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Biochemical switches that can toggle between two discrettecnlar states is an ubiquitous mecha-
nism for digital processing of external inputs in cell siimg. A necessary condition for obtaining
such bi-stabile behavior is positive and non-linear feedlb#n this study we examine the most basic
positive feedback process that generates bi-stable dgsand quantify its properties with respect to
chemical noise and delays in the feedback. We find that thedriNoise Approximation (LNA) as an
analytical tools makes it possible to estimate second mtsr@#riluctuations around steady states in
a bistable system and due to these fluctuations the systepsjtrequently between its stable steady
states, the frequency of jumping can be estimated by estapederived from Chemical Langevin
Equation (CLE). If the feedback is indirect, operating yanl a series of synthesis events, the high
state of the switch is destabilized and hysteresis is nogioagparent.

I. INTRODUCTION trajectories of the molecular populations in exact accocda
with the CME [10]. However, except in simple cases [11],
Multistability is the capability of systems achieving mult an exact closed solution to CME is generally not attainable
ple steady states in response to an external signal andldista due to the high dimensionality of the problem. An approxi-
ity is a special case and also of a particular interest in bimation method to obtain second moments (variances and co-
ology as it leads to switch-like behavior. A bistable systemvariances) from the CME is the Linear Noise Approximation
can switch between two steady states but not rest in intermgLNA) [12]. The method is developed by expanding the CME
diate ones. In cell biology, switch-like behavior is a char-ininverse powers of the system si2eround the steady states
acteristic of many important biochemical reaction netvgork which can be obtained by solving the macroscopic rate equa-
which has been investigated: celHgrentiation [1], auto- tions. The LNA provides information of the chemical noise
phosphorylation [2], multisite phosphorylation [3], col@p  properties as a function of the parameters and topologyeof th
enzyme-driven reaction networks [4], caspase activaidn [ underlying biochemical reaction network [13]. In the cage o
transcriptional regulation [6] and cell-cycle [7, 8]. Aprerty  a molecular switch, fluctuations may play an important role i
associated with switches is hysteresis, which means tiwat on changing the steady states in addition to external stimbig—
the system has been switched "on” by exceeding the stimuknough fluctuations might make the system toggle between
to a threshold, then it cannot be switchedi”dy decreasing the two steady states. Almost all feedback mechanisms oper-
it to that specified threshold. In other words, these systemate indirectly on molecules upstream in a biochemical path-
have "memory”, while the input is withdrawn the system doesway which result in a time lag in its response to deviations
not return to previous state. The hysteresis is of impodancfrom the steady state, a time lag that will correspond to the
when considering switches that need to be robust to externdme needed for making the final product. Recent studies on
perturbations, e.g. cell fierentiation [1]. delayed biochemical feedback systems, e.g. delays associ-
Bistability arises in biological systems through many mech ated with transcription and translation includes investtins
anisms, but a commonly accepted underlying mechanism isf both discrete stochastic and continuous deterministid-m
feedback. Although, in constructing models, feedbackiis faeling [14]. Also an extension to the LNA has been studied for
from being sificient to present bistability, but as a simplest small gene regulatory motifs as time-delayed systems [h5].
form of positive feedback, i.e. autocatalysis, it guaraste arecentpaper[16], an analytical expression has beemddve
bistability in very small reaction sets [9]. quantify properties of time-delayed negative feedbaceal
Once the average behavior of the system should be dawvith comparing two models, step feedback model (SFM) in
scribed a mean-field approachfistces. However, once the which every single reaction from the multi-step synthesis i
fluctuations are considerable, the macroscopic rate emsati taking into account, and delay feedback model (DFM), in
of the chemical concentrations will not describe the systenwhich the intermediate reactions are absorbed into one time
behavior properly anymore. Since the bistability will be adelay. Here we study the sensitivity of the bistable systems
consequence of chemical reactions it is relevant to ask fodelays and investigate thé&ects of delay on hysteresis.
what time scales the switch may operate properly since chem-
ical noise will at some point make the system spontaneously
switch to the other state. The Chemical Master Equationl. MODEL
(CME) describes the time evolution of the probability dis-
tribution of the states of the system and can (in principle
be solved analytically. If not solvable analytically oneyma
integrate it numerically from the Stochastic Simulation Al
gorithm (SSA), a Monte Carlo procedure that generates tim

