Evaluation of MIMO Stationarity

OMAR ALDAYEL

Master's Degree Project
Stockholm, Sweden

XR-EE-SB 2011:005

o

By,
ZFKTHS

VETENSKAP
9% OCH KONST 2%

Bt

KTH Electrical Engineering







Royal institute of Technology KTH

Evaluation of MIMO Non-
Stationarity

Omar Aldayel




Contents

Chapter 1: INtroduction ........ccceceiiiiuiiiiiiiiniiniiiieieesseesesssssessses 1
11 PrevioUs WOIK.....ooiiee ettt 2
1.2 (0] o [=To1 {1V =T PSPPI 2

Chapter 2: Background........c...ccereeenieiienenceerennnsereennneeseensssssenasssssenssssssennsssssennnes 3
21 Classifications of Radio Channels............coceeiieiiininencicee e 3

2.11 Coherence Time and FreQUENCY .....cc.veeeeeiieeeeciiee ettt 3
2.1.2 Fading Channels ........coivciiiiieieic et 3
2.1.3 OFDM e e 4
2.14 Stochastic Channels ......c...eovieiiiiienie e 5
2.2 MIMO CommuNICAtiON SYSEEMS ....vvvviiiiiiiieieieeeeeeeeeee e eeeeeeeeeeeeeeeeseeeeeneeee 6
2.2.1 MIMO System MOAE .......ueiieciiieecieee e et 7
2.2.2 Constant MIMO Channel Capacity......ccccocvveeeiiiveeeiiiieeeeieee e 7
23 Time-Variant MIMO Channels ........occceeiiiiniieniiieieeniec et 9
2.4 Stationarity of Radio Channels.........cccccoviiiiiiiiiiiiceecee e, 10
2.4.1 Stationary SISO Channels.........ccceeieiiee e 10
2.4.2 Non- Stationary SISO Channels .........cccoccvveeicieeecciee e 11
2.4.3 Doubly UNderspread.........ccceccuveeeeciieeeccieee et ecree e e e e 12
2.5 Stationary MIMO Channels..........ooociiiiiiiieeecciee e 13
2.6 MIMO Channel Modules..........ccoveriiriiiiiiieeeee e 14
2.6.1 The Full Spatial Correlation Channel Model ..........cccocvvviiinnnnnee. 14
2.6.2 The Kronecker Channel Model..........ccccooiiiiiiniininiinceceeeies 14
2.7 Non-Stationary MIMO Channels.........ccoeeeeiiieeieciiee e 15
2.7.1 Stationarity Region for MIMO channel..........cccccoeieecieeicciiieeenee, 16
2.8 Matrix Metrics Methods .......c.eeviiriiriiriiieceeeeeeeee e 17
2.8.1 Correlation Matrix Distance (CMD)........coouereeevuveeeeiireeeeeireeeeenneeees 17
2.8.2 Normalized Correlation Matrix Distance (NCMD) ........cccceeeeuveneen. 18
2.8.3 Distance between Equidimensional Subspaces (DES) .................... 20




2.8.3.1 DES AlgorithmM...cccc i 21

Chapter 3: RESUILS ....ccieeeeeiiieicccrereccerrrenseerenanesrenaneseennsseseensssssennnsseseennsnsnenns 22
3.1 Measured MIMO Channel.........ooceeiieeriiieniienee e 22
3.2 Estimation of Minimum Stationarity Region ........cccccecveviivcieiiicivee e, 24

3.2.1 Estimation of Minimum Stationarity Time.......ccccoeeveeiiivieeiicieeens 24
3.2.2 Estimation of Minimum Stationarity Bandwidth ...........cccccccuee... 24
3.2.3 Doubly UNderspread.........ccceccuveeeeciieeeccieee et sciree e e eseeee e 25
3.3 Estimation of Correlation MatriX ..........cecveeieereeneenieenienicnceceeeee 25
3.4 Evaluation of MIMO Non-Stationarity .....cccccceeeviiieeinciiee e 26
3.4.1 Spatial Stationary Channel.......cccccoivciiiiiccie e 26
3.4.2 LOS Channel Non-Stationarity......ccccceeevieeeeiiieee e eciee e ssieee e 27
3.4.2.1 Spatial Variation of LOS Channel .........ccccceiieieeiiciiee e, 28
3.4.2.2 LOS Channel Stationarity DiStance.........ccccceeeecieeeeccieeeeecieee e 31
3.4.2.3 LOS Non-Stationarity Using Different Transmit Antenna Spacing

34
3.4.3 NLOS Channel Non-Stationarity.......cccccceeeecieeeeecieee e 35
3.4.3.1 Evaluation of the Spatial Variation of NLOS Channel ................. 36
3.4.3.2 Evaluation of NLOS Channel Stationarity Distance...........c.......... 39
3.4.3.3 NLOS Non-Stationarity Using Different Transmit Antenna Spacing

42

Chapter 4: DiSCUSSION .......ceiieenieirirenieereraneeeeennseeeeenassessennsseseensssssssnsssssesnnsasnenns 43
4.1 CONCIUSTON ..ttt ettt s s st 43
4.2 FULUIE WOTK .t ettt 44




Abstract

The transmission performance of MIMO systems can be highly improved under
stationary channel conditions where the channel statistics are constant.
Unfortunately, mobile radio channels are not stationary all the time. Instead, they
are stationary for finite time durations, so-called the stationarity regions. If these
stationarity regions are relatively large, then the channel statistics can be utilized
during each stationarity region to enhance the transmission performance.
Therefore, it is necessary to examine the stationarity of mobile channels and
characterize the stationarity regions.

This thesis investigates the non-stationarity of measured MIMO channels and
proposes some stationarity metrics to measure it. These metrics are: the CMD
proposed by , NCMD and DES. Each one of the metrics is relevant to different
types of transmission schemes and scenarios. The CMD may not be accurate for
some transmission scenarios; therefore, the NCMD, which is a normalized version
of CMD, is proposed. Theoretically, the NCMD can be at most 100% higher than
the CMD for a 4x4 MIMO system. For beamforming scenario, the DES metric can
be used to describe the non-stationarity of few eigenvectors taken from the
channel variance. Under the measured MIMO channels, it was found that the
CMD overestimates the stationarity regions compared to the NCMD and DES
metrics particularly under the NLOS routes.
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Chapter 1
Introduction

Since the invention of Multiple-Input Multiple-Output (MIMO) technology from
more than a decade ago, a lot of wireless transmission schemes have been
developed to improve the performance and reliability of MIMO systems. The main
reason behind these large interests is to achieve higher data rates or to increase
the system reliability with the same amount of power and bandwidth compared
to typical Single-Input Single-Output (SISO) systems as theoretical analysis of
MIMO communications promises. However, according to E' a large number of
the developed MIMO communication transmission schemes have not been
examined under real MIMO channel conditions so far.

The optimum transmission performance of MIMO channels can be achieved if the
instantaneous channel gains are known at both the transmitter and receiver. For
mobile channels, where the channel gains are fast varying with time, the
instantaneous channel knowledge cannot be obtained at the transmitter.
Therefore, the channel statistics are used instead of the instantaneous values. In
this case, the transmission performance of the channel will be slightly lower than
the optimum, in general, and close to the optimum for some transmission
schemes and scenariosE'.

