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Abstract

Brownian motions as continuous time stochastic processes are scal-

ing limit of different mathematical objects in distribution. When a

polygon triangulation tends to a triangulation of the circle, a simple

random walk tends to normalized Brownian motion in distribution.

A similar thing can be argued for plane, real and labeled trees. The

aim of this thesis is to define and check the random triangulation of

the circle in more details and find the scaling limit and distribution

of random trees above.
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Chapter 1

Introduction

This thesis is mainly based on an article [2] by David Aldous and some notes [12]

by Jean-François Le Gall.

We will start by discussing Catalan numbers, one of the most famous and

frequently occurring sequences in Combinatorics. There exist many different

examples where Catalan numbers appear when we try to count a set. Among

these sets, we check three sets more in depth and use its results later.

In Chapter 3, we will state several basis definitions for the rest of the the-

sis such as Hausdorff dimension and Brownian motions. We show that how the

random triangulation of the circle can be encoded by normalized Brownian ex-

cursions.

In the other two Chapters we will discuss about different classes of discrete

trees, like plane and labeled trees and also real trees and their scaling limits will

be driven.

In this thesis it has been tried to provide the proof of every statement we

claim. In many cases we provided proofs if there were no proofs available in two

text mentioned above and also in several cases, although a proof was provided,

it has been tried to present a new proof.
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Chapter 2

Catalan Numbers

Amongst the set of infinite sequences of positive integers we can mention some

simple and obvious series like doubling series (1, 2, 4, 8, 16, ...) or the squares

(1, 4, 9, 16, 25, ...) or some others that a few mathematicians would fail to rec-

ognize like the Fibonacci numbers (1, 1, 2, 3, 5, 8, ...) or the triangular numbers

(1, 3, 6, 10, 15, 21, ...). In case of an unfamiliar sequence, however, we may have to

spend an enormous amount of time to find a recursive or non-recursive formula

that generates the sequence [13].

When someone encounters an infinite sequence of positive integers, a pos-

sible way is to look it up in A Handbook of Integer Sequences [20]. In that

handbook at the top of the page 71, the 557-th sequence is the sequence that

we will talk about it in this chapter, the sequence of the Catalan numbers:

1, 2, 5, 14, 42, 132, 429, 1430, ....

2.1 A Brief History

Around 1751, Leonard Euler found the Catalan numbers [15] after asking him-

self: In how many ways can we divide a fixed convex polygon into triangles by

drawing diagonals that do not intersect [13]? Denote the set of different polygon

triangulations by S1. The first few examples can be seen in Figure 2.1.

Let us suggest a question whose solution generates the sequence of Catalan

numbers too. What are the number of well-formed sequences of parentheses?
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1 2 5 14

Figure 2.1: Euler’s polygon triangulation problem.

”Well-formed” means that each open parenthesis has a matching closed paren-

thesis. For example amongst different sequences of n “ 3 pair of open and closed

parentheses, ”()(())” is well-formed while ”(()))(” is not. Denote the set of well-

formed sequences by S2. Look at Table 2.1 for the smallest examples of such

sequences.

Now let us define the ”valid” sequences of parentheses with l letters as below.

Suppose that we have a chain of l letters in a fixed order. We want to add

l´1 pairs of parentheses so that each pair of matched parentheses contain exactly

two ”parts”. These parts can be two adjacent letters, a letter and an adjacent

parenthetical grouping or two adjacent parenthetical groupings. We call these

sequences valid sequences of parentheses with l letters and denote its set by S3.

The examples of such sequences of parentheses with 2, 3, 4 and 5 letters are

shown in Table 2.2.
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Table 2.1: The first smallest well-formed sequences of parentheses.

Number 1 2 5 14
() (()) ((())) (((()))) ()()(())

()() (()()) ((()())) ()()()()
()(()) (()(())) ()(())()

Sequences ()()() (()()()) (())(())
(())() ((())()) (())()()

()((())) ((()))()
()(()()) (()())()

n 1 2 3 4

Table 2.2: Examples of valid sequences of parentheses with 2, 3, 4 and 5 letters.

Number 1 2 5 14
pabq papbcqq papbpcdqqq papbpcpdeqqqq pppabqcqpdeqq

ppabqcq pappbcqdqq papbppcdqeqqq ppppabqcqdqeq
ppabqpcdqq pappbcqpdeqqq pppabqpcdqqeq

Sequences pppabqcqdq papppbcqdqeqq ppapbcqqpdeqq
ppapbcqqdq pappbpcdqqeqq pppapbcqqdqeq

ppabqpcpdeqqq ppapbpcdqqqeq
ppabqppcdqeqq ppappbcqdqqeq

l 2 3 4 5

In 1838, Belgian mathematician Eugene C. Catalan discovered Catalan num-

bers while studying valid sequences of parentheses with l letters.

2.2 Isomorphism Between S1, S2 and S3.

Proposition 2.1. There is an injection from S3 to S2.

Proof. [6] Let us define an injection from the set of well-formed sequences of n

pair of parentheses to the set of valid sequences of parentheses with l “ n ` 1

letters with a simple example. Suppose that we have a sequence of parentheses

with l “ 5 letters, like ppabqpcpdeqqq. First put a dot between 2 parts of each

pair of matched parentheses and get the sequence ppa.bq.pc.pd.eqqq. Now delete all
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open parentheses and letters and get .q...qqq. Finally put open parentheses instead

of each of the dots and get pqpppqqq. It is easy to see that we get a well-formed

sequence.

The valid sequences in Table 2.2 are arranged in the same order as their

corresponded well-formed sequences in Table 2.1.

Proposition 2.2. There is an injection from S2 to S1.

Proof. We define an injection from well-formed sequence of parentheses with n

pair of parentheses to the triangulation of polygons with n` 2 sides.

Suppose that we have pqpppqqq (a well-formed sequence with n “ 4 pair of

parentheses). Start from a corresponded regular polygon which is a hexagon in

our example. Set the base node the lower left node. Starting from 1, assign

numbers to other nodes clockwise from the second node after the base node.

Also assign numbers to the closed parentheses in the sequence from left to right.

Consider the assigned number of the matched close parenthesis of the first open

parenthesis.

If it is between 1 and n ´ 1, then draw a diagonal between the base node

and the node with the same assigned number. By this diagonal the original

polygon will be divided into 2 polygons. For the first polygon, base node remains

the same. For the second polygon make the other node (the other end of the

diagonal) the base node. Also divide the sequence to 2 subsequences, the first

subsequence starts from the first parenthesis to the matched closed parenthesis

(with the assigned number) and the other subsequence the rest of the sequence.

Assign them respectively to the new and old polygons and do the same procedure

for them by induction.

If the matched close parenthesis is the n-th closed parenthesis, then draw a

diagonal between the nodes to the left and the right of the base node, make the

next node of base node (clockwise) the base node of the new polygon. Remove the

first and last parentheses from the original sequence and do the same procedure

by induction for the new polygon and with the new sequence.

The basis for the induction step is of course the single pair of parenthesis

which is equivalent to a triangle itself. For clarification, look at the Figure 2.2.

The sequences in Table 2.1 are arranged in the same order as their corresponded

5



polygon triangulations in Figure 2.1.

1 2

3

4

pq1pppq2q3q4 ÝÑ

1

1

23

pq1 pppq1q2q3 ÝÑ

12

ppq1q2

ÝÑ

1
pq1

ÝÑ

Figure 2.2: The process of getting a polygon’s triangulation from a well-formed
sequence of parentheses.

Proposition 2.3. There is an injection from S1 to S3.

Proof. [13] In 1961, H. G. Forder showed a simple way to prove a one-on-one

correspondence between the triangulated polygons with n sides and the valid

sequences of parentheses with l “ n´1 letters. Let us describe the injection part

of it with a simple example on a hexagon.

Except the base side, label the other sides by letters a, b, c, d, e. Each diagonal

spanning the the adjacent sides is labeled with the letters of those side in paren-

theses. The other diagonals are then labeled in similar fashion by combining the

labels on the other two sides of the triangle. The base is labeled last. Look at

Figure 2.3.

Propositions 2.1, 2.2 and 2.3 show that these sets are isomorphic. In fact a

lot of other seemingly unrelated sets are isomorphic to Si’s which we will give a

few examples in Section 2.4.

2.3 The Values of Cn

But what can we say about the value of Cn, the n-th Catalan number?
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a

b
c

d

e

ÝÑ

a
b

c

d
e

pabq

pdeq

ÝÑ

a

b
c

d

e

pabq

pcpdeqq

pdeq

ÝÑ

a

b

c

d

e

pp
ab
qp
cp
de
qq
q

pabq

pcpdeqq

pdeq

Figure 2.3: A valid sequence of parenthesis with 5 letters driven from a hexagon
triangulation.

For getting more simpler recursive formulas, usually they add a ”1” to the

first of the sequences. If we do that with the sequence of Catalan numbers, we

get the sequence (1, 1, 2, 5, 14, 42, 132, 429, ...). Put C0 “ 1,C1 “ 1,C2 “ 2,C3 “

5,C4 “ 14, ....

Consider the polygon triangulation problem. Let us try to count the number

of different triangulations of a polygon with n ą 3 sides recursively. The first

diagonal can be drawn between any two nodes with at least one node between

them. This diagonal will divide the polygon into two smaller polygons one with

k` 1 sides and the other with n´ k` 1 sides where 1 ă k ă n´ 1. Each of these

new polygons can be triangulated independently. Also easily we can guess than

the number of different triangulations of a polygon with n sides is equal to Cn´2,

then get the following recursive formula.

Cn “

n´1
ÿ

i“0

CiCn´i´1. (2.1)

On the other hand, if we denote the number of ways of triangulating a polygon
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with n sides by Tn, Euler, using an inductive argument that he described as ”quite

laborious” established that [15]

Tn “
2ˆ 6ˆ 10ˆ ¨ ¨ ¨ ˆ p4n´ 10q

pn´ 1q!
,

where n ě 3. Also Tn “ Cn´2, so

Tn`2 “ Cn

“
2ˆ 6ˆ 10ˆ ¨ ¨ ¨ ˆ p4n´ 2q

pn` 1q!

“
4n´ 2

n` 1
ˆ

2ˆ 6ˆ 10ˆ ¨ ¨ ¨ ˆ p4n´ 6q

n!

“
4n´ 2

n` 1
Tn`1;

and now we conclude that

Cn “
4n´ 2

n` 1
Cn´1.. (2.2)

From recursive equation 2.2, we can derive an explicit formula for Catalan

numbers:

Cn “
4n´ 2

n` 1
Cn´1

“
p4n´ 2qp4n´ 6q

pn` 1qn
Cn´2

...

“
p4n´ 2qp4n´ 6q ˆ ¨ ¨ ¨ ˆ 6ˆ 2

pn` 1qnˆ ¨ ¨ ¨ ˆ 3ˆ 2
C0

“
p2n´ 1qp2n´ 3q ˆ ¨ ¨ ¨ ˆ 3ˆ 1

pn` 1q!
ˆ 2n

“
p2nq!ˆ 2n

pn` 1q!ˆ 2n ˆ n!

“
p2nq!

pn` 1q!n!
,
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and it means that

Cn “
1

n` 1

ˆ

2n

n

˙

. (2.3)

So Catalan numbers can be defined by any recursive formulas in (2.1), (2.2)

or the explicit formula in (2.3).

2.4 Some Examples

Here let us present a few problems [6] which introduces sets which are isomorphic

to each other and also to sets in Section 2.2.

Example 2.1 (Simple Random Walks). Consider the random walks which con-

sists of n up-walks and n down-walks in such a way that we never go below the

horizontal line (see Figure 2.4).

Figure 2.4: A Simple Random Walk with 2n “ 10 Walks.

The number of these random walks are equal to Cn.

