 噺 迎朕岫酵┹ つ建岻絞岫つ酵岻 噺  岷月岫建 髪 つ建┸ 酵岻月茅岫建┸ 酵岻峅絞岫つ酵岻 

It can be shown that WSSUS channels are stationary in frequency [7]: 迎張調聴聴腸聴岫つ建┸ つ血岻 噺 継岷茎岫建┸ 血岻茎茅岫建 髪 つ建┸ 血 髪 つ血岻峅 
Therefore, the correlation function of WSSUS is also independent of the 

frequency. The variance of the channel is a constant value and can be found by 

setting つ建 噺 つ血 噺 ど .The double Fourier transform of 迎張調聴聴腸聴岫つ建┸ つ血岻  with 

respect to つ建 and つ血 is called the scattering function and it is given by: 
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系朕調聴聴腸聴岫酵┸ 懸岻 噺 秒迎朕岫つ建┸ つ血岻 結貸珍態訂塚綻痛結貸珍態訂邸綻捗 穴つ建 穴つ血 

where 懸 is the Doppler frequency shift. This function shows the signal power for 

different time delays and Doppler shifts. In the WSSUS case, we see that the 

scattering function is independent of time and frequency. 

 

2.4.2 Non- Stationary SISO Channels 

Unfortunately, mobile radio channels are not WSSUS over all time and frequency 

periods. As the communication environment may has different propagation 

conditions, the channel statistics change accordingly. Instead, the channel is 

assumed quasi-WSSUS (QWSSUS). This implies that the channel can be assumed 

WSSUS within a limited time and bandwidth, so-called stationarity region. If the 

stationarity region is sufficiently large, the channel statistics can be exploited at 

the receiver and transmitter. On the other hand, for relatively short stationarity 

region, the channel statistics change very quickly and it is not possible to exploit 

the channel statistics at the transmitter. Thus, it is important to examine and 

measure the stationarity regions. 

For non-WSSUS channels, a local correlation function (LCF) that depends on time 

and frequency is given as: 迎張岫建┸ 血┸ 弘建┸ 弘血岻 噺 継岷茎岫建┸ 血岻茎茅岫建 髪 つ建┸ 血 髪 つ血岻峅 
The stationarity time 劇鎚 and bandwidth 稽鎚 is defined as: 迎張岫建怠┸ 血┸ 弘建┸ 弘血岻 蛤 迎張岫建態┸ 血┸ 弘建┸ 弘血岻  for  】建怠 伐 建態】 隼 劇鎚  迎張岫建┸ 血怠┸ 弘建┸ 弘血岻 蛤 迎張岫建┸ 血態┸ 弘建┸ 弘血岻  for   】血怠 伐 血態】 隼 稽鎚 

Within the stationarity time and bandwidth, the autocorrelation function can be 

assumed constant: 迎張岫建怠┸ 血怠┸ 弘建┸ 弘血岻 蛤 迎張岫建態┸ 血態┸ 弘建┸ 弘血岻  for  】建怠 伐 建態】 隼 劇鎚 and 】血怠 伐 血態】 隼 稽鎚 

For the SISO case, an estimation of the stationarity region for a non-WSSUS 

correlation function was introduced in [4][8]. Based on this, a channel correlation 

function in time, frequency, time delay and Doppler is given as: 

畦朕岫弘建┸ 弘血┹ 弘酵┸ 弘懸岻 噺 秒迎朕岫建┸ 血┹ 弘建 ┸ つ血岻 結貸珍態訂岫痛綻塚貸捗綻邸岻 穴建 穴血 
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where 畦朕 is called the Channel Correlation Function (CCF). The maximum time 

delay separation for which 畦朕 is approximately nonzero is denoted by  弘酵陳銚掴 

while the maximum Doppler separation for which 畦朕  is nonzero denoted 

by  弘懸陳銚掴 . According to [4], the stationarity time 劇鎚  and the stationarity 

bandwidth 稽鎚  are defined by: 

劇鎚 巌 なつ懸陳銚掴 ┸ 稽鎚 巌 なつ酵陳銚掴 

If the channel is WSSUS, then 弘酵陳銚掴 噺 弘懸陳銚掴 噺 ど. 

 

2.4.3 Doubly Underspread 

One important property of non-WSSUS channels is called Doubly Underspread [9]. 

If the quasi-stationarity region of the non-WSSUS is much larger than the 

coherence region, then the non-WSSUS channel can be called Doubly 

Underspread (DU). This property is very useful when channel averaging around 

some stationarity region is needed. If the channel is DU, then the number of 

independent fading realizations within the stationarity region is large. Therefore, 

averaging around the stationarity region is sufficient in this case since the 

stationarity region contains a large number of independent fading realizations. 

The DU channel condition is given by: 

 劇鎚稽鎚 伎 劇頂稽頂 伎 な 

 

( 10) 

According to [9] and [1], if the channel is not Doubly Underspread, then the 

estimation of the CCF from a single channel realization may not be reliable. 
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2.5 Stationary MIMO Channels 

The investigation of MIMO channels non-stationarity has been introduced by 

Herdin [1], where the LCF and the CCF have been extended and simplified for 

MIMO channels. 

The MIMO channel matrix in equation ( 6 ) can be formulated as 4-dimensional 

function in time, frequency, transmit and receive antenna domain: 

茎岫建┸ 血┸ 券脹 ┸ 券眺岻 噺 豹 月津馴津畷岫建┸ 酵岻 結貸珍態訂捗邸著
邸退貸著 穴酵 

In order to find the full correlation function of MIMO channels, we must consider 

the correlations among all the four dimensions of the channel. As found in [1], the 

correlation function 迎張 of MIMO channels is given as 8-dimensional function and 

can be written as: 迎張盤建怠┸ 建態┸ 血怠┸ 血態┸ 券脹┸怠┸ 券脹┸態┸ 券眺┸怠┸ 券眺┸態匪 噺  範茎盤建態┸ 血態┸ 券脹┸態┸ 券眺┸態匪茎茅盤建怠┸ 血怠┸ 券脹┸怠┸ 券眺┸怠匪飯 
( 11 ) 