Consequently, some of the advanced MIMO transmission schemes are based on
the channel statistics knowledge. However, these types of transmission schemes
cannot be utilized under non-stationary channel conditions where the MIMO
channel statistics change very quickly, since the receiver will not be able to feed
back the channel statistical information to the transmitter. On the other hand, if
the channel statistics are constant (quasi-stationary) during some relatively large
stationarity region, then these schemes can be applied within this stationarity
region. Therefore, it is very important to estimate the stationarity regions of real
MIMO channels to see whether these types of transmission schemes are
applicable or not.

According to , unlike real Single-Input-Single-Output (SISO) channels, real
MIMO channels depends on the spatial structure of the antennas (angles of the
transmit and receive antennas) and multipath components more strongly.
Therefore, the stationarity of such channels depend mainly on the spatial
structure in addition to time and frequency.



In KTH Signal Processing Lab, we have a large data set of real measured MIMO
channels. We would like to examine and evaluate the stationarity of these
channels and try to characterize and evaluate the stationarity regions within it.

1.1 Previous work

The non-stationarity of SISO channels has been investigated by Matz El There, a
Channel Correlation Function (CCF) was introduced to estimate the stationarity
region of SISO channels. For the SIMO channels, a stationarity measure relevant
to the beamforming scenario has been introduced by E] so-called F-eigen ratio. F-
eigen ratio measures the similarity between the out-dated and new channel
covariance matrices with respect to the largest F eigenmodes. The non-
stationarity of MIMO channels have been investigated by Herdin in his thesis El
There, he provides a function that measures the dissimilarity of two different
matrices called the Correlation Matrix Distance (CMD). However, CMD may not be
very precise in evaluating the non-stationarity of MIMO channels if the two
matrices are high rank (i.e. have more linearly independent columns). In this case,
the CMD can be very small even if the two matrices are different.

1.2 Objective

We will try to apply different methods to evaluate the non-stationarity of the
measured MIMO channels versus the separation in a specific domain (time,
frequency or space). In general, these methods measure the distance
(dissimilarity) between two matrices and produce a single value that ranges from
zero to one. For instance, the CMD calculates the distance between two
correlation matrices R; and R, by using the inner product as:

tr{R1Rz}

demp(Ry,Ry) =1— —— 20
cMpATL T2 IR [|£lIR2 ||

Where ||*||¢ is the Frobenius norm and tr{-} is the matrix trace. Matrix distance
measures can achieve a maximum value of 1 indicating that the two matrices are
orthogonal, and a minimum value of 0 indicating that the two matrices are equal
except for a scaling factor. We will try to find different methods to measure the
distance between two matrices and then we will use them to evaluate the non-
stationarity region of the measured MIMO channels.



Chapter 2

Background

2.1 C(lassifications of Radio Channels

In this section, we will discuss some basic classifications of mobile radio channels
for typical Single-Input-Single-Output (SISO) systems.

Mobile radio channels are time and frequency varying due to movements in the
communication medium and multipath components. Therefore, a mobile radio
channel can be seen as linear time varying (LTV) filter h(t, 7). If s(t) is the
transmitted signal through h(t, T) then the received signal is given as:

r(t) = fio h(t,7) s(t —1)dr

Alternatively, the channel can be written as a time and frequency varying function
H(t, f) by using Fourier transform with respect to 7 as:

H(t,f) = f h(t,t) e /2™ dr
T=—00

2.1.1 Coherence Time and Frequency

The coherence time T, of h(t, f) is defined as the time duration at which the
channel can be assumed constant over time. If we transmit two pulses through
the channel at different time instances t; and t, then:

H(tl,f)%H(tz,f), for |t1_t2|<TC

Similarly, the coherence bandwidth B, of H(t, f) is defined as the frequency band
at which the channel can be assumed constant over frequency. If we transmit two
sinusoid signals through the channel at different frequencies f; and f, then:

H(t,f1) = H(t, f), for |fi — f2] <B

2.1.2 Fading Channels

Time-variant channels are classified to different categories based on the
coherence time and coherence bandwidth. If the transmission through the time-
variant channel is made over the symbol duration T and bandwidth B, then the
channel is said to be:



e Slow Fading Channel: If the coherence time is much larger than the
symbol duration (T, > T). Here, the channel can be assumed time
invariant:

h(t,7) = h(7)
and the received signal through this channel is:

r(t) = fo_o h(t)s(t —1)dt

e Frequency Flat Channel: If the coherence bandwidth is much larger than
the system bandwidth (B, > B). Here, the channel can be assumed
frequency invariant :

H(t,f) =~ H(t)

and the received signal through this channel is:

r(t) = h(t) s(t)

e Fast Fading Channel (time selective): If the coherence time is smaller
than or equal to the symbol duration (T, < T). In this case, the channel
cannot be assumed time invariant.

e Frequency Selective Channel: If the coherence bandwidth is smaller than
or equal to the system bandwidth (B, < B). In this case, the channel

cannot be assumed frequency invariant.

2.1.3 OFDM

Under frequency selective channels, Orthogonal Frequency Division Multiplexing
(OFDM) can be used to overcome frequency fading. In OFDM, the channel
bandwidth is divided to orthogonal subbands and the transmission is made
through each subband with independent signal. If each subband is smaller than
the coherence bandwidth, then the signal in one OFDM subband exhibits flat
fading. The OFDM subband signal is given as:

s (t) = Ay cos(2mfit)

Where T is the symbol duration. If the fading channel is given by H(t, f), then the
received signal is:

() = H(t, fi)si () = H (D)5 (t) (1)

where H, (t) is a time varying and frequency flat channel.



2.1.4 Stochastic Channels

If the channel in equation is a time selective channel, then Hy (t) changes in
unpredictable manner during the symbol time T and the value of H,(t) is
unknown. Therefore, it is reasonable to model Hy(t) as a stochastic process. If
the channel is stationary stochastic process, the channel statistics, like the mean
and variance, are not time varying and can be estimated at the receiver side and
then feed back to the transmitter. For MIMO channels, the channel statistics
knowledge increases the performance of the MIMO communication systems
compared to the performance when no channel knowledge is available. In the

Sec.|2.4] we will discuss the stationarity of radio channels in more details.




2.2 MIMO Communication Systems

Communication systems can have different setups regarding the number of
antennas at the transmit and receive sides. Typically, communication systems use
one transmit antenna and one receive antenna, so-called single-input single-
output (SISO) systems. On the other hand, multiple-input multiple-output (MIMO)
communication systems use multiple antennas at both the transmitter and
receiver as shown in MIMO transmit antennas can send different signals
at the same time and frequency. At the receiver side, each antenna receives
multiple signals from all the transmit antennas. Thus, MIMO transmit and receive
signals are represented as vectors while the MIMO channel function is
represented as a matrix.

In the next section, we will give a brief overview of the MIMO system described in

Eland E'
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Figure 1: MIMO system setup with multiple antennas at transmit and receive
sides.



