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Biochemical switches that can toggle between two discrete molecular states is an ubiquitous mecha-
nism for digital processing of external inputs in cell signaling. A necessary condition for obtaining
such bi-stabile behavior is positive and non-linear feedback. In this study we examine the most basic
positive feedback process that generates bi-stable dynamics and quantify its properties with respect to
chemical noise and delays in the feedback. We find that the Linear Noise Approximation (LNA) as an
analytical tools makes it possible to estimate second moments of fluctuations around steady states in
a bistable system and due to these fluctuations the system jumps frequently between its stable steady
states, the frequency of jumping can be estimated by escape time derived from Chemical Langevin
Equation (CLE). If the feedback is indirect, operating early in a series of synthesis events, the high
state of the switch is destabilized and hysteresis is no longer apparent.

I. INTRODUCTION

Multistability is the capability of systems achieving multi-
ple steady states in response to an external signal and bistablil-
ity is a special case and also of a particular interest in bi-
ology as it leads to switch-like behavior. A bistable system
can switch between two steady states but not rest in interme-
diate ones. In cell biology, switch-like behavior is a char-
acteristic of many important biochemical reaction networks
which has been investigated: cell-differentiation [1], auto-
phosphorylation [2], multisite phosphorylation [3], complex
enzyme-driven reaction networks [4], caspase activation [5],
transcriptional regulation [6] and cell-cycle [7, 8]. A property
associated with switches is hysteresis, which means that once
the system has been switched ”on” by exceeding the stimuli
to a threshold, then it cannot be switched ”off” by decreasing
it to that specified threshold. In other words, these systems
have ”memory”, while the input is withdrawn the system does
not return to previous state. The hysteresis is of importance
when considering switches that need to be robust to external
perturbations, e.g. cell differentiation [1].

Bistability arises in biological systems through many mech-
anisms, but a commonly accepted underlying mechanism is
feedback. Although, in constructing models, feedback is far
from being sufficient to present bistability, but as a simplest
form of positive feedback, i.e. autocatalysis, it guarantees
bistability in very small reaction sets [9].

Once the average behavior of the system should be de-
scribed a mean-field approach suffices. However, once the
fluctuations are considerable, the macroscopic rate equations
of the chemical concentrations will not describe the system
behavior properly anymore. Since the bistability will be a
consequence of chemical reactions it is relevant to ask for
what time scales the switch may operate properly since chem-
ical noise will at some point make the system spontaneously
switch to the other state. The Chemical Master Equation
(CME) describes the time evolution of the probability dis-
tribution of the states of the system and can (in principle)
be solved analytically. If not solvable analytically one may
integrate it numerically from the Stochastic Simulation Al-
gorithm (SSA), a Monte Carlo procedure that generates time

trajectories of the molecular populations in exact accordance
with the CME [10]. However, except in simple cases [11],
an exact closed solution to CME is generally not attainable
due to the high dimensionality of the problem. An approxi-
mation method to obtain second moments (variances and co-
variances) from the CME is the Linear Noise Approximation
(LNA) [12]. The method is developed by expanding the CME
in inverse powers of the system sizeΩ around the steady states
which can be obtained by solving the macroscopic rate equa-
tions. The LNA provides information of the chemical noise
properties as a function of the parameters and topology of the
underlying biochemical reaction network [13]. In the case of
a molecular switch, fluctuations may play an important role in
changing the steady states in addition to external stimuli—big
enough fluctuations might make the system toggle between
the two steady states. Almost all feedback mechanisms oper-
ate indirectly on molecules upstream in a biochemical path-
way which result in a time lag in its response to deviations
from the steady state, a time lag that will correspond to the
time needed for making the final product. Recent studies on
delayed biochemical feedback systems, e.g. delays associ-
ated with transcription and translation includes investigations
of both discrete stochastic and continuous deterministic mod-
eling [14]. Also an extension to the LNA has been studied for
small gene regulatory motifs as time-delayed systems [15].In
a recent paper [16], an analytical expression has been driven to
quantify properties of time-delayed negative feedbacks along
with comparing two models, step feedback model (SFM) in
which every single reaction from the multi-step synthesis is
taking into account, and delay feedback model (DFM), in
which the intermediate reactions are absorbed into one time
delay. Here we study the sensitivity of the bistable systemsto
delays and investigate the effects of delay on hysteresis.

II. MODEL

A. Non-Delay Process

To promote interpretability and understanding we use the
simplest model that displays the characteristics of a switch.
The system attains its bistability by means of positive feed-
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back regulation. Assume that a intracellular system generates
a factorX as a response to an external stimulationS E that
modulates the external signal of the factor. Furthermore, the
factor stimulates its own production through a positive feed-
back loopaΦ(x), wherea is the maximal self-induced pro-
duction of the factor (0≤ Φ(x) ≤ 1). Finally, the factor is
degraded with the decay rate constantb. The response system
can be summarized by the following reactions:

∅
S E+aΦ(x)
−−−−−−−→ X, X

b−→ ∅ . (1)

The time scale of the dynamics is set by the degradation rate
constantb. Thus, we can scale the time in terms ofb to reduce
the number of parameters. The two remaining parameters are
then the (normalized) external signalσE = S E/b and the (nor-
malized) maximal self-induced rateα = a/b.