For stationary MIMO channels in all the 4-dimensions, the correlation function 

depends on the separation in all the four dimensions and does not depend on the 

absolute dimension: 迎張聴 岫つ建┸ つ血┸ つ券脹 ┸ つ券眺岻 噺 継範茎盤建態┸ 血態┸ 券脹┸態┸ 券眺┸態匪茎茅盤建怠┸ 血怠┸ 券脹┸怠┸ 券眺┸怠匪飯 
However, for a non-uniform antenna array (i.e. the spacing in-between antennas 

is not the same), the separation in the antenna domain is different for different 

antennas. In this case, the correlation function is often not stationary in the 

antenna domain. Therefore, only time-frequency stationarity can be assumed: 

 

迎張聴盤つ建┸ つ血┸ 券脹┸怠┸ 券脹┸態┸ 券眺┸怠┸ 券眺┸態匪噺 継範茎盤建態┸ 血態┸ 券脹┸態┸ 券眺┸態匪茎茅盤建怠┸ 血怠┸ 券脹┸怠┸ 券眺┸怠匪飯 
 

( 12 ) 

 

By setting つ建 噺 つ血 噺 ど, the variance of the WSSUS MIMO channel is given as: 

 
迎張聴盤券脹┸怠┸ 券脹┸態┸ 券眺┸怠┸ 券眺┸態匪 噺 継範茎盤券脹┸態┸ 券眺┸態匪茎茅盤券脹┸怠┸ 券眺┸怠匪飯 

 

( 13 ) 

 

and is called the full correlation matrix. In order to simplify the estimation of 

equation ( 13 ) further, different MIMO channel models were proposed, as will be 

described in the next section. 
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2.6 MIMO Channel Models 

In order to estimate the spatial correlation function of equation ( 12 ), we need to 

find a suitable analytical model to simplify it. Based on what is found in [2] and 

[10], two basic models will be illustrated: the full spatial correlation channel 

model and the Kronecker MIMO channel model. Both of the two models assume 

that the MIMO channel is stationary in time and frequency. 

2.6.1 The Full Spatial Correlation Channel Model 

In the full spatial correlation channel model, the channel correlation matrix 栗張 

(also called the full correlation matrix) is given by: 栗張 噺 継岷   岶屈岼   岶屈岼張峅 
where 屈  is 券眺 抜 券脹  MIMO channel matrix with 券眺  receive antennas and 券脹 

transmit antennas. Since    岶屈岼 has 券眺券脹 elements, 栗張 will have 券眺券脹 抜 券眺券脹 

elements which are very large and increase rapidly as we increase the number of 

antennas at the transmit or receive side.  

2.6.2 The Kronecker Channel Model 

On the other hand, Kronecker MIMO channel model has the following channel 

correlation matrix:  

栗張 噺 な  岶栗眺掴岼栗脹掴 戯栗眺掴 

where 戯 is the Kronecker product, 栗脹掴 and 栗眺掴 are the transmit and receive 

correlation matrices, respectively. They can be separate from each other as the 

following: 栗脹掴 巌 継岷屈脹屈茅峅 , and  栗眺掴 巌 継岷屈屈張峅 
where 栗脹掴 and 栗眺掴 are 券脹 抜 券脹 and 券眺 抜 券眺 matrix respectively. In this way, we 

deal only with 券脹態 髪 券眺態 elements divided in two matrices instead of 岫券眺券脹岻態 

elements in the previous model. The major disadvantage of this simplified model 

is the low accuracy in describing a real MIMO channel particularly if the number 

of antennas is increased[11]. However, in this thesis we use this model for non-

stationarity evaluation and not for capacity estimation. 
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2.7 Non-Stationary MIMO Channels 

In [1], the local correlation function 迎張 of the non-stationary MIMO channel is 

given as 8-dimensional function: 迎張盤建怠┸ 建態┸ 血怠┸ 血態┸ 券脹┸怠┸ 券脹┸態┸ 券眺┸怠┸ 券眺┸態匪噺 継範茎盤建態┸ 血態┸ 券脹┸態┸ 券眺┸態匪茎茅盤建怠┸ 血怠┸ 券脹┸怠┸ 券眺┸怠匪飯 
( 14 ) 

The CCF of MIMO channel is also 8-dimensional and therefore the estimation of it 

is too complex. Unfortunately, estimating the CCF or LCF from a single MIMO 

channel realization, according to [1], is impassible. Therefore, we have to limit the 

correlation function to either time-frequency correlation over 建 and 血, or spatial 

correlation over 券脹 and 券眺. However, the spatial structure of the channel plays a 

central role in MIMO systems. For instance, some techniques like spatial 

multiplexing and beamforming (as seen in Sec. 2.2.2) are strongly sensitive to the 

changes of the spatial structure of the MIMO channel. Consequently, MIMO 

stationarity is evaluated mainly through the correlations in the spatial domain and 

hence equation ( 11) can be simplified to: 迎張盤建┸ 血┸ 券脹┸怠┸ 券脹┸態┸ 券眺┸怠┸ 券眺┸態匪 噺 継範茎盤建┸ 血┸ 券脹┸態┸ 券眺┸態匪茎茅盤建┸ 血┸ 券脹┸怠┸ 券眺┸怠匪飯 
Alternatively, 迎張 can be rewritten in square matrix form of size 券眺券脹 抜 券眺券脹 as: 

 栗張岫建┸ 血岻 噺 継岷   岶屈岫建┸ 血岻岼   岶屈岫建┸ 血岻岼張峅 ( 15 ) 

It is possible to estimate 栗張岫建┸ 血岻 in equation ( 15) from one time-frequency 

channel realization 屈岫建┸ 血岻. If we assume that the spatial correlation matrix 栗張岫建┸ 血岻 does not change (i.e. the channel is stationary) within some averaging 

time 劇塚 and bandwidth 稽塚 (more details will be given in Sec. 3.3). In this case, we 

can rewrite 栗張岫建┸ 血岻 as a discrete time-frequency function as: 栗張岫券┸兼岻 噺 継痛 峙継捗岷   岶屈岫建┸ 血岻岼   岶屈岫建┸ 血岻岼張峅峩 
for  建 樺 岷券劇塚 ┸ 岫券 髪 な岻劇塚峅, 血 樺 岷兼稽塚 ┸ 岫兼 髪 な岻稽塚峅 

( 16) 

The spatial correlation may be different for different values of 券 and 兼. If the 

averaging bandwidth 稽塚 is larger than the channel bandwidth, then equation ( 16) 

can be reduced to 栗張岫券岻 as: 
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栗張岫券岻 噺 継痛 峙継捗岷   岶屈岫建┸ 血岻岼   岶屈岫建┸ 血岻岼張峅峩 
for  建 樺 岷券劇塚 ┸ 岫券 髪 な岻劇塚峅, 血 樺 岷ど┸ 稽峅 

( 17) 

where 稽 is the channel bandwidth. Moreover, 栗張岫券岻 can be separated to 栗脹掴岫券岻 
and 栗眺掴岫券岻, as discussed in Sec. 2.6.2. 

