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Abstract

Brownian motions as continuous time stochastic processes are scal-
ing limit of different mathematical objects in distribution. When a
polygon triangulation tends to a triangulation of the circle, a simple
random walk tends to normalized Brownian motion in distribution.
A similar thing can be argued for plane, real and labeled trees. The
aim of this thesis is to define and check the random triangulation of
the circle in more details and find the scaling limit and distribution

of random trees above.
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Chapter 1
Introduction

This thesis is mainly based on an article!” by David Aldous and some notes!'?
by Jean-Frangois Le Gall.

We will start by discussing Catalan numbers, one of the most famous and
frequently occurring sequences in Combinatorics. There exist many different
examples where Catalan numbers appear when we try to count a set. Among
these sets, we check three sets more in depth and use its results later.

In Chapter 3, we will state several basis definitions for the rest of the the-
sis such as Hausdorff dimension and Brownian motions. We show that how the
random triangulation of the circle can be encoded by normalized Brownian ex-
cursions.

In the other two Chapters we will discuss about different classes of discrete
trees, like plane and labeled trees and also real trees and their scaling limits will
be driven.

In this thesis it has been tried to provide the proof of every statement we
claim. In many cases we provided proofs if there were no proofs available in two
text mentioned above and also in several cases, although a proof was provided,

it has been tried to present a new proof.



Chapter 2
Catalan Numbers

Amongst the set of infinite sequences of positive integers we can mention some
simple and obvious series like doubling series (1,2,4,8,16,...) or the squares
(1,4,9,16,25,...) or some others that a few mathematicians would fail to rec-
ognize like the Fibonacci numbers (1,1,2,3,5,8,...) or the triangular numbers
(1,3,6,10,15,21,...). In case of an unfamiliar sequence, however, we may have to
spend an enormous amount of time to find a recursive or non-recursive formula
that generates the sequence!'”.

When someone encounters an infinite sequence of positive integers, a pos-
sible way is to look it up in A Handbook of Integer Sequences”’. In that
handbook at the top of the page 71, the 557-th sequence is the sequence that
we will talk about it in this chapter, the sequence of the Catalan numbers:

1,2,5,14,42,132, 429, 1430, ....

2.1 A Brief History

Around 1751, Leonard Euler found the Catalan numbers!'” after asking him-
self: In how many ways can we divide a fixed convex polygon into triangles by
drawing diagonals that do not intersect!"!? Denote the set of different polygon
triangulations by S;. The first few examples can be seen in Figure 2.1.

Let us suggest a question whose solution generates the sequence of Catalan

numbers too. What are the number of well-formed sequences of parentheses?
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Figure 2.1: Euler’s polygon triangulation problem.

”Well-formed” means that each open parenthesis has a matching closed paren-
thesis. For example amongst different sequences of n = 3 pair of open and closed
parentheses, ”()(())” is well-formed while ”(()))(” is not. Denote the set of well-
formed sequences by S;. Look at Table 2.1 for the smallest examples of such
sequences.

Now let us define the ”valid” sequences of parentheses with [ letters as below.

Suppose that we have a chain of [ letters in a fixed order. We want to add
[—1 pairs of parentheses so that each pair of matched parentheses contain exactly
two "parts”. These parts can be two adjacent letters, a letter and an adjacent
parenthetical grouping or two adjacent parenthetical groupings. We call these
sequences valid sequences of parentheses with [ letters and denote its set by Ss.
The examples of such sequences of parentheses with 2, 3, 4 and 5 letters are
shown in Table 2.2.



Table 2.1: The first smallest well-formed sequences of parentheses.

Number | 1 2 5 14
0 (0) ] (€O | () 000))
00 [ (00) | (OO0 0000
O0) | O0) OO0
Sequences 000 | (Q00) (O(0)
(O | (D)D) ()OO
0(C0) (OO
000) (000
n 1 2 3 4

Table 2.2: Examples of valid sequences of parentheses with 2, 3, 4 and 5 letters.

Number 1 2 5 14
(ab) | (a(be)) | (a(bled))) | (a(blc(de)))) (((ab)c)(de))
((ab)c) | (a((be)d)) | (albl(cd)e))) ((((ab)e)d)e)
((ab)(cd)) | (a((be)(de))) (((ab)(cd))e)
Sequences (((ab)c)d) | (a(((be)d)e)) ((albe))(de))
((a(be))d) | (al(bled))e)) (((albe))d)e)
((ab)(c(de))) ((a(blcd)))e)
((ab)((cd)e)) ((a((bec)d))e)
l 2 3 4 5

In 1838, Belgian mathematician Eugene C. Catalan discovered Catalan num-

bers while studying valid sequences of parentheses with [ letters.

2.2 Isomorphism Between S, So and Ss.

Proposition 2.1. There is an injection from Ss to Ss.

Proof. %] Let us define an injection from the set of well-formed sequences of n
pair of parentheses to the set of valid sequences of parentheses with [ = n + 1
letters with a simple example. Suppose that we have a sequence of parentheses
with | = 5 letters, like ((ab)(c(de))). First put a dot between 2 parts of each
pair of matched parentheses and get the sequence ((a.b).(c.(d.e))). Now delete all



open parentheses and letters and get .)...))). Finally put open parentheses instead
of each of the dots and get ()((())). It is easy to see that we get a well-formed
sequence.

The valid sequences in Table 2.2 are arranged in the same order as their

corresponded well-formed sequences in Table 2.1. O
Proposition 2.2. There is an injection from Ss to Si.

Proof. We define an injection from well-formed sequence of parentheses with n
pair of parentheses to the triangulation of polygons with n + 2 sides.

Suppose that we have ()((())) (a well-formed sequence with n = 4 pair of
parentheses). Start from a corresponded regular polygon which is a hexagon in
our example. Set the base node the lower left node. Starting from 1, assign
numbers to other nodes clockwise from the second node after the base node.
Also assign numbers to the closed parentheses in the sequence from left to right.
Consider the assigned number of the matched close parenthesis of the first open
parenthesis.

If it is between 1 and n — 1, then draw a diagonal between the base node
and the node with the same assigned number. By this diagonal the original
polygon will be divided into 2 polygons. For the first polygon, base node remains
the same. For the second polygon make the other node (the other end of the
diagonal) the base node. Also divide the sequence to 2 subsequences, the first
subsequence starts from the first parenthesis to the matched closed parenthesis
(with the assigned number) and the other subsequence the rest of the sequence.
Assign them respectively to the new and old polygons and do the same procedure
for them by induction.

If the matched close parenthesis is the n-th closed parenthesis, then draw a
diagonal between the nodes to the left and the right of the base node, make the
next node of base node (clockwise) the base node of the new polygon. Remove the
first and last parentheses from the original sequence and do the same procedure
by induction for the new polygon and with the new sequence.

The basis for the induction step is of course the single pair of parenthesis
which is equivalent to a triangle itself. For clarification, look at the Figure 2.2.

The sequences in Table 2.1 are arranged in the same order as their corresponded



polygon triangulations in Figure 2.1. O
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Figure 2.2: The process of getting a polygon’s triangulation from a well-formed
sequence of parentheses.

Proposition 2.3. There is an injection from Sy to Ss.

Proof. ')l In 1961, H. G. Forder showed a simple way to prove a one-on-one
correspondence between the triangulated polygons with n sides and the valid
sequences of parentheses with [ = n — 1 letters. Let us describe the injection part
of it with a simple example on a hexagon.

Except the base side, label the other sides by letters a, b, ¢, d, e. Each diagonal
spanning the the adjacent sides is labeled with the letters of those side in paren-
theses. The other diagonals are then labeled in similar fashion by combining the
labels on the other two sides of the triangle. The base is labeled last. Look at
Figure 2.3. [

Propositions 2.1, 2.2 and 2.3 show that these sets are isomorphic. In fact a
lot of other seemingly unrelated sets are isomorphic to S;’s which we will give a

few examples in Section 2.4.

2.3 The Values of C,,

But what can we say about the value of C,,, the n-th Catalan number?
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Figure 2.3: A valid sequence of parenthesis with 5 letters driven from a hexagon
triangulation.

For getting more simpler recursive formulas, usually they add a ”1” to the
first of the sequences. If we do that with the sequence of Catalan numbers, we
get the sequence (1,1,2,5,14,42,132,429,...). Put Cy = 1,C; = 1,Cy = 2,C3 =
5,Cy =14, ...

Consider the polygon triangulation problem. Let us try to count the number
of different triangulations of a polygon with n > 3 sides recursively. The first
diagonal can be drawn between any two nodes with at least one node between
them. This diagonal will divide the polygon into two smaller polygons one with
k + 1 sides and the other with n — k + 1 sides where 1 < k < n — 1. Each of these
new polygons can be triangulated independently. Also easily we can guess than
the number of different triangulations of a polygon with n sides is equal to C,,_s,

then get the following recursive formula.
n—1

Cn= > CiCriy. (2.1)
i=0

On the other hand, if we denote the number of ways of triangulating a polygon



with n sides by T,,, Euler, using an inductive argument that he described as ” quite
laborious” established that ['%]

~2x6x10x---x (4n —10)

T, )
(n—1)!

where n > 3. Also T}, = C,,_, so

Tn+2:cn
C2x6x10x - x (4n —2)
B (n+1)!
C4n—2 2x6x10x - x (4n —6)

= X
n+1 n!
_4n—2

- 77/+1 n+1;

and now we conclude that

4dn — 2
C, = Ch1.. 2.2
n+1 ! (2:2)

From recursive equation 2.2, we can derive an explicit formula for Catalan
numbers:
dn — 2

C, = Che
n+1 !

(4n — 2)(4n — 6)
(n+1)n

n—2

_ (4n—2)(4n —6) x - x 6 x 2
B (m+1Dnx- - x3x2 0

~@2n-1)(2n—3) x - x3x1 y

(n+ 1)! 2
(2n)! x 2™
B (n+1)! x 27 x n!
_ (2n)!
~ (n+ 1)l



and it means that

C, = ni - (2:> (2.3)

So Catalan numbers can be defined by any recursive formulas in (2.1), (2.2)

or the explicit formula in (2.3).

2.4 Some Examples

Here let us present a few problems!®! which introduces sets which are isomorphic

to each other and also to sets in Section 2.2.

Example 2.1 (Simple Random Walks). Consider the random walks which con-
sists of n up-walks and n down-walks in such a way that we never go below the

horizontal line (see Figure 2.4).

Figure 2.4: A Simple Random Walk with 2n = 10 Walks.

The number of these random walks are equal to C,,.

Example 2.2 (Hands Across a Tablel®). If 2n people are seated around a circular
table, in how many ways can all of them simultaneously shake hands with another
person such that none of their arms cross each other? To see the all possible ways
when n = 3 look at the Figure 2.5.

% XHf X\x XHX f/ /

Figure 2.5: Different ways of how 2n = 6 people around a table can handshake
without crossing each other hands.

The number of different handshaking with 2n people around table is equal to
Cp.



Example 2.3 (Plane Rooted Trees). The set of rooted trees with n edge in which
a specific node is root is also isomorphic to the sets defined above.

The number of rooted trees with n edges is equal to C,,.

Example 2.4 (Rooted Binary Trees). The number of rooted binary trees with n
internal node (none leaf) which each nod is either a leaf or an internal node with
exactly two children also generate the sequence of Catalan numbers.