Example 2.2 (Hands Across a Table [6]). If 2n people are seated around a circular

table, in how many ways can all of them simultaneously shake hands with another

person such that none of their arms cross each other? To see the all possible ways

when n “ 3 look at the Figure 2.5.

Figure 2.5: Different ways of how 2n “ 6 people around a table can handshake
without crossing each other hands.

The number of different handshaking with 2n people around table is equal to

Cn.
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Example 2.3 (Plane Rooted Trees). The set of rooted trees with n edge in which

a specific node is root is also isomorphic to the sets defined above.

The number of rooted trees with n edges is equal to Cn.

Example 2.4 (Rooted Binary Trees). The number of rooted binary trees with n

internal node (none leaf) which each nod is either a leaf or an internal node with

exactly two children also generate the sequence of Catalan numbers.

The number of rooted binary trees with n internal node is equal to Cn.

There are a lot of other examples which produce the sequence of Catalan

numbers. In 1971 Henry W. Gould, a mathematician at West Virginia University,

privately issued a bibliography of 243 references on Catalan numbers. In 1976

he increased the number of references to 450 [13]. In many cases people were not

aware that they were dealing with the sequence of Catalan numbers!

In next two chapters, we will talk about the polygon triangulation and plane

trees and their limits more in depth.
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Chapter 3

Limit of Polygon Triangulation

In Chapter 2 we saw that the number of different triangulation of a polygon with

n sides is equal to the pn´ 2q-th Catalan number,

Cn´2 “
1

n´ 1

ˆ

2pn´ 2q

n´ 2

˙

.

In this chapter we will discuss in more depth about the set of different trian-

gulations of a polygon and its limit when nÑ 8.

3.1 Random Triangulation of the Circle

When nÑ 8, a regular polygon with n sides will converge to a circle; so we can

consider that it is a triangulation of a circle! Based on this convergence, a random

triangulation of a regular polygon with n sides when n Ñ 8, can be considered

as a random triangulation of the circle. We consider the definition below for a

triangulation of the circle.

Definition 3.1. A triangulation of the circle is a closed subset of the closed

disc whose complements is a disjoint union of open triangles with vertices on the

circumference of the circle. [2]

The triangulations defined as above are exactly the possible limits of triangu-

lations of n-gons. Before talking more about different triangulations, let us define

the Hausdorff content and dimension.
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3.1.1 Hausdorff content and dimension

Definition 3.2. d-dimensional Hausdorff content of S is defined by

Cd
HpSq :“ inf

#

ÿ

i

rdi : there is a cover of S by balls with radii ri ą 0

+

,

where S is a subset of a metric space X and d P r0,8q.

Suppose that X Ă Rn and and λ ą 0 then it is easy to see that [16]

Cd
HpλXq “ λdCd

HpXq. (3.1)

For proving that, suppose that a covering C of X gives the infimum of the

set above,
ř

i r
d
i which is equal to Cd

H , then if we replace each ball in C with a

ball λ times bigger, the new sum will be
ř

ipλriq
d “

ř

i λ
drdi “ λd

ř

i r
d
i “ λdCd

H .

It proves that Cd
HpλXq ď λdCd

HpXq. With a similar argument we can prove that

Cd
HpXq ď

1
λd
Cd
HpλXq; and together we conclude (3.1).

Definition 3.3. Hausdorff dimension of X is defined by

dimHpXq :“ inf
 

d ě 0 : Cd
HpXq “ 0

(

.

With the definition of Hausdorff dimension, we can easily observe that [10]

Cd
HpXq “

#

8 if 0 ď d ă dimHpXq

0 if d ą dimHpXq
. (3.2)

But when d “ dimHpXq, C
d
HpXq is not determined. In fact it can be either 0 or

infinity or may take any value between 0 and infinity.

In general finding the Hausdorff dimension of a space directly is rather a hard

work! The calculating is usually done by using some basic techniques that are

available for dimension calculations. For example the equation 3.1 can be used

sometimes to establish an upper or a lower bound for the Hausdorff dimension.

Let us explain a simple example in which we calculate the Hausdorff dimension

directly. We prove that the Hausdorff dimension of the interval r0, 1s is 1.

12



We define different coverings of the interval r0, 1s for each k “ 1, 2, ..., and

denote them by Ck as follows. Ck is a covering consists of k segments r i
k
, i`1
k
s for

each i “ 0, 1, ..., k´1. Now let us calculate
ř

i r
d
i for a specific k and an arbitrary

d:
ÿ

i

rdi “
k
ÿ

i“0

p
1

k
q
d
“

k

kd
“ k1´d,

so when k Ñ 8, the sum goes to 0 if d ą 1 and goes to infinity if d ă 1 and

according to (3.2) we conclude that the Hausdorff dimension of the interval r0, 1s

is 1.

Other examples can be a countable set, circle and Rn which have Hausdorff

dimension respectively 0, 1 and n.

3.1.2 Two Examples of Different Triangulations

Let us now give two examples of different triangulations of an n-gon.

Assign numbers 1, 2, ..., n respectively to nodes of the n-gon. We show a

triangulation of this n-gon by a set of pairs of nodes. An arbitrary triangulation

can be the set

T1 “ tp1, 2q, p1, 3q, p1, 4q, ¨ ¨ ¨ , p1, nqu.

Clearly when nÑ 8, T1 will be the whole interior of the circle and will have

the dimension 2.

Another example can be

T2 “

"

´n

2
, n
¯

,
´

n,
n

4

¯

,
´n

4
,
n

2

¯

,

ˆ

n

2
,
3n

4

˙

,

ˆ

3n

4
, n

˙

,
´

n,
n

8

¯

,
´n

8
,
n

4

¯

, ¨ ¨ ¨

*

,

which can be considered as a portion of a straight line and has Hausdorff dimen-

sion 1.

Although the triangulations above have Hausdorff dimension 1 and 2, but

it turns out that the limit of random triangulation of the circle has Hausdorff

dimension 3
2

almost surely [2]. We will show it in Section 3.5.2.

Also in any random triangulation of the circle, the length of the longest chord

is at most the diameter l0 of the circle and at least the length l1 of the side of

an inscribed equilateral triangle. Noting this, we may ask ourselves the question
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below [2].

Question 3.1. In a random triangulation of the circle, what is the chance that

a longest chord has length greater than pl0 ` l1q{2?

This question is phrased to resemble the well known Bertrand’s paradox.

Question 3.2. What is the chance that a random chord in the circle has length

greater than l1?

This is a paradox because as Martin Gardner explained [14] (Chapter 19), we

can get at least three different answers by three equally plausible calculations.

The point is that here randomness has no canonical meaning. There are several

different mechanisms for physically drawing a chord in some ways influenced by

chance and these different mechanisms, mathematically, lead to different proba-

bility measures on the set of chords. The same is about the notation of a random

triangulation of the circle. For solving this problem of ours, we use the measure

which is the limit of uniform random triangulations of n-gons and so then we will

need to prove the existence of such a limit.

3.2 Continuous Functions and Triangulations of

the Circle

Consider a continuous function f : r0, 1s Ñ r0,8q which satisfies

fp0q “ fp1q “ 0,

fptq ą 0 for 0 ă t ă 1.
(3.3)

We explain a simple way to establish a mapping from these kind of functions

to triangulations of the circle.

Suppose t2 is a strict local minimum of f , that is fpt2q ă fptq for all t ‰ t2 in

some neighborhoods of t2. Amongst these neighborhoods, suppose that pt1, t3q is

the largest one. By continuity we observe that fpt1q “ fpt2q “ fpt3q. Now regard

the interval r0, 1s as the circumference of the circle and draw a triangle with

vertices t1, t2 and t3. Do that for each strict local minimum t12. If fpt12q ą fpt2q

14



(the same goes for the case fpt12q ă fpt2q) then no matter where t12 lies (in which

arc of arcs (t1, t2), (t2, t3) or (t3, t1)), also t11 and t13 lie in the same arc and thus

triangles are disjoint. If fpt12q “ fpt2q then 0, 1 or 2 of the points t1i’s are equal

to one of ti’s. If none of them or only one of them are equal to each other, then

it would be almost like before. In the case when 2 of them are equal to ti’s, then

we would have some chords crossing each other and so we assume that this case

never happens with our specific function f . So we can define our triangulation

to be the complement of the union of all the open triangles associated with the

local minimums.

By some functions we may get a finite number of triangles and thus our

triangulation will have a non-zero area, but there exist some functions f with the

property that the set of strict local minimums of f is dense in r0, 1s. By these

kind of functions our triangulation will have no non-zero area.

This mapping from continuous functions in r0, 1s to triangulations of the circle

is useful because with using it we can define the random triangulation of the circle

indirectly by first defining random functions and then use the mapping. Random

functions, on the other hand, are actually stochastic processes which are well

known and thus with the mapping we related a well studied subject to our new

subject! Also this mapping is in fact the continuous analog of the mapping from

discrete walks to triangulations of the n-gons which we will talk about in next

section.

3.3 Walks, Trees and Triangulations of n-gons

Let us first define four sets:

• S1 :“ Set of positive (except the two ends of the walk) walks with steps +1

or -1 and length 2n. For an example see Figure 3.1.

• S2 :“ Set of rooted (and ordered) plane trees with n ´ 1 edges. For an

example see Figure 3.2.

• S3 :“ Set of binary trees with n´ 1 nodes. For an example see Figure 3.3.

• S4 :“ Set of triangulations of pn` 1q-gons. For an example see Figure 3.4.
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a b

c

d

e f

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 3.1: A Positive Walk with 2n “ 14 Walks.

a b

c

d

e f

Figure 3.2: A Plane Rooted (and Ordered) Tree with n´ 1 “ 6 Edges.

a

b

c

d e

f

Figure 3.3: A Binary Tree with n´ 1 “ 6 Nodes.

For each i “ 1, 2, 3 we will present a one-to-one mapping from Si to Si`1.

In fact with these mappings we can get the ordered tree in Figure 3.2 from the

positive walk in Figure 3.1, the binary tree in Figure 3.3 from the ordered tree in
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a
b

c
d

e

f

Figure 3.4: A Triangulation of the Octagon.

Figure 3.2 and the triangulation of octagon in Figure 3.4 from the binary tree in

Figure 3.3, and vice versa!

Mapping 1. This mapping is from S1 to S2 and vice versa. Consider a

positive walk. For the first +1 walk (the first walk is surely +1), we draw the

root. After that for each +1 walk we draw a node from current node and for each

-1 walk we go back to previous node that we came from (the parent of current

node). Each new node from a node is drawn to the right of the other nodes.

Look at the walk in Figure 3.1. This mapping takes the points a, b, c, d, e and

f in the walk to corresponding nodes with the same labels in the ordered tree in

Figure 3.2.

For producing a walk from an ordered tree, we start from root and then visit

children of each node from left to right (for each new node we first visits its

children and then go to visit its siblings on its right). This will be actually a

depth-first search algorithm which traverses the tree. In this process, for each up

movement, we draw a +1 walk and vice versa.

So this mapping is a one-to-one correspondence between S1 and S2.

Mapping 2. This mapping is from S2 to S3 and vice versa. Consider an

ordered plane tree with a root. Start from the root. Use the depth-first search

algorithm above to traverse the ordered tree. For the first move (from root to its

leftmost child), draw a node. After that if you are visiting a new node that has
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not a left sibling in ordered tree, then draw a left edge from its parent’s mapped

node in binary tree which produces a new node who will be the mapped node for

current node in ordered tree. On the other hand, if you are visiting a new node

which has a left sibling, then draw a right edge from its left sibling’s mapped

node in binary tree and map it to this new node. In the end until there exists a

node in binary tree that has not two children, draw a new edge from it and add

it to a leaf. So the left/right child of a node in binary tree will be a leaf if its

corresponded node in ordered tree has no child/sibling. In Figure 3.3, these new

nodes are specified with white circles.