B. Delay Process

Most metabolites in gene regulatory networks specially
those involving macro molecules, such as transcription, trans-
lation and degradation processes are synthesized through ase-
ries of biochemical steps. Such multi step synthesis are often
feedback regulated early in the synthesis path, which imply
that the regulation of the product at timet is effectuated after
all steps are finalized, on averaget + td seconds later. This
leads to a feedback delay in the regulation which may hamper
the fidelity of the feedback response. For a genetic switch,
e.g. realized by a protein synthesized in a series of steps with
the positive feedback in the form of transcriptional regulation,
it is important to quantify the impact of a delayed feedback
to the properties of the switch. Homeostatic control through
indirect, delayed, negative feedback may be accompanied by
direct (negative) feedback later in the synthesis path to obtain
precision—with the cost of synthesizing unwanted intermedi-
ate molecules [15]. For a genetic switch it is more compli-
cated. It is not obvious how to complement the transcriptional
feedback in a similar way and still remain the properties of
the switch. Therefore we will consider a switch operating in-
directly in a multi-step synthesis path in order to quantifythe
impact of the feedback delay to properties like hysteresis and
stability. The biochemical reactions inN steps leading to the
final moleculeXN+1 can be written as:

S E+aΦ(xN+1)
−−−−−−−−−→ X1

k1−→ X2
k2−→ . . .

kN−−→ XN+1 and XN+1
b−→ ∅.

(2)
The re-scaling can be performed just as in the non-delayed
counterpart with the same parameters, where the rateski in
addition are scaled withb, κi = ki/b and the average delay
τd = btd.

III. RESULTS

The macroscopic dynamics of the switch is described by an
Ordinary Differential Equation (ODE) with a governing law

describing how the concentration rate of a species changes.
The governing function has its own parameters rising from
the underlying biological problem and to study the dynamics
of the system one should examine the stability of the system
depending on these parameters. Therefore, we use two tools
from mathematical studies of dynamical systems, the bifur-
cation and linear stability analysis. The bifurcation analysis
is the study of number of fixed points and their stability de-
pending on parameters changing in the system. The linear
stability analysis is examining the evolution of a perturbation
from fixed point(s)x∗, which is determined by the eigenvalue
λ = f ′(x∗), where f (x) = σE + αΦ(x) − x is the governing
law. We model the feedbackΦ with a Hill function with Hill
coefficientn (see Methods Section).

The bifurcation curves by which the domain of bistability
is separated from mono-stability, are the parametric equations
defining the external signalσE and the maximal self-induced
α as a functions of concentrationx∗:

α(x∗) =
(1+ xn

∗)
2

nxn−1
∗
, (3a)

σE(x∗) = x∗(1−
1+ xn

∗
n

) . (3b)

These parametric equations are derived when both the gov-
erning law and its derivative vanishes. By plotting them in
parametric space (α(x∗), σE(x∗)) for differentn, the range of
external signalσE , feedback strengthα andn for which the
system is bistable or monostable is observable, which is done
in Fig 1a. For the linear stability analysis we set the Hill co-
efficientn = 2 as it is the smallest value to display bistability
and then simply pickα = 1.8 in the bistable area. The de-
termining parameter for the eigenvalueλ is hence the external
signalσE . For values ofσE where the eigenvalue is nega-
tive, λ < 0, the corresponding fixed point(s) is stable while
the small perturbation from the fixed point(s) decays with rate
of eλt and where the eigenvalue is positive,λ > 0, the cor-
responding fixed point(s) is unstable and a small perturbation
from fixed point(s) increases with rate ofeλt. The result is
sketched as bifurcation plot in Fig. 1b.

The bifurcation analysis will reveal the signal strength
needed to induce the system to switch to the high state and
also at which lower level the external signal no longer hold
the switch in its on state. This ability of the system is known
as hysteresis. While the system modeled stochastically forthe
same parameters in deterministic model (n = 2 andα = 1.8)
the hysteresis is only expected to appear for sufficient many
molecules as the chemical noise will make the system escape
the stable states. Fig. 1c shows the hysteresis effect for three
different volumeΩ = 32, 128, 512 and compare with deter-
ministic model.

One approach in studying the stochastic behavior of the
switch is through stochastic simulation. The Gillespie Algo-
rithm generates trajectories of, in principle, any biochemical
reaction network [20] . Fig. 2a is a sample path of the sys-
tem generated by the Gillespie algorithm forΩ = 128 and
σE = 0.135. The trajectory shows how the concentration
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FIG. 1 (a) The domain of bistability for the concentration ofmolecules for different feedback strengthsα as a function of the external signal
σE for different values of the Hill coefficientn. (b) Bistability plot for the concentration of molecules for feedback strengthα = 1.8 and Hill
coefficientn = 2. (c) Hysteresis effect for different volumeΩ = 32, 128, 512 as a function of external signalσE .

of the system changes with time and it catches both lower
and upper steady states and jumps between them. Fig. 2b
shows the probability density function of the system for dif-
ferent volumes. It is clear from figure in small copy number
of molecules the switching happens more frequently and as
the copy numbers of molecules increases the switch behavior
converges to the ODE model.