The number of rooted binary trees with n internal node is equal to C,.

There are a lot of other examples which produce the sequence of Catalan
numbers. In 1971 Henry W. Gould, a mathematician at West Virginia University,
privately issued a bibliography of 243 references on Catalan numbers. In 1976

3], In many cases people were not

he increased the number of references to 450
aware that they were dealing with the sequence of Catalan numbers!
In next two chapters, we will talk about the polygon triangulation and plane

trees and their limits more in depth.
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Chapter 3
Limit of Polygon Triangulation

In Chapter 2 we saw that the number of different triangulation of a polygon with

n sides is equal to the (n — 2)-th Catalan number,

Cnz = i 1 (221:22))‘

In this chapter we will discuss in more depth about the set of different trian-

gulations of a polygon and its limit when n — co.

3.1 Random Triangulation of the Circle

When n — o0, a regular polygon with n sides will converge to a circle; so we can
consider that it is a triangulation of a circle! Based on this convergence, a random
triangulation of a regular polygon with n sides when n — oo, can be considered
as a random triangulation of the circle. We consider the definition below for a

triangulation of the circle.

Definition 3.1. A triangulation of the circle is a closed subset of the closed
disc whose complements is a disjoint union of open triangles with vertices on the

circumference of the circle. 2

The triangulations defined as above are exactly the possible limits of triangu-
lations of n-gons. Before talking more about different triangulations, let us define

the HausdorfT content and dimension.

11



3.1.1 Hausdorff content and dimension

Definition 3.2. d-dimensional Hausdorff content of S is defined by
C%(9) = inf {Z r? : there is a cover of S by balls with radii r; > O} :

where S is a subset of a metric space X and d € [0, o).

Suppose that X < R™ and and A > 0 then it is easy to see that !’
CLAX) = XNC%L(X). (3.1)

For proving that, suppose that a covering C' of X gives the infimum of the
set above, Y. r# which is equal to C, then if we replace each ball in C' with a
ball A times bigger, the new sum will be >, (Ar;)? = Y. Ard = XY rd = NCY,.

It proves that C%4(AX) < MC%(X). With a similar argument we can prove that
CH(X) < 2C%(AX); and together we conclude (3.1).

Definition 3.3. Hausdorff dimension of X is defined by
dimy(X) = inf {d > 0: CH(X) = 0}.

With the definition of Hausdorff dimension, we can easily observe that!’)

(3.2)

cropy - | @ 0<d< dimy(X)
0 ifd > dimp(X)

But when d = dimg(X), C%(X) is not determined. In fact it can be either 0 or
infinity or may take any value between 0 and infinity.

In general finding the Hausdorff dimension of a space directly is rather a hard
work! The calculating is usually done by using some basic techniques that are
available for dimension calculations. For example the equation 3.1 can be used
sometimes to establish an upper or a lower bound for the Hausdorff dimension.

Let us explain a simple example in which we calculate the Hausdorff dimension

directly. We prove that the Hausdorff dimension of the interval [0, 1] is 1.

12



We define different coverings of the interval [0, 1] for each & = 1,2, ..., and

denote them by C}, as follows. C}, is a covering consists of k£ segments [%, %] for

each i =0,1,...,k—1. Now let us calculate ), rd for a specific k and an arbitrary

d:
k
k
2t Zﬁ)d Rl

so when k£ — oo, the sum goes to 0 if d > 1 and goes to infinity if d < 1 and
according to (3.2) we conclude that the Hausdorff dimension of the interval [0, 1]
is 1.

Other examples can be a countable set, circle and R™ which have Hausdorff

dimension respectively 0, 1 and n.

3.1.2 Two Examples of Different Triangulations

Let us now give two examples of different triangulations of an n-gon.
Assign numbers 1,2, ...,n respectively to nodes of the n-gon. We show a
triangulation of this n-gon by a set of pairs of nodes. An arbitrary triangulation

can be the set
T, = {<172)’ (173)7 (174)7 T ,(1,71)}.

Clearly when n — oo, T} will be the whole interior of the circle and will have
the dimension 2.

Another example can be

o Gn)- (o) (5)- (57 ) (Fon) () (5 )

which can be considered as a portion of a straight line and has Hausdorff dimen-
sion 1.

Although the triangulations above have Hausdorff dimension 1 and 2, but
it turns out that the limit of random triangulation of the circle has Hausdorff
dimension % almost surely?. We will show it in Section 3.5.2.

Also in any random triangulation of the circle, the length of the longest chord
is at most the diameter [y of the circle and at least the length [; of the side of

an inscribed equilateral triangle. Noting this, we may ask ourselves the question

13



below 41,

Question 3.1. In a random triangulation of the circle, what is the chance that
a longest chord has length greater than (lo + 1,)/2?

This question is phrased to resemble the well known Bertrand’s paradox.

Question 3.2. What is the chance that a random chord in the circle has length

greater than 11 ?

This is a paradox because as Martin Gardner explained!'¥ (Chapter 19), we
can get at least three different answers by three equally plausible calculations.
The point is that here randomness has no canonical meaning. There are several
different mechanisms for physically drawing a chord in some ways influenced by
chance and these different mechanisms, mathematically, lead to different proba-
bility measures on the set of chords. The same is about the notation of a random
triangulation of the circle. For solving this problem of ours, we use the measure
which is the limit of uniform random triangulations of n-gons and so then we will

need to prove the existence of such a limit.

3.2 Continuous Functions and Triangulations of
the Circle

Consider a continuous function f : [0, 1] — [0, 00) which satisfies

f(0) = f(1) =0,

f(t)>0for 0 <t<1. (3.3)

We explain a simple way to establish a mapping from these kind of functions
to triangulations of the circle.

Suppose ts is a strict local minimum of f, that is f(t2) < f(¢) for all ¢ # ¢5 in
some neighborhoods of t5. Amongst these neighborhoods, suppose that (¢1,t3) is
the largest one. By continuity we observe that f(t1) = f(t2) = f(t3). Now regard
the interval [0, 1] as the circumference of the circle and draw a triangle with

vertices t1, to and t3. Do that for each strict local minimum t,. If f(t}) > f(t2)

14



(the same goes for the case f(t}) < f(t2)) then no matter where ¢} lies (in which
arc of arcs (t1,ta), (to,t3) or (t3,t1)), also ¢} and ¢} lie in the same arc and thus
triangles are disjoint. If f(¢,) = f(t2) then 0, 1 or 2 of the points t;’s are equal
to one of ¢;’s. If none of them or only one of them are equal to each other, then
it would be almost like before. In the case when 2 of them are equal to ¢;’s, then
we would have some chords crossing each other and so we assume that this case
never happens with our specific function f. So we can define our triangulation
to be the complement of the union of all the open triangles associated with the
local minimums.

By some functions we may get a finite number of triangles and thus our
triangulation will have a non-zero area, but there exist some functions f with the
property that the set of strict local minimums of f is dense in [0, 1]. By these
kind of functions our triangulation will have no non-zero area.

This mapping from continuous functions in [0, 1] to triangulations of the circle
is useful because with using it we can define the random triangulation of the circle
indirectly by first defining random functions and then use the mapping. Random
functions, on the other hand, are actually stochastic processes which are well
known and thus with the mapping we related a well studied subject to our new
subject! Also this mapping is in fact the continuous analog of the mapping from
discrete walks to triangulations of the n-gons which we will talk about in next

section.

3.3 Walks, Trees and Triangulations of n-gons

Let us first define four sets:

e 5, := Set of positive (except the two ends of the walk) walks with steps +1

or -1 and length 2n. For an example see Figure 3.1.

e S, = Set of rooted (and ordered) plane trees with n — 1 edges. For an

example see Figure 3.2.
e S;3 := Set of binary trees with n — 1 nodes. For an example see Figure 3.3.

e S, == Set of triangulations of (n + 1)-gons. For an example see Figure 3.4.

15



0123456 7 8 910111213 14
Figure 3.1: A Positive Walk with 2n = 14 Walks.

Figure 3.2: A Plane Rooted (and Ordered) Tree with n — 1 = 6 Edges.

a

Figure 3.3: A Binary Tree with n — 1 = 6 Nodes.

For each ¢« = 1,2,3 we will present a one-to-one mapping from S; to S;y;.
In fact with these mappings we can get the ordered tree in Figure 3.2 from the

positive walk in Figure 3.1, the binary tree in Figure 3.3 from the ordered tree in

16



Figure 3.4: A Triangulation of the Octagon.

Figure 3.2 and the triangulation of octagon in Figure 3.4 from the binary tree in
Figure 3.3, and vice versa!

Mapping 1. This mapping is from S; to S; and vice versa. Consider a
positive walk. For the first +1 walk (the first walk is surely +1), we draw the
root. After that for each +1 walk we draw a node from current node and for each
-1 walk we go back to previous node that we came from (the parent of current
node). Each new node from a node is drawn to the right of the other nodes.

Look at the walk in Figure 3.1. This mapping takes the points a, b, ¢, d, e and
f in the walk to corresponding nodes with the same labels in the ordered tree in
Figure 3.2.

For producing a walk from an ordered tree, we start from root and then visit
children of each node from left to right (for each new node we first visits its
children and then go to visit its siblings on its right). This will be actually a
depth-first search algorithm which traverses the tree. In this process, for each up
movement, we draw a +1 walk and vice versa.

So this mapping is a one-to-one correspondence between S; and S,.

Mapping 2. This mapping is from S; to S3 and vice versa. Consider an
ordered plane tree with a root. Start from the root. Use the depth-first search
algorithm above to traverse the ordered tree. For the first move (from root to its

leftmost child), draw a node. After that if you are visiting a new node that has

17



not a left sibling in ordered tree, then draw a left edge from its parent’s mapped
node in binary tree which produces a new node who will be the mapped node for
current node in ordered tree. On the other hand, if you are visiting a new node
which has a left sibling, then draw a right edge from its left sibling’s mapped
node in binary tree and map it to this new node. In the end until there exists a
node in binary tree that has not two children, draw a new edge from it and add
it to a leaf. So the left/right child of a node in binary tree will be a leaf if its
corresponded node in ordered tree has no child/sibling. In Figure 3.3, these new
nodes are specified with white circles.

With this mapping, each node in an ordered tree will be mapped to an internal
node in binary tree. Take a look at the ordered tree in Figure 3.2 and its mapped
binary tree in Figure 3.3 and note the labels of the nodes.

On the other hand, from a binary tree we can get an ordered tree briefly as
follows. Use depth-first search algorithm again and when you arrive to a new
node which is not a leaf, then if it is the left child of its parent (in binary tree),
draw a new edge from the corresponded node of its parent and if it is the right
child, draw a new edge from the parent (in ordered tree) of the corresponded nod
of its parent (in binary tree). New edges from each node should be drawn in a
way that the most new edge be on the right of other edges on the node.

In this way we established a mapping which is a one-to-one correspondence
between So and Ss.