With this mapping, each node in an ordered tree will be mapped to an internal

node in binary tree. Take a look at the ordered tree in Figure 3.2 and its mapped

binary tree in Figure 3.3 and note the labels of the nodes.

On the other hand, from a binary tree we can get an ordered tree briefly as

follows. Use depth-first search algorithm again and when you arrive to a new

node which is not a leaf, then if it is the left child of its parent (in binary tree),

draw a new edge from the corresponded node of its parent and if it is the right

child, draw a new edge from the parent (in ordered tree) of the corresponded nod

of its parent (in binary tree). New edges from each node should be drawn in a

way that the most new edge be on the right of other edges on the node.

In this way we established a mapping which is a one-to-one correspondence

between S2 and S3.

Mapping 3. This mapping is from S3 to S4 and vice versa. Consider a

binary tree with n´ 1 nodes and a regular pn` 1q-gon. Choose a base side s in

the pn` 1q-gon. This side should be side of a triangle in the final triangulation.

This triangle will be specified by the number of internal nodes to the left and

right of the root of the binary tree. In our example of triangulation in Figure 3.4

and binary tree in Figure 3.3, the base side s is the bottom horizontal side and

these numbers are 0 and 5. So the triangle should be drawn so that the number

of polygon’s node on the right side of the triangle be 5 and this number of left be

0. The edges from the root are drown so that they cross the two other sides of the

triangle (other than the side s). When an edges is drawn in a way that crosses a

side of the polygon, it denotes a leaf. After this, the part of the binary tree on

the right/left of the root (except any leaves) is drawn with the same process on
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the right/left of the first triangle.

Finally in fact each chord in triangulation represents an edge in binary tree

which is between two internal nodes and each side, except the base s, represents

an edge to a leaf. Also each internal node will be inside a specific triangle in final

triangulation.

The reverse mapping for getting the binary tree from a triangulation is much

simpler. First we put n ´ 1 nodes inside the n ´ 1 triangles and connect those

two nodes to each other whose triangles are adjacent. The root is the node inside

the triangle containing the base side s. Also its the base side s that determines

which child is a right child and which is a left child. Also the leaves are clearly

connected to each node whose triangle has a side in the set of polygon’s sides!

So this is in fact a one-to-one correspondence between S3 and S4.

3.4 Brownian Motions

Consider an arbitrary (not necessarily positive or starting from zero) random

walk with length m (consisted of m walks with steps +1 or -1). Suppose that we

want to scale it and draw it on a paper with width w and an unlimited height.

Then if we want to fit the walk to the paper, the width of each walk should be w
m

and thus the steps should be `w
m

or ´w
m

. To be sure that we can draw the scaled

walk on paper, we are in need of a height of paper equal to 2w, (from `w to ´w

in case if all steps in original walk are +1 or all are -1) but it turns out that in

general the height of the original walk is of order ˘
?
m and thus for the scaled

walk, generally we are in need of a height of order 2 w?
m

.

In the limit, when m Ñ 8 we will have a path that we call it Brownian

motion. If the original random walk is constrained to be positive at all times

except at the two ends which is zero and also we put w “ 1, then the path is

constrained to satisfy (3.3) and it is called normalized Brownian excursion. In the

case that w is any arbitrary value the path is simply called Brownian excursion.

Now we can prove the following Proposition (with of course skipping a lot of

technicalities).

Proposition 3.1. Random triangulation of the circle is the limit of uniform
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random triangulation of polygon.

Proof. By mappings defined in Section 3.3, we indeed showed that there exists a

one-to-one correspondence between constrained random walks and triangulations

of polygons. On the other hand, by applying the mapping (from continuous

functions to triangulation of the circle) in Section 3.2 to normalized Brownian

motions we get a random triangulation of the circle. So the proof is complete,

because normalized Brownian motions are the limits of constrained random walks.

Also we can say that there exists a mapping from normalized Brownian excur-

sions to triangulations of the circle and vice versa. Because they are respectively

limits of constrained random walks and triangulation of polygons and the last

two sets have a one-to-one correspondence between each other.

3.5 Random Triangulation of the Circle, Revis-

ited

Let us first talk more about Brownian motions.

3.5.1 Zero Set of Brownian Motion

Let us first present and prove a fundamental principle.

Theorem 3.1 (Mass Distribution Principle). If A Ă X supports a positive Borel

measure µ such that µpDq ď C|D|d for any Borel set D, then Cd
HpAq ě

µpAq
C

and

hence dimHpAq ě d.

Proof. Consider a covering of A, like
Ť

j Aj, then

ÿ

j

|Aj|
d
ě C´1

ÿ

j

µpAjq ě C´1µpAq,

and thus Cd
HpAq ě

µpAq
C

which means that Cd
HpAq is positive and therefore

dimHpAq ě d.
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It is known that Brownian motion’s transition kernel ppt, x, ¨q has Npx, tq

distribution. In general, if Z has Npx, tq distribution we define |Npx, tq| to be the

distribution of |Z|.

Next Theorem is known as Lévy’s identity.

Theorem 3.2 (Lévy, 1984). Let Mt be the maximum process of a one dimensional

Brownian motion Bt, i.e. Mt “ max0ďsďtBs. Then, the process Yt “ Mt ´ Bt is

Markov and its transition kernel ppt, x, ¨q has |Npx, tq| distribution [17].

We will not provide a proof for this theorem, but note that it actually states

that Yt “Mt ´Bt and |Bt| has the same distribution.

Now let us define zero set and also record time which is in fact zero set of Yt

defined above.

Definition 3.4. We denote Zero set of a Brownian motion Bt by ZB and define

it as

ZB “ tt ě 0 : Bt “ 0u.

Definition 3.5. We call a time t a record time for Brownian motion Bt if it is

a zero of Yt, i.e. Yt “ Mt ´ Bt “ 0. In other words, t is a record time if it is a

global maximum from left.

Although almost surely Brownian motions have isolated zeros from left (first

zero after a specific time) or from right, but zero set of a Brownian motion is an

uncountable closed set with no isolated point with probability one [17]!

Before presenting and proving the next Lemma, let us define Hölder continuity.

Definition 3.6. A function f defined on R is Hölder continuous with exponent

α if there exists a constant, Cα, such that

@x, y : |fpxq ´ fpyq| ď Cα|x´ y|
α.

Lemma 3.1. dimHpZBq ě
1
2

with probability one.

Proof. Instead of showing directly the lemma above, we show that with proba-

bility one, the set of record times for a Brownian motion Bt

tt ě 0 : Yt “Mt ´Bt “ 0u,
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has Hausdorff dimension 1
2
[17].

Mt is an increasing function, so we can regard it as a distribution function of

a measure µ, with µpa, bs “ Mb ´Ma. Then set of record times is a support on

this measure. Also we know that with probability one, the Brownian motion is

Hölder continuous with any exponent α ă 1
2
. Therefore

Mb ´Ma ď max
0ďhďb´a

Ba`h ´Ba ď Cαpb´ aq
α,

where Cα is a constant that does not depend on a or b [17]. Now according to Mass

Distribution Principle, we get that almost surely, dimHptt ě 0 : Yt “ Mt ´ Bt “

0uq ě α.

There is a rather longer proof for the reverse Lemma which gives an upper

bound for the Hausdorff dimension of zero set of a Brownian motion that is the

same as the lower bound above, 1
2
. With combining that Lemma with Lemma

3.1 we get the proof for the following Theorem.

Theorem 3.3. Zero set of a Brownian motion has Hausdorff dimension 1
2

with

probability one.

In fact the Theorem above implies that the set of record times has Hausdorff

dimension 1
2

too, because Yt has the same distribution as |Bt| (Theorem 3.2) and

zero set of |Bt| is the same as zero set of Bt.

3.5.2 Hausdorff Dimension of Random Triangulation of

the Circle

In this Section we will show briefly that the random triangulation of the circle

has Hausdorff dimension 3
2

with probability one.

In fact we will show that for probability one for any given ε ą 0, Sε has

dimension 1
2
, in which Sε is the set of endpoints of chords with length at least

ε. After showing that we actually proved what we wanted to prove, because

each point in Sε corresponds to a chord in circle (which clearly has a Hausdorff

dimension 1) and thus the set of all of those chords has Hausdorff dimension 3
2

and when εÑ 0, Sε converges to triangulation of the circle!
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In mapping from normalized Brownian excursion to triangulation of the circle,

chords correspond to intervals rs, s1s for which fpsq “ fps1q and fptq ą fpsq for all

t P ps, s1q (in fact such an interval may not be part of a local minimum interval-

pair, but it will be a limit of intervals which are [2]). Consider such intervals

straddling time 0.5. These are intervals rsy, s
1
ys where 0 ă y ă fp0.5q and

#

sy “ suptt ă 0.5 : fptq “ yu,

s1y “ inftt ą 0.5 : fptq “ yu.

So now we need to show that

the set tsy : 0 ă y ă fp0.5qu has dimension
1

2
, (3.4)

with probability one and then replacing 0.5 by any rational shows that Sε has

dimension 1
2
.

For proving 3.4, note that the set of record times of a normalized Brownian

excursion has Hausdorff dimension 1
2

with probability one1. It is essentially the

same as saying that with probability one

the set tty : 0 ă yu has Hausdorff dimension
1

2
, (3.5)

where

ty “ inftt ą 0 : gptq “ yu.

gptq is a normalized Brownian excursion here, but in general it can be any Brow-

nian motion.

Also note that Brownian motions has time-reversal property which means

that if Bt is a Brownian motion, then B̃t “ Bu´t is also a Brownian motion.

For normalized Brownian excursion fptq if we choose u “ 0.5 we observe that

f̃ptq “ fp0.5 ´ tq for t P r0, 0.5s is also a Brownian motion. This and (3.5) give

us a proof of (3.4).

Finally because of (3.4) we conclude that Sε has Hausdorff dimension 1
2

and

1We proved this for Brownian motions, but it is also true for normalized Brownian excursion,
because the conditioning involved in producing normalized Brownian excursion from Brownian
motion does not effect local properties of the random functions [2].
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thus the Hausdorff dimension of random triangulation is 3
2
.
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Chapter 4

Discrete Trees

In previous Chapter we showed that simple (positive) walks have a one-to-one

correspondence with ordered trees and then binary trees and finally triangulations

of polygons. In the end we showed that the limit of simple random walks tends

to normalized Brownian excursion. Due to one-to-one correspondence of simple

walks and ordered trees, it is intuitive to guess that the limit of ordered trees

will tend to Brownian excursions too. In this Chapter we will check this in more

details. In fact we first map ordered trees to contour functions and then we show

that the limit of contour functions tend to (normalized) Brownian excursions.

4.1 Dyck Path and Contour Function

One of the fundamental tools in enumerative combinatorics is bijections. Two

sets A and B have the same cardinality if and only if there exists a bijection from

A to B [21]. With such a bijection we can count the elements of A by counting the

elements of B. We do not need any example: We used this tool several times in

previous two Chapters! But let us give another interesting example which is also

useful in this Chapter: The enumeration of Dyck words.

Dyck words are words in letters X and Y with as many X’s as Y ’s such that

in any initial segment of the word we have at least as many X’s as Y ’s [21]. For

example XYXXYXXY Y Y is a Dyck word, but XXYXY Y Y XXY is not a

Dyck word. If we replace each X with a left parenthesis and each Y with a right
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parenthesis and vice versa, we clearly get a bijection from Dyck words to well-

formed sequence of parentheses and thus we observe that the number of different

Dyck words with n letter X’s and n letter Y ’s is equal to Cn “
1

n`1

`

2n
n

˘

. But let

us count the number of Dyck words in another way.

We can count the number of Dyck words of length 2n by starting to count all

words with n X’s and n Y ’s which is
`

2n
n

˘

and then subtract the wrong words.