2.7.1 Stationarity Region for MIMO channel 

The spatial stationarity region of a MIMO channel 屈岫建┸ 血岻 can be defined as the 

region (time or distance in meters) at which the correlation matrix described by 栗張岫券岻 stays constant: 栗張岫券怠岻 噺 栗張岫券態岻  for  】券怠 伐 券態】劇塚 隼 劇鎚 

This can be estimated by comparing two correlation matrices 栗張岫券怠岻 and 栗張岫券態岻 

that corresponds to two different regions.  

Consequently, we need to define a function that compares two matrices and 

produces a value that is proportional to the dissimilarity between them, we call it 

Matrix Metric. This comparing function will be denoted by 警岫栗張岫券怠岻┸ 栗張岫券態岻岻 
and it ranges from a minimum value of zero (in this case we can say 栗張岫券怠岻 and 栗張岫券態岻 are similar) to a maximum value of one for totally different matrices. 

The matrix metrics can be formulated in different ways depending on the 

transmission technique, channel type and sensitivity to different parameters. In 

the following section, we will cover some of the matrix metrics and illustrate the 

properties and performance of each one of them. 
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2.8 Matrix Metrics Methods 

2.8.1 Correlation Matrix Distance (CMD) 

The Correlation Matrix Distance (CMD) proposed by [1] is one method to compare 

two matrices. Basically, it measures the dissimilarity between two matrices using 

the inner product between them. If we have two different matrices 栗岫倦岻 and 栗岫健岻 
both of them have the same size (券 抜 券), then the inner product of them is 

defined by: 

 極   岫栗岫倦岻岻┸    岫栗岫健岻岻玉 噺 布布 堅件倹岫倦岻堅件倹岫健岻珍沈 噺   岶栗岫倦岻栗岫健岻岼 
 

( 18 ) 

 

The maximum value of the inner product above can be given using Cauchy-

Schwarz inequality as:   岶栗岫倦岻栗岫健岻岼  判  押栗岫倦岻押庁押栗岫健岻押庁  

馨          岶栗岫倦岻栗岫健岻岼押栗岫倦岻押庁押栗岫健岻押庁  判  な                                          
where 押ゲ押庁 is the Frobenius norm. The equality of the above holds if 栗岫倦岻 噺 栗岫健岻. 

Accordingly, the CMD between two positive semi-definite Hermitian matrices 栗岫倦岻 and 栗岫健岻 is given by: 

系警経盤栗岫倦岻┸ 栗岫健岻匪 噺 な 伐   岶栗岫倦岻栗岫健岻岼押栗岫倦岻押庁押栗岫健岻押庁  
The CMD can ranges from zero to one. Apparently, the CMD is inversely 

proportional to the inner product of the two matrices. If the two matrices are 

orthogonal, the inner product between them will be zero and the CMD will be 

equal to 1. This indicates that the two matrices are totally different in the sense of 

dot product. On the other hand, if the two matrices are parallel, the normalized 

inner product of the will be equal to 1 while the CMD will be zero, indicating that 

the two matrices are equal. 

However, CMD may not be very precise in evaluating the non-stationarity of 

MIMO channel. For instance, if the two correlation matrices are full rank then 

CMD can be very small even if the two matrices are different. Moreover, during 

our evaluation of the outdoor measured MIMO channel, CMD rarely exceeds 0.7 

and never achieves 0.9. Therefore, we will try to find different methods to 

compare two matrices and then we will use it to evaluate the non-stationarity of 

the measured MIMO channel. 
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2.8.2 Normalized Correlation Matrix Distance (NCMD) 

In general, if we have a matrix 栗岫倦岻, then there is a nonzero matrix 栗岫健岻 such that 

the CMD value between them is 1, (i.e. 栗岫倦岻 and 栗岫健岻 are orthogonal and the 

inner product    岶栗岫倦岻栗岫健岻岼 噺 ど). However, since the correlation matrices have a 

particular structure, the maximum possible CMD value for a correlation matrix 栗岫倦岻 may be less than one for any positive semi-definite Hermitian matrix 栗岫健岻. In 

this case, we need to divide the CMD with a normalization factor so that the 

maximum difference between the correlation matrices can achieve 1. 

In order to find the normalization factor, we need to find the maximum value of 

the CMD given one of the correlation matrices (in our case 栗岫倦岻). The second 

matrix 栗岫健岻 can be any Hermitian nonzero matrix. Mathematically, we have the 

following maximization problem: 

   押栗岫鎮岻押鈍貯待系警経盤栗岫倦岻┸ 栗岫健岻匪 噺    押栗岫鎮岻押鈍貯待峭な 伐   岶栗岫倦岻栗岫健岻岼押栗岫倦岻押庁押栗岫健岻押庁嶌 

Alternatively, we can minimize the inner product term as: 

    押栗岫鎮岻押鈍貯待   岶栗岫倦岻栗岫健岻岼押栗岫倦岻押庁押栗岫健岻押庁 

 

( 19 ) 

 