Although the statistical information of the system for spec-
ified range of parameters can be obtained by Gillespie Al-
gorithm, an analytical solution to master equation contains
more information of the over-all noise characteristics. Wecan
not solve CME exactly for nonlinear feedback reactions, but

FIG. 2 (a) A sample path of the change of molecules concentra-
tion vs. time for external signalσE = 0.135 simulated by Gillespie
Algorithm. (b) Probability distribution function for external signal
σE = 0.135 for different volumesΩ = 32,128, 512

the Linear Noise Approximation (LNA) is an approximation
method in which the master equation is expanded in powers
of the square root of system’s volume around the steady state.
From the LNA one obtains a fluctuation dissipation relation
from which the linearized second momentsC can be calcu-
lated,

AC + CAT
+ V = 0, (4)

whereA is the Jacobian matrix andV is the diffusion ma-
trix. In our model with one speciesX, the varianceCX is (see
Methods Section):

CX =
V
−2A

=
< X >

[1 − αΦ′] . (5)

For smallx whenx is e.g. in the lower state,x∗ ≈ σE

CX ≈
< X >

[1 − αx∗]
≈ ΩσE

1− 2ασE
.

Fig. 3a shows a comparison between the variance obtained
from Eq. (5), solid line, and the simulated CME, marks, for
different values ofσE . Therefore, in studying biochemical
switches where number of molecules is large LNA can give
valuable analytical expression of the second moments of fluc-
tuations around steady states.

Once the biological problem e.g. the cell cycle modeled by
a bistable system, one may want to measure the time needed
to leave the off state and enter the on state, which is called es-
cape time. This value obtained from Gillespie Algorithm can
be compared with its analytical value. This is done by calcu-
lating the spending time in the current stable steady state,say
xa, before jumping to the other stable steady statexc, by pass-
ing through the middle unstable statexb. The estimated time
obtained from Chemical Langevin Equation (CLE) is given by
(see Methods Section):

τac =
2π

√
U ′′(xa)U ′′(xb)

exp
[U(xb) − U(xa)

θ

]

. (6)
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in which U(x) is the potential function whileU ′(x) = − f (x∗)
is the governing law at fixed point(s) andθ = σ2/2 whereσ is
the diffusion term in CLE.

Fig. 3b shows the potential,U(x), by integrating−U ′(x) =
σE + α

x2

1+x2 − x over x. The positions of the fixed points and
their energy levels can be seen in the figure. In Fig. 3c we
display the estimated scape time from the lower statexa to the
upper statexc by passing the middle unstable fixed point given
by CLE , red line, and data obtained from simulating CME by
Gillespie Algorithm, blue marks.

The effect of delay on the system can be seen from the prob-
ability distribution function of the system , Fig 4a (Ω = 128
andσE = 0.135) and its hysteresis plot, Fig 4b. By increasing
the feedback delay, the upper fixed point disappears and the
hysteresis effect, and hence the memory, vanishes.

IV. DISCUSSION

In this study we have examined the chemical reaction dy-
namics of switch-like behavior, i.e. all-or-none character in
response to an external signal. We examined continuous and
deterministic model of the system to calculate the amount of
external signal in response to which the system obtains low
concentration, off state, or high concentration, on state. The
discrete and stochastic description of the system while the
change in the external signal leads to bistable mode, reveals
that disregarding what the initial copy number of species is
the system obtain both high and low states by jumping be-
tween them. The time can be estimated from the dynamics of
the switch and furthermore the necessary copy number of the
participating molecules can be calculated as a function of the
desired stability of the particular switch.

From the bistability analysis, the level of the external sig-
nal as well as the value of species concentration determine
the phase of the system under study. Moreover, looking into
hysteresis plot reveals the intrinsic memory of the switch as
a function of both volume and also on feedback delays. For
small copy numbers, modeled by the system sizeΩ, the switch
has less well defined states, is frequently toggling betweenthe
two states and display a weak hysteresis. Also for long de-
lays, modeled by number of intermediate reactions, the stabil-
ity of higher state is reduced and shows weaker hysteresis this
can be understood by stability analysis of fixed point. There-
fore, in order to construct a biochemical switch, a significant
number of molecules and short feedback delay are needed to
generate the associated properties of a switch, all-or-none re-
sponse and hysteresis.

The probability distribution function together with the po-
tential function of the system reveals that for specific value of
external signal the on state is more attractive, when there is
large number of molecules and less toggling between states.
So, with enough copy number of molecules the desired state
of the switch can be controlled by the external signal.

V. METHODS

A. Macroscopic Analysis

1. Ordinary Differential Equation

To see how the concentration of factorX in reaction (1),
shown byχ, changes with time the reaction rate is obtained by
applying a rate law, such as mass action or Michaelis-Menten
kinetics, in a form of ordinary differential equation (ODE):

dχ
dT
= B + A(

χn

Mn + χn
) − κχ , (7)

the positive feedback can appear in any function showing sig-
moidal behavior, here we chose the Hill function. Before
analyzing the model it is essential [17] to express it in non-
dimensional form:

dx
dt
= σE + α(

xn

1+ xn
) − x . (8)

Herex shows the scaled concentration of the speciesX, t is
the scaled time, parameterσE presents the external signal,α
is the strength parameter of the feedback loop andn is the pa-
rameter of Hill function known as Hill coefficient. From now
on we choosen = 2 which makes the calculation straightfor-
ward and also is more meaningful in biological context. Here
we refer tof (x) = σE + α( xn

1+xn ) − x, as governing law of the
system.