2.2.1 MIMO System Model

Consider a MIMO system with ny transmit antennas and ny receive antennas. The
time-invariant and frequency flat MIMO channel is given as nyp X ny matrix:

[P hio o Pane ]
me| e (2)
|_thR1 thRZ ot hanTJ

where h;; is the channel gain of the path between the transmit antenna number j
and the receive antenna numberi. If s(t) = [s,(t) s,(t) ... snT(t)]T is the
transmitted signal vector through the above MIMO channel matrix then the
received signal vector r(t) = [ry(t) 12(t) -+ 1, ()] is given as:

r(t) = Hs(t) + n(t) (3)

where n(t) = [n,(t) ny(¢t) ... nnR(t)]T is the noise vector. Time invariant and
frequency flat MIMO channel has a favorable property. Since the channel gains
are constant, they can be estimated at the receiver by using training sequence
and then forwarded to the transmitter. Thus, the transmitter can allocate power
through the strongest channel paths, as will be discussed in the next section.

2.2.2 Constant MIMO Channel Capacity

The MIMO channel capacity C (the maximum mutual information between the
input and the output) over a time invariant and frequency flat MIMO channel H is
given by:

1
C = max log, det(I,,. + — HQH"
”Qll:P g2 ( ngr NO Q )

where Q is the input covariance matrix, P is the total transmit power and Nj is the
noise power. The optimal input covariance matrix Q can be exploited if the
channel is completely known at both the transmitter and the receiver. To
illustration this, we need to decompose the channel matrix H using Singular Value
Decomposition (SVD) as follows:

H = UxVv#

where U and V are, respectively, ng X ng and ny X np unitary matrices and X is
ngp X nr diagonal matrix contains the singular values of H sorted from maximum
to minimumas oy = 0 2 *** 2 Opin(ngny)-



In general, parallel data streams can be utilized if the MIMO channel H is known
at the transmitter and receiver. For instance, if §(t) is the data vector at the
transmitter, then we can set the transmitted vector s(t) as:

s(t) = V§(t)
Consequently, we will have the following received vector r(t):
r(t) = Hs(t) + n(t)
= (UZVH) (V5()) + n(t)
= UX§(t) + n(t)
At the receiver, we can extract the received data vector ¥(t) as:
F(t) =U"r(t)
= UH UZ5(t) + Ufn(t)
= X8(t) + n(t)
Alternatively, (t) can be written as:
7i(t) = 0y 5;(t) + 7, (¢)
In this case, the optimal input covariance matrix Q is given by:
Q = VPV# (4)

where P = diag(Py, P,, ..., P,;) is ang X ny power matrix and P; is the power

1 +
Pi=<ﬂ—?> (5)

4

of §;(t) allocated as:

where x* indicates maximum(x, 0) and p is selected such that Z?le P, = P. The
power allocation in equationwill allocate more power in the largest singular
values of H and no power will be allocated for low singular values.

Nevertheless, if the channel information is unknown at the transmitter, then the
power allocation will be uniformly distributed over the transmit antennas i.e.
P, =P/npand Q = P/nr 1, . In this case, the channel mutual information will

be lower than the channel capacity.



2.3 Time-Variant MIMO Channels

The MIMO channel capacity can be achieved if the MIMO channel gains are
known at both the transmitter and receiver. Unfortunately, mobile MIMO
channels are time and frequency selective. In general, the MIMO channel impulse
response is given as a linear time varying filter:

[ hi(6T) hip(tT) P (67)
H(t,7) = h21(:t: 7) hzzgtr 7) . thT:(t' 7) (6)
g1 (6D hyga(67) R (6,7))

If s(t) is the transmitted signal through H(t, 7) then the received signal can be
written as:

r(t) :jio H(t,7) s(t — t) dt + n(t) (7)

The frequency spectrum of the channel is given by the Fourier transform of
H(t, t) with respect to 7:

o]

H(t, ) = f__ H(t,7) e /2™ dr (8)

Using OFDM, the channel will be only time selective:
r(t) = H(t) s(t) + n(t) (9)

Unfortunately, it is not possible to use the instantaneous channel gains under a
time selective channel since the channel is changing over time in a random
manner within the transmission time. Alternatively, the channel in equation
can be modeled as a stationary stochastic process. Under the stationarity
assumption, the statistics (i.e. the mean and covariance) of the channel matrix are
constant and can be estimated at the receiver instead of the deterministic
channel values. However, if the MIMO channel is not stationary, then the channel
statistics may also change very fast with time and, hence, further investigation of
the channel stationarity is needed to examine the feasibility of the channel
statistics utilization.

In the next sections, we will try to investigate the stationarity of MIMO channels
and find suitable methods to measure the stationarity. These methods can be
applied one time for off-line recorded channels, since the non-stationarity of



MIMO channels is generally due to the non-stationarity of the spatial properties
of the communication environment.

2.4 Stationarity of Radio Channels

In this section, we will discuss the stationarity of stochastic mobile channels. We
will start with the SISO case then extend it to MIMO based on EI

2.4.1 Stationary SISO Channels

SISO time-variant and frequency selective mobile channels can be seen as two
dimensional stochastic process in t and 7. If the stochastic process is stationary,
then the channel first and second order statistics are constant over absolute time
and frequency. Thus, they can be utilized instead of the instantaneous values of
the channel that varies over time and frequency. Typically, the second order
statistics (i.e. the variance or the autocorrelation function) are used while the
mean value of the mobile channel is assumed to be zero. The autocorrelation
function of h(t, 7) is given by 4-dimensional function:

Ry (t,T; At,At) = E[h(t + At, T + AT)h* (¢, 7)]

If the channel is assumed to be wide sense stationary (WSS) in time, then R, will
depend on the time separation At only and does not depend on the absolute
time t. The autocorrelation function of WSS channel can be written as:

RYSS(1; At, At) = E[h(t + At, T + AT)h*(t, 7)]

Furthermore, if the two signal components received with different time delays are
uncorrelated, then Ry, is zero for At # 0 and the channel is called uncorrelated
scattering (US). The autocorrelation function of the wide sense stationary
uncorrelated scattering (WSSUS) channel can be written as:

RYVSSUS (1; At, At) = Ry, (1; At)S(AT) = E[h(t + At, T)h*(t,7)]6(AT)
It can be shown that WSSUS channels are stationary in frequency [7]:
RYSSUS(At, Af) = E[H(t, f)H*(t + At, f + Af)]

Therefore, the correlation function of WSSUS is also independent of the
frequency. The variance of the channel is a constant value and can be found by
setting At = Af = 0.The double Fourier transform of RYSSUS(At,Af) with
respect to At and Af is called the scattering function and it is given by:

10



ChSSU8 (1,v) = f f Ry (At,Af) e~ T2mvALg=J2WTAS GAL dAf

where v is the Doppler frequency shift. This function shows the signal power for
different time delays and Doppler shifts. In the WSSUS case, we see that the
scattering function is independent of time and frequency.

2.4.2 Non- Stationary SISO Channels

Unfortunately, mobile radio channels are not WSSUS over all time and frequency
periods. As the communication environment may has different propagation
conditions, the channel statistics change accordingly. Instead, the channel is
assumed quasi-WSSUS (QWSSUS). This implies that the channel can be assumed
WSSUS within a limited time and bandwidth, so-called stationarity region. If the
stationarity region is sufficiently large, the channel statistics can be exploited at
the receiver and transmitter. On the other hand, for relatively short stationarity
region, the channel statistics change very quickly and it is not possible to exploit
the channel statistics at the transmitter. Thus, it is important to examine and
measure the stationarity regions.