A bijection due to D. André [3] shows that the number of wrong words1 is
`

2n
n´1

˘

:

Given a word with n X’s and n Y ’s that is not a Dyck word, locate the first Y

that violates the restriction of Dyck words and interchange all X’s and Y ’s that

come after it. This will be a bijection from the set of wrong words to the set of

words with n ´ 1 X’s and n ` 1 Y ’s. Number of the elements of the second set

is clearly
`

2n
n´1

˘

and so is the number of wrong words! Thus the number of Dyck

words will be equal to

ˆ

2n

n

˙

´

ˆ

2n

n´ 1

˙

“
1

n` 1

ˆ

2n

n

˙

“ Cn.

If we write the number of X minus the number of Y for each initial seg-

ment2 of a Dyck word, we get a sequence of nonnegative numbers that we call

it Dyck path. For example from the Dyck word XYXXYXXY Y Y we get the

Dyck path 0, 1, 0, 1, 2, 1, 2, 3, 2, 1, 0. Let us define it mathematically rather than

combinatorially !

Definition 4.1. Let n ě 0 be an integer. A Dyck path of length 2n is a sequence

px0, x1, ..., x2nq of nonnegative integers such that x0 “ x2n “ 0 and for each

i “ 1, 2, ..., 2n, |xi ´ xi´1| “ 1 [12].

If we plot Dyck path in a Cartesian coordinate plane we get some isolated

points and if we use linear interpolation between each of these points, we get the

plot of a function that we call it contour function. Obviously the plot of contour

functions will remind us of (nonnegative) simple random walks.

1Which are not Dyck words!
2Can be also an empty segment or the whole word.
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4.2 Discrete Trees

4.2.1 Plane Trees

For defining plane trees we introduce the set [12]

U “

8
ď

n“0

Nn,

where N “ t1, 2, ...u and N0 “ t∅u.
Thus U is a set of elements like u “ pu1, u2, ..., unq and we set |u| “ n. If u “

pu1, u2, ..., umq and v “ pv1, v2, ..., vnq belong to U, we define the concatenation of

u and v by uv “ pu1, ..., um, v1, ..., vnq. Also u∅ “ ∅u “ u. In fact |∅| “ 0 and

in general |uv| “ |u| ` |v|.

We define mapping π “ Uz∅ Ñ U by πppu1, u2, ..., unqq “ pu1, u2, ..., un´1q.

Along with the definition below we see that πpuq is the parent of u.

Definition 4.2. A plane tree τ is a finite subset of U such that:

(i) ∅ P τ ;

(ii) for every u P τzt∅u, πpuq P τ ;

(iii) for every u P τ there exists an integer nupτq ě 0 such that for every j P N,

uj P τ if and only if 1 ď j ď nupτq.

So node u in plane tree τ has nupτq children.

We denote the set of all trees by A and define |τ | to be the number of edges

of tree τ : |τ | “ #τ ´1. Also for every integer k ě 0, we let An be the set of trees

with n edges:

An “ tτ P A : |τ | “ nu.

Proposition 4.1. Cardinality of An is the n-th Catalan number

#pAnq “
1

n` 1

ˆ

2n

n

˙

.

Proof. It was proved in previous Chapter.
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Let us explain briefly how to get the contour function of tree τ . Suppose that

τ is the tree shown in Figure 3.2. If we suppose that each edge of τ is drawn such

that all of them have unit length, then contour function of τ is the distance (in

tree) of a parcel which starts to move from the root and traverse the tree like as

shown in Figure 4.1.

∅

Ý
ÑÐ
Ý

p1q

Ý
Ñ

Ð
Ý

p2q

Ý
ÑÐ
Ý

p2, 1q

Ý
ÑÐ
Ý

p2, 1, 1q

Ý
Ñ

Ð
Ý

p2, 2q
Ý
Ñ

Ð
Ý

p2, 3q

Figure 4.1: Traversing a plane tree and its nodes’ sequences.

In this traverse, we visit the children from left to right and create their se-

quences upon that ordering. Also each edge is traversed two times, so in general,

contour function Cs of tree τ is the function

Cs : s P r0, 2|τ |s Ñ r0, |τ |s.

By convention Cs “ 0 for s ą 2|τ |. Note that Cs above might not be surjective1.

In this way it is easy to see that the contour function will look alike the equivalent

simple walk of the tree τ which is shown in Figure 4.2.

Proposition 4.2. The mapping τ ÞÑ pC0, C1, ..., C2nq is a bijection from An onto

the set of all Dyck paths of length 2n.

1With probability one in its limit!
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0 1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

Figure 4.2: Contour function of the plane tree in Figure 4.1.

Proof. Mapping 1 in Section 3.3 which we showed that it is a bijection is indeed

the mapping in this Proposition.

4.2.2 Galton-Watson Trees

An offspring distribution tpkukě0 is simply a probability measure on N0 “ t0, 1, 2, ...u.

Let us define Galton-Watson process.

Definition 4.3. A Galton-Watson process pZnqně0 is a discrete Markov chain

with values in N0 with transition probabilities

P pZn`1 “ k|Zn “ mq “ p˚mk ,

where p˚mk denotes the m-th convolution power of offspring distribution tpkukě0.

In other words the conditional distribution of Zn`1 given Zn is the distribution

of the sum of Zn i.i.d. random variables with distribution tpkukě0. Initial value

is Z0 “ 1.

If the expected value of a random variable with law tpkukě0 is equal to 1, we

will have some interesting distributions defined below.

Definition 4.4. Probability measure µ on N0 is called critical or subcritical

offspring distribution if
8
ÿ

n“0

nµpnq ď 1. [12]

We suppose that µp1q ‰ 1.

Now let pNu, u P U
1q be a collection of i.i.d. random variables with distribution

1Note that this is the set U which we defined in previous Section.
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µ defined above and indexed by set U. Denote by θ the random subset of U defined

by

θ “
 

u “ pu1, u2, ..., unq P U : @j P t1, 2, ..., nu, uj ď Npu1,u2,...,uj´1q

(

. (4.1)

Proposition 4.3. θ is a.s. a tree. Also if

Zn “ #tu P θ : |u| “ nu,

pZnqně0 is a Galton-Watson process with offspring distribution µ and initial value

Z0 “ 0.

Proof. If θ is finite then it is a tree, because for every u P θ, due to the definition

of θ, we have all of its left siblings and their parents. Also ∅ P θ. In fact Nu is

the number of children of node u.

If θ is infinite, then there exists u “ pu1, u2, ...q P θ for which |u| “ 8. It

means that for each n, Nun ą 0, where un “ pu
1, u2, ..., unq. The probability of

this is at most Π8n“01´µp0q which converges to 0 if µp0q ą 0 which is clearly the

case because µp1q ‰ 1 and
ř8

n“0 nµpnq ď 1.

The proof that pZnqně0 is indeed a Galton-Watson process can be done easily

by induction.

The finiteness of θ can also be concluded from the fact that the Galton-Watson

process with offspring distribution µ becomes extinct a.s.: Zn “ 0 for n large.

Definition 4.5. The tree θ defined by (4.1), or any random tree with the same

distribution is called Galton-Watson tree with offspring distribution µ, or in short

µ-Galton-Watson tree [12].

Suppose that τ is a tree and 1 ď j ď n∅pτq, then we denote by Tjτ the branch

that starts from the j-th child of the root:

Tjτ “ tu P U : ju P τu.

We write Πµ for the distribution of θ on the space A. Πµ can be characterized

by the following two properties [12]:
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(i) Πµpn∅ “ jq “ µpjq for every j P N0;

(ii) for every j ě 1 with µpjq ą 0, the branches T1τ, T2τ, ..., Tjτ are indepen-

dent under the conditional probability Πµpdτ |n∅ “ jq and their conditional

distribution is Πµ.

Property (ii) is called the branching property of the Galton-Watson tree.

Proposition 4.4. For every τ P A,

Πµpτq “
ź

uPτ

µpnupτqq.

Proof. It is easily understood that knowing that a randomly generated tree θ

with offspring distribution µ is the same as τ is equivalent to knowing that for

each u P τ , Nu “ nupτq
1! So

Πµpτq “ P pθ “ τq “
ź

uPτ

P pNu “ nupτqq “
ź

uPτ

µpnupτqq.

In particular the case when µ “ µ0 for which µ0 is the (critical) geometric

offspring distribution, µ0pnq “ 2´n´1 for every n P N0, is interesting and we check

it more in what follows. In that case, the Proposition above tells us that

Πµ0 “ 2´2|τ |´1,

because for every τ P A, we have
ř

uPτ nu “ #pτq ´ 1 “ |τ |.

It means that Πµ0pτq depends only on |τ |. So the conditional distribution

when given |τ | “ n will be a uniform distribution on An.

Let us check the contour function when µ “ µ0.

1The first clearly implies the second. Knowing that for each u P τ , Nu “ nupτq, we conclude
that all the nodes u P τ are also in θ and also no other node can be added to θ because for each
leaf in v P τ , surely nvpτq “ 0.
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4.3 The Contour Function in the Geometric Case

In general, the contour function does not have a ”nice” probabilistic structure [12].

But when the distribution is the geometric offspring distribution, µ0, there exists

a bijection between Dyck paths and random walks.

Recall that if pSnqně0 is a simple random walk on Z starting from 0, then it

can be written as

Sn “ X1 `X2 ` ¨ ¨ ¨ `Xn,

where X1, X2, ... are i.i.d. random variables with probability distribution P pXi “

1q “ P pXi “ ´1q “ 1
2
.

We are interested in nonnegative random walks, so put

T “ mintn ě 0 : Sn “ ´1u, (4.2)

and consider the walk from the start until the pn´ 1q-th walk:

pS0, S1, ..., ST´1q.

This path in finite a.s. and we call it an excursion of simple random walk. Note

that each excursion of simple random walk of length T ´ 1 is also a contour

function of a tree with T´1
2

edges.

Before stating the next Proposition let us introduce the upcrossing times of

random walk S from 0 to 1:

U1 “ mintn ě 0 : Sn “ 1u and V1 “ mintn ě U1 : Sn “ 0u

and for every j ě 1, by induction,

Uj`1 “ mintn ě Vj : Sn “ 1u and Vj`1 “ mintn ě Uj`1 : Sn “ 0u.

If S is an excursion of simple random walk of length T ´ 1, then if we put

N “ maxtj : Uj ď T ´ 1u, (4.3)
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it means that S is consisting of K parts that are each positive random walks and

due to Markov property they are independent from each other.

If S is a simple random walk (not necessarily an excursion of it) which starts

at 0 then for each j “ 1, 2, ..., the part starting at Vj and ending at Uj`1 ´ 1 can

be either empty or nonempty. Thus S can be partitioned to some i.i.d. simple

random walks which endpoints are 0. Denote these parts by ξi (i “ 1, 2, ...) and

also let T0 “ 0 and Ti be the i-th time when S comes back to 0, for i “ 1, 2, ...

(it means that ξi starts at time Ti´1 and ends at time Ti).

The fact that ξi’s are i.i.d., is the essential of excursion theory [19]. To show

that how it can be used for calculations, let us find the distribution of the number

of returns to 0 before the time τ “ inftn : Sn “ ´2u. Obviously,

P pξ1 visits ´ 2q ” P pSn “ ´2 for some k with 0 ă k ă T1q

“ P pS1 “ ´1, S2 “ ´2q

“
1

4
.

So

P pnumber of returns to 0 before τ , is at least k

“ P pexcursions ξ1, ξ2, ..., ξk do not visit ´ 2q

“ P pξ1 does not visit ´ 2qk

“

ˆ

3

4

˙k

Proposition 4.5. Contour function of µ0-Galton-Watson tree θ is an excursion

of simple random walk.