The exact solution of the above equation is rather difficult. If we take the gradient 

of the above equation with respect to every 堅沈珍岫健岻 element and equate it with 

zero, we will end up with a nonlinear equation that depends on the remaining 

unknown 栗岫健岻 elements. However, without the loss of generality, a solution can 

be found by making the following assumptions: 栗岫倦岻 巌 鍬詮岫倦岻鍬張 栗岫健岻 巌 鍬詮岫健岻鍬張 

where 鍬 is an unitary matrix, 詮岫倦岻 and 詮岫健岻 is a diagonal matrix containing the 

eigenvalues of 栗岫倦岻and 栗岫健岻, respectively. The eigenvalues in 詮岫倦岻 and 詮岫健岻 are 

sorted in decreasing order from maximum 膏怠 to minimum 膏津. Substitute the 

above in the equation ( 18) we have: 

   岶栗岫倦岻栗岫健岻岼 噺   岶鍬詮岫倦岻鍬張 鍬詮岫健岻鍬張岼 噺    岶鍬詮岫倦岻詮岫健岻鍬張岼 噺   岶詮岫倦岻詮岫健岻岼 噺 布膏沈岫倦岻 膏沈岫健岻 津
沈退怠  

 

( 20 ) 
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 In order to make equation ( 19) as small as possible, we can set 膏沈岫健岻 噺 ど for all  件 塙 券 except for 膏津岫健岻 which can be chosen to be any value larger than zero since 

it corresponds to the smallest eigenvalue of 栗岫倦岻. In this case, we can write 

equation ( 19) as: 

    押栗岫鎮岻押鈍貯待   岶栗岫倦岻栗岫健岻岼押栗岫倦岻押庁押栗岫健岻押庁 噺 膏津岫倦岻 膏津岫健岻押栗岫倦岻押庁押栗岫健岻押庁 噺 膏津岫倦岻押栗岫倦岻押庁 ( 21 ) 

 

where the last equality is due to 押栗岫健岻押庁 噺 膏津岫健岻. The solution in equation ( 21) 

holds for any Hermitian matrix 栗岫倦岻. In general, equation ( 20) can be rewritten 

as: 

   岶栗岫倦岻栗岫健岻岼 噺   岶栗岫倦岻鍬詮岫健岻鍬張岼 噺    岶鍬張栗岫倦岻鍬詮岫健岻岼噺 岷鍬張栗岫倦岻鍬峅津津 膏津岫健岻 

 

( 22 ) 

 

where 岷ゲ峅沈珍  refers to the entry at row 件 and column 倹. If 掲沈  is the 件th column of 鍬, 

then the last term of equation ( 22) can be simplified as: 

   岶栗岫倦岻栗岫健岻岼 噺 岷鍬張栗岫倦岻鍬峅津津 膏津岫健岻 噺 掲津張栗岫倦岻掲津 膏津岫健岻 
 

( 23 ) 

 

Since 栗岫倦岻 is Hermitian it can be decomposed to the following: 

 栗岫倦岻 噺 勲詮岫倦岻勲張 噺 布携沈携沈張 膏沈岫倦岻 津
沈退怠  ( 24 ) 

 

Substituting equation ( 24) in ( 23) gives: 

  岶栗岫倦岻栗岫健岻岼 噺 布掲津張携沈携沈張掲津 膏沈岫健岻 膏津岫倦岻 噺 布岫掲津張携沈岻態 膏沈岫健岻 膏津岫倦岻 津
沈退怠

津
沈退怠  

 判  膏津岫健岻 膏津岫倦岻布岫掲津張携沈岻態 津
沈退怠 噺  膏津岫健岻 膏津岫倦岻 

 

( 25 ) 

 

where that last equality holds since 携沈  is orthonormal for all 件  and hence デ 岫掲津張携沈岻態 噺 な 津沈退怠 for any vector 掲津 such that 押掲津押態 噺 な. Substituting equation ( 

25) in ( 19) gives the same result of equation ( 21). 

Consequently, the maximum value of the CMD is: 

   押栗岫鎮岻押鈍貯待系警経盤栗岫倦岻┸ 栗岫健岻匪 噺 な 伐 膏津岫倦岻押栗岫倦岻押庁 噺 な 伐 膏津岫倦岻謬デ 膏沈態岫倦岻津沈退怠  
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From the above expression, we can write the new normalized CMD (NCMD) 

matrix metric as: 

軽系警経盤栗岫倦岻┸ 栗岫健岻匪 噺 系警経盤栗岫倦岻┸ 栗岫健岻匪な 伐 膏津岫倦岻謬デ 膏沈態岫倦岻津沈退怠
噺 系警経盤栗岫倦岻┸ 栗岫健岻匪計朝  

where 計朝 is the normalization factor. If the smallest eigenvalue of 栗岫倦岻 is equal 

to zero, then the normalization factor will be equal to one and hence the NCMD is 

the same as CMD. On the other hand, if 栗岫倦岻 has equal eigenvalues, then the 

minimum value of 計朝 is achieved and is equal to な 伐 な【ヂ券. 

For small values of 券 (i.e. small number of transmit or receive antennas), the 

maximum value of the NCMD is 3.4 times higher than CMD for two antenna 

system and 2.3 times higher for three antenna system. For our case, we have a 

4x4 MIMO channel; therefore, the minimum normalization factor is 0.5 which 

increases the NCMD two times above CMD. However, for low rank matrices, the 

minimum eigenvalue is zero and, hence, both the two methods will have similar 

performance. 

 

2.8.3 Distance between Equidimensional Subspaces (DES) 

The last distance measure between two matrices used in this thesis is the 

Distance between Equidimensional Subspaces (DES) method [12]. In this method, 

we extract the eigenvectors of the two correlation matrices and take only the first 喧 eigenvectors that correspond to the largest eigenvalues then we compare these 

eigenvectors based on the DES between them.  

To illustrate this, let 栗岫喧岻 and 栗岫圏岻 be two Hermitian matrices to be compared. 

Accordingly, the 栗岫喧岻 can be written as: 栗岫喧岻 噺 膏怠岫喧岻掲怠岫喧岻掲怠張岫喧岻 髪 膏態岫喧岻掲態岫喧岻掲態張岫喧岻 髪橋髪 膏津岫喧岻掲津岫喧岻掲津張岫喧岻 

where 膏沈岫喧岻 and 掲沈岫喧岻 are the eigenvalue and eigenvector of 栗岫喧岻, respectively. 