The study of the conditions under which stability and bista-
bility arise is well established in differential equation model-
ing by linear stability and bifurcation analysis.

Linear Stability Analysis: Suppose thatx∗ is the fixed
point(s) of the system, which meansf (x∗) = 0;

x∗ = σE + α
(x2
∗)

1+ x2
∗
. (9)

And δ(t) = x(t) − x∗ is a small perturbation fromx∗. Using
Taylor’s expansion we obtain:

dx
dt
= f (x∗ + δ(t)) = f (x∗) + δ f ′(x∗) + O(δ2) ,

the termO(δ2) is negligible as we want to see the behavior
of the system linearly,

dx
dt
=

dδ(t)
dt
= δ(t) f ′(x∗) ⇒ δ(t) = Ceλt, (λ = f ′(x∗))

λ, the eigenvalue in terms of our model is:

λ = f ′(x∗) =
2αx∗

(1+ x2
∗)2
− 1 (10)

which should be less than zero (λ < 0) for each fixed point
to guarantee the stability of the system near each of them, on
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FIG. 3 (a) Comparison between variance obtained from simulation (Sim.) by Gillespie Algorithm and analytical (Ana.) LNA. (b) Potential
functionU(x) =

∫

−σE − α x2

1+x2 + x as a function of concentration of molecules,σE = 0.135. (c) Comparison between estimated time from
theory, CLE and numerical methods vs. volume of the system.

the other hand observing the conditions of bistability is acces-
sible through stability diagram by plotting bifurcation curve

FIG. 4 (a) Probability distribution function for external signalσE =

0.135 for different delay lengthτ = 1,5, 7,10. (b) Hysteresis effect
for different delay lengthτ = 0,5, 10 as a function of external signal
σE .

in (α(x∗), σE(x∗)) plane with parametric forms:

α(x∗) =
(1+ x2

∗)
2

2x∗
, (11a)

σE (x∗) = x∗(1−
1+ x2

∗
2

) . (11b)

For a fixedα̊ and ˚σE in bistable area, found from parametric
equations (11) one can find the value ofλ for different fixed
pointsx∗’s. By a simple calculation one obtainsRe(λ1) < 0,
Re(λ2) > andRe(λ3) < 0, respectively forx∗1 < x∗2 < x∗3,
which meansx∗1 andx∗3 are stable whilex∗2 is unstable fixed
points.

2. Delay Differential Equation

The macroscopic dynamics of the delayed process can be
govern by a set of differential equations described the chain of
reactions (2) by the following differential equations:

dx1

dt
= S E + aΦ(xN+1) − k1x1 ,

dx2

dt
= k1x1 − k2x2 ,

...

dxN+1

dt
= kN xN − bxN+1 .

Where xi’s are the concentration of componentsXi’s. By
knowing the rate of intermediate reactions, one can absorb
all medial reactions with one finite delayτd. After non-
dimesionalizing the equations withb, the life time of the last
component, the delay differential equation of the last compo-
nentN + 1 is:

dxN+1

dτ
= S E + αΦ[xN+1(t − τ)] − xN+1 . (12)
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The equation below is a delayed counterpart of Eq.(8) of
our model:

dxt

dt
= σE + α(

x2
t−τ

1+ x2
t−τ

) − xt . (13)

Linear Stability Analysis: First we find the stationary so-
lution to the Eq. ((13)). For less complexity in appearance let
xt = x andxt−τ = xτ

dx
dt
= σE + α(

x2
τ

1+ x2
τ

) − x = 0⇒ x = σE + α(
x2
τ

1+ x2
τ

)

as there is no time dependency in stationary points,τ = 0, the
steady state(s)x∗ meets the following statement:

σE(1+ x2
∗) + αx2

∗ = x∗(1+ x2
∗) (14)

Now assume a small perturbationδ from x∗

x(t) = x∗ + δ(t)

δ defines the perturbation from fixed point at timet andδτ the
perturbation from fixed point at timet − τ.

dx
dt
=

dδ
dt
= σE + α

( (x∗ + δτ)2

1+ (x∗ + δτ)2

) − (x∗ + δ)

δ̇(1+ x2
∗) = σE(1+ x2

∗ + 2x∗δτ + δ
2
τ) + α(x2

∗ + 2x∗δτ + δ
2
τ)

− x∗(1+ x2
∗ + 2x∗δτ + δ

2
τ) − δ(1+ x2

∗ + 2x∗δτ + δ
2
τ)

in which, the termsδδτ andδ2τ are negligible. So,

δ̇(1+ x2
∗) = σE(1+ x2

∗) + α(x2
∗) − x∗(1+ x2

∗)

+ δτ2x∗(σE + α − x∗) − δ(1+ x2
∗)

using the stationary solution ((14)),

dδ(t)
dt
=

2αx∗
(1+ x2

∗)2
δ(t − τ) − δ(t) .