Proof. According to Proposition 4.2, plane trees are in one-to-one correspondence

with Dyck paths. Also Dyck paths are clearly in one-to-one correspondence with

nonnegative random walks. Thus the statement of this Proposition is equivalent

to saying that the random plane tree θ coded by an excursion of simple random

walk is a µ0-Galton-Watson tree. To prove this, suppose that we coded tree θ by

an excursion of simple random walk, S. Now if we consider N , as defined in (4.3),

it is easily understood that n∅pθq “ N and for every i P 1, 2, ..., N , the branch Tiθ
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is coded with the path pωipnqq0ďnďVi´Ui´1, where for each n P t0, 1, ..., Vi´Ui´1u

ωipnq “ SUi`n ´ 1.

Also N is distributed according to geometric offspring distribution µ0 and

conditioned on N “ m, paths ω1, ω2, ..., ωm are independent excursions of simple

random walks. Now according to characterization of Πµ0 these who that θ is a

µ0-Galton-Watson tree.

4.4 Brownian Excursions

In Section 3.4 we talked briefly about Brownian motions and also normalized

Brownian excursions. We defined Brownian motions by limit of simple random

walks when rescaled properly. In this section we talk about Brownian excur-

sions in more depth and we show that the contour function of a tree uniformly

distributed over An converges in distribution as n Ñ 8 towards a normalized

Brownian motion.

4.4.1 Local Time Process and Excursion Space

Consider a standard linear Brownian motion B “ pBtqtě0 starting from 0. We

define local time process of Brownian motion B as follows.

Definition 4.6. The local time process pLxt qtě0 of standard linear Brownian mo-

tion B at level x is mathematically defined by1

Lxt “

ż t

0

δpx´Bsqds,

where δ is the Dirac delta function2. It can be approximated a.s. for every t ě 0

by

Lxt “ lim
εÑ0

1

2ε

ż t

0

1rx´ε,x`εspBsqds.

1Some authors denote the Local time process by lpt, xq
2It is zero for all values except at zero and its integral over any interval containing zero is

equal to one.
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We are particularly interested in local time process at level 0. Now if we define

the reflected Brownian motion by βt “ |Bt|, the local time process at level 0 of

Bt or of βt is approximated a.s. for every t ě 0 by

L0
t “ lim

εÑ0

1

2ε

ż t

0

1r´ε,εspBsqds “ lim
εÑ0

1

2ε

ż t

0

1r0,εspβsqds.

Thus local time process is a continuous increasing process. The increasing

points of this process at level 0 is the zero set of Bt,

ZB “ tt ě 0 : Bt “ 0u,

which is the same as Zβ. If we define the right-continuous inverse of the local

time process as

σl :“ inftt ě 0 : L0
t ą lu

for every l ą 0, we will have

Zβ “ tσl : l ě 0u Y tσl´ : l P Du

where D denotes the countable set of all discontinuity times of mapping l Ñ σl.

excursion intervals (away from 0) of β are any connected component of the

open set R`zZβ. Then excursion intervals away from 0 of β are intervals of the

form pσl´, σlq where l P D. We define the excursion el “ pelptqqtě0 associated to

the interval pσl´, σlq for every l P D by

elptq “

#

βσl´`t if 0 ď t ď σl ´ σl´,

0 if t ą σl ´ σl´.

In fact different excursions el are defined somewhat like ωi’s in Proposition 4.5.

We view these excursions as elements of the excursions space E that is defined

as follows [12].

Definition 4.7. The excursion space E is a metric space with elements

e P CpR`,R`q such that ep0q “ 0 and ζpeq ą 0,
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and metric d,

dpe, e1q “ sup
tě0
|eptq ´ e1ptq| ` |ζpeq ´ ζpe1q|,

and with the associated Borel σ-field. ζpeq above is defined by

ζpeq :“ supts ą 0 : epsq ą 0u

where sup∅ “ 0.

Note that zero function does not belong to the excursion space because we

require ζpeq ą 0 and ζpeq can be seen as the length of excursion e. Also for every

l P D, ζpelq “ σl ´ σl´.

4.4.2 The Itô Excursion Measure

Put

qtpxq “
x

?
2πt3

exp

ˆ

´
x2

2t

˙

. (4.4)

The function t Ñ qtpxq is the density of first hitting time of x by B [12] (starting

at 0) or of first hitting time of 0 by a linear Brownian motion which starts at

x [11].

Itô measure npdeq of positive excursions is an infinite measure on the set of

elements of excursion space E and has the following two (characteristic) proper-

ties [11]:

(i) For every t ą 0 and every measurable function f : R` Ñ R` such that

fp0q “ 0,
ż

npdeqfpeptqq “

ż 8

0

dxqtpxqfpxq;

(ii) if t ą 0 and Φ and Ψ are two nonnegative measurable functions defined

respectively on Cpr0, ts, R`q and CpR`, R`q, then

ż

npdeqΦpeprq, 0 ď r ď tqΨpept` rq, r ě 0q

“

ż

npdeqΦpeprq, 0 ď r ď tqEeptqpΨpBr^T0 , r ě 0qq,
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where Ex is the set of excursions e for which epsq ą x if and only if s P p0, σq

for some positive σpeq1, pBtqtě0 is a linear Brownian motion which starts at

x and T0 “ inf ZB

The following theorem is the basic result of excursion theory in our particular

setting.

Theorem 4.1 (Itô). The point measure

ÿ

lPD

δpl,elqpdsdeq

is a Poisson measure on R` ˆ E, with intensity

dsb npdeq

where npdeq is a σ-finite measure on E.

A proof of this Theorem can be found in an article by L. C. G. Rogers [19].

The measure npdeq is called the Itô excursion measure. From standard prop-

erties of Poisson measures we can conclude the next Corollary.

Corollary 4.1. Suppose A be a measurable set of E with finite positive measure.

Put TA “ inftl P D : el P Au. Then TA is exponentially distributed with parameter

of the measure of A, npAq, and the distribution of eTA is the conditional measure

np.|Aq “
np¨ X Aq

npAq
.

Moreover, TA and eTA are independent.

This corollary can be used for calculating various distributions like height and

length of excursions, under the Itô excursion measure.

The distribution of height of excursion eptq is

n

ˆ

sup
tě0

eptq ą ε

˙

“
1

2ε

1σpeq is called the length of duration of the excursion e, particularly when x “ 0.
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and its length distribution is

n pζpeq ą εq “
1

?
2πε

.

The Itô excursion measure have scaling property: For every λ ą 0, define

mapping Φλ : E Ñ E by putting Φλpeqptq “
?
λept{λq, for every e P E and t ě 0.

Then we have Φλpnq “
?
λn.

The scaling property is especially useful when defining conditional versions of

Itô excursion measure [12]. Let us discuss npdeq when conditioning with respect

to length ζpeq.

There exists a unique collection of probability measures pnpsq, s ą 0q on E

with the following properties [12]:

(i) for every s ą 0, npsqpζ “ sq “ 1;

(ii) for every λ ą 0 and s ą 0, we have Φλpnpsqq “ npλsq;

(iii) for every measurable subset A of E,

npAq “

ż 8

0

npsqpAq
ds

2
?

2πs3
.

Notice that ds

2
?
2πs3

can be seen as the measure of the set of excursions like e

with length ζpeq P ds. We may and will write npsq “ np¨|ζ “ sq, and the measure

np1q is called the law of the normalized Brownian excursions.

Before continuing, let us first state the famous Radon-Nikodym theorem.

Theorem 4.2 (Radon-Nikodym). If µ and λ are two σ-finite measures on mea-

surable space pX,Σq and µ is absolutely continuous1 with respect to λ, then there

is a measurable function f on X taking values in r0,8q such that for any mea-

surable set A

µpAq “

ż

A

fdλ.

The following Proposition emphasizes the Markovian properties of n [12].

1Measure µ is absolutely continuous with respect to measure λ if µpAq “ 0 for every set A
for which λpAq “ 0 and we write it as µ ! λ.
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Proposition 4.6. The Itô excursion measure n is the only σ-finite measure on

excursion space E that specifies the following two properties:

(i) for every t ą 0, and every f P CpR`,R`q,

n
`

fpeptqq1tζątu
˘

“

ż 8

0

fpxqqtpxqdx;

(ii) let t ą 0. Under the conditional probability measure np¨|ζ ą tq, the pro-

cess pept` rqqrě0 is Markov with the transition kernels of Brownian motion

stopped upon hitting 0.

We can use this Proposition to establish the absolute continuity properties

of the conditional measures npsq with respect to n. By Radon-Nikodym theorem

this is equivalent to saying that for any measurable set A in excursion space and

some measurable function f

npsqpAq “

ż

A

fdn.

Here f is called the Radon-Nikodym derivative of npsq. Now let us denote the

σ-field on E generated by the mappings r Ñ eprq, for every t ě 0 and 0 ď r ď t,

by Ft. If 0 ă t ă 1, then the measure np1q is absolutely continuous with respect

to n on the σ-field Ft and the Radon-Nikodym derivative, f , will be equal to

dnp1q
dn

ˇ

ˇ

ˇ

ˇ

Ft

peq “ 2
?

2πq1´tpeptqq.

Using the derivative above we can derive the density of the distribution of

pept1q, ept2q, ..., eptpq under np1qpdeq for every integer p ě 1 and every choice of

0 ă t1 ă t2 ă ¨ ¨ ¨ ă tp ă 1 [12]:

2
?

2πqt1px1qp
˚
t2´t1

px1, x2qp
˚
t3´t2

px2, x3q ¨ ¨ ¨ p
˚
tp´tp´1

pxp´1, xpqq1´tppxpq, (4.5)

where

p˚t px, yq “ ptpx, yq ´ ptpx,´yq, t ą 0, x, y ą 0,

is the transition density of Brownian motion killed when it hits 0. This density
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shows that law of peptqq0ďtď1 under np1q is invariant under time reversal.

4.5 Convergence of Contour Functions Towards

Brownian Excursions

The convergence of contour functions to Brownian excursions can be seen as

a special case of results provided in article The continuum random tree III by

Aldous [1]. Before proving this convergence let us first present two lemmas.

Lemma 4.1. For every ε ą 0,

lim
nÑ8

sup
xPR

sup
sěε

ˇ

ˇ

?
nP

`

Stnsu “
X

x
?
n
\

or
X

x
?
n
\

` 1
˘

´ psp0, xq
ˇ

ˇ “ 0.

This lemma is a very special case of classical local limit theorems and can be

easily obtained by direct calculations, using the explicit form of the law of Sn and

Stirling’s formula [12].

On the other hand the next lemma is a special case of famous Kemperman’s

formula [18].

For every integer ` P Z, denote a probability measure under which the simple

random walk S starts from ` by P`.

Lemma 4.2. For every ` P N0 and every integer n ě 1,

P`pT “ nq “
`` 1

n
P`pSn “ ´1q.

Proof. There are several different proofs to this lemma [12;18], but we will provide

a more enumerative combinatorial proof.

If both sides of the equation above are 0, then there is nothing to prove.

Otherwise let us propose a simple question and solve it first.

Question 4.1. Suppose that we have k ”X” and k ` l ”Y”. In how many ways

we can put them in a line that for no initial segment the number of Y’s be more

than l more than X’s.
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For solving this question we can make a bijection to count the number of

wrong sequences as we did for Dyck words, and then subtract it from the number

of all sequences. Suppose that we have a wrong sequence of X’s and Y ’s. Consider

the shortest initial segment in which we have exactly k1 X and pk1 ` l ` 1q Y .

Interchange all the other X’s and Y ’s that come after this segment. Now we will

have a sequence of pk ´ 1q X and pk ` l ` 1q Y . It is easy to see that this is a

bijection. So the solution will be equal to

ˆ

2k ` l

k

˙

´

ˆ

2k ` l

k ´ 1

˙

“
p2k ` lq!

k!pk ` lq!
´

p2k ` 1q!

pk ´ 1q!pk ` l ` 1q!

“
pk ` l ` 1qp2k ` lq!´ kp2k ` lq!

k!pk ` l ` 1q!