We define 栗賃岫喧岻 as: 栗賃岫喧岻 噺 膏怠岫喧岻掲怠岫倦岻掲怠張岫喧岻 髪 膏態岫喧岻掲態岫喧岻掲態張岫喧岻 髪橋髪 膏賃岫喧岻掲賃岫喧岻掲賃張岫喧岻 
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where  喧 隼 券 corresponds to the largest 喧 eigenvalues of 栗岫喧岻. After that, we can 

compare 栗賃岫喧岻 and 栗賃岫圏岻 using the DES method. The distance between 栗賃岫喧岻 

and 栗賃岫圏岻 can be computed by the following algorithm. 

2.8.3.1 DES algorithm 

1 .  Compute the QR factorization of 栗賃岫喧岻 and 栗賃岫圏岻: 栗賃岫喧岻 噺 粂岫喧岻桑岫喧岻 栗賃岫圏岻 噺 粂岫圏岻桑岫圏岻 
where 桑 is upper triangular matrix. Note that the value of 粂 is 券 抜 倦 

matrix and can be found directly as 粂 噺 岷掲怠 掲態 ┼ 掲賃峅. 
2.  Define 隅 巌 粂張岫喧岻粂岫圏岻. 
3.  Find the SVD of 隅:    岫隅岻 噺 鍬鮮勲張 

where 鮮 is a diagonal matrix. The minimum value of 鮮 is the cosine of 

the largest principle angle between 栗賃岫喧岻 and 栗賃岫圏岻 i.e.    岫肯陳銚掴岻 噺   岫鮮岻. 

4.  Calculate the DES between 栗賃岫喧岻 and 栗賃岫圏岻 as:    岫栗岫喧岻┸ 栗岫圏岻┸ 倦岻 噺    岫肯陳銚掴岻 噺 紐な 伐    態岫肯陳銚掴岻 噺 紐な 伐   岫鮮岻  
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Chapter 3  

Results 

In this chapter, the matrix metric methods will be applied to realistic measured 

MIMO channels. Then, these methods will be compared with each other, and a 

short conclusion will be stated. 

3.1 Measured MIMO Channel 

In signal processing laboratory at KTH, we have access to a large data set of 

realistic measured 4x4 MIMO channels for an outdoor environment made by 

Ericsson Company, and applicable to LTE standard. The measurements were 

performed in Kista, a suburb of Stockholm city in Sweden, for a driving car 

scenario.  

The center frequency and the bandwidth of the measured channels were 2.6 GHz 

and 20 MHz, respectively. Table 1 summarizes the properties of the measured 

used in this thesis. Note that, the measured channel matrix function is sampled in 

time and frequency; therefore, it can be written as a discrete function 屈岫券劇椎┸兼繋椎岻 or simply as 屈岫券┸兼岻. 

The used track in this thesis is track number 3A shown in Figure 2.  Additionally, 

we separated the track to LOS route (highlighted in dashed red) and the NLOS 

route (highlighted in blue) based on visual inspections. 

Location Kista, Stockholm, Sweden 

Scenario Suburban, Driving car 

Transmit antennas 4 antennas , at base station 

Receive  antennas 4 antennas, at moving car 

Center frequency 血頂 2.6 GHz 

Wavelength ぢ達 0.115 m 

Bandwidth 稽 20 MHz 

Frequency sample spacing 繋椎 123 KHz 

Number of frequency samples 軽捗  162 

Time sample spacing 劇椎 5.33 ms 

Maximum receiver speed 嫌陳銚掴 35 Km/hr 

Average receiver speed 嫌銚塚直 22 Km/hr 

Table 1: Properties of the measured MIMO channels 
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Figure 3: Antenna configuration of transmit and receive antennas. 

 

Figure 2: Track number 3A, the LOS and NLOS routes are highlighted in red and 

blue, respectively. 

The antenna structure of the transmit antennas (at base station) and receive 

antennas (at the car roof) are shown in Figure 3. As shown in Figure 3, the 

transmit antennas are segregated to two dual polarized antennas. In this thesis, 

small and large spacing between the dual polarized antennas were used. 

However, all the non-stationarity evaluation was made with the small spacing 

setup while the large spacing setup was used only for comparisons in Sections 

3.4.2.3 and 3.4.3.3. 
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3.2 Minimum Stationarity Region 

In order to estimate the correlation matrix, we first need to find the averaging 

time 劇塚  and bandwidth稽塚 . The averaging time and bandwidth should be 

sufficiently large to create a reliable estimation of the correlation matrix.  

However, the averaging time and bandwidth should be smaller or equal to the 

minimum stationarity time 劇鎚陳沈津 and bandwidth 稽鎚陳沈津, respectively to ensure that 

the statistics of the spatial structure are constant within the averaging time and 

bandwidth. Therefore, we have to define roughly the minimum stationarity region 

of the spatial structure before we estimate the exact stationarity region. 

3.2.1 Minimum Stationarity Time 

The statistics of the spatial structure can be assumed constant, if the receiver 

move a distance less than など ぢ達.   For a moving car scenario, as the case for our 

channel, the stationarity time can be roughly assumed as the time that 

corresponds to moving など ぢ達. Therefore, the stationarity time can be calculated 

as: 

劇鎚陳沈津 蛤 など ぢ達嫌銚塚直 噺 経鎚陳沈津嫌銚塚直  

where 嫌銚塚直  is the average car speed and 経鎚陳沈津  is the minimum stationarity 

distance. By using the average speed of the car, the average stationarity time is 

about 188.8ms. However, since the speed of the car 嫌岫建岻 is time varying, the 

instantaneous stationarity time is also varying. Thus, in order to make the 

correlation matrix independent of time, we need to express the channel as a 

function of distance rather than time. 