Mapping 3. This mapping is from S3 to S; and vice versa. Consider a
binary tree with n — 1 nodes and a regular (n + 1)-gon. Choose a base side s in
the (n + 1)-gon. This side should be side of a triangle in the final triangulation.
This triangle will be specified by the number of internal nodes to the left and
right of the root of the binary tree. In our example of triangulation in Figure 3.4
and binary tree in Figure 3.3, the base side s is the bottom horizontal side and
these numbers are 0 and 5. So the triangle should be drawn so that the number
of polygon’s node on the right side of the triangle be 5 and this number of left be
0. The edges from the root are drown so that they cross the two other sides of the
triangle (other than the side s). When an edges is drawn in a way that crosses a
side of the polygon, it denotes a leaf. After this, the part of the binary tree on

the right /left of the root (except any leaves) is drawn with the same process on
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the right/left of the first triangle.

Finally in fact each chord in triangulation represents an edge in binary tree
which is between two internal nodes and each side, except the base s, represents
an edge to a leaf. Also each internal node will be inside a specific triangle in final
triangulation.

The reverse mapping for getting the binary tree from a triangulation is much
simpler. First we put n — 1 nodes inside the n — 1 triangles and connect those
two nodes to each other whose triangles are adjacent. The root is the node inside
the triangle containing the base side s. Also its the base side s that determines
which child is a right child and which is a left child. Also the leaves are clearly
connected to each node whose triangle has a side in the set of polygon’s sides!

So this is in fact a one-to-one correspondence between S3 and Sy.

3.4 Brownian Motions

Consider an arbitrary (not necessarily positive or starting from zero) random
walk with length m (consisted of m walks with steps +1 or -1). Suppose that we
want to scale it and draw it on a paper with width w and an unlimited height.
Then if we want to fit the walk to the paper, the width of each walk should be >
and thus the steps should be +:% or —=. To be sure that we can draw the scaled
walk on paper, we are in need of a height of paper equal to 2w, (from +w to —w
in case if all steps in original walk are +1 or all are -1) but it turns out that in
general the height of the original walk is of order +4/m and thus for the scaled
walk, generally we are in need of a height of order 2%.

In the limit, when m — oo we will have a path that we call it Brownian
motion. If the original random walk is constrained to be positive at all times
except at the two ends which is zero and also we put w = 1, then the path is
constrained to satisfy (3.3) and it is called normalized Brownian excursion. In the
case that w is any arbitrary value the path is simply called Brownian excursion.

Now we can prove the following Proposition (with of course skipping a lot of

technicalities).

Proposition 3.1. Random triangulation of the circle is the limit of uniform
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random triangulation of polygon.

Proof. By mappings defined in Section 3.3, we indeed showed that there exists a
one-to-one correspondence between constrained random walks and triangulations
of polygons. On the other hand, by applying the mapping (from continuous
functions to triangulation of the circle) in Section 3.2 to normalized Brownian
motions we get a random triangulation of the circle. So the proof is complete,

because normalized Brownian motions are the limits of constrained random walks.

]

Also we can say that there exists a mapping from normalized Brownian excur-
sions to triangulations of the circle and vice versa. Because they are respectively
limits of constrained random walks and triangulation of polygons and the last

two sets have a one-to-one correspondence between each other.

3.5 Random Triangulation of the Circle, Revis-
ited

Let us first talk more about Brownian motions.

3.5.1 Zero Set of Brownian Motion

Let us first present and prove a fundamental principle.

Theorem 3.1 (Mass Distribution Principle). If A < X supports a positive Borel
measure  such that (D) < C|D|?* for any Borel set D, then C%(A) > A ind

c
hence dimy(A) = d.

Proof. Consider a covering of A, like Uj A;, then

DA = 7Y Ay = ¢ u(A),
; j

and thus C%(A4) > # which means that C%(A) is positive and therefore
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It is known that Brownian motion’s transition kernel p(t,z,-) has N(x,t)
distribution. In general, if Z has N(z,t) distribution we define | N (z,t)| to be the
distribution of |Z|.

Next Theorem is known as Lévy’s identity.

Theorem 3.2 (Lévy, 1984). Let M, be the mazimum process of a one dimensional
Brownian motion By, i.e. M; = maxo<s<tBs. Then, the process Y; = My — By 1s
Markov and its transition kernel p(t,x,-) has |N(z,t)| distribution!"".

We will not provide a proof for this theorem, but note that it actually states
that Y; = M; — B, and |B;| has the same distribution.
Now let us define zero set and also record time which is in fact zero set of Y,

defined above.

Definition 3.4. We denote Zero set of a Brownian motion B; by Z5 and define
it as
ZB:{t>OBt:O}

Definition 3.5. We call a time t a record time for Brownian motion B; if it is
a zero of Y, i.e. Y; = M; — B; = 0. In other words, t is a record time if it is a

global maximum from left.

Although almost surely Brownian motions have isolated zeros from left (first
zero after a specific time) or from right, but zero set of a Brownian motion is an
uncountable closed set with no isolated point with probability one['™l!

Before presenting and proving the next Lemma, let us define Hélder continuity.

Definition 3.6. A function f defined on R is Holder continuous with exponent

« if there exists a constant, C,, such that

v,y - [ f(2) = fy)] < Calw —y|*

Lemma 3.1. dimy(Zg) = 5 with probability one.

1
2
Proof. Instead of showing directly the lemma above, we show that with proba-

bility one, the set of record times for a Brownian motion B,

{tZO}/;:Mt—Btz()},
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has Hausdorff dimension %[17].

M, is an increasing function, so we can regard it as a distribution function of
a measure u, with p(a,b] = M, — M,. Then set of record times is a support on
this measure. Also we know that with probability one, the Brownian motion is

Holder continuous with any exponent a < % Therefore

My, — M, < max By, — B, < Cu(b—a)?,

0<h<b—a

(17]

where C,, is a constant that does not depend on a or b'""'. Now according to Mass

Distribution Principle, we get that almost surely, dimy({t > 0:Y; = M, — B, =
0}) = o O

There is a rather longer proof for the reverse Lemma which gives an upper

bound for the Hausdorfl dimension of zero set of a Brownian motion that is the

1
)y o
3.1 we get the proof for the following Theorem.

same as the lower bound above With combining that Lemma with Lemma

Theorem 3.3. Zero set of a Brownian motion has Hausdorff dimension % with

probability one.

In fact the Theorem above implies that the set of record times has Hausdorft
dimension 1 too, because Y; has the same distribution as |B| (Theorem 3.2) and

zero set of | By| is the same as zero set of B;.

3.5.2 Hausdorff Dimension of Random Triangulation of
the Circle

In this Section we will show briefly that the random triangulation of the circle
has Hausdorff dimension % with probability one.
In fact we will show that for probability one for any given ¢ > 0, S has

dimension %, in which S is the set of endpoints of chords with length at least

e. After showing that we actually proved what we wanted to prove, because

each point in S. corresponds to a chord in circle (which clearly has a Hausdorff

3

dimension 1) and thus the set of all of those chords has Hausdorff dimension 3

and when € — 0, S. converges to triangulation of the circle!
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In mapping from normalized Brownian excursion to triangulation of the circle,
chords correspond to intervals [s, s'| for which f(s) = f(s') and f(¢) > f(s) for all
t € (s,s') (in fact such an interval may not be part of a local minimum interval-
pair, but it will be a limit of intervals which are”!). Consider such intervals

straddling time 0.5. These are intervals [s,, s; | where 0 <y < f(0.5) and

sy = sup{t < 0.5: f(t) = y},
s, =inf{t > 0.5: f(t) = y}.

So now we need to show that
1
the set {s, : 0 <y < f(0.5)} has dimension 3 (3.4)

with probability one and then replacing 0.5 by any rational shows that S. has
dimension %

For proving 3.4, note that the set of record times of a normalized Brownian
excursion has Hausdorff dimension % with probability one!. It is essentially the

same as saying that with probability one

1
the set {t, : 0 < y} has Hausdorff dimension 3 (3.5)

where
t, = inf{t > 0: g(t) = y}.

g(t) is a normalized Brownian excursion here, but in general it can be any Brow-
nian motion.

Also note that Brownian motions has time-reversal property which means
that if B; is a Brownian motion, then Bt = B,_; is also a Brownian motion.
For normalized Brownian excursion f(¢) if we choose u = 0.5 we observe that
f(t) = (0.5 —t) for t € [0,0.5] is also a Brownian motion. This and (3.5) give
us a proof of (3.4).

1

Finally because of (3.4) we conclude that S has Hausdorff dimension 5 and

'We proved this for Brownian motions, but it is also true for normalized Brownian excursion,
because the conditioning involved in producing normalized Brownian excursion from Brownian
motion does not effect local properties of the random functions!?l.
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thus the Hausdorff dimension of random triangulation is %
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Chapter 4
Discrete Trees

In previous Chapter we showed that simple (positive) walks have a one-to-one
correspondence with ordered trees and then binary trees and finally triangulations
of polygons. In the end we showed that the limit of simple random walks tends
to normalized Brownian excursion. Due to one-to-one correspondence of simple
walks and ordered trees, it is intuitive to guess that the limit of ordered trees
will tend to Brownian excursions too. In this Chapter we will check this in more
details. In fact we first map ordered trees to contour functions and then we show

that the limit of contour functions tend to (normalized) Brownian excursions.

4.1 Dyck Path and Contour Function

One of the fundamental tools in enumerative combinatorics is bijections. Two
sets A and B have the same cardinality if and only if there exists a bijection from
A to B!, With such a bijection we can count the elements of A by counting the
elements of B. We do not need any example: We used this tool several times in
previous two Chapters! But let us give another interesting example which is also
useful in this Chapter: The enumeration of Dyck words.

Dyck words are words in letters X and Y with as many X's as Y’s such that
in any initial segment of the word we have at least as many X’s as Y’s??!l. For
example XY XXYXXYYY is a Dyck word, but XXYXYYYXXY is not a
Dyck word. If we replace each X with a left parenthesis and each Y with a right
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parenthesis and vice versa, we clearly get a bijection from Dyck words to well-
formed sequence of parentheses and thus we observe that the number of different
Dyck words with n letter X’s and n letter Y’s is equal to C,, = %H(Zr?) But let
us count the number of Dyck words in another way.

We can count the number of Dyck words of length 2n by starting to count all
words with n X’s and n Y’s which is (2:) and then subtract the wrong words.
A bijection due to D. André® shows that the number of wrong words® is (,*",):
Given a word with n X’s and n Y’s that is not a Dyck word, locate the first Y’
that violates the restriction of Dyck words and interchange all X’s and Y’s that
come after it. This will be a bijection from the set of wrong words to the set of
words with n — 1 X’s and n + 1 Y’s. Number of the elements of the second set
is clearly (ffl) and so is the number of wrong words! Thus the number of Dyck

words will be equal to

-0 - () -

If we write the number of X minus the number of Y for each initial seg-

ment? of a Dyck word, we get a sequence of nonnegative numbers that we call
it Dyck path. For example from the Dyck word XY X XY XXYYY we get the
Dyck path 0,1,0,1,2,1,2,3,2,1,0. Let us define it mathematically rather than

combinatorially!

Definition 4.1. Let n > 0 be an integer. A Dyck path of length 2n is a sequence
(20, 21, ..., T2,) of nonnegative integers such that zo = x9, = 0 and for each

i=1,2,..,2n, |z — x| = 102,

If we plot Dyck path in a Cartesian coordinate plane we get some isolated
points and if we use linear interpolation between each of these points, we get the
plot of a function that we call it contour function. Obviously the plot of contour

functions will remind us of (nonnegative) simple random walks.