For non-WSSUS channels, a local correlation function (LCF) that depends on time
and frequency is given as:

Ry(t, f,At, Af) = E[H(t, f)H*(t + At, f + Af)]
The stationarity time T and bandwidth By is defined as:
Ry(ty, f, At Af) = Ry(t,, f, At Af) for |ty —t,] < T
Ry (¢, f1,4t, Af) = Ry(t, f2, At Af) for |f; — fo] < By

Within the stationarity time and bandwidth, the autocorrelation function can be
assumed constant:

Ry (ty, f1, At, Af) = Ry (ty, f2, At, Af) for |t; — t5| <Tsand |f; — fo] < Bg

For the SISO case, an estimation of the stationarity region for a non-WSSUS
correlation function was introduced in El Based on this, a channel correlation
function in time, frequency, time delay and Doppler is given as:

An(At, Af; AT, Av) = f f Ru(t, f; At ,Af) e /2TEAY=FAD) gt qf

11



where Ay, is called the Channel Correlation Function (CCF). The maximum time
delay separation for which A is approximately nonzero is denoted by A7,
while the maximum Doppler separation for which A, is nonzero denoted
by Av,,4, - According to El, the stationarity time T, and the stationarity
bandwidth B, are defined by:

1 1

T, 2 ,  Bg2

A vmax ATmax

If the channel is WSSUS, then At,,4x = AVinmgx = 0.

2.4.3 Doubly Underspread

One important property of non-WSSUS channels is called Doubly Underspread El
If the quasi-stationarity region of the non-WSSUS is much larger than the
coherence region, then the non-WSSUS channel can be called Doubly
Underspread (DU). This property is very useful when channel averaging around
some stationarity region is needed. If the channel is DU, then the number of
independent fading realizations within the stationarity region is large. Therefore,
averaging around the stationarity region is sufficient in this case since the
stationarity region contains a large number of independent fading realizations.
The DU channel condition is given by:

T,Bs > T.B. > 1 (10)

According to El and , if the channel is not Doubly Underspread, then the
estimation of the CCF from a single channel realization may not be reliable.

12



2.5 Stationary MIMO Channels

The investigation of MIMO channels non-stationarity has been introduced by
Herdin , where the LCF and the CCF have been extended and simplified for
MIMO channels.

The MIMO channel matrix in equation) can be formulated as 4-dimensional
function in time, frequency, transmit and receive antenna domain:

oo

H(t, f,np,ng) = f R gy (£, T) e J2TT dr
T=—00
In order to find the full correlation function of MIMO channels, we must consider
the correlations among all the four dimensions of the channel. As found in , the
correlation function Ry of MIMO channels is given as 8-dimensional function and
can be written as:

Ry (t1' to fu, fa N1 N1 2, MR 1 nR,Z) = E[H(tZIfz; nr 2, nR,Z)H*(tlrflr nr1, TlR,1)]
(11)

For stationary MIMO channels in all the 4-dimensions, the correlation function
depends on the separation in all the four dimensions and does not depend on the
absolute dimension:

Ry (At, Af, Ang, Ang) = E[H(tz’fz' nr 2, nR,z)H*(tpr nr1, nR,l)]

However, for a non-uniform antenna array (i.e. the spacing in-between antennas
is not the same), the separation in the antenna domain is different for different
antennas. In this case, the correlation function is often not stationary in the
antenna domain. Therefore, only time-frequency stationarity can be assumed:

Riql (At' Af, Nr1,Nr2,NR 1, nR,Z)

12
= E[H(tz'fz;nT,z'nR,z)H*(thpnT,1:nR,1)] (12)

By setting At = Af = 0, the variance of the WSSUS MIMO channel is given as:

Rz(nT,linT,ZtnR,ltnR,Z) = E[H(nT,ZrnR,Z)H*(nT,l'nR,l)] (13)

and is called the full correlation matrix. In order to simplify the estimation of
equation|( 13 )|further, different MIMO channel models were proposed, as will be
described in the next section.

13



2.6 MIMO Channel Models

In order to estimate the spatial correlation function of equation we need to
find a suitable analytical model to simplify it. Based on what is found in El and
, two basic models will be illustrated: the full spatial correlation channel
model and the Kronecker MIMO channel model. Both of the two models assume
that the MIMO channel is stationary in time and frequency.

2.6.1 The Full Spatial Correlation Channel Model

In the full spatial correlation channel model, the channel correlation matrix Ry
(also called the full correlation matrix) is given by:

Ry = E[vec{H}vec{H}"]

where H is ng X ny MIMO channel matrix with ng receive antennas and np
transmit antennas. Since vec{H} has ngn; elements, Ry will have ngny X ngny
elements which are very large and increase rapidly as we increase the number of
antennas at the transmit or receive side.

2.6.2 The Kronecker Channel Model

On the other hand, Kronecker MIMO channel model has the following channel
correlation matrix:

RH RTx ® RRx

tr{RRx}
where @ is the Kronecker product, Rr, and Ry, are the transmit and receive
correlation matrices, respectively. They can be separate from each other as the
following:

Ry, 2 E[HTH*], and Rg, & E[HH"]

where R, and Ry, are ny X nr and ng X ng matrix respectively. In this way, we
deal only with n;2 + ng? elements divided in two matrices instead of (ngny)?
elements in the previous model. The major disadvantage of this simplified model
is the low accuracy in describing a real MIMO channel particularly if the number
of antennas is increased. However, in this thesis we use this model for non-
stationarity evaluation and not for capacity estimation.
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2.7 Non-Stationary MIMO Channels

In EI, the local correlation function Ry of the non-stationary MIMO channel is
given as 8-dimensional function:

Ry (t1' to, f1, fo 1, N2, MR 1, nR,Z)
= E[H(tZ; fanr2, nR,Z)H*(tl' funra, nR,l)]

(14)

The CCF of MIMO channel is also 8-dimensional and therefore the estimation of it
is too complex. Unfortunately, estimating the CCF or LCF from a single MIMO
channel realization, according to , is impassible. Therefore, we have to limit the
correlation function to either time-frequency correlation over t and f, or spatial
correlation over ny and ng. However, the spatial structure of the channel plays a
central role in MIMO systems. For instance, some techniques like spatial
multiplexing and beamforming (as seen in Sec. are strongly sensitive to the
changes of the spatial structure of the MIMO channel. Consequently, MIMO
stationarity is evaluated mainly through the correlations in the spatial domain and

hence equation|( 11) can be simplified to:

RH(t; fing,nr2, Mg 1, nR,Z) = E[H(t' fings, nR,Z)H*(t: f nT,l;nR,l)]
Alternatively, Ry can be rewritten in square matrix form of size ngn; X ngny as:

Ry (t, f) = Elvec{H(t, f)}vec{H(t, f)}"] (15)

It is possible to estimate Ry (t, f) in equation from one time-frequency
channel realization H(t, f). If we assume that the spatial correlation matrix
Ry (t, f) does not change (i.e. the channel is stationary) within some averaging
time T,, and bandwidth B,, (more details will be given in Sec. . In this case, we
can rewrite Ry (¢, f) as a discrete time-frequency function as:

Ry;(n,m) = E, | Eylvec(H(t, f)}vec(H(t, )}"]]
for t € [nT,,(n+ 1)T,], f € [mB,,(m + 1)B,]
(16)

The spatial correlation may be different for different values of n and m. If the
averaging bandwidth B, is larger than the channel bandwidth, then equation|( 16)
can be reduced to Ry (n) as:
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Ry (n) = E | Ey[vec(H(t, f)}vec(H(t, )]
for t € [nT,,(n + 1)T,], f € [0, B]

(17)

where B is the channel bandwidth. Moreover, Ry (n) can be separated to Ry, (n)

and Ry, (n), as discussed in Sec.|2.6.2

2.7.1 Stationarity Region for MIMO channel

The spatial stationarity region of a MIMO channel H(t, ) can be defined as the
region (time or distance in meters) at which the correlation matrix described by
Ry (n) stays constant:

Ry(ny) = Ry(ny) for [ng —n,|T, < T

This can be estimated by comparing two correlation matrices Ry (n,) and Ry (n,)
that corresponds to two different regions.