Now we make the ansatz ;






δ(t) = eλt

δ(t − τ) = eλ(t−τ) = δ(t)e−λτ

then,

λδ(t) =
2αx∗

(1+ x2
∗)2
δ(t)e−λτ − δ(t)

λ =
2αx∗

(1+ x2
∗)2

e−λτ − 1 . (15)

if τ = 0, λ = ( 2αx∗
(1+x2

∗)2 − 1) should be less than zero to guar-
antee the stability, hence:

λ < 0 ⇒ 2αx∗
(1+ x2

∗)2
< 1

if τ , 0, defineυ = 2αx∗
(1+x2

∗)2 ,

λ = υe−λτ − 1 < 0

Setλ = r + iω,

r + iω = υe−rτ cos(ωτ) − 1− iυe−rτ sin(ωτ)

Separating real and imaginary part, we obtain:

r =υe−rτ cos(ωτ) − 1

ω = − υe−rτ sin(ωτ)

if r = 0,

1 = υ cosωτ (I)

ω = −υ sinωτ (II)

(I)2
+ (II)2

= 1+ ω2
= υ2(cos2(ωτ) + sin2(ωτ))

if υ2 < 1 there is no oscillation. Ifυ2 > 1:

ωτ =arccos(−1
υ

)

τ∗ =
1

√
υ2 − 1

arccos(−1
υ

)

whenτ = τ∗ the switch produce stable oscillation, forτ >
τ∗ the oscillation grow and forτ < τ∗ the oscillation dies off.

B. Stochastic Analysis

1. Chemical Langevin Equation

As mentioned earlier the deterministic approach to bio-
chemical reactions fails to take into account their stochastic
nature of such processes. Therefore an additive noise term to
the Eq.(8) might refine our model.

dx(t) = f (x)dt + g(x)dW(t). (16)

Eq. (16) is called Langevin Equation or more generally
Stochastic Differential Equation (SDE). The solutions of
Langevin Eq. give different random trajectories of the pro-
cess. However, by applying Ito’s formula [18] to a SDE one
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can instead of all different trajectories, calculate the probabil-
ity density function as a solution to the following equation,

∂t p(x, t|x0, t0) = −∂x[ f (x)p(x, t|x0, t0)]

+
1
2
∂2

x[g(x)2p(x, t|x0, t0)] . (17)

Eq. (17) is called Fokker Planck Equation (FPE), in which
the deterministic functionsf (x) andg(x) are drift and diffu-
sion terms, respectively. Although we are not taking this ap-
proach to study stochastic behavior of the system, we use it
in estimating escape time. Escape time is the time the system
needs to leave the current steady states and jump to the other,
in our case the transition from middle unstable fixed point
could determines the jump happens. Consider three steady
states of the system asa, b andc, wherea < b < c and cor-
respond to the lower, middle and upper steady states, respec-
tively. Consider the SDE:

dx = −U ′(x)dt + σdW(t)

where−U ′(x) is the vector field of ODE. (8), (U ′(x) = x −
σE − α( x2

1+x2 )) and its corresponding FPE is :

∂P(x, t)
∂t

=
∂(U ′(x)P(x, t))

∂x
+ θ
∂2P(x, t)
∂x2

whereθ = σ2/2. Now the estimated time [12] is given by:

τac =
2π

√
U ′′(a)U ′′(b)

exp
[U(b) − U(a)

θ

]

. (18)

θ can be inserted by calculatingσ from Chemical Langevin
Equation (CLE) of the system :

dx =
2∑

j=1

S j f j(x) +
1
√
Ω

2∑

j=1

S j

√

f jdW j ,

sinceW j’s are independent we have

dx = −U ′(x)dt + σdW(t) ,

where

σ2
=

1
Ω

∑

j

S 2
j f j

and W is a Wiener process,dW ∼ N(0, dt). So σ =
1√
Ω

√

σE +
αx2

a

1+x2
a
+ xa .

2. Chemical Master Equation [19]

Consider a set of biochemical reactions withN different
chemical components homogeneously distributed in a living

cell with volumeΩ. The state of such a homogenous system
is defined by the number of molecules of each components
n = [n1, . . . , nN ], in which ni shows the current number of
molecules of speciesi. A state change takes place by any one
of R reactions. When reactionj occurs the chemical com-
ponent numberi changes fromni to ni + S i j molecules. The
integersS i j, i = 1, 2, . . . ,N; j = 1, 2, . . . ,R; are the elements
of theN × R stoichiometric matrixS of the reaction network.
The probability that the reactionj occurs in a small time inter-
val δt is given byΩ f̃ j(n,Ω)δt, where f̃ j(n,Ω) is the transition
rate for reactionj.

The probability that a system of chemical reactions is in
statenm at timet + dt, P(nm, t + dt), will depend on the prob-
ability that it was in statenm at timet, P(nm, t), as well on the
probability that the system will either reachnm from or leave
nm to any other state in the system during the intervaldt:

P(nm, t + dt) ≈ P(nm, t) + dt.
∑

k,m

W(nk, nm)P(nk, t)

− dt.
∑

k,m

W(nm, nk)P(nm, t) (19)

W(nk, nm).dt is the probability of a transition from statenk

to statenm in any time interval of lengthdt. Accordingly,
the first sum in Eq. (19) is the total probability that the system
reaches the statenm and the second sum is the total probability
that the system leavesnm in the time interval (t, t+dt). Moving
P(nm, t) to the left hand side then dividing bydt and taking the
limit dt → 0 lead to the Chemical Master Equation (CME).

dP(nm, t)
dt

=

∑

k,m

W(nk, nm)P(nk, t) −
∑

k,m

W(nm, nk)P(nm, t) .