"Which are not Dyck words!
2Can be also an empty segment or the whole word.
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4.2 Discrete Trees

4.2.1 Plane Trees

For defining plane trees we introduce the set [

0
u= N
n=0
where N = {1,2,...} and N° = {&}.
Thus U is a set of elements like u = (u', u?,...,u") and we set |u| = n. If u =

(ul,u?,...,u™) and v = (v', 0% ..., v") belong to U, we define the concatenation of
wand v by wv = (u',...,u™, v',...,v"). Also u@ = Pu = u. In fact |&| = 0 and
in general |uv| = |u| + |v].

We define mapping 7 = U\@ — U by «((u!,u?,...,u")) = (u*,u?, ..., u""1).

Along with the definition below we see that m(u) is the parent of w.
Definition 4.2. A plane tree 7 is a finite subset of U such that:

(i) @ €er;

(ii) for every u e 7\{@}, 7(u) € T;

(iii) for every u € 7 there exists an integer n,(7) = 0 such that for every j € N,

uj € 7 if and only if 1 < j < (7).

So node u in plane tree 7 has n,(7) children.

We denote the set of all trees by A and define |7] to be the number of edges
of tree 7: || = #7—1. Also for every integer k > 0, we let A,, be the set of trees
with n edges:

A,={reA:|r|=n}.

Proposition 4.1. Cardinality of A,, is the n-th Catalan number

#(An) = n41—1<2:>

Proof. 1t was proved in previous Chapter. O
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Let us explain briefly how to get the contour function of tree 7. Suppose that
7 is the tree shown in Figure 3.2. If we suppose that each edge of 7 is drawn such
that all of them have unit length, then contour function of 7 is the distance (in
tree) of a parcel which starts to move from the root and traverse the tree like as

shown in Figure 4.1.

Figure 4.1: Traversing a plane tree and its nodes’ sequences.

In this traverse, we visit the children from left to right and create their se-
quences upon that ordering. Also each edge is traversed two times, so in general,

contour function C; of tree 7 is the function
CS tS€ [072|T|] - [07 |T|]

By convention C, = 0 for s > 2|7|. Note that C above might not be surjective.
In this way it is easy to see that the contour function will look alike the equivalent

simple walk of the tree 7 which is shown in Figure 4.2.

Proposition 4.2. The mapping 7 — (Cy, C1, ..., Cay,) is a bijection from A, onto
the set of all Dyck paths of length 2n.

'With probability one in its limit!
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01 2 3 45 6 7 8 9 10 11 12

Figure 4.2: Contour function of the plane tree in Figure 4.1.

Proof. Mapping 1 in Section 3.3 which we showed that it is a bijection is indeed
the mapping in this Proposition. O

4.2.2 Galton-Watson Trees

An offspring distribution {py } x>0 is simply a probability measure on Ny = {0, 1,2, ...}.

Let us define Galton-Watson process.

Definition 4.3. A Galton-Watson process (Zy,)n=o is a discrete Markov chain

with values in Ny with transition probabilities
P(Zpi1 = k|Z, =m) = pi™,

where p;™ denotes the m-th convolution power of offspring distribution {pj}r=o-
In other words the conditional distribution of Z,, ., given Z,, is the distribution
of the sum of Z, i.i.d. random variables with distribution {py}r=o. Initial value
is Z(] = 1.

If the expected value of a random variable with law {py}r=>0 is equal to 1, we

will have some interesting distributions defined below.

Definition 4.4. Probability measure p on Ny is called critical or subcritical

offspring distribution if

o0
nu(n) < 1.1

n=0

We suppose that u(1) # 1.

Now let (N,,, u € U') be a collection of i.i.d. random variables with distribution

!Note that this is the set U which we defined in previous Section.
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1 defined above and indexed by set U. Denote by 6 the random subset of U defined
by

0= {u = (uh,u?, . uM) eU:Vje{l,2,..,n},u < Nyt 2 ujfl)}. (4.1)

-----

Proposition 4.3. 0 is a.s. a tree. Also if
Zn=#{ueb: |ul =n},

(Zn)ns0 is a Galton-Watson process with offspring distribution p and initial value
Zy = 0.

Proof. 1f 0 is finite then it is a tree, because for every u € 6, due to the definition
of 0, we have all of its left siblings and their parents. Also @ € 0. In fact N, is
the number of children of node w.

If 6 is infinite, then there exists u = (u',u? ...) € 0 for which |u| = . Tt
means that for each n, N, > 0, where u,, = (u',u?,...,u"). The probability of
this is at most 1132 ;1 — 1(0) which converges to 0 if £(0) > 0 which is clearly the
case because p(1) # 1 and >, nu(n) < 1.

The proof that (Z,),>0 is indeed a Galton-Watson process can be done easily

by induction. O]

The finiteness of 8 can also be concluded from the fact that the Galton-Watson

process with offspring distribution u becomes extinct a.s.: 7, = 0 for n large.

Definition 4.5. The tree 6 defined by (4.1), or any random tree with the same
distribution is called Galton-Watson tree with offspring distribution p, or in short

u-Galton- Watson treel™.

Suppose that 7 is a tree and 1 < j < ng(7), then we denote by 7;7 the branch
that starts from the j-th child of the root:

Tir={uel: juerT}

We write II, for the distribution of 6 on the space A. II,, can be characterized

by the following two properties!'?:
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(i) Hu(no = j) = () for every j € Ny

(ii) for every j = 1 with u(j) > 0, the branches Ty7, T57, ..., T;7 are indepen-
dent under the conditional probability II,,(d7|ny = j) and their conditional

distribution is II,,.
Property (ii) is called the branching property of the Galton-Watson tree.

Proposition 4.4. For every 7 € A,
(1) = | [ u(na(m)):

Proof. 1t is easily understood that knowing that a randomly generated tree 6
with offspring distribution p is the same as 7 is equivalent to knowing that for

each u € 7, N, = n,(7)!! So

(1) = P(0 = 7) = | [ P(Nu = (7)) = | [ u(na(7)):

UeT UET

O

In particular the case when p = pg for which g is the (critical) geometric
offspring distribution, jo(n) = 27! for every n € Ny, is interesting and we check

it more in what follows. In that case, the Proposition above tells us that
HMO _ 2—2|’T‘—1’

because for every 7 € A, we have >, __n, = #(17) —1 = |7|.
It means that II, (7) depends only on |r|. So the conditional distribution
when given |7| = n will be a uniform distribution on A,,.

Let us check the contour function when p = py.

IThe first clearly implies the second. Knowing that for each u € 7, N,, = n,(7), we conclude
that all the nodes u € T are also in € and also no other node can be added to 6 because for each
leaf in v € 7, surely n,(7) = 0.
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4.3 The Contour Function in the Geometric Case

In general, the contour function does not have a ”nice” probabilistic structure!'?.

But when the distribution is the geometric offspring distribution, pg, there exists
a bijection between Dyck paths and random walks.
Recall that if (S,)n>0 is a simple random walk on Z starting from 0, then it
can be written as
Spn=X1+Xo+ -+ X,,

where X7, X, ... are i.i.d. random variables with probability distribution P(X; =

1)=P(X;=-1)=1.

We are interested in nonnegative random walks, so put
T =min{n>0:5, = —1}, (4.2)
and consider the walk from the start until the (n — 1)-th walk:
(S0, S1, ey ST_1).

This path in finite a.s. and we call it an excursion of simple random walk. Note
that each excursion of simple random walk of length 7" — 1 is also a contour
function of a tree with % edges.

Before stating the next Proposition let us introduce the upcrossing times of

random walk S from 0 to 1:
Uy =min{n>0:5, =1} and V; = min{n > U, : S,, = 0}
and for every j > 1, by induction,
Ujt1 = min{n >V, : S, = 1} and V;4; = min{n > U;4; : S, = 0}.
If S is an excursion of simple random walk of length 7" — 1, then if we put

N =max{j: U; <T — 1}, (4.3)
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it means that S is consisting of K parts that are each positive random walks and
due to Markov property they are independent from each other.

If S is a simple random walk (not necessarily an excursion of it) which starts
at 0 then for each j = 1,2, ..., the part starting at V; and ending at U;; — 1 can
be either empty or nonempty. Thus S can be partitioned to some i.i.d. simple
random walks which endpoints are 0. Denote these parts by & (i = 1,2,...) and
also let Ty = 0 and 7; be the ¢-th time when S comes back to 0, for i = 1,2, ...
(it means that &; starts at time 7;_; and ends at time Tj).

The fact that &’s are i.i.d., is the essential of excursion theory'”). To show
that how it can be used for calculations, let us find the distribution of the number

of returns to 0 before the time 7 = inf{n : S,, = —2}. Obviously,

P(& visits —2) = P(S,, = —2 for some k with 0 < k < T7)

»-Jk‘l»—t ~

So

P(number of returns to 0 before 7, is at least k
= P(excursions &, &, ..., & do not visit — 2)

= P(&; does not visit — 2)*
3\ ¢
)

Proposition 4.5. Contour function of po-Galton-Watson tree 0 is an excursion

of simple random walk.

Proof. According to Proposition 4.2, plane trees are in one-to-one correspondence
with Dyck paths. Also Dyck paths are clearly in one-to-one correspondence with
nonnegative random walks. Thus the statement of this Proposition is equivalent
to saying that the random plane tree 6 coded by an excursion of simple random
walk is a pg-Galton-Watson tree. To prove this, suppose that we coded tree 6 by
an excursion of simple random walk, S. Now if we consider N, as defined in (4.3),
it is easily understood that ng () = N and for every i € 1,2, ..., N, the branch T;0
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is coded with the path (w;(n))o<n<v;—v,—1, where for each n € {0,1,...,V; = U; — 1}
wz(n) = SUi+n — 1.

Also N is distributed according to geometric offspring distribution o and
conditioned on N = m, paths wi,ws, ..., w,, are independent excursions of simple
random walks. Now according to characterization of II,,, these who that 0 is a

to-Galton-Watson tree. m

4.4 Brownian Excursions

In Section 3.4 we talked briefly about Brownian motions and also normalized
Brownian excursions. We defined Brownian motions by limit of simple random
walks when rescaled properly. In this section we talk about Brownian excur-
sions in more depth and we show that the contour function of a tree uniformly
distributed over A, converges in distribution as n — oo towards a normalized

Brownian motion.

4.4.1 Local Time Process and Excursion Space

Consider a standard linear Brownian motion B = (By);>o starting from 0. We

define local time process of Brownian motion B as follows.

Definition 4.6. The local time process (L} );>o of standard linear Brownian mo-

tion B at level z is mathematically defined by!

by

1Some authors denote the Local time process by (¢, z)
2Tt is zero for all values except at zero and its integral over any interval containing zero is
equal to one.
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We are particularly interested in local time process at level 0. Now if we define
the reflected Brownian motion by ; = |By|, the local time process at level 0 of

B; or of f3; is approximated a.s. for every ¢ > 0 by

1

. t 3 1 t
L) = lim o fo 1jc(B,)ds = lim — fo Lo (Bs)ds.