Consequently, we need to define a function that compares two matrices and
produces a value that is proportional to the dissimilarity between them, we call it
Matrix Metric. This comparing function will be denoted by M(Ry(n,), Ry(n,))
and it ranges from a minimum value of zero (in this case we can say Ry(n;) and
R} (n,) are similar) to a maximum value of one for totally different matrices.

The matrix metrics can be formulated in different ways depending on the
transmission technique, channel type and sensitivity to different parameters. In
the following section, we will cover some of the matrix metrics and illustrate the
properties and performance of each one of them.
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2.8 Matrix Metrics Methods

2.8.1 Correlation Matrix Distance (CMD)

The Correlation Matrix Distance (CMD) proposed by [1] is one method to compare
two matrices. Basically, it measures the dissimilarity between two matrices using
the inner product between them. If we have two different matrices R(k) and R(l)
both of them have the same size (n X n), then the inner product of them is
defined by:

(vecR(O), vecRU)) = D > ry(ry() = r{RERM} (15
L j

The maximum value of the inner product above can be given using Cauchy-
Schwarz inequality as:

tr{R(ORD} < [IREIIRD Il

tr{R(x)R(D}
IRCONFIRDIF

where ||*||¢ is the Frobenius norm. The equality of the above holds if R(k) = R(l).
Accordingly, the CMD between two positive semi-definite Hermitian matrices
R(k) and R(l) is given by:

tr{R(K)R(D)}
IRCOIFIIRDII

CMD(R(k),R()) =1—

The CMD can ranges from zero to one. Apparently, the CMD is inversely
proportional to the inner product of the two matrices. If the two matrices are
orthogonal, the inner product between them will be zero and the CMD will be
equal to 1. This indicates that the two matrices are totally different in the sense of
dot product. On the other hand, if the two matrices are parallel, the normalized
inner product of the will be equal to 1 while the CMD will be zero, indicating that
the two matrices are equal.

However, CMD may not be very precise in evaluating the non-stationarity of
MIMO channel. For instance, if the two correlation matrices are full rank then
CMD can be very small even if the two matrices are different. Moreover, during
our evaluation of the outdoor measured MIMO channel, CMD rarely exceeds 0.7
and never achieves 0.9. Therefore, we will try to find different methods to
compare two matrices and then we will use it to evaluate the non-stationarity of
the measured MIMO channel.
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2.8.2 Normalized Correlation Matrix Distance (NCMD)

In general, if we have a matrix R(k), then there is a nonzero matrix R(l) such that
the CMD value between them is 1, (i.e. R(k) and R(l) are orthogonal and the
inner product tr{R(k)R(1)} = 0). However, since the correlation matrices have a
particular structure, the maximum possible CMD value for a correlation matrix
R(k) may be less than one for any positive semi-definite Hermitian matrix R(0). In
this case, we need to divide the CMD with a normalization factor so that the
maximum difference between the correlation matrices can achieve 1.

In order to find the normalization factor, we need to find the maximum value of
the CMD given one of the correlation matrices (in our case R(k)). The second
matrix R(l) can be any Hermitian nonzero matrix. Mathematically, we have the
following maximization problem:

CMD(R(k), R(l)) = ||R%ﬁ;(¢0

<1 tr{R(K)RQ)} )

ma -
RO [x0 IRCIFIRDII

Alternatively, we can minimize the inner product term as:

tr{R(k)R(D}

min 19
IR0 [[RCE) [ IR (19)

The exact solution of the above equation is rather difficult. If we take the gradient
of the above equation with respect to every 7;;(l) element and equate it with
zero, we will end up with a nonlinear equation that depends on the remaining
unknown R(1) elements. However, without the loss of generality, a solution can
be found by making the following assumptions:

R(k) 2 UA(k)UH
R(D) 2 UA(DUH

where U is an unitary matrix, A(k) and A(l) is a diagonal matrix containing the
eigenvalues of R(k)and R(1), respectively. The eigenvalues in A(k) and A(l) are
sorted in decreasing order from maximum A; to minimum 4,,. Substitute the

above in the equation|( 18) we have:

tr{R(K)R(D} = tr{UA(K)UX UA(DU} = tr{UA(K)A(D)U}

= r{AGAD) = ) A0 D) (20)
i=1

18



In order to make equation|( 19) as small as possible, we can set 4;(1) = 0 for all
i # n except for 4,,(1) which can be chosen to be any value larger than zero since
it corresponds to the smallest eigenvalue of R(k). In this case, we can write

equation|( 19) as:

: tr{RDRDO} A K) 4D An(k)
IRDlir=0 RGO RO~ IREIIROIF IR

(21)

where the last equality is due to ||R(D) ||z = A4,(]). The solution in equation
holds for any Hermitian matrix R(k). In general, equation can be rewritten
as:

tr{R(k)R(D} = tr{R(K)UA(DHU"} = tr{U¥R(k)UA(D)} (22)
= [UHR(k)U]nn An(D

where [+];; refers to the entry at row i and column j. If u; is the ith column of U,

then the last term of equation|( 22) can be simplified as:

tr{R(K)R(D)} = [UHR(k)U]nn () = url-lIR(k)un A (D) (23)

Since R(k) is Hermitian it can be decomposed to the following:

n

R(k) = VA(K)VH = Z vvH 2, (k) (24)
i=1
Substituting equation|( 24) in|( 23) gives:
tr{R(HR(D} = ) ulfviviiu, 1,(D) A, (k) = ) (uffv)* A;(D) A, (k)
2 2
< I 20 ) (VD? = An() 2 (i) (25)
i=1

where that last equality holds since v; is orthonormal for all i and hence
Y (uflv)? = 1 for any vector u,, such that ||u,||, = 1. Substituting equation
in|( 19) gives the same result of equation|( 21).

Consequently, the maximum value of the CMD is:

cMD(R(k),R(D)) =1 — A )

ROL " o 0

max
IR@DIIF=0
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From the above expression, we can write the new normalized CMD (NCMD)
matrix metric as:

cMD(R(K),R(D))  CMD(R(k),R(l
NCMD(R(K),R(D)) = ( ;)(k)( )) _ CMD( IEN) )
1——Znl®)

/2?21 A% ()

where K) is the normalization factor. If the smallest eigenvalue of R(k) is equal

to zero, then the normalization factor will be equal to one and hence the NCMD is
the same as CMD. On the other hand, if R(k) has equal eigenvalues, then the

minimum value of K} is achieved and is equal to 1 — 1/+/n.

