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SUMMARY

We extend our results on fictitious domain methods for Poisson’s problem to the case of incompressible
elasticity, or Stokes’ problem. The mesh is not fitted to the domain boundary. Instead boundary conditions
are imposed using a stabilized Nitsche type approach. Control of the non-physical degrees of freedom,
i.e., those outside the physical domain, is obtained thanks to a ghost penalty term for both velocities and
pressures. Both inf–sup stable and stabilized velocity pressure pairs are considered.

KEY WORDS: finite element methods, stabilized methods, penalty methods, Stokes’ problem, fictitious
domain

1. INTRODUCTION

In our previous work [10] we considered a ficitious domain method for Poisson’s problem that
used Nitsche’s method to impose boundary conditions. Here we will extend this approach to the
case of Stokes’ problem. The complication here is that the mutual satisfaction of the boundary
conditions on the unfitted boundary and the discrete inf–sup condition leads to difficulties.
This is not surprising since the discrete inf–sup condition requires a careful balancing of the
spaces for velocity and pressure approximation and since the boundary can cut the elements
in an almost arbitrary fashion, uniformity can not, in general, be guarantueed. In the present
paper we follow the ideas of [11] and [4]. We assume either that the velocity-pressure pair
used satisfies the discrete inf–sup condition in the interior of the domain or that a symmetric
stabilization method is used. Stability up to the mesh boundary is then obtained by a ghost
penalty term.

Since we obtain stability uniformly over the domain, we can prove that the condition number
is bounded irrespectively of how the boundary cuts the mesh. Optimal convergence estimates
are then obtained for smooth solutions using suitable extensions of the exact solution. Here
it is important that the ghost-penalty terms are weakly consistent to the right order, but still
ensures sufficient control of the non-physical degrees of freedom.
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2. THE STOKES’ PROBLEM

Let ≠ be a bounded domain in R2 with polygonal boundary ° (possibly with smooth curved
faces). The Stokes’ problem takes the form, find the velocities u and the pressure p such that

°µ¢u+rp = f in ≠

r ·u = 0 in ≠

u = 0 on °.

(1)

Here f 2 [L2(≠)]2, ¢u = [¢u1, ...,¢ud] Let (u,v)X denote the L2-scalar product on X ,

(u,v)X :=
Z

X
uv dx,

with associated norm kuk0,X := (u,u)
1
2
X . The Sobolev norms associated with the spaces Hk(X )

will be denoted by kukk,X . We let L2
0(≠) denote the functions in L2(≠) with zero average.

Formally we obtain the weak formulation by multiplying (1) by a function (v, q) 2 [H1
0(≠)]2 £

L2
0(≠)=V £Q and integrating by parts, leading to the problem of finding (u, p) 2V £Q such that

(µru,rv)≠° (p,r ·v)≠+ (q,r ·u)≠ = (f ,v)≠, for all (v, q) 2V £Q, (2)

where
(ru,rv)≠ :=

Z

≠
ru :rv dx.

On more compact form the problems reads: find (u, p) 2V £Q such that

B[(u, p), (v, q)]= (f ,v)≠, for all (v, q) 2V £Q, (3)

where
B[(u, p), (v, q)] := (µru,rv)≠° (p,r ·v)≠+ (q,r ·u)≠.

For the purposes of the analysis we will assume that u 2 [Ht(≠)]2, p 2 Hu(≠), with t ∏ 2 and
u ∏ 1.

3. THE FINITE ELEMENT FORMULATION

In a standard finite element method the mesh is fitted to the boundary or interpolates the
boundary to some suitable order. Instead we propose to solve (1) approximately on a family
of quasiuniform, conforming triangulations Th, such that ≠̄ Ω Th but Th 6Ω ≠̄. However for
all triangles K 2 Th there holds K \≠ 6= ; and we define the domain covered by Th by
≠T :=[K2Th K . In the analysis we use the notation a. b for a ∑ Cb, where C denotes a generic
constant that may change at each occurrence, but is independent of h and of the interface
position under the assumptions made precise in following section.

We will use the following notation for mesh related quantities. Let hK be the diameter of K
and h =maxK2Th hK . By

Gh := {K 2Th : K \° 6=;}

we denote the set of elements that are intersected by the boundary. For an element K 2Gh, let
°K :=°\K be the part of ° intersecting K .