Thus local time process is a continuous increasing process. The increasing

points of this process at level 0 is the zero set of By,
ZB:{t>O:Bt:O},

which is the same as Zg. If we define the right-continuous inverse of the local
time process as
op==inf{t > 0: L) > [}

for every | > 0, we will have
Zg={o,:1 =0} u{o_:1le D}

where D denotes the countable set of all discontinuity times of mapping [ — o;.

excursion intervals (away from 0) of § are any connected component of the
open set R;\Z3z. Then excursion intervals away from 0 of 8 are intervals of the
form (o;—,0;) where [ € D. We define the excursion e¢; = (e;(t)):=0 associated to

the interval (o,_,0;) for every [ € D by

Bop vt fO<t<oy—o0p,
el(t) = .
0 ift>o —o_.

In fact different excursions e; are defined somewhat like w;’s in Proposition 4.5.
We view these excursions as elements of the excursions space E that is defined

as follows!['?],

Definition 4.7. The excursion space E is a metric space with elements

ee€ C(R;,R,) such that e(0) = 0 and ((e) > 0,
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and metric d,
d(e, €’) = sup e(t) — €'(t)] +[C(e) — C(€)],

t=0

and with the associated Borel o-field. ((e) above is defined by
¢(e) =sup{s > 0:e(s) > 0}

where sup @ = 0.

Note that zero function does not belong to the excursion space because we

require ((e) > 0 and ((e) can be seen as the length of excursion e. Also for every
leD, ((e)=01—o0r.

4.4.2 The Ito6 Excursion Measure

Put

@) = \/29;? exp (—g—i) : (4.4)

The function ¢t — ¢, () is the density of first hitting time of x by B['” (starting
at 0) or of first hitting time of 0 by a linear Brownian motion which starts at
20,

[t6 measure n(de) of positive excursions is an infinite measure on the set of
elements of excursion space £ and has the following two (characteristic) proper-

ties[M]:

(i) For every t > 0 and every measurable function f : Ry — R, such that
f(0) =0,
a0
| n@ersteten = | drata)s o

0

(ii) if ¢ > 0 and ® and ¥ are two nonnegative measurable functions defined
respectively on C([0,¢], R;) and C(Ry, Ry), then

n

f (de)®(e(r),0
- [ntep(etr.o

<r <t)¥(e(t+r),r=0)

VAN

r < Zf)Ee(t)(\I/(BTATO, r = O)),
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where F, is the set of excursions e for which e(s) > x if and only if s € (0, 0)
for some positive o(e)!, (By)i=o is a linear Brownian motion which starts at
z and Ty = inf Zp

The following theorem is the basic result of excursion theory in our particular

setting.

Theorem 4.1 (I1t6). The point measure

Z 5(1761) (dsde)

leD

1s a Poisson measure on R, x E, with intensity
ds ® n(de)

where n(de) is a o-finite measure on E.

A proof of this Theorem can be found in an article by L. C. G. Rogers!').
The measure n(de) is called the It6 excursion measure. From standard prop-

erties of Poisson measures we can conclude the next Corollary.

Corollary 4.1. Suppose A be a measurable set of E with finite positive measure.
PutTy =inf{l e D : e, € A}. Then Ty is exponentially distributed with parameter

of the measure of A, n(A), and the distribution of er, is the conditional measure

B n(-n A)
n(.|A) = —n(A) .

Moreover, Ty and e, are independent.

This corollary can be used for calculating various distributions like height and
length of excursions, under the [t0 excursion measure.

The distribution of height of excursion e(t) is

(H)>e)=2
nj|supe [ = —
t;loj 2e

1o (e) is called the length of duration of the excursion e, particularly when 2 = 0.
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and its length distribution is

1
\2me '

The Ito excursion measure have scaling property: For every A > 0, define
mapping ®, : £ — E by putting ®,(e)(t) = v Ae(t/\), for every e € E and t > 0.
Then we have ®,(n) = v/An.

The scaling property is especially useful when defining conditional versions of
(12]

n(((e) > ¢) =

[t6 excursion measure Let us discuss n(de) when conditioning with respect

to length ((e).
There exists a unique collection of probability measures (n),s > 0) on E

with the following properties!'?:
(i) for every s > 0, n(,)(¢ =) = 1;
(ii) for every A > 0 and s > 0, we have ®)(n(y)) = n(s);

(iii) for every measurable subset A of F,

@ ds
n(4) = | n ()2

Notice that 2\/% can be seen as the measure of the set of excursions like e
TS

with length ((e) € ds. We may and will write n¢) = n(-|¢ = s), and the measure
n( is called the law of the normalized Brownian excursions.

Before continuing, let us first state the famous Radon-Nikodym theorem.

Theorem 4.2 (Radon-Nikodym). If y and A are two o-finite measures on mea-
surable space (X,Y) and p is absolutely continuous' with respect to X\, then there
is a measurable function f on X taking values in [0,00) such that for any mea-

surable set A

u(4) = | i

The following Proposition emphasizes the Markovian properties of n!'?.

'Measure p is absolutely continuous with respect to measure X if u(A) = 0 for every set A
for which A(A4) = 0 and we write it as p < A.
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Proposition 4.6. The Ito excursion measure n is the only o-finite measure on

excursion space E that specifies the following two properties:

(i) for everyt >0, and every f e C(Ry,R,),
0 (feOen) = | )l

(i1) let t > 0. Under the conditional probability measure n(-|( > t), the pro-
cess (e(t+1))r=0 is Markov with the transition kernels of Brownian motion

stopped upon hitting 0.

We can use this Proposition to establish the absolute continuity properties
of the conditional measures n,) with respect to n. By Radon-Nikodym theorem
this is equivalent to saying that for any measurable set A in excursion space and

some measurable function f

n(;)(A) = L fdn.

Here f is called the Radon-Nikodym derwative of n(. Now let us denote the
o-field on E generated by the mappings r — e(r), for every t = 0 and 0 < r < t,
by F;. It 0 <t < 1, then the measure n(;) is absolutely continuous with respect
to n on the o-field F; and the Radon-Nikodym derivative, f, will be equal to

dn(l)

dn (e) = 2@%4(6@))'

Ft

Using the derivative above we can derive the density of the distribution of
(e(t1),e(t2), ..., e(tp) under ny(de) for every integer p > 1 and every choice of

O<t)<ty<---<t, <1

2V 27mqy, (%)Pz;ftl (xla ‘/‘U2)p:37t2 ($27 x3) o -pfpftp,l (xp—l’ xp)Ql—tp (xp)a (4-5)

where

pf(l‘,’y) = Pt(%y) _pt('ra _9)7 t> 07 T,y > Oa

is the transition density of Brownian motion killed when it hits 0. This density
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shows that law of (e(t))o<t<1 under n( is invariant under time reversal.

4.5 Convergence of Contour Functions Towards

Brownian Excursions

The convergence of contour functions to Brownian excursions can be seen as
a special case of results provided in article The continuum random tree III by

Aldous!. Before proving this convergence let us first present two lemmas.

Lemma 4.1. For every € > 0,

lir{‘lo suﬂlg sup |\/nP (Spns) = |zv/n] or |zv/n] +1) — py(0,2)] = 0.
n—0 geR s>e

This lemma is a very special case of classical local limit theorems and can be
easily obtained by direct calculations, using the explicit form of the law of S,, and
Stirling’s formulal'?.

On the other hand the next lemma is a special case of famous Kemperman’s
formula '
For every integer ¢ € Z, denote a probability measure under which the simple

random walk S starts from ¢ by P;.

Lemma 4.2. For every ¢ € Ny and every integer n > 1,

(41
Pg(TZ?”L) = n Pg(SnZ —1)

Proof. There are several different proofs to this lemmal'®'®! but we will provide
a more enumerative combinatorial proof.
If both sides of the equation above are 0, then there is nothing to prove.

Otherwise let us propose a simple question and solve it first.

Question 4.1. Suppose that we have k "X” and k +1 7Y”. In how many ways
we can put them in a line that for no initial segment the number of Y’s be more

than I more than X’s.
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For solving this question we can make a bijection to count the number of
wrong sequences as we did for Dyck words, and then subtract it from the number
of all sequences. Suppose that we have a wrong sequence of X’s and Y’s. Consider
the shortest initial segment in which we have exactly £’ X and (K’ +1+ 1) Y.
Interchange all the other X’s and Y’s that come after this segment. Now we will
have a sequence of (k—1) X and (k+ 1+ 1) Y. It is easy to see that this is a

bijection. So the solution will be equal to

2k +1 2k +1 (2k +1)! (2k +1)!

( 3 >_<k—1):kﬂk+0f_%—1Wk+l+U!
(k+1+1)2k+ 1) —k(2k +1)!
Elk+1+1)!

I+ 1)(2k +1)!
El(k +1+1)!

0+l (2% +
Ck+l+1\k+1)

Note that if we put [ = 0 in question above, we get the k-th Catalan number as

the solution and if we put ”_TH instead of k& and ¢ instead of [ in above question',

5 /+1 n—1
n+ 0+ 1\ 2= )

which is equivalent to the number of random walks like S that start from ¢, for

we will get

which we have S,,_; = 0 and forno i =0,1,....,.n — 1, .5; = —1. So it is equal to
the number of random walks starting from ¢ and for which T" = n.

Coming back to proof of the lemma, note that it is enough to prove

It is equal to the number of random walks reaching -1 from ¢ for the first time in

n-th step divided by number of all random walks starting from ¢ and reaching to

!'Note that ”_TH and thus "+§_1 are integers if and only if the probabilities defined in the
statement of lemma are not equal to 0.
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0 or -2 at (n — 1)-th step. So

n+l+1
n—1 n—1
(n+ef1) + (n+e+1)
2 2

{41
_Tntltl

n—~_¢—1
1+ n+4+1

L+1
2n+[+1

250 (1)
P(T =n|S,=-1)= 2

n+l+1
i+l

3

]

Using two lemmas above we can prove the following theorem which says that
contour functions of random trees in A, converge to Brownian excursions as

n — oo.

Theorem 4.3. For every n € N, let 6, be a random tree uniformly distributed

over A, and let (Cy,(t))i=0 be its contour function. Then

A/ 2n n—00

o<i<l1

1
(—C’n(Qnt)) 9, (et)o<t<1

where e is a normalized Brownian excursion distributed according to ngy and the

space C([0,1],R,) is equipped with the topology of uniform convergence.