Fortunately our measured channel is equipped with a GPS data showing the 

position of channel samples every one second. Therefore, we can average over 

every  経塚 噺 経鎚陳沈津 噺 など ぢ達 meter and the correlation matrix can be expressed in 

term of discrete distance steps as 栗岫穴岻 噺 栗岫経塚券岻. 
3.2.2 Minimum Stationarity Bandwidth 

Since the channel bandwidth is much smaller than the center frequency (the 

channel bandwidth is only 0.8% of the center frequency), we will assume that the 

spatial structure is stationary within all the channel bandwidth i.e. 稽塚 噺稽鎚陳沈津 噺20MHz.   
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3.2.3 Doubly Underspread 

Recall the doubly underspread (DU) condition in equation ( 10) and :  劇塚稽塚 伎 劇頂稽頂 伎 な 

In a similar analysis to what we found in [4], [13] and [14], the averaging time and 

frequency were calculated to be 188.8ms and 20MHz, respectively. The maximum 

Doppler shift is can be calculated as 懸陳銚掴 噺 岫嫌陳銚掴【潔岻血頂 蛤 53 Hz hence the 

coherence time 劇頂 蛤19ms. If we assume that the maximum delay travel 2km, as 

the total length of the track is 1km, then the value of the coherence bandwidth 稽頂 噺 潔【穴 is roughly 150kHz. Therefore, the doubly underspread is satisfied as 

188ms抜20MHz 伎 19ms抜150kHz = 2850 伎 1. The total number of independent 

fading realization within the stationarity time and bandwidth is about 劇塚稽塚【劇頂稽頂 蛤  1320 realizations. 

3.3 Estimation of Correlation Matrix 

Before we can start non-stationarity investigation of the measured channel, we 

need to estimate the correlation matrix of equation ( 17). Nevertheless, we have 

one discrete time and frequency realization of the measured channel. Therefore, 

the spatial correlation matrix can be estimated by averaging within a stationarity 

region (time and frequency) in which the spatial structure of the channel can be 

assumed constant as: 

栗撫張岫穴岻 噺 な軽痛岫穴岻 な軽捗 布 布    岶屈岫券┸兼岻岼   岶屈岫券┸兼岻岼張朝肉
陳退怠

朝禰岫鳥岻
津退怠  

where 軽痛岫穴岻 is the number of time samples within the distance [穴経塚┸ 岫穴 髪 な岻経塚] 

and 軽捗  is the number of stationary frequency samples. Alternatively, we can 

estimate the Kronecker transmit and receive correlation matrix as: 

栗撫 脹掴岫穴岻 噺 な軽痛岫穴岻 な軽捗 布 布 屈鐸岫券┸兼岻屈茅岫券┸兼岻朝肉
陳退怠

朝禰岫鳥岻
津退怠  

栗撫眺掴岫穴岻 噺 な軽痛岫穴岻 な軽捗 布 布 屈岫券┸兼岻屈張岫券┸兼岻朝肉
陳退怠

朝禰岫鳥岻
津退怠  
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3.4 Evaluation of MIMO Non-Stationarity 

3.4.1 Spatial Stationary Channel 

In this section, we will illustrate the performance of the matrix metrics for still 

transmitter and receiver to ensure proper functionality of the matrix metric 

functions. In the beginning of the measurements, the car was standing for 3 

seconds before it starts moving.  The channel has more than one multipath 

component and varies with frequency as shown in Figure 4.  

 

 

Figure 4: Spatial Stationary Channel versus time and frequency. 

 

In order to evaluate the matrix metrics under this type of channel, the correlation 

matrices as a function of time (栗撫 脹掴岫建岻 and 栗撫眺掴岫建岻) is needed here. Figure 5 

shows the matrix metrics values of the transmit and receive correlation matrices 

with respect to the first instant  栗撫岫建 噺 ど岻. Here, the DES method is used with a 

base number k=1.  Apparently from Figure 5, all the matrix metrics stay below 

0.08 as an indication of spatial stationarity. 
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Figure 5: CMD, NCMD and DES of spatial stationary channel with respect to  栗撫 岫建 噺 ど岻. 

 

3.4.2 LOS Channel Non-Stationarity 

The LOS region of the channel was detected by visual inspection of the channel 

spectrogram. The frequency spectrum of the LOS channel is flat, since the LOS 

component with zero delay is the dominate signal while the multipath signals are 

much lower. Figure 6 shows the distance-frequency LOS channel spectrogram 

while Figure 7 shows the eigenvalues variation of 栗撫 脹掴 and 栗撫眺掴 versus distance. In 

the next sections, we will evaluate the LOS non-stationarity using matrix metric 

methods. 

 

 

 

 

 

 

 

 

 

Figure 6: LOS Spectrum versus frequency and distance. The color bar 

shows the channel strength in dB.  
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Figure 7: The eigenvalues of  栗撫 脹掴 and 栗撫眺掴  versus distance for the LOS route. 

 

3.4.2.1 Spatial Variation of LOS Channel  

Initially, the matrix metrics for the starting point of LOS route were evaluated 

using the estimated correlation matrices 栗撫 脹掴岫穴岻 and 栗撫 眺掴岫穴岻 as a function of 

distance. Figure 8 shows the variation of the matrix metrics with distance when 

comparing the first correlation matrix  栗撫 岫ど岻 with the entire route. In general, the 

matrix metrics increase with distance as the spatial structure variance of the 

channel changes. However, both the CMD and the NCMD values do not exceed 

0.8 even with a large distance separation. As clearly observed from Figure 8, the 

NCMD method performance is very close to CMD method. In fact, the 

normalization factor was very close to one (0.99 and 0.98 for 栗撫 脹掴岫ど岻 and 栗撫 眺掴岫ど岻, 
respectively) due to the large ratio between the maximum and minimum 

eigenvalues of the correlation matrix, as seen in Figure 7. In this case, the NCMD is 

only 2% above CMD. On the other hand, the DES method appears to be more 

sensitive to the spatial variations with an average sensitivity gain of 0.2 above 

both the CMD and NCMD methods. 
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Figure 8: Different matrix metrics of the LOS route, in (a) 警岫栗撫 脹掴岫ど岻┸ 栗撫 脹掴岫穴岻岻 and 

in (b) 警岫栗撫眺掴岫ど岻┸ 栗撫眺掴岫穴岻岻. 

More illustration of the matrix metrics between all distance points is given in 

Figure 9. In this figure, the image diagonal corresponds to the matrix metrics 

between two similar points where 穴怠 噺 穴態 and hence the matrix metrics value is 

zero. All the images show distinct sections of the spatial structure. For NCMD 

method at transmit side, Figure 9.a shows that the whole LOS route is stationary. 