We make the following assumptions regarding the mesh and the boundary (from [16]).
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• A1: We assume that the triangulation is non-degenerate, i.e. there exists C > 0 such that,

hK /ΩK ∑ C 8K 2Th

where hK is the diameter of K and ΩK is the diameter of the largest ball contained in K .
• A2: We assume that ° intersects the boundary @K of an element K in Gh exactly twice

and each (open) edge at most once.
• A3: Let °K ,h be the straight line segment connecting the points of intersection between °

and @K . We assume that °K is a function of length on °K ,h; in local coordinates

°K ,h = {(ª,¥) : 0< ª< |°K ,h|,¥= 0}

and
°K = {(ª,¥) : 0< ª< |°K ,h|,¥= ±(ª)}.

Since the curvature of ° is bounded almost everywhere, the assumptions A2 and A3 are always
fulfilled on sufficiently fine meshes. These assumptions essentially demand that the interface is
well resolved by the mesh.

We denote the set of interior faces of the triangles in Th by F . The faces of triangles in Gh,
that are not on the mesh boundary @≠T will be denoted FG ,

FG := {F 2 @K for some K 2Gh and F \@≠T 6= F}.

Associated with Th we have the finite element spaces

Vh = {v 2 [C0(≠)]2 : v|K 2 [Pk(K)]2, 8K 2Th},

Qh = {q 2 L2(≠) :
Z

≠\Gh
q dx = 0; q|K 2 Pm(K), 8K 2Th}.

Remark 3.1. Herein we restrict the discussion to this simple choice of spaces; however, the
extension of the results to other spaces, using for instance bubble enriched velocities, is immediate.
The orders m and k above can be thought of as the highest full polynomial order of the space.

The finite element discretisation now takes the form: find (uh, ph) 2V h £Qh such that

Bh[(uh, ph), (vh, qh)]+Sh[(uh, ph), (vh, qh)]= (f ,vh), (4)

for all (vh, qh) 2Vh £Qh, where

Bh[(uh, ph), (vh, qh)] := ah(uh,vh)+bh(ph,vh)°bh(qh,uh)

where

ah(uh,vh)=
Z

≠
µruh :rvhdx°

Z

°
(µruhn) ·vh ds

°
Z

°
(µrvhn) ·uh ds+

X

K2Gh

Z

°K
∞uµh°1

K uh ·vh ds,

and
bh(ph,vh)=°

Z

≠
phr ·vh dx+

Z

°
phvh ·n ds.

The term Sh[(uh, ph), (vh, qh)] := ∞psh(ph, qh)+ ∞g gh[(uh, ph), (vh, qh)] denotes a stabilization
term, consisting of one part s(ph, qh) that ensures the inf–sup condition in case it is not satisfied
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by the spaces Vh £Qh and another part gh[(uh, ph), (vh, qh)] :=µg
u

(uh,vh)+µ°1 gp(ph, qh) that
denotes a ghost penalty term active in the interface zone only. The subscripts u and p denote
that different weights are used for pressures and velocities in the penalty term. The stabilization
operator will be assumed to satisfy the following upper bounds,

Sh[(vh, qh), (vh,0)].µkrvhk2
0,≠T

(5)
and

Sh[(vh, qh), (0, qh)].µ°1kqhk2
0,≠T

. (6)
The role of the ghost penalty term is to enforce the following strengthened stability

µkrvhk2
0,≠T

.µkrvhk2
0,≠+ gh[(vh,0), (vh,0)]

and

µ°1kqhk2
0,≠T

.µ°1kqhk2
0,≠\Gh

+ gh[(0, qh), (0, qh)]

(7)

for (vh, qh) 2Vh£Qh. The operator gh[(·, ·), (·, ·)] must satisfy certain weak consistency properties
and continuity properties that will be specified in the following. Examples of valid ghost penalty
terms have been given in [10, 12, 3] and will be recalled in the next section.