Proof. Using Proposition 4.5 and that II,, (- | |7| = n) coincides with the uniform
distribution over A,,, we get that (C,(0),C,(1),...,CL(2n)) is distributed as an
excursion of simple random walk conditioned to have length 2n. Thus we need

to verify that the law of

()
—=0O|2n
2n 2] o<t<1

given that T' = 2n + 1 converges to n(;) as n — oo. This can be seen as a
conditional version of Donsker’s theorem. We will divide the proof into two parts:
Proving the convergence of finite-dimensional marginals and then establishing the

tightness of the sequence of laws!'?.
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Finite-dimensional marginals. Let us first consider one-dimensional marginals
and then base the proof of higher dimensional marginals on it. Fix t € (0,1) and

we will show that

7lli£r(1) V2nP (Spmj = [a: QnJ or [:C ZnJ +1|T=2n+ 1) = 2V2mqu () qu (),
(4.6)
uniformly when z varies over a compact subset of (0,20). Note that right hand
side of the above equation is the same as (4.5) for p = 1. It means that the law
of % under P(- | T = 2n + 1) converges to the law of e(t) under n(de).
For every i € {1,2,...,2n} and ¢ € Ny,

P{S; =4} n{T =2n+1})
P(T=2n+1)

P(S;=(|T=2n+1) =

But

P{S; =0} n{T=2n+1})=P{S; =0,T > i} n{T =2n+1})
=P({S; =0T >i})P(T =2n+1—1),

also

Py(T =i+ 1) = P({Siss = =1} n {S; = 0,T > 1})

= Pg(SH_l =—1 ‘ Sz = O)PASZ = 07T > 2)
1

= EPE(SI = O,T > Z),

both because of markovian property of S. Also

Pg(SiZO,T>i)=P(Si=£,T>i)
=P(S; =0T >i)=2P(T =i +1).
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Thus
2P/(T =i+ 1)P(T =2n+ 1 —1)

P(S;=¢|T=2n+1) = T
_ 2(2n + 1)(” + 1)2 . 2PZ(Sz'+1 = —1>Pe(5’2n+1_i = —1)
S+ D20+ 1 —4) P(Sgpi1 = —1) ’

(4.7)

where we used Lemma 4.2 for deriving the second equality’.
Recall that p;(0,x) = (t/x)q;(x) where ¢(x) is defined as (4.4), so

(O ) t x x?
— — . e R
D , L T W Xp 2t
1 x?
= e —— . 4.8
— xp( 2t) (43)

As an important special case, when z := 0, we get p;(0,0) = (277‘25)_%. For large

n,

P(52n+1 = —1) [ P(Sgn = O)
~ pl(oao)
\V2n
_ b

Van \2r

using Lemma 4.1 if we set x := 0, s := 1 and n := 2n in the second approximation.

Also we have the approximations

2n+1 1 (|zv2n| +1)2 22 2n 2
—— X — al x ~ .
|2nt|+1 ¢ 2n+1—|2nt] 2n—2nt 1-—1t

Using all of the approximations above we get

2(2n + 1)(|zv2n] + 1) 1 N 2
i T Den 11 —nl]) PGy = 1) ~ 2V (49)

INote that P, = P when ¢ = 0.
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Again using Lemma 4.1, we have the approximation

P[x 2nJ or [m 2nJ+1(Sl2ntJ+1 = _1)P[x 2nJ or [3: 2nJ+1(S2”+1*L2m‘/J = _1)

. pt(O,fc)g;—t(Ow) _ ta(; —2:3 (@) a1 (@), (4.10)

where in general with P, ., ¢ we mean Py+ Py. Now by multiplying approxiamtions
(4.9) and (4.10) to each other and putting ¢ = |2nt] and ¢ = |2v/2n] or £ =
|#v/2n] + 1 in right hand side of (4.7) we get

P(S|ont] = {x\/ﬁJ or {:c QnJ +1|T=2n+1)~ ngt(x)qlt(x),

and the proof of (4.6) is complete.
For higher dimensional marginals we can use a similar way. For example for

two-dimensional marginals, we can observe that if 0 < i < j < 2n and if ¢ € Ny,

P(SZ :g,S] =m,T=2n~|—1)
—2P(T =i+ )P(Sj_i =m, T > j—i)Pu(T =k +1—j).

Here, only the middle term, Py(S;_; = m,T > j — i), needs a treatment that we

didn’t discuss before. However we can see that
Pg(Sj_i = m,T > j - Z) = Pg(Sj_i = m) - Pg(Sj_i = —m), (411)

because if for a random walk that passed through —1 and yet arrived to m at
(7 —1)-th step, we reflect the part from the first time that random walk hit —1 to
the end, we get a random walk that arrives to —m at (j —i)-th step. It is easy to
see that it is also a bijection. On the other hand, by putting i = |2ns|, j = |2nt|
and ¢ = |xv/2n] or £ = |z+/2n| 4+ 1 in (4.11) and then using Lemma 4.1, we get

_ POy —7)
P[x 2nJ or [x 2nJ+1 (S[Zntj—[?nsj = [y\/%J> "\.4 m

_ pt,s(:c, y)

45



Similarly

pi—s(0, —y — )
P[z 2n| or |2v2n|+1 (S[2ntj |2ns] = |— y\/ﬁo NG

_ Pt—s (CU, _y)

V2n

Subtracting the second approximation from the first, we get

Plussi] or |ovai] 1 ({SW oms] = [y\/%J} AT > |2nt] — [2nsj}>

_ Pis(@,y)

V2n ’

and the result follows in a straightforward way (approximating the other two
terms as previous way and putting this approximation for the middle term, we

get want we want).

Tightness. Let (xg,x1,...,x2,) be a Dyck path with length 2n, and for each
i€{0,1,..,2n— 1} and j € {0,1,..., 2k}, set

xgz) =T+ Tig;j —2  min T
in(i®j)<m<iv (i®j)

with the notation i@ j =i+ jifi+j7<2nand 1®j=i+j—2nif1+ 5 > 2n.

Proposition 4.7. For eachic {0,1,....2n — 1}, (a{", 2\, ..., 2$)) is also a Dyck

path, where xéi) s defined as above.

Proof. We should prove that :B(Z) =0, x (l) = 0 and for each k € {1,...,2n},

‘:v,g) xk 1‘ = 1. By definition we have

(Z) = T; + Tigo — 2 min Tom

1A (1P0)<m<iv (10)

=z;+x;,—2 min =z,
IANTSMKIVE

= 0.
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Similarly xéﬁi = 0. Now fix k € {1,...,2n}. So

(2) (2)
’xk - xk—l‘ =

T, + Tiop — 2 min T
( P ok in(iDk) <m<iv (i®k) m)

— 7 + Bigg1y — 2 i m
(l’ +m@(k 1) Z/\(z@(k_l))]%nntglv(l@(k_l))l‘ )‘

Tk — Tio(ho1) — 2 min x
i@ i®(k—1) in(iI®k)<m<iv (idk) "

-2 min Tm
in(i@®(k—1))<m<iv (i®(k—1))

(4.12)

If £k =2n—14+1 then both " min” parts of right side of above equation will be
equal to 0 and leaves |Zigr — Tig—1)| = [T1 — 2| = 1. If k # 2n — i + 1 then
i®k=i®(k—-1)+1. Put i®k = K. Now if we check three different cases
K < i, K =i and K > ¢ we observe that the difference between "min” parts are
either 0 or xx — xx_1 and the right side of (4.12) will be

T — Tr—1— 2 { 0

in both cases
= |37K - «TK71| =1,

Tk —TK-1

and proof will be complete. O

Define the mapping ®; : (zo, x1, ..., T2n) — (:céi), xgi), ey :cg)) It is possible to
show that this mapping is a bijection from the set of all Dyck paths with length
2n onto itself'?. In fact ®,,_; o ®; is the identity mapping. It can be verified if
we check that ®; is indeed the Dyck path of a tree which is obtained from the
original tree rooted at i-th node that we encounter while exploring it with its
Dyck path. Checking that, it will be obvious that ®,,,_; o ®; leads us back to the
original tree.

For every i,j € {0,1,...,2n} set

CH'= min C,(m).
IAJESMKLV ]

The discussion above then shows that

=

(C(i) + Coli @ ) — 20797 D (C(1))oejcom (4.13)

0<j<2n
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Lemma 4.3. " For every integer p > 1, there exists a constant C, such that

for everyn =1 and every i€ {0,1,...,2n},
E[C, ()] < Cyi®.

If we prove this Lemma, the proof of tightness is complete, because after
proving the Lemma, considering (4.13), for any ¢ and j such that 0 < i < j < 2n

we will have

E[(C.(5) — Culi)*] < B[ (Cali) + Cal) — 2C39)” |
=E[C.(j — )]
< Cylj — iy,

It means that we have

C(2nt) — C(2ns)\ )
E [( o ) ] < Cp(t — s)P, (4.14)

at least for all s and t of the forms s = i and t = Qj—n where 0 < i < j < 2n. But
C,, is 1-Lipschitz! and with a simple argument we can see that (4.14) holds for
every s and t such that 0 < s <t < 1 (possibly with different C,,) .

Now let us give the proof of the Lemma.

Proof of Lemma 4.3. Obviously (C,(2n — i))o<i<2n has the same distribution as
(Cn(7))o<i<on and thus we can restrict our attention to the case 1 < i < n. Also
C.,(7) has the same distribution as Si conditioned on T' = 2n + 1. Thus according
o (4.7), for every ¢ € Ny we have

202n + 1)(0 +1)2 Pi(Sis1 = —1)Pi(Sons1—s = —1)
(i+1)(2n+1—1i) P(Soni1 = —1) ‘

Wa,y €[0,1] : [Cn(x) = Cu(y)| < |z — |

P(Cy(i) = {) =
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In Lemma 4.1, if we set x : \/TLW 5= 2”“ and n := 2n, we have

< )
()

where for observing the equality we used (4.8). Thus

P(52n+1 = _1)

2n+1

1

P(Sgn_;,_l = —1) < \/:

av

and
P(S n = - N
(S2n+1 Tn ™
\/ 37
Similarly we can get the bounds for P;(Ss,11-; = —1) and we can find two

constants ¢y and ¢; such that

Co

\2on'

We assumed that 7 < n and therefore

P(Syn41 = —1)

WV

Py(Sapi1-i = —1) <

L (04 1)2 o ci(f+1)° o
P(C,(1) =1() <4 (i T 1) Py(Siz1=-1)=4 (T 1) P(S;1 =0+1).
Consequently
0 c 0
E[C0(i)?] = Y. P P(Co(i) = £) S 4———< DT (0 + 1)*P(Sipy = £+ 1)
(=0 co(i +1) (=0
€1 ) 2p+2
< 4—Co(i i 1)E [(Serl) ] )
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where we have the second inequality because

E [(Si+1)2p+2] _ €2p+2P(SZ‘+1 _ f)

RgE

~
Il
=}

(ﬁ + 1)2p+2P<Si+1 = f + ].)

T
o

PP(0 +1)*P(Siy1 = £+ 1).

v
s

T
(en)

It is well known that E [(Siy1)**?] < C)(i + 1)P*!, with some constant C; inde-

pendent of ¢. Thus

E[C,(1)%] < 4—2 " (i + 1)+
[Culif] < 45 Gl 1)

Cl /.
— 42200+ 1)
- L0+ 1)

< Cpi?,
where C), = 2P*2¢y 1010;), and the proof is complete. H
With proving the Lemma, the proof of Theorem is complete too. O]

The Theorem above is powerful and useful. We state the following Corollary
as a typical application of this Theorem. Note that the height H(7) of a plane

tree 7 is the maximal generation of a vertex of 7[1%.

Corollary 4.2. Let 0,, be uniformly distributed over A,,. Then

1
——H(6,) D, ax e;.

\2n " pso 0<t<l
Proof. We have

1 1
—H(0,) = max ( —C,(2nt) |,
A/on (0) o<t<l1 («/Qn ( ))
and so the result is immediate from Theorem 4.3. O
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Chapter 5

Real and Labeled Trees

In this Chapter we will define and discuss real and labeled trees and deriving

similar results we did for discrete trees.

5.1 Real Trees

5.1.1 Definition

Definition 5.1. A metric space (X,d) is a real tree (or R-tree) if it has the

following three properties:
(i) Completeness. It is complete.

(ii) Unique geodesics. For all x,y € X, there is a unique isometric map f,, :
[0,d(z,y)] — X such that f,,(0) =z and f,,(d(z,vy)) = y.