(20)
The chemical reaction system discussed here is character-

ized by the transition ratesΩ f̃ j(n,Ω), which can be used to
formulate its corresponding master equation with the help of
stoichiometric matrixS. To do this, identify for each reaction
j the rateΩ f̃ j(n,Ω) for the system’s transition from staten
to staten + S . j with W(n, n + S . j) in Eq. (20) and the rate
Ω f̂ j(n − S . j,Ω) for the system’s transition from staten − S . j
to staten with W(n − S . j, n). This gives the time evolution of
the probability for any staten as

dP(n, t)
dt

= Ω

R∑

j=1

(E−S j − 1) f̃ j(n,Ω)P(n, t) . (21)

E
−S j is a step operator defined fromE−S jg(n) = g(n − S . j),

whereg is an arbitrary function of the state.
The delineated process is a special case of Markov process

known as birth-death process with multi variables. Our model
is a single variable of this type defined by two biochemical
reactions with one chemical componentX in a well-stirred
distributed system with volumeΩ. The state of the system is
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defined by the number of molecules of speciesX, {N} which
shows the current number of molecules in the system. The
creation and annihilation of componentX take place by the
following reactions, respectively:

∅ k1−→ X , X
k2−→ ∅ (22)

where,k1 andk2 are rate constants. When the left reaction
takes place the number of moleculesX changes fromN to N+
1 molecules and when the right reaction happens, it changes
from N to N − 1. The integers 1 and -1 are the elements of
stoichiometry vectorS = [1,−1]. The probability that the
first or second reaction happens in a small time intervalδt is
given bypi = Ω f̃i(n,Ω)δt, i = 1, 2. Where f̃i(n,Ω) is the rate
transition for each reaction or, equivalently, the probability
of reaction per unit time and unit volume. The mesoscopic
transition rate is approximated by its macroscopic counterpart
fi(x) = limΩ→∞ f̃i(X = Ωx,Ω), wherex andX are respectively
the average concentration and number of molecules of species
X. So from Eq.(8),f (x) the governing law can be split into
two backward and forward rate equations,f1 = σE + α( xn

1+xn )
governing the rate of creation andf2 = x governing the rate
of annihilation. Therefore, the corresponding transitionrates
are:

f̃1 = (σE + α
X2

1+ X2
) , (23a)

f̃2 = X . (23b)

The Master equation for the problem can be written as:

dP(X, t)
dt

= Ω

2∑

j=1

(E−S j − 1) f̃ j(X,Ω)P(X, t) . (24)

E
−S j is a step operator which removesS j molecules from

componentX.

3. Analytical solution to CME [13]

Taylor Expansion of Master Equation: When the step op-
eratorE−S j in the master Eq. (21) operates on a function like
g j(n) = f̃ j(n,Ω)P(n, t), the function is evaluated in a shifted
state fromn to n − S . j. Now if the displacement is small and
the function varies smoothly, the displaced function may be
approximated by a Taylor expansion around the staten. For a
general functiong(n) such a Taylor expansion looks like:

E
S . j g(n) ≈

[

1−
∑

i

S i j
∂

∂ni
+

1
2

∑

i,k

S i jS k j
∂2

∂ni∂nk
+ . . .

]

g(n) .

(25)

Insertion of Eq. (25) in the Master Eq. (21) followed by
truncation after the second order term leads to the Fokker-
Planck (FP) approximation of the Master Equation:

dP(n, t)
dt

=Ω

R∑

j=1

(

−
∑

i

S i j
∂ f̃ j(n,Ω)P(n, t)

∂ni

+
1
2

∑

i,k

S i jS k j
∂2 f̃ j(n,Ω)P(n, t)
∂ni∂nk

)

. (26)

For complicated reaction schemes, the FP-equation is al-
most as complicated to work with as the original master equa-
tion.

The Fokker-Planck approximation is very exact when the
jumps in state space are infinitely small, but sizes of jumps
in the state space of chemical reactions are fixed in size.
A solution to this problem is offered by theΩ expansion
method [12], whereΩ is the volume of the system. The
method is known as Linear Noise Approximation (LNA).
LNA is a Taylor expansion of CME in powers ofΩ1/2 around
the steady states of the macroscopic rate equation. The ratio-
nale behind this approach is thatΩ is the parameter in system
that governs the size of fluctuations and therefore the size of
jumps. In the size expansion, a new stochastic variableξi is
defined from the relationni = Ωxi + Ω

1/2ξi, whereni is the
copy number of componenti, xi is a deterministic function
of time. In LNA the kinetics of the system is described in
the limit of an infinitely large, well stirred volume. By this
assumption, the stochastic fluctuation in the state vectorn is
negligible, so the state can be approximated by macroscopic
average concentrationx = [x1, . . . , xN ] and eachf̃ j(n,Ω) by
its macroscopic rate law counterpartf j(x). The determinis-
tic rate equatioṅx = Sf(x) governs the time evolution of the
macroscopic concentration vectorx whereS is the stoichio-
metric matrix andf (x) = [ f1(x), . . . , fR(x)]. The probability
distributionP(n, t) for n = (n1, . . . , nN) = Ωx is related to the
probability distributionΠ(ξ, t) for ξ = (ξ1, . . . , ξN) through