For small values of n (i.e. small number of transmit or receive antennas), the
maximum value of the NCMD is 3.4 times higher than CMD for two antenna
system and 2.3 times higher for three antenna system. For our case, we have a
4x4 MIMO channel; therefore, the minimum normalization factor is 0.5 which
increases the NCMD two times above CMD. However, for low rank matrices, the
minimum eigenvalue is zero and, hence, both the two methods will have similar
performance.

2.8.3 Distance between Equidimensional Subspaces (DES)

The last distance measure between two matrices used in this thesis is the
Distance between Equidimensional Subspaces (DES) method . In this method,
we extract the eigenvectors of the two correlation matrices and take only the first
p eigenvectors that correspond to the largest eigenvalues then we compare these
eigenvectors based on the DES between them.

To illustrate this, let R(p) and R(q) be two Hermitian matrices to be compared.
Accordingly, the R(p) can be written as:

R(p) = L ()u(p)uf (p) + 1, (P)u(p)uf (p) + -+ + 1, (P)u, (p)uf (p)

where 1;(p) and u; (p) are the eigenvalue and eigenvector of R(p), respectively.
We define Ry (p) as:

R, (p) = 4 (uy(k)uf (p) + 2, (P)uy (p)uf () + -+ + A (P)uk (P)uf (p)
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where p < n corresponds to the largest p eigenvalues of R(p). After that, we can

compare Ry (p) and Ry (q) using the DES method. The distance between R (p)

and R (q) can be computed by the following algorithm.

2831

DES algorithm
1. Compute the QR factorization of R, (p) and Ry (¢):

Ry(») = Q(®T(p)
Ry (@) = Q(@)T(q)

where T is upper triangular matrix. Note that the value of Qisn X k
matrix and can be found directlyas Q = [U; Uz ... Ug].

2. DefineC 2 Q¥ (»)Q(q).
3.  Find the SVD of C: SVD(C) = UZVH

where X is a diagonal matrix. The minimum value of X is the cosine of
the largest principle angle between R (p) and Ry (q) i.e. cos(0pqy) =
min(X).

4. Calculate the DES between Ry (p) and Ry (q) as:

DES(R(p), R(q), k) = sin(fqx) = /1 — c05?(Bpax) = /1 — min(Z)
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Chapter 3
Results

In this chapter, the matrix metric methods will be applied to realistic measured
MIMO channels. Then, these methods will be compared with each other, and a
short conclusion will be stated.

3.1 Measured MIMO Channel

In signal processing laboratory at KTH, we have access to a large data set of
realistic measured 4x4 MIMO channels for an outdoor environment made by
Ericsson Company, and applicable to LTE standard. The measurements were
performed in Kista, a suburb of Stockholm city in Sweden, for a driving car
scenario.

The center frequency and the bandwidth of the measured channels were 2.6 GHz
and 20 MHz, respectively.summarizes the properties of the measured
used in this thesis. Note that, the measured channel matrix function is sampled in
time and frequency; therefore, it can be written as a discrete function
H(nT,, mF,) or simply as H(n, m).

The used track in this thesis is track number 3A shown in Additionally,
we separated the track to LOS route (highlighted in dashed red) and the NLOS
route (highlighted in blue) based on visual inspections.

Location Kista, Stockholm, Sweden
Scenario Suburban, Driving car
Transmit antennas 4 antennas, at base station
Receive antennas 4 antennas, at moving car
Center frequency f; 2.6 GHz

Wavelength A, 0.115m

Bandwidth B 20 MHz

Frequency sample spacing F, 123 KHz

Number of frequency samples N¢ 162

Time sample spacing T, 5.33ms

Maximum receiver speed S;, 4 35 Km/hr

Average receiver speed s;,4 22 Km/hr

Table 1: Properties of the measured MIMO channels
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Figure 2: Track number 3A, the LOS and NLOS routes are highlighted in red and
blue, respectively.

The antenna structure of the transmit antennas (at base station) and receive
antennas (at the car roof) are shown in As shown in the
transmit antennas are segregated to two dual polarized antennas. In this thesis,
small and large spacing between the dual polarized antennas were used.
However, all the non-stationarity evaluation was made with the small spacing
setup while the large spacing setup was used only for comparisons in Sections

3.4.2.3|and|3.4.3.3

TX1 X
TX2

RX1 RX4
A
_ - D)
E o
wn c . .
5G Travel Direction — | I |
¥7)
3 RX2 | | RX3
v

T3 >< At the Car Roof
TX4

Figure 3: Antenna configuration of transmit and receive antennas.
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3.2 Minimum Stationarity Region

In order to estimate the correlation matrix, we first need to find the averaging
time T, and bandwidth B,. The averaging time and bandwidth should be
sufficiently large to create a reliable estimation of the correlation matrix.
However, the averaging time and bandwidth should be smaller or equal to the
minimum stationarity time T7™™ and bandwidth B™™, respectively to ensure that
the statistics of the spatial structure are constant within the averaging time and
bandwidth. Therefore, we have to define roughly the minimum stationarity region
of the spatial structure before we estimate the exact stationarity region.

3.2.1 Minimum Stationarity Time

The statistics of the spatial structure can be assumed constant, if the receiver
move a distance less than 10 A.. For a moving car scenario, as the case for our
channel, the stationarity time can be roughly assumed as the time that
corresponds to moving 10 A.. Therefore, the stationarity time can be calculated
as:

101, DMn

min
7; ~ =

Savg Savg

where 54,4 is the average car speed and D™ is the minimum stationarity
distance. By using the average speed of the car, the average stationarity time is
about 188.8ms. However, since the speed of the car s(t) is time varying, the
instantaneous stationarity time is also varying. Thus, in order to make the
correlation matrix independent of time, we need to express the channel as a
function of distance rather than time.

Fortunately our measured channel is equipped with a GPS data showing the
position of channel samples every one second. Therefore, we can average over
every D, = D™ = 10 A, meter and the correlation matrix can be expressed in
term of discrete distance steps as R(d) = R(D,n).

3.2.2 Minimum Stationarity Bandwidth

Since the channel bandwidth is much smaller than the center frequency (the
channel bandwidth is only 0.8% of the center frequency), we will assume that the
spatial structure is stationary within all the channel bandwidth i.e. B, =
BM™™ =20MHz.
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3.2.3 Doubly Underspread
Recall the doubly underspread (DU) condition in equation|( 10)[and :

T,B, » T,B, > 1

In a similar analysis to what we found in El, and , the averaging time and
frequency were calculated to be 188.8ms and 20MHz, respectively. The maximum
Doppler shift is can be calculated as v, = (Smax/C)fe = 53 Hz hence the
coherence time T, =19ms. If we assume that the maximum delay travel 2km, as
the total length of the track is 1km, then the value of the coherence bandwidth
B. = c/d is roughly 150kHz. Therefore, the doubly underspread is satisfied as
188msx20MHz > 19msx150kHz = 2850 > 1. The total number of independent
fading realization within the stationarity time and bandwidth is about T,,B,/
T.B. = 1320 realizations.