We assume that the following stability condition holds for Vh£Qh, for all ph 2Qh there exists
vph 2Vh \H1

0(≠\Gh) such that

kvphk1,≠\Gh ∑ cp1µ
°1kphk0,≠\Gh (8)

and
cp2µ

°1kphk2
0,≠\Gh

∑ bh(ph,vph)+ s(ph, ph), (9)
where s(ph, ph) is a stabilization operator that may be zero if the velocity-pressure spaces are
chosen so as to satisfy the relations (8)–(9) without it. Conditions (8)–(9) simply mean that we
either use an inf–sup stable velocity pressure pair in the interior of the domain, or a pressure
stabilized finite element method with symmetric stabilization. For relevant results on inf–sup
stable elements we refer for instance to [6, 7, 9] and for stabilized finite element methods that
may be used in the present context to [2, 5, 8, 11, 12, 15].

Remark 3.2. Note that the displacements and the pressures are defined also in the domain
Th \≠ where they have no physical significance. Only the penalty term is active in this zone.

Remark 3.3. Since the pressure is determined only up to a constant we have imposed the
condition Z

≠\Gh
qh dx = 0, 8qh 2Qh.

This is convenient both from the point of view of analysis and of implementation,

The formulation (4) satisfies the following consistency relation.

Lemma 3.4. (Galerkin orthogonality) Let (uh, ph) be the solution of the finite element
formulation (4) and (u, p) 2 H2(≠)d £H1(≠) be the solution of (3). Then

Bh[(uh °u, ph ° p), (vh, qh)]=°Sh[(uh, ph), (vh, qh)] 8(vh, qh) 2Vh £Qh. (10)
PROOF. Using the formulation (4) we may write

ah(u,vh)+bh(p,vh)°bh(qh,u)= (f ,vh). (11)
The claim follows by noting that bh(qh,u)= 0 and by integrating by parts in the remaining two
terms on the left hand side and using equation (1).
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3.1. Examples of ghost penalty operators

Depending on what polynomial order is used in the approximation spaces the ghost penalty
operator must be designed differently. For high order polynomial approximation the ghost
penalty term must give control of all polynomial orders. This can be achieved by adding a
penalty on the jump of derivatives of all orders,

gs(vh,wh) :=
X

F2Fh

kX

i=1
h2(i°1)+s

K

Z

F
[Divh][Diwh] ds. (12)

Here Di ph denotes the normal derivative of order i on the face. The evaluation of high order
derivatives can be avoided since this operator is equivalent to a local projection stabilization
operator. For each internal face F we introduce the pair of elements K and K 0 such that
F = K \K 0 and set K̂F := K [K 0. The penalty operator is then defined over all K̂F as follows

gsl(vh,wh) :=
X

F2Fh

(hs°3((vh °GF vh),wh)K̂F
,

where GF uh is a projection onto a polynomial on the two elements having F as a face defined
by GF vh 2Wl(K̂F ) such that

(ø°1GF vh, zh)K̂F
= (ø°1vh, zh)K̂F

, 8zh 2Wl(K̂F ).

where the projection space Wl(K̂F ) is defined by

Wl(K̂F ) := {zh 2 Pl(K̂F )}, l ∏ 0.

Observe that l must be chosen larger than or equal to k for the velocities and larger than or
equal to m°1 for the pressure in order to ensure weak consistency.

The simplest case is obtained for H1–conforming piecewise affine approximation, where the
form (12) reduces to a penalty on the jump of the normal gradient between adjacent elements.
The jump operator is defined by

gs(vh,wh) :=
X

F2FG

Z

F
hs[rvh ·nF ] · [rwh ·nF ] ds

with the natural, component wise extension to vector valued functions v := (v1h,v2h),

gs(vh,wh) :=
2X

i=1

X

F2FG

Z

F
hs[rvih ·nF ] · [rwih ·nF ] ds.

Then the ghost penalty operator takes the form

gh[(uh, ph), (wh, qh)] :=µg1(uh,wh)+µ°1 g3(ph, qh).

Note the different scaling in h for the operators acting on the velocity and the pressure. This is
because the pressure is controlled in the L2–norm and the velocity in the H1–norm. It is easy to
prove that the bounds (5) and (6) hold.