“
pl ` 1qp2k ` lq!

k!pk ` l ` 1q!

“
l ` 1

k ` l ` 1

ˆ

2k ` l

k ` l

˙

.

Note that if we put l “ 0 in question above, we get the k-th Catalan number as

the solution and if we put n´`´1
2

instead of k and ` instead of l in above question1,

we will get

2
`` 1

n` `` 1

ˆ

n´ 1
n``´1

2

˙

,

which is equivalent to the number of random walks like S that start from `, for

which we have Sn´1 “ 0 and for no i “ 0, 1, ..., n ´ 1, Si “ ´1. So it is equal to

the number of random walks starting from ` and for which T “ n.

Coming back to proof of the lemma, note that it is enough to prove

P`pT “ n | Sn “ ´1q “
l ` 1

n
.

It is equal to the number of random walks reaching -1 from ` for the first time in

n-th step divided by number of all random walks starting from ` and reaching to

1Note that n´`´1
2 and thus n``´1

2 are integers if and only if the probabilities defined in the
statement of lemma are not equal to 0.
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0 or -2 at pn´ 1q-th step. So

P`pT “ n | Sn “ ´1q “
2 ``1
n```1

`

n´1
n``´1

2

˘

`

n´1
n``´1

2

˘

`
`

n´1
n```1

2

˘

“
2 ``1
n```1

1` n´`´1
n```1

“
2 ``1
n```1
2n

n```1

“
l ` 1

n
.

Using two lemmas above we can prove the following theorem which says that

contour functions of random trees in An converge to Brownian excursions as

nÑ 8.

Theorem 4.3. For every n P N, let θn be a random tree uniformly distributed

over An, and let pCnptqqtě0 be its contour function. Then

ˆ

1
?

2n
Cnp2ntq

˙

0ďtď1

pdq
ÝÝÝÑ
nÑ8

petq0ďtď1

where e is a normalized Brownian excursion distributed according to np1q and the

space Cpr0, 1s,R`q is equipped with the topology of uniform convergence.

Proof. Using Proposition 4.5 and that Πµ0p¨ | |τ | “ nq coincides with the uniform

distribution over An, we get that pCnp0q, Cnp1q, ..., Cnp2nqq is distributed as an

excursion of simple random walk conditioned to have length 2n. Thus we need

to verify that the law of
ˆ

1
?

2n
St2ntu

˙

0ďtď1

given that T “ 2n ` 1 converges to np1q as n Ñ 8. This can be seen as a

conditional version of Donsker’s theorem. We will divide the proof into two parts:

Proving the convergence of finite-dimensional marginals and then establishing the

tightness of the sequence of laws [12].
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Finite-dimensional marginals. Let us first consider one-dimensional marginals

and then base the proof of higher dimensional marginals on it. Fix t P p0, 1q and

we will show that

lim
nÑ0

?
2nP

´

St2ntu “

Y

x
?

2n
]

or
Y

x
?

2n
]

` 1 | T “ 2n` 1
¯

“ 2
?

2πqtpxqq1´tpxq,

(4.6)

uniformly when x varies over a compact subset of p0,8q. Note that right hand

side of the above equation is the same as (4.5) for p “ 1. It means that the law

of
St2ntu
?
2n

under P p¨ | T “ 2n` 1q converges to the law of eptq under np1qpdeq.

For every i P t1, 2, ..., 2nu and ` P N0,

P pSi “ ` | T “ 2n` 1q “
P ptSi “ `u X tT “ 2n` 1uq

P pT “ 2n` 1q
.

But

P ptSi “ `u X tT “ 2n` 1uq “ P ptSi “ `, T ą iu X tT “ 2n` 1uq

“ P ptSi “ `, T ą iuqP`pT “ 2n` 1´ iq,

also

P`pT “ i` 1q “ P`ptSi`1 “ ´1u X tSi “ 0, T ą iuq

“ P`pSi`1 “ ´1 | Si “ 0qP`pSi “ 0, T ą iq

“
1

2
P`pSi “ 0, T ą iq,

both because of markovian property of S. Also

P`pSi “ 0, T ą iq “ P pSi “ `, T ą iq

ñP pSi “ `, T ą iq “ 2P`pT “ i` 1q.
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Thus

P pSi “ ` | T “ 2n` 1q “
2P`pT “ i` 1qP`pT “ 2n` 1´ iq

P pT “ 2n` 1q

“
2p2n` 1qpn` 1q2

pi` 1qp2n` 1´ iq
¨

2P`pSi`1 “ ´1qP`pS2n`1´i “ ´1q

P pS2n`1 “ ´1q
,

(4.7)

where we used Lemma 4.2 for deriving the second equality1.

Recall that ptp0, xq “ pt{xqqtpxq where qtpxq is defined as (4.4), so

ptp0, xq “
t

x
¨

x
?

2πt3
exp

ˆ

´
x2

2t

˙

“
1

?
2πt

exp

ˆ

´
x2

2t

˙

. (4.8)

As an important special case, when x :“ 0, we get ptp0, 0q “ p2πtq
´ 1

2 . For large

n,

P pS2n`1 “ ´1q « P pS2n “ 0q

«
p1p0, 0q
?

2n

“
1
?

2n
¨

1
?

2π
,

using Lemma 4.1 if we set x :“ 0, s :“ 1 and n :“ 2n in the second approximation.

Also we have the approximations

2n` 1

t2ntu` 1
«

1

t
and

p
X

x
?

2n
\

` 1q2

2n` 1´ t2ntu
«

x2 ¨ 2n

2n´ 2nt
«

x2

1´ t
.

Using all of the approximations above we get

2p2n` 1qp
X

x
?

2n
\

` 1q2

pt2ntu` 1qp2n` 1´ t2ntuq
¨

1

P pS2n`1 “ ´1q
« 2

?
2π
?

2n
x2

tp1´ tq
. (4.9)

1Note that P` “ P when ` “ 0.
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Again using Lemma 4.1, we have the approximation

Ptx
?
2nu or tx

?
2nu`1pSt2ntu`1 “ ´1qPtx

?
2nu or tx

?
2nu`1pS2n`1´t2ntu “ ´1q

«
ptp0, xqp1´tp0, xq

2n
“
tp1´ tq

x2 ¨ 2n
qtpxqq1´tpxq, (4.10)

where in general with P` or `1 we mean P``P`1 . Now by multiplying approxiamtions

(4.9) and (4.10) to each other and putting i “ t2ntu and ` “
X

x
?

2n
\

or ` “
X

x
?

2n
\

` 1 in right hand side of (4.7) we get

P pSt2ntu “

Y

x
?

2n
]

or
Y

x
?

2n
]

` 1 | T “ 2n` 1q «
2
?

2π
?

2n
qtpxqq1´tpxq,

and the proof of (4.6) is complete.

For higher dimensional marginals we can use a similar way. For example for

two-dimensional marginals, we can observe that if 0 ă i ă j ă 2n and if ` P N0,

P pSi “ `, Sj “ m,T “ 2n` 1q

“ 2P`pT “ i` 1qP`pSj´i “ m,T ą j ´ iqPmpT “ k ` 1´ jq.

Here, only the middle term, P`pSj´i “ m,T ą j ´ iq, needs a treatment that we

didn’t discuss before. However we can see that

P`pSj´i “ m,T ą j ´ iq “ P`pSj´i “ mq ´ P`pSj´i “ ´mq, (4.11)

because if for a random walk that passed through ´1 and yet arrived to m at

pj´ iq-th step, we reflect the part from the first time that random walk hit ´1 to

the end, we get a random walk that arrives to ´m at pj´ iq-th step. It is easy to

see that it is also a bijection. On the other hand, by putting i “ t2nsu, j “ t2ntu

and ` “ tx
?

2nu or ` “ tx
?

2nu` 1 in (4.11) and then using Lemma 4.1, we get

Ptx
?
2nu or tx

?
2nu`1

´

St2ntu´t2nsu “ ty
?

2nu

¯

«
pt´sp0, y ´ xq

?
2n

“
pt´spx, yq
?

2n
.
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Similarly

Ptx
?
2nu or tx

?
2nu`1

´

St2ntu´t2nsu “ t´y
?

2nu

¯

«
pt´sp0,´y ´ xq

?
2n

“
pt´spx,´yq
?

2n
.

Subtracting the second approximation from the first, we get

Ptx
?
2nu or tx

?
2nu`1

´!

St2ntu´t2nsu “ ty
?

2nu

)

X tT ą t2ntu´ t2nsuu
¯

«
p˚t´spx, yq?

2n
,

and the result follows in a straightforward way (approximating the other two

terms as previous way and putting this approximation for the middle term, we

get want we want).

Tightness. Let px0, x1, ..., x2nq be a Dyck path with length 2n, and for each

i P t0, 1, ..., 2n´ 1u and j P t0, 1, ..., 2ku, set

x
piq
j “ xi ` xi‘j ´ 2 min

i^pi‘jqďmďi_pi‘jq
xm

with the notation i‘ j “ i` j if i` j ď 2n and i‘ j “ i` j ´ 2n if i` j ą 2n.

Proposition 4.7. For each i P t0, 1, ..., 2n´ 1u, px
piq
0 , x

piq
1 , ..., x

piq
2nq is also a Dyck

path, where x
piq
j is defined as above.

Proof. We should prove that x
piq
0 “ 0, x

piq
2n “ 0 and for each k P t1, ..., 2nu,

ˇ

ˇ

ˇ
x
piq
k ´ x

piq
k´1

ˇ

ˇ

ˇ
“ 1. By definition we have

x
piq
0 “ xi ` xi‘0 ´ 2 min

i^pi‘0qďmďi_pi‘0q
xm

“ xi ` xi ´ 2 min
i^iďmďi_i

xm

“ 2xi `´2xi

“ 0.
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Similarly x
piq
2n “ 0. Now fix k P t1, ..., 2nu. So

ˇ

ˇ

ˇ
x
piq
k ´ x

piq
k´1

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ˇ

ˆ

xi ` xi‘k ´ 2 min
i^pi‘kqďmďi_pi‘kq

xm

˙

´

ˆ

xi ` xi‘pk´1q ´ 2 min
i^pi‘pk´1qqďmďi_pi‘pk´1qq

xm

˙
ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

xi‘k ´ xi‘pk´1q ´ 2 min
i^pi‘kqďmďi_pi‘kq

xm

´ 2 min
i^pi‘pk´1qqďmďi_pi‘pk´1qq

xm

ˇ

ˇ

ˇ

ˇ

. (4.12)

If k “ 2n ´ i ` 1 then both ” min ” parts of right side of above equation will be

equal to 0 and leaves |xi‘k ´ xi‘pk´1q| “ |x1 ´ x2n| “ 1. If k ‰ 2n ´ i ` 1 then

i ‘ k “ i ‘ pk ´ 1q ` 1. Put i ‘ k “ K. Now if we check three different cases

K ă i, K “ i and K ą i we observe that the difference between ”min” parts are

either 0 or xK ´ xK´1 and the right side of (4.12) will be

ˇ

ˇ

ˇ

ˇ

ˇ

xK ´ xK´1 ´ 2

#

0

xK ´ xK´1

ˇ

ˇ

ˇ

ˇ

ˇ

in both cases
“ |xK ´ xK´1| “ 1,

and proof will be complete.

Define the mapping Φi : px0, x1, ..., x2nq Ñ
´

x
piq
0 , x

piq
1 , ..., x

piq
2n

¯

. It is possible to

show that this mapping is a bijection from the set of all Dyck paths with length

2n onto itself [12]. In fact Φ2n´i ˝ Φi is the identity mapping. It can be verified if

we check that Φi is indeed the Dyck path of a tree which is obtained from the

original tree rooted at i-th node that we encounter while exploring it with its

Dyck path. Checking that, it will be obvious that Φ2n´i ˝Φi leads us back to the

original tree.