3.3 Estimation of Correlation Matrix

Before we can start non-stationarity investigation of the measured channel, we
need to estimate the correlation matrix of equation. Nevertheless, we have
one discrete time and frequency realization of the measured channel. Therefore,
the spatial correlation matrix can be estimated by averaging within a stationarity
region (time and frequency) in which the spatial structure of the channel can be
assumed constant as:

Ne(d) Ny

Nid)Nif Z Z vec{H(n, m)}vec{H(n, m)}"

n=1 m=1

iiH @ =

where N;(d) is the number of time samples within the distance [dD,, (d + 1)D,]
and Ny is the number of stationary frequency samples. Alternatively, we can
estimate the Kronecker transmit and receive correlation matrix as:

Ne(d) Ny

—~ 1 1 .
Ry, (d) = Nt(d)ﬁf Z Z HT(n,m)H (n,m)

n=1 m=1

N¢(d) Ny

_ 1 1
Rexl®) = oy Z Z H(n, m)H" (n, m)

n=1 m=1
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3.4 Evaluation of MIMO Non-Stationarity

3.4.1 Spatial Stationary Channel

In this section, we will illustrate the performance of the matrix metrics for still
transmitter and receiver to ensure proper functionality of the matrix metric
functions. In the beginning of the measurements, the car was standing for 3
seconds before it starts moving. The channel has more than one multipath

component and varies with frequency as shown in[Figure 4

20 =
0 -45
N 15 .' -50
=
>
% 10 -55
S
o
o
L -60
5
-65

0 0.5 1 1.5 2 2.5 3
Time, sec

Figure 4: Spatial Stationary Channel versus time and frequency.

In order to evaluate the matrix metrics under this type of channel, the correlation

matrices as a function of time (Rp.(t) and Rz, (t)) is needed here.

shows the matrix metrics values of the transmit and receive correlation matrices
with respect to the first instant R(t = 0). Here, the DES method is used with a

base number k=1. Apparently from all the matrix metrics stay below
0.08 as an indication of spatial stationarity.
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Figure 5: CMD, NCMD and DES of spatial stationary channel with respect to
R(t = 0).

3.4.2 LOS Channel Non-Stationarity

The LOS region of the channel was detected by visual inspection of the channel
spectrogram. The frequency spectrum of the LOS channel is flat, since the LOS
component with zero delay is the dominate signal while the multipath signals are
much Iower.lm'shows the distance-frequency LOS channel spectrogram
whiIelFigure 7|shows the eigenvalues variation of Ry, and Ry, versus distance. In
the next sections, we will evaluate the LOS non-stationarity using matrix metric

methods.

Frequency, MHz

80 100 120
Distance, m

Figure 6: LOS Spectrum versus frequency and distance. The color bar
shows the channel strength in dB.
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Figure 7: The eigenvalues of Ry, and Ry, versus distance for the LOS route.

3.4.2.1 Spatial Variation of LOS Channel

Initially, the matrix metrics for the starting point of LOS route were evaluated
using the estimated correlation matrices Ry, (d) and Ry, (d) as a function of
distance.shows the variation of the matrix metrics with distance when
comparing the first correlation matrix R(0) with the entire route. In general, the
matrix metrics increase with distance as the spatial structure variance of the
channel changes. However, both the CMD and the NCMD values do not exceed
0.8 even with a large distance separation. As clearly observed from the
NCMD method performance is very close to CMD method. In fact, the
normalization factor was very close to one (0.99 and 0.98 for R, (0) and R, (0),
respectively) due to the large ratio between the maximum and minimum
eigenvalues of the correlation matrix, as seen in In this case, the NCMD is
only 2% above CMD. On the other hand, the DES method appears to be more
sensitive to the spatial variations with an average sensitivity gain of 0.2 above
both the CMD and NCMD methods.
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Figure 8: Different matrix metrics of the LOS route, in (a) M(R1(0), R, (d)) and
in (b) M(ﬁRx 0), l’in ().

More illustration of the matrix metrics between all distance points is given in
In this figure, the image diagonal corresponds to the matrix metrics
between two similar points where d; = d, and hence the matrix metrics value is
zero. All the images show distinct sections of the spatial structure. For NCMD
method at transmit side,a shows that the whole LOS route is stationary.
On the other hand, the receive side in b has 6 separate stationarity
sections that have similar spatial properties (the largest one is approximately from
0 mto 50 m).
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Figure 9: The NCMD and DES values between all distance points of the LOS route.

On the other hand, the DES method shows more details for different spatial
sections. Comparing the NCMD with DES of the receiver side [Figure 9]b and
Figure 9|d), it can be seen that section [0m, 50m] seems to have one spatial
structure when using NCMD method Wlb) while the same section appears
to has different spatial structures when using DES (|Figure 9]d).
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3.4.2.2 LOS Channel Stationarity Distance

The local stationarity distance can be defined as the distance at which the matrix
metric is lower than a certain threshold value. Mathematically, it can be
expressed as:

D(R(dl)) = maxd, subject to: M(R(dl),R(dz)) <c

where c is the threshold value. Recall|Figure 8] if a threshold value of 0.2 is used,
the stationarity distance of point zero for the DES metric is about 10 m at the
transmit side. Note that, M(R(d;),R(d,)) should stays below c all the way
between d; and d,.

Based on the pervious definition, the stationarity distance of the LOS route is

calculated with a threshold value of 0.2.|Figure 10|shows the local stationarity
distance of different matrix metrics.
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Figure 10: Local stationarity distance of different matrix metric methods in the
LOS route with threshold value = 0.1.

Again, the performance of the CMD and NCMD is very similar. According to CMD
and NCMD metric, it can be seen that there is more than one stationarity section
in the LOS route. For illustration, section [Om, 50m] is considered to be stationary
with respect to NCMD and CMD for both transmit and receive sides since the
CMD value for any two points inside this section is less than 0.2. On the other
hand, the DES method appears to have much lower stationarity distances with
few and short stationarity sections. For some transmission scenarios,
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beamforming for instance, the CMD and NCMD will give much larger estimation of

the stationarity distance.

The average value and standard deviation of the CMD, NCMD and DES versus
distance separation Ad of the LOS route are shown in The standard
deviation is shown as an error bar on each point. The total number of realizations
used is about 110 realizations taken from the first 110 m of the LOS route. From
it is possible to find the stationarity distance length based on different
threshold values.
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Figure 11: Mean value and standard deviation of CMD, NCMD and DES versus Ad
for the LOS route.
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3.4.2.3 LOS Non-Stationarity Using Different Transmit Antenna Spacing

The second measurement of the LOS route was performed with exactly the same
receive antenna type while the spacing between the dual polarized antennas was
increased at the transmit side. shows the average NCMD and DES
versus the separation in distance for the small and large antenna spacing. From
the figure, the large antenna spacing has increased the non-stationarity at the
transmit side compared to the small antenna spacing while the non-stationarity at
the receive side is exactly the same. In the small antenna spacing, all the four
transmit antenna elements approximately have the same LOS path and, hence,
the small antenna spacing is more stationary than the large antenna spacing.
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Figure 12: Distance shift versus matrix metric at transmit and receive sides of the
small and large antenna spacing at the transmit side for LOS channel.
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3.4.3 NLOS Channel Non-Stationarity

The NLOS channel changes rapidly with frequency and distance. In track 3A, the
NLOS route was detected as shown in The channel data is measured
using exactly the same antennas of the LOS route (small antenna spacing).
Apparently, the NLOS channel has much lower signal strength than the LOS and
hence much lower eigenvalues.