For further details on these approaches we refer to [13, 3]. Numerical examples, both using
gradient penalty and the local projection approach, will be given in Section 7.
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3.2. Examples of pressure stabilization operators

Most symmetric pressure stabilization methods known in the literature may be used. For
piecewise affine approximations it may be particularly appealing to apply the interior penalty
stabilization of [11] where

sh(ph, qh) :=µ°1 X

F2FT

Z

F
h3

F [rph ·nF ] · [rqh ·nF ] ds

since in that case all stabilization of the pressure is handled in a unified fashion. Otherwise
the classical Brezzi-Pitkäranta stabilization [8] will work, as well as local projection type
stabilizations [2], or other pressure projection stabilizations [15, 12, 11]. The Brezzi-Pitkäranta
stabilization may also serve as ghost penalty term for the pressure, but has too poor consistency
properties to be used for the velocities. Also in this case it is easy to prove the upper bound (6).

4. NORMS, CONTINUITY AND STABILITY

We will use the following norms on the trace of a function on °.

kvk2
1/2,h,° :=

X

K2Gh

h°1
K kvk2

0,°K
,

kvk2
°1/2,h,° :=

X

K2Gh

h1
K kvk2

0,°K
.

We note for future reference that

(u,v)° ∑ kuk1/2,h,° kvk°1/2,h,° . (13)

We also define norms associated with the discrete velocity and pressure approximations
respectively:

kuhk2
V ,T := kµ

1
2 ruhk2

0,≠T
+

∞∞∞µ
1
2
uh

∞∞∞
2

1/2,h,°

and
kphkQ,T := kµ°

1
2 phk0,≠T .

For the analysis we will use the following mesh dependent norms defined for functions in
[H2(X )]2 +Vh or [H2(X )]2 £H1(X ):

9v92
X :=

∞∞∞µ
1
2 rv

∞∞∞
2

0,X
+

∞∞∞µ
1
2 rvn

∞∞∞
2

°1/2,h,°
+

∞∞∞µ
1
2
v

∞∞∞
2

1/2,h,°

and
9(u, p)92

§ :=9u92
≠+kµ°

1
2 pk2

0,≠+kµ°
1
2 pk2

°1/2,h,°

and on Vh £Qh the norm

9(uh, ph)92
h := kuhk2

V ,T +kphk2
Q,T +Sh[(uh, ph), (uh, ph)].

Lemma 4.1. (Continuity of Bh[(·, ·), (·, ·)] and Sh[(·, ·), (·, ·)]) Let vh,wh 2Vh, u 2V+Vh, qh, yh 2Qh
and p 2Q+Qh. Then there holds,

Bh[(u, p), (vh, qh)].9(u, p)9§ 9(vh, qh)9h, (14)

Sh[(vh, qh), (wh, yh)]∑ Sh[(vh, qh), (vh, qh)]1/2Sh[(wh, yh), (wh, yh)]1/2, (15)
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PROOF. It follows from the Cauchy-Schwarz inequality and the trace inequality that

ah(u,vh).9u9≠ kvhkV ,Th ,

bh(qh,u). kqhkQ,T 9 u9≠
and

bh(p,vh). (kµ°
1
2 pk2

0,≠+kµ°
1
2 pk2

°1/2,h,°)1/2kvhkV ,Th .

We conclude by once again applying the Cauchy-Schwarz inequality.
By the symmetry of Sh[(·, ·), (·, ·)], the second claim is an immediate consequence of the

Cauchy-Schwarz inequality.

Lemma 4.2. (Coercivity of ah(·, ·) and inf–sup stability of bh(·, ·)) There exists cg > 0 so that for
any vh 2Vh and qh 2Qh there holds,

cgkvhk2
V ,T ∑ ah(vh,vh)+ gh[(vh,0), (vh,0)], (16)

and with vph as in (8)-(9)

cg cp2kqhk2
Q,T ∑ bh(qh,vph)+ s(qh, qh)+ gh[(0, qh), (0, qh)]. (17)

PROOF. First note that

ah(vh,vh)= kµ
1
2 rvhk2

≠°2kµ
1
2
vhk1/2,h,°kµ

1
2 rvhnk°1/2,h,°+∞kµ

1
2
vhk2

1/2,h,°,

where ∞ is a free parameter. Under assumptions (A1)-(A3) the following inequality holds with
CT independent of the intersection of @≠ with the mesh,

krvhnk°1/2,h,° ∑ CTkrvhk0,≠T .

The reason this trace inequality holds independently of the interface position is that the norm in
the right hand side is taken over all of≠T . Now recall the property (7) of the ghost penalty term.
Using the above trace inequality followed by the arithmetic-geometric inequality we arrive at
the relation

ah(vh,vh)+ g[(vh,0), (vh,0)]∏ cgkµ
1
2 rvhk2

0,≠T
° 1

2
cgkµ

1
2 rvhk2

0,≠T

+ (∞°2C2
T c°1

g )kµ
1
2
vhk2

1/2,h,°.