For every i, j P t0, 1, ..., 2nu set

Či,j
n “ min

i^jďmďi_j
Cnpmq.

The discussion above then shows that

`

Cnpiq ` Cnpi‘ jq ´ 2Či,i‘j
n

˘

0ďjď2n

pdq
“ pCnpjqq0ďjď2n (4.13)
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Lemma 4.3. [12] For every integer p ě 1, there exists a constant Cp such that

for every n ě 1 and every i P t0, 1, ..., 2nu,

E
“

Cnpiq
2p
‰

ď Cpi
p.

If we prove this Lemma, the proof of tightness is complete, because after

proving the Lemma, considering (4.13), for any i and j such that 0 ď i ă j ď 2n

we will have

E
“

pCnpjq ´ Cnpiqq
2p
‰

ď E
”

`

Cnpiq ` Cnpjq ´ 2Či,j
n

˘2p
ı

“ E
“

Cnpj ´ iq
2p
‰

ď Cppj ´ iq
p.

It means that we have

E

«

ˆ

Cnp2ntq ´ Cnp2nsq
?

2n

˙2p
ff

ď Cppt´ sq
p, (4.14)

at least for all s and t of the forms s “ i
2n

and t “ j
2n

where 0 ď i ă j ď 2n. But

Cn is 1-Lipschitz1 and with a simple argument we can see that (4.14) holds for

every s and t such that 0 ď s ă t ď 1 (possibly with different Cp)
[12].

Now let us give the proof of the Lemma.

Proof of Lemma 4.3. Obviously pCnp2n ´ iqq0ďiď2n has the same distribution as

pCnpiqq0ďiď2n and thus we can restrict our attention to the case 1 ď i ď n. Also

Cnpiq has the same distribution as Si conditioned on T “ 2n`1. Thus according

to (4.7), for every ` P N0 we have

P pCnpiq “ `q “
2p2n` 1qp`` 1q2

pi` 1qp2n` 1´ iq
¨
P`pSi`1 “ ´1qP`pS2n`1´i “ ´1q

P pS2n`1 “ ´1q
.

1@x, y P r0, 1s : |Cnpxq ´ Cnpyq| ď |x´ y|
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In Lemma 4.1, if we set x :“ ´1?
2n
, s :“ 2n`1

2n
and n :“ 2n, we have

P pS2n`1 “ ´1q «
1
?

2n
p 2n`1

2n

ˆ

0,
´1
?

2n

˙

“
1
?

2n

¨

˝

1
b

2π 2n
2n`1

exp

ˆ

´

1
2n

22n`1
2n

˙

˛

‚,

where for observing the equality we used (4.8). Thus

P pS2n`1 “ ´1q À
1
?

2n

1
?

2π
,

and

P pS2n`1 “ ´1q Á
1
?

2n

1
b

4
3
π

expp´
1

6
q.

Similarly we can get the bounds for P`pS2n`1´i “ ´1q and we can find two

constants c0 and c1 such that

P pS2n`1 “ ´1q ě
c0
?

2n
, P`pS2n`1´i “ ´1q ď

c1
?

2n
.

We assumed that i ď n and therefore

P pCnpiq “ `q ď 4
c1p`` 1q2

c0pi` 1q
P`pSi`1 “ ´1q “ 4

c1p`` 1q2

c0pi` 1q
P pSi`1 “ `` 1q.

Consequently

E
“

Cnpiq
2p
‰

“

8
ÿ

`“0

`2pP pCnpiq “ `q ď 4
c1

c0pi` 1q

8
ÿ

`“0

`2pp`` 1q2P pSi`1 “ `` 1q

ď 4
c1

c0pi` 1q
E
“

pSi`1q
2p`2

‰

,

49



where we have the second inequality because

E
“

pSi`1q
2p`2

‰

“

8
ÿ

`“0

`2p`2P pSi`1 “ `q

“

8
ÿ

`“0

p`` 1q2p`2P pSi`1 “ `` 1q

ě

8
ÿ

`“0

`2pp`` 1q2P pSi`1 “ `` 1q.

It is well known that E rpSi`1q
2p`2s ď C 1ppi` 1qp`1, with some constant C 1p inde-

pendent of i. Thus

E
“

Cnpiq
2p
‰

ď 4
c1

c0pi` 1q
C 1ppi` 1qp`1

“ 4
c1
c0
C 1ppi` 1qp

ď Cpi
p,

where Cp “ 2p`2c´10 c1C
1
p, and the proof is complete.

With proving the Lemma, the proof of Theorem is complete too.

The Theorem above is powerful and useful. We state the following Corollary

as a typical application of this Theorem. Note that the height Hpτq of a plane

tree τ is the maximal generation of a vertex of τ [12].

Corollary 4.2. Let θn be uniformly distributed over An. Then

1
?

2n
Hpθnq

pdq
ÝÝÝÑ
nÑ8

max
0ďtď1

et.

Proof. We have
1
?

2n
Hpθnq “ max

0ďtď1

ˆ

1
?

2n
Cnp2ntq

˙

,

and so the result is immediate from Theorem 4.3.
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Chapter 5

Real and Labeled Trees

In this Chapter we will define and discuss real and labeled trees and deriving

similar results we did for discrete trees.

5.1 Real Trees

5.1.1 Definition

Definition 5.1. A metric space pX, dq is a real tree (or R-tree) if it has the

following three properties:

(i) Completeness. It is complete.

(ii) Unique geodesics. For all x, y P X, there is a unique isometric map fx,y :

r0, dpx, yqs Ñ X such that fx,yp0q “ x and fx,ypdpx, yqq “ y.

(iii) Loop-free. For any injective continuous map q : r0, 1s Ñ X we have

qpr0, 1sq “ fqp0q,qp1qpr0, dpqp0q, qp1qqsq.

A useful fact is that a metric space pX, dq is an R-tree if and only if it is

complete, path-connected and satisfies the so-called four point condition,

dpx1, x2q ` dpx3, x4q ď maxtdpx1, x3q ` dpx2, x4q, dpx1, x4q ` dpx2, x3qu, (5.1)
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for all xi P X (i P t1, 2, 3, 4u) [9].

In this Chapter, however, we restrict our attention only to compact real trees

which has the same definition above as real trees except that pX, dq needs to be

a compact metric space. If we distinguish a vertex ρ of X, we will have a rooted

real tree. ρ “ ρpXq is called the root. From now on, when we say real tree, we

mean rooted compact real tree like pT, dq with the root ρpTq.

Informally, a connected union of line segments (property (ii)) in the plane

without any loops (property (iii)) is a (compact) real tree. We assume that there

are finitely many line segments and therefore for any two points x and y in the

tree, there is a unique path going from x to y in the tree which is consisted of

finitely many line segments and the distance between x and y is the sum of the

lengths of these line segments [12].

Let vx, yw denote the whole range of the mapping fx,y in (ii). Particularly,

vρ, xw is the path going from the root ρ to x which we will interpret as the

ancestral line of vertex x. By vx, yv, wx, yw and wx, yv we mean the images of

respectively r0, dpx, yqq, p0, dpx, yqs and p0, dpx, yqq of the mapping fx,y in (ii) [7].

We define a partial order on the tree by setting x ď y (x is ancestor of y) if

and only if x P vρ, yw. For every x, y P T, there is a unique z, we call the most

recent common ancestor to x and y for which we have vρ, xw X vρ, yw “ vρ, zw [12].

We denote it by z “ x^ y.

By definition, the multiplicity of a vertex x P T is the number of connected

components of Tzx and we denote it by npx,Tq and if we are sure of which tree

we are talking about we simply denote it by npxq. Also any non-root vertex of a

tree which has multiplicity one is called leaf. The set of all leaves is denoted by

LfpTq “ tx P Tztρu : npx,Tq “ 1u.

Also we denote the branching points of T by

BrpTq “ tx P Tztρu : npx,Tq ě 3u.

By convention, the root ρ is neither a leaf nor a branching point [7]. We also

denote the internal skeleton of T by SkpTq and is defined as SkpTq “ TzLfpTq.
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Proposition 5.1. For any dense sequence txnuně1 in T, we have

SkpTq “
ď

ně1

vρ, xnv.

Proof. It is obvious that the union does not contain any leaves.

On the other hand, suppose x P T is not a leaf. If it does not belong to the

union, then no point in set Y “ ty : y ‰ x, x ď yu exists in the sequence. Clearly

there exists a leaf z P T. The sequence does not contain any points of wx, zw,

which is a contradiction to the assumption that it is dense.

It is also easy to show that BrpTq is at most countable [8].

5.1.2 Coding

As in previous Chapter for coding discrete trees by contour functions, we can

describe a method for coding real trees by continuous functions.

Set

U `
“ tf P Cpr0, `s,R`q | fp0q “ fp`q “ 0u.

Let g P U1 and for every u1, u2 P r0, 1s, set

mgpu1, u2q “ inf
uPru1^u2,u1_u2s

gpuq,

and

dgpu1, u2q “ gpu1q ´ 2mgpu1, u2q ` gpu2q.

Clearly dgpu1, u2q “ dgpu2, u1q and it is easy to verify the triangle inequality for

every u1, u2, u3 P r0, 1s:

dgpu1, u3q ď dgpu1, u2q ` dgpu2, u3q.

Define an equivalence relation „g on r0, 1s by

u1 „g u2 if and only if gpu1q “ mgpu1, u2q “ gpu2q,
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and let Tg be the quotient space

Tg “ r0, 1s{ „g .

Theorem 5.1. For every g P U1, pTg, dgq is a metric space and is a (compact)

real tree.

Proof. For every g P U1, it is obvious from the definition of dg that it is a metric

on Tg. Also if we denote the canonical projection by pg : r0, 1s Ñ Tg, clearly it is

continuous1 and thus the metric space pTg, dgq is path-connected and compact.

After observing that pTg, dgq is a path-connected compact metric space, now

it suffices to verify the four point condition (5.1).

Consider u1, u2, u3, u4 P Tg. We should show that

dgpu1, u2q ` dgpu3, u4q ď maxtdgpu1, u3q ` dgpu2, u4q, dgpu1, u4q ` dgpu2, u3qu.

But

dgpu1, u2q`dgpu3, u4q “ gpu1q`gpu2q`gpu3q`gpu4q´2pmgpu1, u2q`mgpu3, u4qq,

and similarly for

dgpu1, u3q ` dgpu2, u4q and dgpu1, u4q ` dgpu2, u3q.

Thus we should show that

mgpu1, u2q `mgpu3, u4q ě mintmgpu1, u3q `mgpu2, u4q,mgpu1, u4q `mgpu2, u3qu.

It is easy to see that

mgpup1q, up2qq `mgpup3q, up4qq ě mgpup1q, up3qq `mgpup2q, up4qq,

and

mgpup1q, up4qq `mgpup2q, up3qq ě mgpup1q, up3qq `mgpup2q, up4qq,

1[0,1] and Tg are equipped respectively by the Euclidean metric and metric dg.
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where upiq is the i-th smallest number in tu1, u2, u3, u4u for each i P t1, 2, 3, 4u.

On the other hand, with checking different cases1, we can see that at least one of

those inequalities will be equality and thus the proof is complete.

According to Theorem above, therefore we can view pTg, dgq as a rooted tree

with root ρ “ pgp0q “ pgp1q.

Remark 5.1. Any real tree T is isometric to Tg for some g P U1 [9].

To get an insight on how this coding works, look at Figure 5.1, where a tree

obtained from three given points, u1, u2, u3, of a continuous function.

-

6

r
r r

0 u1 u2 u3 1

mgpu1, u2q

mgpu2, u3q

gpuq

u

r

r r

pgpu1q

pgpu2q

pgpu3q

pgpu2q ^ pgpu3q

pgpu1q ^ pgpu2q

ρ “ pgp0q

Figure 5.1: Real Tree Coded by Three Points of a Continuous Function.