(iii) Loop-free. For any injective continuous map ¢ : [0, 1] — X we have
q([0,1]) = fa).a0 ([0, d(g(0), ¢(1))])-

A useful fact is that a metric space (X,d) is an R-tree if and only if it is

complete, path-connected and satisfies the so-called four point condition,

d(x1, ) + d(x3, x4) < max{d(xy,x3) + d(va,x4),d(x1,24) + d(z2,23)}, (5.1)
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for all 7; € X (i e {1,2,3,4})F).

In this Chapter, however, we restrict our attention only to compact real trees
which has the same definition above as real trees except that (X, d) needs to be
a compact metric space. If we distinguish a vertex p of X, we will have a rooted
real tree. p = p(X) is called the root. From now on, when we say real tree, we
mean rooted compact real tree like (T, d) with the root p(7).

Informally, a connected union of line segments (property (ii)) in the plane
without any loops (property (iii)) is a (compact) real tree. We assume that there
are finitely many line segments and therefore for any two points x and y in the
tree, there is a unique path going from x to y in the tree which is consisted of
finitely many line segments and the distance between x and y is the sum of the
lengths of these line segments!™.

Let [x,y] denote the whole range of the mapping f,, in (ii). Particularly,
[p,x] is the path going from the root p to x which we will interpret as the
ancestral line of vertex z. By [z,y[, Jz,y] and ]z,y[ we mean the images of
respectively [0, d(z,v)), (0,d(x,y)] and (0,d(z,y)) of the mapping f,, in (ii)[".

We define a partial order on the tree by setting < y (z is ancestor of y) if
and only if x € [p,y]. For every x,y € T, there is a unique z, we call the most
recent common ancestor to o and y for which we have [p, 2] n [p,y] = [p, 2] 2.
We denote it by z =z A y.

By definition, the multiplicity of a vertex x € T is the number of connected
components of T\z and we denote it by n(z,7T) and if we are sure of which tree
we are talking about we simply denote it by n(z). Also any non-root vertex of a

tree which has multiplicity one is called leaf. The set of all leaves is denoted by

Li(T) = {x € T\{p} : n(z,T) = 1}.

Also we denote the branching points of T by

Br(7) = {x € T\{p} : n(x,T) = 3}.

By convention, the root p is neither a leaf nor a branching point!”. We also
denote the internal skeleton of T by Sk(T) and is defined as Sk(T) = T\L{(T).
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Proposition 5.1. For any dense sequence {x,},>1 in T, we have

Sk((‘]’) = U[p7 xn{['

n=1

Proof. 1t is obvious that the union does not contain any leaves.

On the other hand, suppose x € T is not a leaf. If it does not belong to the
union, then no point in set Y = {y : y # z,x < y} exists in the sequence. Clearly
there exists a leaf z € T. The sequence does not contain any points of |z, z],

which is a contradiction to the assumption that it is dense. O

It is also easy to show that Br(T) is at most countable!®.

5.1.2 Coding

As in previous Chapter for coding discrete trees by contour functions, we can
describe a method for coding real trees by continuous functions.
Set

U = {f e C([0,0,R,) | £(0) = £(¢) = O}.

Let g € U and for every uy,u, € [0,1], set

mg(u1, ug) = inf g(u),
u€[ur Aug,u1 vusz]

and

dg(ur,ua) = g(ur) — 2my(uy, uz) + g(uz).

Clearly d,(uy,u2) = dg(ug,u1) and it is easy to verify the triangle inequality for

every uj, ug, us € [0, 1]:
dy(uy,ug) < dg(ur,us) + dy(us, us).
Define an equivalence relation ~4 on [0, 1] by

Uy ~, ug if and only if g(uy) = my(uy, uz) = g(us),
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and let T, be the quotient space
Ty = [07 1]/ ~g -

Theorem 5.1. For every g € U', (T,,d,) is a metric space and is a (compact)

real tree.

Proof. For every g € U', it is obvious from the definition of d, that it is a metric
on T,. Also if we denote the canonical projection by p, : [0, 1] — T, clearly it is
continuous’ and thus the metric space (T, d,) is path-connected and compact.

After observing that (T, d,) is a path-connected compact metric space, now
it suffices to verify the four point condition (5.1).

Consider uy, ug, us, us € J,. We should show that
dg(uy, u2) + dg(us, ug) < max{dgy(ur,us) + dg(us, us), dg(ur, ) + dy(ug, uz)}.
But
dg(ur, uz) +dg(us, us) = g(wr) + g(u2) + g(usz) + g(ua) — 2(mg(ur, ua) +mg(us, us)),
and similarly for
dg(uy, us) + dg(ug, uq) and dy(uq, ) + dg(ug, us).
Thus we should show that
mg(ur, ug) + mg(us, wg) = min{mg(uq, us) + my(us, ug), mgy(ur, us) + my(ug, us)}.
It is easy to see that
Mg (1), ) + mg (), uw) = mg(un), ug) +mg(ue), ),

and

mg(u(r), Uey) + mg(ue), u@)) = mg(uay, ue) + mg(ue), way),

110,1] and Ty are equipped respectively by the Euclidean metric and metric d,.

o4



where u(;) is the i-th smallest number in {us, us, us, us} for each i € {1,2,3,4}.
On the other hand, with checking different cases®, we can see that at least one of

those inequalities will be equality and thus the proof is complete. O
According to Theorem above, therefore we can view (7, d,) as a rooted tree

with root p = p,(0) = p,(1).

Remark 5.1. Any real tree T is isometric to T, for some g € U]

To get an insight on how this coding works, look at Figure 5.1, where a tree

obtained from three given points, wuq, us, uz, of a continuous function.

g(u)
Pg (u3)
mbwg| L : PN () A o)
mg(ur, ug) | N ])g(}i pg(ur) A pyluz)
0 U Uz uz 1 p = py(0)

Figure 5.1: Real Tree Coded by Three Points of a Continuous Function.

In the Figure, the real tree on the right obtained by bold segments shown on
the left. The heights of endpoints of each bold segment on the left is either 0,
mg(u;, uj)) or g(u;) for each i, j € {uy, ug, ug}. Clearly the path from the root to
pg(u;) has length g(u;) and its common part with p,(u;) has length m,(u;, u;).
With knowing these two properties about different paths between root and p,(u;)
we can build the real tree on the right. One approach can be as follows.

We start from any arbitrary point, for example the most far node from root,
here uz. We draw a straight line between root and p,(u3) with length g(us3). Now
we can choose another node, for example whose path has the longest common
part with py(us), i.e. up. We can see that the path from root to py(u2) A py(us)

will have length mg(us, u3). From there, we can draw a new line segment with

'Whether inf[ ]g(u) happens in interval [u(l),u(g)], [u(g),u(g)] or [u(g),u(4)].

U(1),%(4)
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length g(us) — my(u2, us) and its endpoint will be p,(uz). The same goes for any
other nodes.

Note that p,(0) = p,(1), my(ur, u2) = my(ur, us) and also py(ur) A py(uz) =
py(ur) A py(us).

For the specific continuous function in Figure 5.1, if the chosen three points
were the only three local maximums of the function, we could obtain the complete
structure of its equivalent real tree. It means that after building the real tree
according to those three points, adding any new points of function won’t change
the way the real tree looks like and the new points will lie on the previous drawn

real tree. Look at the Figure 5.2 for clarification.

g(u) pg(us)

A

5 p (U )
mg(u/%ug) =

my(uf, ) LN P (1) A py(u)

: : : - U
u) ul u p = 1y(0)
Figure 5.2: Real Tree Coded by a Continuous Function with Three Local Maxi-
mum Points.

It is easily understood that the number of nodes in real tree coded by contin-

uous function f, is equal to the number of local maximums of f.

5.1.3 Convergence of Real Tree Towards CRT

We end this Section by presenting a Lemma which is a kind of continuous version
of Proposition 4.7 and a Theorem which can be proved easily using the statement
of Theorem 4.3. Both of them have been proved by Le Gall'? and we will not

provide their proofs here.

Lemma 5.1. Let ug € [0,1). For any r = 0, denote the fractional part of r by
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F=r—|[r]. Set
g'(u) = g(uo) + g(uo + u) — 2my(uo, uo + u),

for every u € [0,1]. Then, the function ¢ is continuous and satisfies ¢'(0) =

g'(1) = 0 and thus we can define T,. Moreover, for every uy,us € [0, 1], we have

dg/(ul,UQ) = dg(U() + Uy, Ug + UQ),

and there exists a unique isometry R from Ty onto T, such that, for every u €
[0, 1],
R(py(u)) = pg(uo + u).

Ty can be seen as T, re-rotted at py(up).

Before stating the Theorem, we need to introduce a couple of notations and
definition of CRT.
For a metric space (E,§), the notation §y (K, K') stands for the usual Haus-

dorff metric between compact subsets of E:
op(K,K") =inf{e > 0| K c U.(K') and K’ < U.(K)},

where U.(K) := {x € E'| §(z, K) < €}. Also we define the distance dgy(E1, E»)
by
den(Ev, Ez) = inf{dn(p1(E1), ¢2(E2)) v 0(p1(p1), p2(p2))},

where F; and F, are two rooted compact metric spaces respectively with roots
p1 and ps and the infimum is over all possible choices of the metric space (E,§)
and the isometric embeddings ¢, : £y — E and ¢, : Fy — F of E; and E5 into
E.

If we call E; and FEs equivalent when there exists a root preserving isometry
mapping F; onto FEs, then dgy(F1, Es) clearly only depends on the equivalence
classes of F; and F,. We denote the space of all equivalence classes of rooted
compact metric spaces by KI['2. We can prove that the metric space (K, dgy) is

separable and completel*?),

57



Definition 5.2. The real tree T, which is coded by normalized Brownian motion

excursion is called continuum random tree or briefly, CRT.

Theorem 5.2. For every integer n = 1, let 0, be uniformly distributed over A,

equipped with the usual graph distance, dg.. Then

1 (d)
(97” md‘g’l’) N0 ((‘Teade)v

where convergence holds for random variables with values in (K, dgy).

5.2 Labeled Trees

Also for labeled trees we can derive the similar results as for discrete and real
trees. We will define labeled trees and Brownian snakes, will prove a couple of
different statements and in the end will present the Theorem without its proof

which is somewhat similar to the proof of Theorem 4.3 and is provided by Le
Gall in full details['?.

Definition 5.3. A labeled tree is a pair (7, (¢(v))yer) Where 7 is a plane tree and

(£(v))ver is a collection of integer labels assigned to the vertices of 7, such that
(i) £(2) =0;
(i) for every v e T, l(v) € Z,;

(iii) for every v e 7\{@}, ¢(v) — ¢(m(v)) = 1,0 or —1.

For every integer n > 0, denote the set of all labeled trees with n edges by
T,.