Choosing ∞ > 2C2
T c°1

g proves the claim. The second inequality, (17) is immediate by combining
(7), (8) and (9).

We will now prove a global version of the inf–sup condition directly on the form Bh[(·, ·), (·, ·)].
The proof of the inf–sup condition works on a truncated domain, without the boundary. Once inf–
sup control has been established in the interior of the domain stability up to the mesh boundary
is obtained using the ghost penalty term. This means that within the domain ≠\Gh we must
have surjectivity of the divergence operator. In order for this to hold, the domain boundaries
must be Lipschitz continuous uniformly in h. For any given mesh Th, the boundary ≠\ Gh is
polygonal and hence Lipschitz. The uniformity in h follows from the Lipschitz continuity of °
and the shape regularity of the mesh family {Th}h.

In view of this preliminary discussion we may prove the main result.
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Theorem 4.3. Let (uh, ph) 2Vh £Qh. Then

cs 9 (uh, ph)9h ∑ sup
(vh,qh)2Vh£Qh

Bh[(uh, ph), (vh, qh)]+Sh[(uh, ph), (vh, qh)]
9(vh, qh)9h

. (18)

PROOF. First by Lemma 4.2 there holds

cg 9 (uh,0)92
h ∑ Bh[(uh, ph), (uh, ph)]+Sh[(uh, ph), (uh,0)]. (19)

Consider the function vph of the stability relation (8)–(9) and observe that, again using the
arithmetic-geometric inequality,

ah(uh,vph)∑ kµ1/2ruhk0,≠\Ghkµ
1/2rvphk0,≠\Gh

∑ kruhk0,≠\Gh cp1kµ°1/2 phk0,≠\Gh

∑ c2
p1/(cg cp2)kruhk2

0,≠\Gh
+ 1

4
cg cp2kphk2

Q,T

and

Sh[(uh, ph), (vph,0)]∑ g
u

(uh,uh)
1
2 cS 9 (vph,0)9h

∑ g
u

(uh,uh)
1
2 cS cp1µ

°1/2kphk0,≠\Gh

∑ (cS cp1)2/(cg cp2)g
u

(uh,uh)+ 1
4

cg cp2kphk2
Q,T .

Using this inequality together with the inf sup stability (8)-(9) and with (17) we have,

1
2

cg cp2kphk2
Q,T ° c2

p1/(cg cp2)kruhk2
0,≠\Gh

° (cS cp1)2/(cg cp2)g
u

(uh,uh)° sh(ph, ph)

∑ Bh[(uh, ph), (vph,0)]+Sh[(uh, ph), (vph,0)].

It follows that by taking vh = uh +¥vph, qh = ph with ¥ < cg cp2/(2c2
p1)max(1, c°2

S ) we have
with c¥ > 0

c¥9 (uh, ph)92
h ∑ Bh[(uh, ph), (uh +¥vph, ph)]+Sh[(uh, ph), (uh +¥vph, ph)], (20)

provided ∞p and ∞g are chosen big enough. To conclude, we only need to prove the stability
estimate

9(uh +¥vph, ph)9h .9(uh, ph)9h .

This however follows immediately observing that

9(uh +¥vph, ph)9h ∑9(uh, ph)9h +9 (¥vph,0)9h

and, since S[(vph,0), (vph,0)]= ∞g g
u

(vph,vph) and supp(vph)=≠\Gh, we have using (5),

9(¥vph,0)92
h = ¥2kµ

1
2 rvphk2

0,≠\Gh
+¥2∞g g

u

(vph,vph). ¥2kµ
1
2 rvphk2

0,≠\Gh
.

Then, by the stability of vph, (8), it follows that

9(¥vph,0)92
h . ¥2(1+∞g)c2

p1µ
°1kphk2

0,≠\Gh
∑ (c0¥)2 9 (uh, ph)92

h . (21)

We conclude by combining (20) and (21), observing that cs = c¥(1+ c0¥)°1.
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Remark 4.4. Note that since the inf–sup condition is proved in the norm 9(·, ·)9h that gives
control of the velocity and the pressure over all of ≠T , and we have continuity of Bh[(·, ·), (·, ·)] on
discrete spaces in the same norm, it is possible to prove that the condition number of the matrix
is bounded independent of the interface/mesh intersection following [10]. We omit the details.