On the other hand, the receive side in Figure 9.b has 6 separate stationarity 

sections that have similar spatial properties (the largest one is approximately from 

0 m to 50 m). 
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Figure 9: The NCMD and DES values between all distance points of the LOS route. 

 

On the other hand, the DES method shows more details for different spatial 

sections. Comparing the NCMD with DES of the receiver side (Figure 9.b and 

Figure 9.d), it can be seen that section [0m, 50m] seems to have one spatial 

structure when using NCMD method (Figure 9.b) while the same section appears 

to has different spatial structures when using DES ( Figure 9.d).  
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3.4.2.2 LOS Channel Stationarity Distance 

The local stationarity distance can be defined as the distance at which the matrix 

metric is lower than a certain threshold value. Mathematically, it can be 

expressed as: 経盤栗岫穴怠岻匪 噺    穴態  subject to: 警盤栗岫穴怠岻┸ 栗岫穴態岻匪 隼 潔 

where 潔 is the threshold value. Recall Figure 8, if a threshold value of 0.2 is used, 

the stationarity distance of point zero for the DES metric is about 10 m at the 

transmit side. Note that, 警盤栗岫穴怠岻┸ 栗岫穴態岻匪 should stays below 潔  all the way 

between 穴怠 and 穴態┻  
Based on the pervious definition, the stationarity distance of the LOS route is 

calculated with a threshold value of 0.2. Figure 10 shows the local stationarity 

distance of different matrix metrics. 

 

 

 

 

 

 

 

 

 

Figure 10: Local stationarity distance of different matrix metric methods in the 

LOS route with threshold value = 0.1. 

Again, the performance of the CMD and NCMD is very similar. According to CMD 

and NCMD metric, it can be seen that there is more than one stationarity section 

in the LOS route. For illustration, section [0m, 50m] is considered to be stationary 

with respect to NCMD and CMD for both transmit and receive sides since the 

CMD value for any two points inside this section is less than 0.2. On the other 

hand, the DES method appears to have much lower stationarity distances with 

few and short stationarity sections. For some transmission scenarios, 
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beamforming for instance, the CMD and NCMD will give much larger estimation of 

the stationarity distance. 

The average value and standard deviation of the CMD, NCMD and DES versus 

distance separation  つ穴 of the LOS route are shown in Figure 11. The standard 

deviation is shown as an error bar on each point. The total number of realizations 

used is about 110 realizations taken from the first 110 m of the LOS route. From 

Figure 11, it is possible to find the stationarity distance length based on different 

threshold values.  
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Figure 11: Mean value and standard deviation of CMD, NCMD and DES versus つ穴 

for the LOS route. 
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3.4.2.3 LOS Non-Stationarity Using Different Transmit Antenna Spacing 

The second measurement of the LOS route was performed with exactly the same 

receive antenna type while the spacing between the dual polarized antennas was 

increased at the transmit side.  Figure 12 shows the average NCMD and DES 

versus the separation in distance for the small and large antenna spacing.  From 

the figure, the large antenna spacing has increased the non-stationarity at the 

transmit side compared to the small antenna spacing while the non-stationarity at 

the receive side is exactly the same. In the small antenna spacing, all the four 

transmit antenna elements approximately have the same LOS path and, hence, 

the small antenna spacing is more stationary than the large antenna spacing. 

 

 

Figure 12: Distance shift versus matrix metric at transmit and receive sides of the 

small and large antenna spacing at the transmit side for LOS channel.  
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3.4.3  NLOS Channel Non-Stationarity 

The NLOS channel changes rapidly with frequency and distance. In track 3A, the 

NLOS route was detected as shown in Figure 13. The channel data is measured 

using exactly the same antennas of the LOS route (small antenna spacing). 

Apparently, the NLOS channel has much lower signal strength than the LOS and 

hence much lower eigenvalues. 

Figure 14 shows the average eigenvalues of 栗撫 脹掴 and 栗撫眺掴 for NLOS channel sorted 

from maximum to minimum. Comparing Figure 14 with Figure 7, the NLOS 

channel shows more closely eigenvalues than the LOS channel. This seems to be 

reasonable since LOS MIMO channels are low rank, in general.   

 

 

 

 

 

 

 

Figure 13: NLOS Spectrum versus frequency and distance. The color bar shows the 

channel strength in dB. 

 

 

 

 

 

 

 

Figure 14: The eigenvalues of  栗撫 脹掴 and 栗撫眺掴 versus distance for the NLOS route. 

 



36 

 

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Distance d, m
a) at transmit side

M
at

rix
 m

et
ric

 v
al

ue

 

 
CMDTX

NCMDTX

DESTX(k=1)

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Distance d, m
b) at receive side

M
at

rix
 m

et
ric

 v
al

ue

 

 
CMDRX

NCMDRX

DESRX(k=1)

To evaluate the non-stationarity of the NLOS channel, the same methods used 

previously in LOS channel was applied here. Nevertheless, the DES method can be 

applied with different base number 倦, in this case. Since the eigenvalues of 栗撫 脹掴 

are close to each other, different base number will result in different stationarity 

measure, as will be shown in next sections. 

3.4.3.1 Evaluation of the Spatial Variation of NLOS Channel 

 

Figure 15 shows the variation of the matrix metrics with distance of the NLOS 

channel when the first correlation matrix  栗撫 岫ど岻 is compared with the entire route. 

Here, the difference between the CMD and NCMD is relatively large compared to 

the LOS case (the normalization factor is 0.66, and the NCMD is 50% larger than 

CMD at the receive side).  

 

 

 

 

 

 

 

 

Figure 15: CMD, NCMD and DES of the NLOS with respect to 栗撫 岫ど岻. 
From  

Figure 15.a, it is clearly that there is a large difference between DES method 

compared to both CMD and NCMD. The DES method with base 喧 噺 な shows very 

large variations in the spatial structure while, in contrast, CMD and NCMD show 

lower spatial variation. 