Figure 14|shows the average eigenvalues of Ry, and Ry, for NLOS channel sorted

from maximum to minimum. Comparing [Figure 14| with the NLOS

channel shows more closely eigenvalues than the LOS channel. This seems to be
reasonable since LOS MIMO channels are low rank, in general.
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Figure 13: NLOS Spectrum versus frequency and distance. The color bar shows the
channel strength in dB.
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To evaluate the non-stationarity of the NLOS channel, the same methods used
previously in LOS channel was applied here. Nevertheless, the DES method can be
applied with different base number k, in this case. Since the eigenvalues of Ry,
are close to each other, different base number will result in different stationarity
measure, as will be shown in next sections.

3.4.3.1 Evaluation of the Spatial Variation of NLOS Channel

Figure 15|shows the variation of the matrix metrics with distance of the NLOS
channel when the first correlation matrix R(0) is compared with the entire route.
Here, the difference between the CMD and NCMD is relatively large compared to

the LOS case (the normalization factor is 0.66, and the NCMD is 50% larger than
CMD at the receive side).
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Figure 15: CMD, NCMD and DES of the NLOS with respect to R(0).

From

|Figure 15|a, it is clearly that there is a large difference between DES method
compared to both CMD and NCMD. The DES method with base p = 1 shows very

large variations in the spatial structure while, in contrast, CMD and NCMD show
lower spatial variation.

The performance of the DES method with different base numbers at the transmit

side is shown in[Figure 16/ In this figure, it can be seen that different base number
produces different metric methods. Since the smallest DES variation corresponds

to p = 2, it seems that the bases of the largest two eigenvalues are interchanging
with each other while the bases of the remaining eigenvalues stay below them.
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Depending on the MIMO transmission scenario, different bases number can be
chosen when using the DES method.
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Figure 16: Different base numbers of DES of the NLOS route with respect to
R (0).

The spatial variation at the transmit side of all points in the NLOS route with
different base numbers for the DES method is shown in Comparing
[Figure 17|with(Figure 9] the CMD, NCMD and DES values for the NLOS case seem
to be higher than the LOS channel.
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Stationarity distance, m

Stationarity distance, m

3.4.3.2 Evaluation of NLOS Channel Stationarity Distance

The stationarity distance of the NLOS channel for 0.2 threshold value is shown in
From this figure, the DES method atk = 1 shows almost no local
stationarity distance for the NLOS route at both transmit and receive sides. On the
other hand, CMD method shows very large stationarity distance at both sides. At
the transmit side, it shows that almost the entire NLOS route is stationary with
distance. Since the NLOS channel is higher in rank than the LOS channel, the CMD
metric underestimate the non-stationarity by a large amount.

The stationarity distance for different base numbers for the DES method is shown

in|Figure 19| As expected, the less sensitive base number (k = 2) has the largest
stationarity distance compared to other bases but still very low compared to CMD

and NCMD.
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Figure 18: Local stationarity distance of CMD, NCMD and DES in the NLOS route.
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Figure 19: Local stationarity distance of different base values of DES method in the
NLOS route at the receiver side.

[Table 2|and|Table 3[shows the average stationarity distance of the NLOS route at
the transmit side and for 0.2 and 0.1 threshold value, respectively. Here, the CMD
overestimates the real stationarity distance compared to the NCMD.

Matrix Metric Average Stationarity Distance at TX (c=0.2)
CMD 120 m
NCMD 82m
DES (k=1) 0.63m
DES (k=2) 4m
DES (k=3) 0.5m

Table 2: The average stationarity distance at the transmit side of the NLOS route
for 0.2 threshold value.

Matrix Metric Average Stationarity Distance at TX (c=0.1)
CMD 40 m
NCMD 18 m

Table 3: The average stationarity distance at the transmit side of the NLOS route
for 0.1 threshold value.

The mean value and standard deviation of the CMD, NCMD and DES versus the
distance separation Ad at the transmit side of the NLOS route is shown in
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3.4.3.3 NLOS Non-Stationarity Using Different Transmit Antenna Spacing

The second measurement of the NLOS route was performed with exactly the
same receive antenna type while the spacing between the dual polarized
antennas was increased at the transmit side.shows the average NCMD
and DES versus the separation in distance for the small and large antenna spacing.
From the figure, the large antenna spacing has slightly increased the non-
stationarity at the transmit side. Under the NLOS environment, the four transmit
antenna elements no longer have the same path components; thus, the large
spacing antenna slightly reduced the non-stationarity at the transmit side
compared to the LOS case.
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Figure 21: Distance shift versus matrix metric at transmit and receive sides of the
small and large antenna spacing at the transmit side for the NLOS route.
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Chapter 4
Discussion

4.1 Conclusion

In this thesis, the non-stationarity of MIMO channels was investigated. The main
parts of the thesis were to find suitable non-stationarity metrics and to examine
these metrics under a measured 4x4 MIMO channel that is applicable to LTE
standard.

The non-stationarity of MIMO channel depends strongly on the spatial properties
(antenna structures, positions of transmit and receive antennas, etc) in addition
to time and frequency. Therefore, it is very important to define a stationarity
distance along with stationarity time and bandwidth. For this reason, three MIMO
non-stationarity metrics were introduced, namely Correlation Matrix Distance
(CMD) proposed by Herdin , Normalized CMD (NCMD) and Distance between
Equidimensional Subspaces (DES). The three metric were applied to the measured
channel and compared to each other. The measured channels were divided to
LOS, NLOS. Different local stationarity distances were found within these
channels.

The CMD metric is based on inner product between two matrices. Under the
measured MIMO channel, we found that the CMD does not exceed 0.7 in most
cases, similar to the results found in . Furthermore, the CMD underestimate the
channel non-stationarity compared to DES for beamforming scenario (only one
eigenvector is used), similar to the results found in , but our results show
much more difference. This problem become more visible under NLOS channels
were the correlation matrix is high rank and noisy. To resolve this, a normalization
factor for the CMD was added to ensure that the CMD could achieve its maximum
value and the new method was called NCMD.

The normalization factor of the NCMD metric, theoretically, can increase the CMD
value up to 100% for 4x4 MIMO system depending on the smallest eigenvalue of
the correlation matrix. However, for correlation matrix that is not fully rank (i.e.
the smallest eigenvalue is close to zero), the normalization factor will be close to
one, as the case for our LOS route. In the NLOS route, we found that the CMD
underestimate the non-stationarity by 46% on average compared to NCMD.
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The inner product based metrics may not be suitable for some transmission
schemes that are based on matrix properties like eigenvectors and eigenvalues.
Therefore, we introduce the DES metric that is much more sensitive to the change
in these properties. Under the measured channel, we found that these properties
are not stationary for NLOS channel environment and fairy stationary for LOS
channel.

4.2 Future Work

The field of MIMO non-stationarity has a large potential of improvements. The
matrix metrics described so far are not compared yet to any type of transmission
schemes. It is very important to relate the non-stationarity metrics to the
degradation of the performance of different transmission schemes.
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