5. APPROXIMATION PROPERTIES

We need to show that our approximating spaces Vh and Qh have optimal approximation
properties on H2(≠) and H1(≠) respectively in the norms 9(·, ·)9§ and 9(·, ·)9h. This follows
from some minor modifications of the analysis in [16]. We construct an interpolant of (v, q) by
standard interpolants of [Hk+1]2£Hm–extensions of (v, q) as follows. Choose extension operators
Es : Hs(≠)! Hs(≠T ) such that (Ek+1

v,Emq)|≠ = (v, q) and

kEswks,≠T . kwks,≠i , 8w 2 Hs(≠), s = 0, . . . ,max(t,u), (22)

cf. Dautray and Lions [14]. Let Ih : H1(≠T )!Vh be a standard quasi interpolant. We will us the
same interpolant for velocities and pressures, in the latter case I§h : H1(≠T )!Qh. We define

v

§ :=Et
v and I§hv := Ihv

§ (23)

and similarly for the pressure
q§ :=Eu q and I§hq := Ihq§. (24)

Using these definitions we prove the approximation results necessary for the analysis.

Theorem 5.1. The following approximation estimates hold for the interpolation operator
defined in (23) and (24)

kv

§ ° I§hvkV ,≠T +kq§ ° I§hqkQ,≠T
. hr°1µ

1
2 kvkr,≠+hsµ°

1
2 kpks,≠, (25)

and
9(v° I§hv, q° I§hq9§ . hr°1µ

1
2 kvkr,≠+hsµ°

1
2 kpks,≠, (26)

with r =min(k+1, t) and s =min(m+1,u) and for all v 2 [H1
0(≠)\Ht(≠)]2 and p 2 L2

0(≠)\Hu(≠).

For the proof of this we need the following variant of a trace inequality on a reference element
that we recall from [16] and state here without proof.

Lemma 5.2. Map a triangle K 2 Gh onto the unit reference triangle K̃ by an affine map and
denote by °̃K̃ the corresponding image of °K . Under the assumptions A1-A3 of Section 3 there
exists a constant C, depending on ° but independent of the mesh, such that

kwk2
0,°̃K̃

∑ Ckwk0,K̃kwk1,K̃ , 8w 2 H1(K̃). (27)

PROOF. (Theorem 5.1)
Since the mesh is non-degenerate, it follows from Lemma 5.2, scaled by the map from the
reference triangle, that for s 2R

h°s
K kwk2

0,°K
∑ C

≥
h°1°s

K kwk2
0,K +h1°s

K kwk2
1,K

¥
, 8w 2 H1(K).



10

Hence, using once standard interpolation estimates, there holds

h°1
K kv° I§hvk2

0,°K
∑ C

≥
h°2

K kv

§ ° Ihv

§k2
0,K +kv

§ ° Ihv

§k2
1,K

¥

∑ Chr°1
K kv

§k2
r,K .

As a consequence, by the stability of the extension operator,

µ
1
2 kv° I§hvk1/2,h,°.µ

1
2 hr°1

K kv

§k2
r,≠T

.µ
1
2 hr°1

K kvk2
r,≠.

The first claim (25) then follows by standard interpolation estimates for the operator I§h, and
the stability of the extension operator. Since

9 (v° I§hv, q° I§hq)9§ . kv

§ ° I§hvkV ,≠T +kq§ ° I§hqkQ,≠T

+kµ
1
2 r(v° I§hv)nk°1/2,h,°+kµ°

1
2 (q° I§hq)k°1/2,h,°

we only need to upper bound the two remaining contributions in the right hand side. They may
both be treated similary as kv° I§hvk1/2,h,° and we give the details only for the viscous fluxes.
Lemma 5.2 applied to rwn and scaling gives

hKkrwnk2
0,°K

∑ C(kwk2
1,K +h2

Kkwk2
2,K ), 8w 2 [H2(K)]2.