P(n, t) = P(Ωφ + Ω1/2ξ, t) = Π(ξ, t) (27)

For the probability density functionΠ(ξ, t), the fluctuations
are characterized by the linear Fokker-Planck equations: Dif-
ferentiating Eq. (27) with respect to time at constant molecule
numbers gives:

∂P(n, t)
∂t

=
∂Π(ξ, t)
∂t

+

N∑

i=1

∂ξi

∂t
∂Π(ξ, t)
∂ξi

=
∂Π(ξ, t)
∂t

− Ω1/2
N∑

i=1

∂ϕi

∂t
∂Π(ξ, t)
∂ξi

∂ni/∂t = 0 implies that∂ξi/∂t = −Ω1/2∂ϕi/∂t.
Taylor expansion of the transition rates̃f j(n) around the

macroscopic valuef j(φ) gives:
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f̃ j(x) = f̃ j(φ+Ω−1/2ξ) = f j(φ)+Ω−1/2
N∑

i=1

∂ f j(φ)

∂ϕi
ξi +O(Ω−1) .

(28)
Taylor expansion of the step operator around the steady

states gives the approximation:

E
−S . j ≈ 1−Ω−1/2

∑

i

S i j
∂

∂ξi
+
Ω
−1

2

∑

i

∑

k

S i jS k j
∂2

∂ξi∂ξk
+ . . .

(29)
Inserting Eqs. (27), (28) and (29) into CME yields:

∂Π(ξ, t)
∂t

− Ω1/2
N∑

i=1

∂ϕi

∂t
∂Π(ξ, t)
∂ξi

=

Ω

R∑

j=1

(

−Ω−1/2
∑

i

S i j
∂

∂ξi
+

Ω
−1

2

∑

i

∑

k

S i jS k j
∂2

∂ξi∂ξk
+ . . .

)

×

(

f j(φ) + Ω−1/2
∑

i

∂ f j(φ)

∂ϕi
ξi + . . .

)

Π(ξ, t) .

Identifying terms of orderΩ0:

∂Π(ξ, t)
∂t

= −
∑

i,k

Aik
∂(ξkΠ)
∂ξi

+
1
2

∑

i,k

Vik
∂2
Π

∂ξi∂ξk
, (30)

in which,

Aik =

R∑

j=1

S i j
∂ fi
∂xk
, Vik =

R∑

j=1

S i jS k j f j(x) .

The matrixA is the Jacobian andV is the diffusion matrix
evaluated in the statex(t) as determined by differential equa-
tion ẋ = Sf(x).

Eq. (30) is the Fokker-Plank equation for the probability
density functionΠ(ξ, t). Its stationary solution is known, a
Gaussian with zero average and the covarianceC of the fluctu-
ations around the average that is given by the Lyapunov equa-
tion:

AC + CAT
+ V = 0 . (31)

The covarianceC are large if the fluctuationsV are large
and the eigenvalues of the JacobianA are small. Large fluc-
tuation means that many random events occur per time unit
and small eigenvalues ofA means that the forces that bring
the system back to steady state are weak. In our case with one
variable,

CX =
V
−2A

. (32)

For the switch the Jacobian and Diffusion matrix are:

A =
2∑

j=1

S j
∂ f j

∂x∗
=
∂S.f
∂x∗
= −1+ α

2x∗
(1+ x2

∗)2
(33a)

V =
2∑

j=1

S jS j f j(x∗) = (−1)2(x∗) + (1)2(α
x2
∗

1+ x2
∗
+ σE)

(33b)

wherex∗ is the steady state of Eq.(8),

f (x∗) = 0 ⇒ x∗ = σE + α(
x2
∗

1+ x2
∗
)

therefore the variance ofX is:

CX =
< X >

[1 − α 2x∗
(1+x2

∗)2 ]
. (34)

Define a new variableφ = −α(Φ′) to simplify variance
yields:

CX =< X >
1

1+ φ
. (35)

For smallx whenx is e.g. in the lower state,x∗ ≈ σE

CX ≈
< X >

[1 − αx∗]
≈ ΩσE

1− 2ασE
.

For the variance to be defined,φ > −1. Consequently, one
can calculate the Fano factor,

F =
CX

< X >
=

1
1+ φ

. (36)

4. Delayed Chemical Master Equation [15]

In a general form a system withR non-delayed reactions,
andD delayed reactions has the following time evolution of
its states:

∂p(n, t)
∂t

=

R∑

r=1

f̃r(n − νr)p(n − νr, t) −
R∑

r=1

f̃r(n)p(n, t)

+

D∑

d=1

∑

ñ

g̃d(ñ)p(n − υd, t; ñ, t − τd)

−
D∑

d=1

∑

ñ

g̃d(ñ)p(n, t; ñ, t − τd) . (37)
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The system’s staten is a time dependent vector of length
equal to components’ total number and thei’th componentni

denotes the number of molecules ofi’th species. The func-
tions f̃r are the transition probability function of theR non-
delayed reactions with state change vectorνr, (r = 1, . . . ,R).
The functions ˜gd are the transition probability functions of
the D delayed reactions with state change vectorυd, (d =
1, . . . ,D). The stoichiometry matrixS here is the matrix with
columns ofν’s andυ’s.