The performance of the DES method with different base numbers at the transmit 

side is shown in Figure 16. In this figure, it can be seen that different base number 

produces different metric methods. Since the smallest DES variation corresponds 

to 喧 噺 に, it seems that the bases of the largest two eigenvalues are interchanging 

with each other while the bases of the remaining eigenvalues stay below them.  
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Depending on the MIMO transmission scenario, different bases number can be 

chosen when using the DES method.  

 

Figure 16: Different base numbers of DES of the NLOS route with respect to 栗撫 脹掴岫ど岻. 
The spatial variation at the transmit side of all points in the NLOS route with 

different base numbers for the DES method is shown in Figure 17. Comparing 

Figure 17 with Figure 9, the CMD, NCMD and DES values for the NLOS case seem 

to be higher than the LOS channel. 
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Figure 17: CMD, NCMD and DES with 倦 = 1 to 3 between all points in the NLOS 

route. 
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3.4.3.2 Evaluation of NLOS Channel Stationarity Distance 

The stationarity distance of the NLOS channel for 0.2 threshold value is shown in 

Figure 18. From this figure, the DES method at 倦 = 1 shows almost no local 

stationarity distance for the NLOS route at both transmit and receive sides. On the 

other hand, CMD method shows very large stationarity distance at both sides. At 

the transmit side, it shows that almost the entire NLOS route is stationary with 

distance. Since the NLOS channel is higher in rank than the LOS channel, the CMD 

metric underestimate the non-stationarity by a large amount.  

The stationarity distance for different base numbers for the DES method is shown 

in Figure 19. As expected, the less sensitive base number (倦 = 2) has the largest 

stationarity distance compared to other bases but still very low compared to CMD 

and NCMD. 

 

 

 

 

 

 

 

 

 

 

Figure 18: Local stationarity distance of CMD, NCMD and DES in the NLOS route. 
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Figure 19: Local stationarity distance of different base values of DES method in the 

NLOS route at the receiver side. 

Table 2 and Table 3 shows the average stationarity distance of the NLOS route at 

the transmit side and for 0.2 and 0.1 threshold value, respectively. Here, the CMD 

overestimates the real stationarity distance compared to the NCMD.  

 

Matrix Metric Average Stationarity Distance at TX (c=0.2) 

CMD 120 m 

NCMD 82 m 

DES (k=1) 0.63 m 

DES (k=2) 4 m 

DES (k=3) 0.5 m 

Table 2: The average stationarity distance at the transmit side of the NLOS route 

for 0.2 threshold value.  

 

Matrix Metric Average Stationarity Distance at TX (c=0.1) 

CMD 40 m 

NCMD 18 m 

Table 3: The average stationarity distance at the transmit side of the NLOS route 

for 0.1 threshold value. 

The mean value and standard deviation of the CMD, NCMD and DES versus the 

distance separation つ穴 at the transmit side of the NLOS route is shown in Figure 

20. 
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Figure 20: Mean value and standard deviation of the metric methods versus 

distance difference つ穴 for the NLOS route at the transmit side. 
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3.4.3.3 NLOS Non-Stationarity Using Different Transmit Antenna Spacing 

The second measurement of the NLOS route was performed with exactly the 

same receive antenna type while the spacing between the dual polarized 

antennas was increased at the transmit side. Figure 21 shows the average NCMD 

and DES versus the separation in distance for the small and large antenna spacing.  

From the figure, the large antenna spacing has slightly increased the non-

stationarity at the transmit side. Under the NLOS environment, the four transmit 

antenna elements no longer have the same path components; thus, the large 

spacing antenna slightly reduced the non-stationarity at the transmit side 

compared to the LOS case. 

 

 

Figure 21: Distance shift versus matrix metric at transmit and receive sides of the 

small and large antenna spacing at the transmit side for the NLOS route. 
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Chapter 4  

Discussion 

4.1 Conclusion 

In this thesis, the non-stationarity of MIMO channels was investigated. The main 

parts of the thesis were to find suitable non-stationarity metrics and to examine 

these metrics under a measured 4x4 MIMO channel that is applicable to LTE 

standard.  

The non-stationarity of MIMO channel depends strongly on the spatial properties 

(antenna structures, positions of transmit and receive antennas, etc) in addition 

to time and frequency. Therefore, it is very important to define a stationarity 

distance along with stationarity time and bandwidth. For this reason, three MIMO 

non-stationarity metrics were introduced, namely Correlation Matrix Distance 

(CMD) proposed by Herdin [1], Normalized CMD (NCMD) and Distance between 

Equidimensional Subspaces (DES). The three metric were applied to the measured 

channel and compared to each other. The measured channels were divided to 

LOS, NLOS. Different local stationarity distances were found within these 

channels. 

The CMD metric is based on inner product between two matrices. Under the 

measured MIMO channel, we found that the CMD does not exceed 0.7 in most 

cases, similar to the results found in [1]. Furthermore, the CMD underestimate the 

channel non-stationarity compared to DES for beamforming scenario (only one 

eigenvector is used), similar to the results found in [14], but our results show 

much more difference. This problem become more visible under NLOS channels 

were the correlation matrix is high rank and noisy. To resolve this, a normalization 

factor for the CMD was added to ensure that the CMD could achieve its maximum 

value and the new method was called NCMD. 

The normalization factor of the NCMD metric, theoretically, can increase the CMD 

value up to 100% for 4x4 MIMO system depending on the smallest eigenvalue of 

the correlation matrix. However, for correlation matrix that is not fully rank (i.e. 

the smallest eigenvalue is close to zero), the normalization factor will be close to 

one, as the case for our LOS route. In the NLOS route, we found that the CMD 

underestimate the non-stationarity by 46% on average compared to NCMD. 
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The inner product based metrics may not be suitable for some transmission 

schemes that are based on matrix properties like eigenvectors and eigenvalues. 

Therefore, we introduce the DES metric that is much more sensitive to the change 

in these properties. Under the measured channel, we found that these properties 

are not stationary for NLOS channel environment and fairy stationary for LOS 

channel. 

4.2 Future Work 

The field of MIMO non-stationarity has a large potential of improvements. The 

matrix metrics described so far are not compared yet to any type of transmission 

schemes. It is very important to relate the non-stationarity metrics to the 

degradation of the performance of different transmission schemes. 
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