Using this result applied to w= v

§° Ihv

§ and again standard interpolation estimates, it follows
that

hKkr(v° I§hv)nk2
0,°K

. hKkr(v° I§hv)k2
0,°K

.
≥
hKkv

§ ° Ihv

§k2
1,K +h2

Kkv

§ ° Ihv

§k2
2,K

¥

. h2(r°1)
K kv

§k2
r,K .

Summing again the contributions from K 2Gh, we deduce from (22) that

kr(v° I§hv)nk°1/2,h,°. hr°1kvkr,≠. (28)

Similarly for the traces of the pressures

k(q° I§hq)k°1/2,h,°. hskqks,≠. (29)

To prove optimal convergence the stabilization operator Sh[(·, ·), (·, ·)] must be weakly
consistent to the right order. More precisely we will assume that the following Lemma holds.

Lemma 5.3. For all q 2 Hu(≠), v 2 [Ht(≠)]2 there holds

Sh[(I§hv, I§hq), (I§hv, I§hq)]. h2(r°1)µkvk2
r,≠+µ°1h2skqk2

s,≠), (30)

with r =min(k+1, t) and s =min(m+1,u).

For a proof of this result we refer to [2, 5, 8, 9, 11, 12] for the pressure stabilization part and to
[10, 12] for the ghost penalty part.
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6. A PRIORI ERROR ESTIMATES

Using the stability and continuity properties derived in the previous sections it is now
straightforward to show optimal convergence orders of the error.

Theorem 6.1. Assume that the solution (u, p) to problem (2) resides in [Ht(≠)]2 £Hu(≠). Then
the finite element solution (4) satisfies the error estimate

ku°uhkV +kp° phkQ . hr°1µ
1
2 kukr,≠+hsµ°

1
2 kpks,≠,

with r =min(k+1, t) and s =min(m+1,u).

PROOF. First we set ¥h = uh ° I§hu and ≥h = ph ° I§h p and note that

ku°uhkV +kp° phkQ ∑ kEt
u°uhkV ,≠T +kEu p° phkQ,≠T

∑ kEt
u° I§hukV ,≠T +kEu p° I§h pkQ,≠T

+9(¥h,≥h)9h .

In view of Theorem 5.1 we only need to show the inequality for 9(¥h,≥h)9h. By Theorem 4.3 we
obtain,

9(¥h,≥h)9h ∑ 1
cs

sup
Bh[(¥h,≥h), (vh, qh)]+Sh[(¥h,≥h), (vh, qh)]

9(vh, qh)9h

and by Galerkin orthogonality

9(¥h,≥h)9h ∑ 1
cs

sup
Bh[(u° I§hu, p° I§h p), (vh, qh)]°Sh[(I§hu, I§h p), (vh, qh)]

9(vh, qh)9h
.

The supremums above are taken over (vh, qh) 2Vh £Qh.
Applying now the continuity of Bh[(·, ·), (·, ·)], (14), and Sh[(·, ·), (·, ·)] (15), we obtain the best

approximation type inequality

9(¥h,≥h)9h .9(u° I§hu, p° I§h p)9§+Sh[(I§hu, I§h p), (I§hu, I§h p)]
1
2 .

We conclude using the approximation results of Theorem 5.1 and (30)

Corollary 6.2. Under the same assumptions as in Theorem 6.1 there holds

Sh[(uh, ph), (uh, ph)]
1
2 . hr°1µ

1
2 kukr,≠+hsµ°

1
2 kpku,≠

and
9(u°uh, p° ph)9§ . hr°1µ

1
2 kukr,≠+huµ°

1
2 kpku,≠,

with r =min(k+1, t) and s =min(m+1,u) .

PROOF. The proof is immediate since by the triangle inequality

Sh[(uh, ph), (uh, ph)]
1
2 ∑ Sh[(uh ° I§hu, ph ° I§h p), (uh ° I§hu, ph ° I§h p)]

1
2

+Sh[(I§hu, I§h p), (I§hu, I§h p)]
1
2
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and

9 (u°uh, p° ph)9§ ∑9(u° I§hu, p° I§h p)9§+9 (uh ° I§hu, ph ° I§h p)9§

.9(u° I§hu, p° I§h p)9§+9 (uh ° I§hu, ph ° I§h p)9h .