In the Figure, the real tree on the right obtained by bold segments shown on

the left. The heights of endpoints of each bold segment on the left is either 0,

mgpui, ujqq or gpuiq for each i, j P tu1, u2, u3u. Clearly the path from the root to

pgpuiq has length gpuiq and its common part with pgpujq has length mgpui, ujq.

With knowing these two properties about different paths between root and pgpuiq

we can build the real tree on the right. One approach can be as follows.

We start from any arbitrary point, for example the most far node from root,

here u3. We draw a straight line between root and pgpu3q with length gpu3q. Now

we can choose another node, for example whose path has the longest common

part with pgpu3q, i.e. u2. We can see that the path from root to pgpu2q ^ pgpu3q

will have length mgpu2, u3q. From there, we can draw a new line segment with

1Whether infrup1q,up4qs
gpuq happens in interval

“

up1q, up2q
‰

,
“

up2q, up3q
‰

or
“

up3q, up4q
‰

.
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length gpu2q ´mgpu2, u3q and its endpoint will be pgpu2q. The same goes for any

other nodes.

Note that pgp0q “ pgp1q, mgpu1, u2q “ mgpu1, u3q and also pgpu1q ^ pgpu2q “

pgpu1q ^ pgpu3q.

For the specific continuous function in Figure 5.1, if the chosen three points

were the only three local maximums of the function, we could obtain the complete

structure of its equivalent real tree. It means that after building the real tree

according to those three points, adding any new points of function won’t change

the way the real tree looks like and the new points will lie on the previous drawn

real tree. Look at the Figure 5.2 for clarification.

-

6

r

r r

u11 u12 u13

mgpu
1
1, u

1
2q

mgpu
1
2, u

1
3q

gpuq

u

r
r r

r r
r

1

2

3

4

5

6

rr
r
rr
r

12

3

4

5

6r

r
r

pgpu
1
1q

pgpu
1
2q

pgpu
1
3q

pgpu
1
2q ^ pgpu

1
3q

pgpu
1
1q ^ pgpu

1
2q

ρ “ pgp0q

Figure 5.2: Real Tree Coded by a Continuous Function with Three Local Maxi-
mum Points.

It is easily understood that the number of nodes in real tree coded by contin-

uous function f , is equal to the number of local maximums of f .

5.1.3 Convergence of Real Tree Towards CRT

We end this Section by presenting a Lemma which is a kind of continuous version

of Proposition 4.7 and a Theorem which can be proved easily using the statement

of Theorem 4.3. Both of them have been proved by Le Gall [12] and we will not

provide their proofs here.

Lemma 5.1. Let u0 P r0, 1q. For any r ě 0, denote the fractional part of r by

56



r “ r ´ rrs. Set

g1puq “ gpu0q ` gpu0 ` uq ´ 2mgpu0, u0 ` uq,

for every u P r0, 1s. Then, the function g1 is continuous and satisfies g1p0q “

g1p1q “ 0 and thus we can define Tg1. Moreover, for every u1, u2 P r0, 1s, we have

dg1pu1, u2q “ dgpu0 ` u1, u0 ` u2q,

and there exists a unique isometry R from Tg1 onto Tg such that, for every u P

r0, 1s,

Rppg1puqq “ pgpu0 ` uq.

Tg1 can be seen as Tg re-rotted at pgpu0q.

Before stating the Theorem, we need to introduce a couple of notations and

definition of CRT.

For a metric space pE, δq, the notation δHpK,K
1q stands for the usual Haus-

dorff metric between compact subsets of E:

δHpK,K
1
q “ inftε ą 0 | K Ă UεpK

1
q and K 1

Ă UεpKqu,

where UεpKq :“ tx P E | δpx,Kq ď εu. Also we define the distance dGHpE1, E2q

by

dGHpE1, E2q “ inftδHpϕ1pE1q, ϕ2pE2qq _ δpϕ1pρ1q, ϕ2pρ2qqu,

where E1 and E2 are two rooted compact metric spaces respectively with roots

ρ1 and ρ2 and the infimum is over all possible choices of the metric space pE, δq

and the isometric embeddings ϕ1 : E1 Ñ E and ϕ2 : E2 Ñ E of E1 and E2 into

E.

If we call E1 and E2 equivalent when there exists a root preserving isometry

mapping E1 onto E2, then dGHpE1, E2q clearly only depends on the equivalence

classes of E1 and E2. We denote the space of all equivalence classes of rooted

compact metric spaces by K [12]. We can prove that the metric space pK, dGHq is

separable and complete [4;9].
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Definition 5.2. The real tree Te which is coded by normalized Brownian motion

excursion is called continuum random tree or briefly, CRT.

Theorem 5.2. For every integer n ě 1, let θn be uniformly distributed over An

equipped with the usual graph distance, dgr. Then

ˆ

θn,
1
?

2n
dgr

˙

pdq
ÝÝÝÑ
nÑ8

pTe, deq,

where convergence holds for random variables with values in pK, dGHq.

5.2 Labeled Trees

Also for labeled trees we can derive the similar results as for discrete and real

trees. We will define labeled trees and Brownian snakes, will prove a couple of

different statements and in the end will present the Theorem without its proof

which is somewhat similar to the proof of Theorem 4.3 and is provided by Le

Gall in full details [12].

Definition 5.3. A labeled tree is a pair pτ, p`pvqqvPτ q where τ is a plane tree and

p`pvqqvPτ is a collection of integer labels assigned to the vertices of τ , such that

(i) `p∅q “ 0;

(ii) for every v P τ , `pvq P Z;

(iii) for every v P τzt∅u, `pvq ´ `pπpvqq “ 1, 0 or ´1.

For every integer n ě 0, denote the set of all labeled trees with n edges by

Tn.

Proposition 5.2. We have

#pTnq “ 3n#pAnq “
3n

n` 1

ˆ

2n

n

˙

.

Proof. The second equality comes from Proposition 4.1. The first equality is

obvious, because moving from the root, we have three choices to choose a label

for each new visited node.
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Consider a labeled tree pτ, p`pvqqvPτ q with n edges. We know that τ can be

coded by its contour function, pCtqtě0. Let us define a function to code p`pvqqvPτ .

One intuitive way to code it would be as follows. Suppose we are traversing τ

according to its contour function. Then we visit different nodes in an order like

v0 “ ∅, v1, v2, ..., v2n “ ∅. Note that a node will appear in this sequence exactly

once if and only if it is a leaf. Now put

Vi “ `pviq,

for every i “ 0, 1, ..., 2n. Also we can set Vt “ 0 for any t ě 2n and by using

linear interpolation we define Vt for every t ě 0. We call pVtqtě0 the spatial

contour function of the labeled tree pτ, p`pvqqvPτ q.

We code the labeled tree pτ, p`pvqqvPτ q by the pair pCt, Vtqtě0 and our goal in

this Section is to describe the scaling limit of this pair when chosen uniformly

random in Tn as n Ñ 8. Theorem 4.3 says that the scaling limit of pCtqtě0 is

indeed the normalized Brownian motion and thus is remains to find the scaling

limit of pVtqtě0. For this purpose we introduce the Brownian snakes.

5.2.1 Brownian Snakes

Let g be a continuous function as previous Section such that gp0q “ gp1q “ 0,

and assume that it is also Hölder continuous (Definition 3.6). It means that

|gpu1q ´ gpu2q| ď Cα|u1 ´ u2|
α,

for some exponents α and constant Cα.

Lemma 5.2. The function pmgpu, vqqu,vPr0,1s is nonnegative definite: for every

integer n ě 1, every u1, u2, ..., un P r0, 1s and every λ1, λ2, ..., λn P R, we have

sumn
i“1

n
ÿ

j“1

λiλjmgpui, ujq ě 0.
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Proof. Proof can be done using complete induction. Denote the sum by A:

A “
n
ÿ

i“1

n
ÿ

j“1

λiλjmgpui, ujq.

The basis is n “ 1. For n “ 1, clearly

A “
1
ÿ

i“1

1
ÿ

j“1

λiλjmgpui, ujq “ λ21mgpu1, u1q ě 0.

Now suppose that n “ k ą 1. Define

m “ inf
u1ďuďun

gpuq

.

If m “ gpk1q “ 0, let i ă n be such that ui ă k1 ă ui`1 (if for an i, ui “ k1,

the argument would be almost the same). Then we would have

A “
k1
ÿ

i“1

k1
ÿ

j“1

λiλjmgpui, ujq `
n
ÿ

i“k1`1

n
ÿ

j“k1`1

λiλjmgpui, ujq.

By induction, left and right expressions of plus sign are both non-negative

(number of points in both expressions are less than k) so A would be non-negative.

If m ą 0, put

g1puq “ gpuq ´m,

for u1 ď u ď uk. Define

A1 “
n
ÿ

i“1

n
ÿ

j“1

λiλjmg1pui, ujq.

Since function g1 is nonnegative, we can use the previous argument and prove

that A1 is non-negative. Also

A “ A1 `
n
ÿ

i“1

n
ÿ

j“1

λiλjm,
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because from the definition of g1, for any u and v, u1 ď u, v ď sk, we have

mgpu, vq “ mg1pu, vq `m. But

n
ÿ

i“1

n
ÿ

j“1

λiλjm “ m
n
ÿ

i“1

n
ÿ

j“1

λiλj “ mp
n
ÿ

i“1

λiq
2
ě 0.

So A is nonnegative.

By Lemma 5.2 and a standard application of the Kolmogorov extension the-

orem, there exists a centered Gaussian process pZg
uquPr0,1s with covariance

ErZg
u1
Zg
u2
s “ mgpu1, u2q,

for every u1, u2 P r0, 1s
[12]. Therefore we have

ErpZg
u1
´ Zg

u2
q
2
s “ ErpZg

u1
q
2
s ` ErpZg

u2
q
2
s ´ 2ErZg

u1
Zg
u2
s

“ gpu1q ` gpu2q ´ 2mgpu1, u2q p“ dgpu1, u2qq

“ pgpu1q ´mgpu1, u2qq ` pgpu2q ´mgpu1, u2qq

ď 2Cαru1 ´ u2s
α.

From this bound and an application of the Kolmogorov continuity criterion, we

observe that the process pZg
uquPr0,1s has a modification with continuous sample

paths.

Definition 5.4. The snake driven by the function g is the centered Gaussian

process pZg
uquPr0,1s with continuous sample paths and covariance

ErZg
u1
Zg
u2
s “ mgpu1, u2q, u1, u2 P r0, 1s.

In particular, we have Zg
0 “ Zg

1 “ 0 and for every u P r0, 1s, Zg
u is normal with

mean 0 and variance gptq.

As previously stated, Brownian motions are Hölder continuous with any ex-

ponent α ă 1
2

almost surely and thus given a normalized Brownian excursion

petqtPr0,1s, we can construct a snake pZtqtPr0,1s from it.
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Definition 5.5. We construct a pair pet, ZtqtPr0,1s of continuous random processes

whose distribution has the following two properties [12]:

(i) e is a normalized Brownian excursion;

(ii) conditionally given e, Z is distributed as the snake driven by e.

The snake Z driven from normalized Brownian excursion e is called the Brownian

snake.

5.2.2 Convergence of Labeled Tree Towards Brownian Snake

The following Theorem is due to Chassaing and Schaeffer [5;12].

Theorem 5.3. For every integer n ě 1, let pθn, p`
kpvqqvPθnq be uniformly dis-

tributed over Tn and let pCnptqqtě0 and pVnptqqtě0 be respectively contour function

and the spatial contour function of the labeled tree pθn, p`
kpvqqvPθnq. Then

˜

1
?

2n
Cnp2ntq,

ˆ

9

8k

˙
1
4

Vnp2ntq

¸

tPr0,1s

pdq
ÝÝÝÑ
nÑ8

pet, ZtqtPr0,1s,

where convergence holds on the space Cpr0, 1s,R2
`q.
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