The joint probabilityp(n, t; ñ, t − τd) can be defined:

p(n, t; ñ, t − τd) = p(n, t|ñ, t − τd)p(ñ, t − τd)

= p(ñ, t − τd |n, t)p(n, t) . (38)

Inserting equality (38) into statement (37), yields:

∂p(n, t)
∂t

=

R∑

r=1

f̃r(n − νr)p(n − νr, t) −
R∑

r=1

f̃r(n)p(n, t)

+

D∑

d=1

∑

ñ

g̃d(ñ)p(ñ, t − τd |n − υd, t)p(n − υd, t)

−
D∑

d=1

∑

ñ

g̃d(ñ)p(ñ, t − τd |n, t)p(n, t)

the inner summation can be summarized into one function
summed over̃n ashd:

∂p(n, t)
∂t

=

R∑

r=1

f̃r(n − νr)p(n − νr, t) −
R∑

r=1

f̃r(n)p(n, t)

+

D∑

d=1

hd(ñ − υ2, t)p(ñ − υd, t) −
D∑

d=1

hd(ñ, t)p(n, t) .

And the associated Master Equation for the delayed process
in our model is:

dP(X, t)
dt

=
[

f̃1(X − 1)P(X − 1, t) − f̃1(X)P(X, t)
]

+
[

h1(X + 1, t)P(X + 1, t) − h1(X, t)P(X, t)
]

.

C. Numerical Methods

1. Numerical solution to the non-delayed CME

A simple and very useful way to estimate the properties of a
master equation is to simulate realizations of the correspond-
ing Markov process using Monte Carlo (MC) methods, known
as the Stochastic Simulation Algorithm (SSA). The first well-
established SSA was done by Gillespie [20], he suggested a
method to simulate trajectories of chemical reactions mod-
eled by a discrete Markov process in continuous time. Al-
though the algorithm is fully equivalent to the master equa-
tion, it should not be considered the numerical solution to it.

FIG. 5 Illustration to modified Gillespie Algorithm of delayed reac-
tions

The direct method is based on sampling two random numbers,
the first one determines the next time, (t+τ), at which the next
reaction takes place and the second one determines the prob-
able reaction j. That is, for a system in staten at time t, the
probability that the next reaction event occurs,δτp(τ, j|n, i) in
the time interval (t + τ, t + τ + δτ) and is of typej is given by

p(τ, j|n, t) = a(n)e−a(n)τ

︸      ︷︷      ︸

I

Ω f̃ j(n,Ω)
/

a(n)
︸            ︷︷            ︸

II

= Ω f̃ j(n,Ω)e−a(x)τ (39)

wherea(n) = Ω
∑R

j=1 f̃ j(n,Ω). The factorI is the probabil-
ity density for the timet+τ of any next reaction given that the
system was in staten at timet. The factorII is the probability
that the reaction is of typej.

In our model there are two reactions,R = 2, and the state
of the system is defined by one varibale,X.

p(τ, j|X, t) = a(X)e−a(X)τ
Ω f̃ j(X,Ω)

/

a(X) = Ω f̃ j(X,Ω)e−a(x)τ

wherea(X) = Ω
∑2

j=1 f̃ j(X,Ω), which is the sum of propensity
functions.

2. Numerical solution to delayed CME

The Delay Stochastic Simulation Algorithm (DSSA) is dif-
ferent from its non-delay algorithm counterpart SSA in the
sense that the chosen reaction maybe one of the delayed reac-
tions. Consider a system withN components reacting through
R+D reactions among whichR reactions are non-delayed and
D reactions are delayed. When the next time step is deter-
mined to bet∗ and the chosen reaction is delayed, so non-
Markovian, the reaction will be completed as time advances
to t∗ + τ, but if the selected reaction is non-delayed one the
time of the next reactiont∗ is compared with the time of pre-
viously scheduled delayed reactions. If none of those are to
occur beforet∗ the time advances tot∗ and the number of
molecules changes according to the chosen non-delayed reac-
tion. If there is a delayed reaction scheduled to occur at some
time td < t∗ then the selected time stept∗ is ignored and time
advances totd and the scheduled delayed reaction completed
with state change according to the scheduled reaction. Fig.5
is the schema of the algorithm [21].
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D. Bošnacki, and P.A.J. Hilbers. Stochastic switching behavior
of a bistable auto-phosphorylation network.transition, 10:5.

[3] N.I. Markevich, J.B. Hoek, and B.N. Kholodenko. Signal-
ing switches and bistability arising from multisite phosphory-
lation in protein kinase cascades.The Journal of cell biology,
164(3):353, 2004.

[4] G. Craciun, Y. Tang, and M. Feinberg. Understanding bistabil-
ity in complex enzyme-driven reaction networks.Proceedings
of the National Academy of Sciences, 103(23):8697, 2006.

[5] T. Eissing, H. Conzelmann, E.D. Gilles, F. Allgöwer,
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