The conclusion follows by Theorem 6.1 and the approximation results of Theorem 5.1.
Using the Aubin-Nitsche duality argument we prove the following L2(≠)–estimate for the

displacements. Consider the dual adjoint problem Let w and r be the solution of the problem

°µ¢w°rr = √ in ≠

r ·w = 0 in ≠

w = 0 on @≠.

(31)

We assume that the solution of the adjoint problem enjoys the regularity

kµ
1
2
wk2,≠+kµ°

1
2 rk1,≠ ∑ cµk√k0,≠. (32)

Proposition 6.3. Assume that t ∏ k + 1 and u ∏ m ∏ k ° 1. Under the same assumptions as
Theorem 6.1 and assuming that (31) and (32) holds. Then

ku°uhk0,≠. hk+1(µ
1
2 kukk+1,≠+µ°

1
2 kpkk,≠)

where the hidden constant is independent of h, and the interface/mesh intersection, but not of
the polynomial order nor of the viscosity µ.

PROOF.
Choosing √= u°uh, we may write

ku°uhk2
0,≠ = ah(u°uh,w)°bh(u°uh, r)

and proceed using Galerkin orthogonality and the Cauchy-Schwartz inequality to obtain

ku°uhk2
0,≠ = ah(u°uh,w° I§hw)°bh(u°uh, r° I§hr)

+bh(I§hw, p° ph)°Sh[(uh, ph), (I§hw, I§hr)]
= Bh[(u°uh, p° ph), (w° I§hw, r° I§hr)]

°Sh[(uh, ph), (I§hw, I§hr)]
∑ 9(u°uh, p° ph)9§ 9(w° I§hw,w, r° I§hr)9h

+Sh[(uh, ph), (uh, ph)]
1
2 Sh[(I§hw, I§hr), (I§hw, I§hr)]

1
2

∑ c(9(u°uh, p° ph)9§+Sh[(uh, ph), (uh, ph)]
1
2 )

£h(µ
1
2 kwk2,≠+µ° 1

2 krk1,≠)

The claim now follows as a consequence of Proposition 6.1, Theorem 5.1 and the regularity
hypothesis (32).

7. NUMERICAL EXAMPLES

We consider an example with exact solution

ux = 20xy3, uy = 5x4 °5y4, p = 60x2 y°20y3.
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Our computational domain is a disc with center at the origin. The exact velocities are used as
Dirichlet data on the edge of the domain. We set µ= 1 and f = 0. The exact pressure integrates
to zero, so we impose zero average of the discrete pressure. The boundary of the domain is
given by the isoline of a level set function defined on a covering mesh using a piecewise linear
interpolant, cf. Fig. 1. Note that symmetry is avoided by not centering the mesh.

We compare two methods: one stabilized using piecewise linear approximations for velocity
and pressure (P1P1), with the pressure stabilized in the role domain using gradient jump; the
velocity stabilization in the cut element zone is stabilized in the same fashion, as discussed in
Section 3.1. The second approach is to use the MINI element of Arnold et al. [1]. This element is
inf–sup stable, and so only needs stabilization in the cut element zone. For the MINI, we choose
to use the local projection method of Becker et al. [3] with projections onto linear functions on
patches composed of the cut element and its cut neighbors (one projection for each cut neighbor),
as suggested in Section 3.1. The Nitsche parameter was chosen as ∞µ = 10.

In Figs. 2 and 3 we show the elevation of the discrete solution for the different elements. The
convergence for the different elements are shown in Figs. 4 and 5. Finally, in Fig. 6 we show the
effect of lowering the size of the stability term for the pressure. For the P1P1, the same stability
term is used in the whole of the domain, so this leads to global instability, whereas for the MINI
element, the stability loss is confined to the cut element zone.
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Figure 1. Level set isoline used to define the domain boundary.
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Figure 2. Elevation of the length of the velocity (top) and the pressure (bottom) for the stabilized P1°P1
method.
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Figure 3. Elevation of the length of the velocity (top) and the pressure (bottom) for the MINI element.



17

−6 −5 −4 −3 −2 −1 0
−7

−6

−5

−4

−3

−2

−1

log(meshsize)

lo
g

(e
rr

o
r)

 

 

L2 error, velocities

L2 error, pressure

Figure 4. Convergence using the P1P1 element.
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Figure 5. Convergence using the MINI element.
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Figure 6. Elevation of the pressure for the P1P1 (top) and MINI (bottom) in the case of insufficient
stabilization.