Proposition 5.2. We have

#T) = 3an) - 2 (M),

n+1\n

Proof. The second equality comes from Proposition 4.1. The first equality is
obvious, because moving from the root, we have three choices to choose a label

for each new visited node. O
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Consider a labeled tree (7, (¢(v))ye,) with n edges. We know that 7 can be
coded by its contour function, (C})¢=o. Let us define a function to code (£(v))yer-
One intuitive way to code it would be as follows. Suppose we are traversing 7
according to its contour function. Then we visit different nodes in an order like
vy = I, V1, Vs, ..., U2, = J. Note that a node will appear in this sequence exactly

once if and only if it is a leaf. Now put
‘/i = g(vi)7

for every i = 0,1,...,2n. Also we can set V; = 0 for any ¢t > 2n and by using
linear interpolation we define V; for every ¢t = 0. We call (V});>o the spatial
contour function of the labeled tree (7, (¢(v))yer)-

We code the labeled tree (7, (£(v))wer) by the pair (Cy, V;)i>0 and our goal in
this Section is to describe the scaling limit of this pair when chosen uniformly
random in T, as n — c0. Theorem 4.3 says that the scaling limit of (C})io is
indeed the normalized Brownian motion and thus is remains to find the scaling

limit of (V;);>o. For this purpose we introduce the Brownian snakes.

5.2.1 Brownian Snakes

Let g be a continuous function as previous Section such that ¢g(0) = g(1) = 0,

and assume that it is also Hélder continuous (Definition 3.6). It means that

|9(u1) — g(u2)| < Calur — ual?,
for some exponents a and constant C,,.

Lemma 5.2. The function (mgy(u,v))uvefo,1] % nonnegative definite: for every

integer n = 1, every uy, us, ..., u, € [0, 1] and every A, A, ..., \, € R, we have

n
n
sum;_, Z Xidjmg(u;, u;) = 0.
j=1
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Proof. Proof can be done using complete induction. Denote the sum by A:

A= Z Z Aidjmg (g, uj).
i=1j=1
The basis is n = 1. For n = 1, clearly
11
A= Z Z Aidjmg(ug, uj) = )\%mg(ubul) > 0.

i=1j=1

Now suppose that n = k > 1. Define

™= bk, 0

If m = g(k') =0, let i <n be such that u; < k' < u;yq (if for an i, u; = £/,
the argument would be almost the same). Then we would have
kK n n
A= Z Z )\iAjmg(ui, Uj) + Z Z )\Z-Ajmg(ui, Uj).

i=1j=1 i=k/+1 =K +1

By induction, left and right expressions of plus sign are both non-negative
(number of points in both expressions are less than k) so A would be non-negative.

If m >0, put

for u; < u < uy. Define

A = Z Z )\,-)\jmg/(ui, uj)‘

i=17=1

Since function ¢’ is nonnegative, we can use the previous argument and prove

that A’ is non-negative. Also

A= A/ + ii /\i)\jm,

i=1j=1
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because from the definition of ¢, for any u and v, u; < u,v < s, we have

my(u,v) = my(u,v) +m. But

Zn] Zn: Aidjm = mzn] Zn] Aidj = m(zn] )2 = 0.

i=1j=1 i=1j=1 i=1
So A is nonnegative. m

By Lemma 5.2 and a standard application of the Kolmogorov extension the-

orem, there exists a centered Gaussian process (Z7)ye[o,1] With covariance
E[Zglzgg] = mg(u17u2)7
for every uy, uy € [0, 1]1"?). Therefore we have

E[(Z9, - Z3,)°] = E[(Z,)%] + E[(Z],)*] — 2E[ 28, Z3,]
= g(u1) + g(ug) — 2my(ur, uz) (= dy(us, us))
= (g(u1) —my(uy, u)) + (g(uz) — my(uy, uz))

< 2C’a[u1 - Ug]a.

From this bound and an application of the Kolmogorov continuity criterion, we
observe that the process (Z7)uco1] has a modification with continuous sample

paths.

Definition 5.4. The snake driven by the function g is the centered Gaussian

process (Z9)yefo1] With continuous sample paths and covariance
E[Z] Z] ] = mg(u1,uz), ui,ug € [0,1].

In particular, we have Z§ = Z{ = 0 and for every u € [0, 1], Z9 is normal with
mean 0 and variance g(t).

As previously stated, Brownian motions are Holder continuous with any ex-

ponent o < % almost surely and thus given a normalized Brownian excursion

(€t)te[0,1], We can construct a snake (Z;)sefo,1 from it.
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Definition 5.5. We construct a pair (e, Z;)se[o,1] of continuous random processes

whose distribution has the following two properties!'?:
(i) eis a normalized Brownian excursion;
(ii) conditionally given e, Z is distributed as the snake driven by e.

The snake Z driven from normalized Brownian excursion e is called the Brownian

snake.

5.2.2 Convergence of Labeled Tree Towards Brownian Snake

The following Theorem is due to Chassaing and Schaeffer 2.

Theorem 5.3. For every integer n = 1, let (0, (€*(v))ves, ) be uniformly dis-
tributed over T, and let (C,(t))i=0 and (V,,(t))i=0 be respectively contour function
and the spatial contour function of the labeled tree (0, (€*(v))yeo,). Then

1 9\7 d
(\/—27710”(277/1‘/), (8_]{}> vn<2nt)> %) (et7 Zt)t€[0,1]7

te[0,1]

where convergence holds on the space C([0,1],R?).

62



References

1]

8]

David Aldous. The continuum random tree. III. Ann. Probab., 21(1):248~
289, 1993. 40

David Aldous. Triangulating the circle, at random. American Mathematical
Monthly, 101:223-233, 1994. 1, 11, 13, 14, 23

D. André. Solution directe du probleme résolu par m. bertrand. C. R. Acad.
Sci. Paris Sér., 105:436-437, 1887. 26

Dmitri Burago, Yuri Burago, and Sergei Ivanov. A course in metric geometry,
volume 33 of Graduate Studies in Mathematics. American Mathematical
Society, 2001. ISBN 0-8218-2129-6. 57

P. Chassaing and G. Schaeffer. Random planar lattices and integrated
superbrownian excursion. ArXiww Mathematics e-prints, May 2002. URL
http://arxiv.org/abs/math/0205226v1. 62

Tom Davis. Catalan numbers. November 26, 2006. URL http://
mathcircle.berkeley.edu/BMC6/pdf0607/catalan.pdf. 4, 9

T. Duquesne. The coding of compact real trees by real valued functions.
ArXiv Mathematics e-prints, April 2006. URL http://arxiv.org/abs/
math/0604106v1. 52

T. Duquesne and M. Winkel. Growth of levy trees. ArXiv Mathematics
e-prints, September 2005. URL http://arxiv.org/abs/math/0509518. 53

63


http://arxiv.org/abs/math/0205226v1
http://mathcircle.berkeley.edu/BMC6/pdf0607/catalan.pdf
http://mathcircle.berkeley.edu/BMC6/pdf0607/catalan.pdf
http://arxiv.org/abs/math/0604106v1
http://arxiv.org/abs/math/0604106v1
http://arxiv.org/abs/math/0509518

REFERENCES

[9]

[10]

[11]

[15]

[16]

[17]

[18]

Steven N. Evans and Anita Winter. Subtree prune and regraft: A reversible
real tree-valued markov process. The Annals of Probability, 34(3), 2006. URL
http://arxiv.org/PS_cache/math/pdf/0502/0502226v3.pdf. 52, 55, 57

Kenneth Falconer. Fractal geometry: mathematical foundations and applica-
tions. Wiley, 2nd edition, 2003. ISBN 0470848618. 12

Jean-Frangois Le Gall. Spatial Branching Processes, Random Snakes and
Partial Differential Equations. Birkhauser Basel, 1999. ISBN 9783764361266.
36

Jean-Francois Le Gall and Grégory Miermont. Scaling limits of random trees
and graphs. Notes pour cours d’école doctorale au CIRM, September, 2010.
URL http://www.math.ens.fr/~legall/Cours-CIRM.pdf. 1, 26, 27, 29,
30, 32, 35, 36, 38, 39, 40, 42, 47, 48, 50, 52, 56, 57, 58, 61, 62

Martin Gardner. Time Travel and Other Mathematical Bewilderments. W.
H. Freeman, 1987. ISBN 0716719258. 2, 6, 10

Martin Gardner. Mathematical Puzzles and Diversions. Penguin Books Ltd.,
1991. ISBN 0140136355. 14

Thomas Koshy. Catalan Numbers with Applications. Oxford University
Press, 2008. ISBN 019533454X. 2, 8

G. Morais.  The study of hausdorff dimension.  November, 2002.
URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
3.2457&rep=repl&type=pdf. 12

Yuval Peres. An invitation to sample paths of brownian motion. Lecture
notes edited by Balint Virdg, Elchanan Mossel and Yimin Xiao, November
1, 2001. URL http://stat-www.berkeley.edu/~peres/bmall.pdf. 21, 22

Jim Pitman. Enumerations of trees and forests related to branching processes
and random walks. In D. Aldous and J. Propp, editors, Microsurveys in
Discrete Probability, number 41 in DIMACS Ser. Discrete Math. Theoret.
Comp. Sci, pages 163-180. Amer. Math. Soc., 1998. 40

64


http://arxiv.org/PS_cache/math/pdf/0502/0502226v3.pdf
http://www.math.ens.fr/~legall/Cours-CIRM.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.3.2457&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.3.2457&rep=rep1&type=pdf
http://stat-www.berkeley.edu/~peres/bmall.pdf

REFERENCES

[19] L. C. G. Rogers. A guided tour through excursions. Bull. London Math.
Soc., 21:305-341, 1989. 33, 37

[20] N. J. A. Sloane. A Handbook of Integer Sequences. Academic Pr, 1973. ISBN
012648550X. 2

[21] Richard P. Stanley. = Enumerative combinatorics, volume 2.  Bul-
letin (New Series) of the American Mathematical Society, 39(1):129-
135, 1999. URL http://www.ams.org/journals/bull/2002-39-01/
S0273-0979-01-00928-4/50273-0979-01-00928-4 .pdf. 25

65


http://www.ams.org/journals/bull/2002-39-01/S0273-0979-01-00928-4/S0273-0979-01-00928-4.pdf
http://www.ams.org/journals/bull/2002-39-01/S0273-0979-01-00928-4/S0273-0979-01-00928-4.pdf

	Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Catalan Numbers
	2.1 A Brief History
	2.2 Isomorphism Between S1, S2 and S3.
	2.3 The Values of Cn
	2.4 Some Examples

	3 Limit of Polygon Triangulation
	3.1 Random Triangulation of the Circle
	3.1.1 Hausdorff content and dimension
	3.1.2 Two Examples of Different Triangulations

	3.2 Continuous Functions and Triangulations of the Circle
	3.3 Walks, Trees and Triangulations of n-gons
	3.4 Brownian Motions
	3.5 Random Triangulation of the Circle, Revisited
	3.5.1 Zero Set of Brownian Motion
	3.5.2 Hausdorff Dimension of Random Triangulation of the Circle


	4 Discrete Trees
	4.1 Dyck Path and Contour Function
	4.2 Discrete Trees
	4.2.1 Plane Trees
	4.2.2 Galton-Watson Trees

	4.3 The Contour Function in the Geometric Case
	4.4 Brownian Excursions
	4.4.1 Local Time Process and Excursion Space
	4.4.2 The Itô Excursion Measure

	4.5 Convergence of Contour Functions Towards Brownian Excursions

	5 Real and Labeled Trees
	5.1 Real Trees
	5.1.1 Definition
	5.1.2 Coding
	5.1.3 Convergence of Real Tree Towards CRT

	5.2 Labeled Trees
	5.2.1 Brownian Snakes
	5.2.2 Convergence of Labeled Tree Towards Brownian Snake


	References