)A. Non-Delay Process

To promote interpretability and understanding we use the
gimplest model that displays the characteristics of a $witc
The system attains its bistability by means of positive feed



back regulation. Assume that a intracellular system geegra describing how the concentration rate of a species changes.
a factorX as a response to an external stimulat®nthat  The governing function has its own parameters rising from
modulates the external signal of the factor. Furthermdre, t the underlying biological problem and to study the dynamics
factor stimulates its own production through a positivedfee of the system one should examine the stability of the system
back loopa®(x), wherea is the maximal self-induced pro- depending on these parameters. Therefore, we use two tools
duction of the factor (0< ®(x) < 1). Finally, the factor is from mathematical studies of dynamical systems, the bifur-
degraded with the decay rate constanthe response system cation and linear stability analysis. The bifurcation gséd

can be summarized by the following reactions: is the study of number of fixed points and their stability de-
pending on parameters changing in the system. The linear
0w x B (1)  stability analysis is examining the evolution of a pertuitia

from fixed point(s)x., which is determined by the eigenvalue
The time scale of the dynamics is set by the degradation rateé = f’(x.), wheref(x) = og + a®(x) — x is the governing
constanb. Thus, we can scale the time in termgxdd reduce  law. We model the feedback with a Hill function with Hill
the number of parameters. The two remaining parameters amodficientn (see Methods Section).
then the (normalized) external sigred = Sg/b and the (nor- The bifurcation curves by which the domain of bistability
malized) maximal self-induced rate= a/b. is separated from mono-stability, are the parametric éopusit
defining the external signatg and the maximal self-induced

« as a functions of concentratioq:
B. Delay Process

(1+x0)?
Most metabolites in gene regulatory networks specially a(x.) = W (32)
those involving macro molecules, such as transcripti@mgs 14X
lation and degradation processes are synthesized thrasegh a oe(X) = X(1- -). (3b)

ries of biochemical steps. Such multi step synthesis aenoft
feedback regulated early in the synthesis path, which imply These parametric equations are derived when both the gov-
that the regulation of the product at tihé efectuated after erning law and its derivative vanishes. By plotting them in
all steps are finalized, on average tq seconds later. This parametric spacex(x.),oe(x.)) for differentn, the range of
leads to a feedback delay in the regulation which may hampegxternal signabg, feedback strengthr andn for which the
the fidelity of the feedback response. For a genetic switchsystem is bistable or monostable is observable, which i don
e.g. realized by a protein synthesized in a series of stefhs wiin Fig 1a. For the linear stability analysis we set the Hilt co
the positive feedback in the form of transcriptional regjola, ~ efficientn = 2 as it is the smallest value to display bistability
it is important to quantify the impact of a delayed feedbackand then simply pickr = 1.8 in the bistable area. The de-
to the properties of the switch. Homeostatic control thfoug termining parameter for the eigenvaluiés hence the external
indirect, delayed, negative feedback may be accompanied tsignaloe. For values ofoe where the eigenvalue is nega-
direct (negative) feedback later in the synthesis path tainb tive, 1 < 0, the corresponding fixed point(s) is stable while
precision—with the cost of synthesizing unwanted interimed the small perturbation from the fixed point(s) decays witk ra
ate molecules [15]. For a genetic switch it is more compli-of " and where the eigenvalue is positive,> 0, the cor-
cated. Itis not obvious how to complement the transcrition responding fixed point(s) is unstable and a small perturbati
feedback in a similar way and still remain the properties offrom fixed point(s) increases with rate ef'. The result is
the switch. Therefore we will consider a switch operating in sketched as bifurcation plot in Fig. 1b.
directly in a multi-step synthesis path in order to quantify The bifurcation analysis will reveal the signal strength
impact of the feedback delay to properties like hysteresis a needed to induce the system to switch to the high state and
stability. The biochemical reactions k steps leading to the also at which lower level the external signal no longer hold
final moleculeXy,1 can be written as: the switch in its on state. This ability of the system is known
as hysteresis. While the system modeled stochasticalthéor

Xy k, Xo ke, o Xne1  and  Xysa L 0. same parameters in deterministic modeH 2 anda = 1.8)

(2) the hysteresis is only expected to appear fdfisient many

The re-scaling can be performed just as in the non-delaye@olecules as the chemical noise will make the system escape
counterpart with the same parameters, where the katies ~ the stable states. Fig. 1c shows the hysteretesiefor three
addition are scaled with, x; = ki/b and the average delay different volumeQ = 32,128 512 and compare with deter-
74 = btg. ministic model.
One approach in studying the stochastic behavior of the
switch is through stochastic simulation. The Gillespie @\g
Il. RESULTS rithm generates trajectories of, in principle, any biockeh
reaction network [20] . Fig. 2ais a sample path of the sys-
The macroscopic dynamics of the switch is described by afem generated by the Gillespie algorithm far= 128 and
Ordinary Diferential Equation (ODE) with a governing law g = 0.135. The trajectory shows how the concentration

Se+ad(Xn+1)
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FIG. 1 (a) The domain of bistability for the concentrationnodlecules for dierent feedback strengthsas a function of the external signal

o for different values of the Hill cdgcientn. (b) Bistability plot for the concentration of molecules feedback strengthr = 1.8 and Hill
codficientn = 2. (c) Hysteresisféect for diferent volumeQ = 32 128 512 as a function of external signa.

of the system changes with time and it catches both lowethe Linear Noise Approximation (LNA) is an approximation

and upper steady states and jumps between them. Fig. 2bethod in which the master equation is expanded in powers
shows the probability density function of the system for dif of the square root of system’s volume around the steady:. state
ferent volumes. It is clear from figure in small copy numberFrom the LNA one obtains a fluctuation dissipation relation

of molecules the switching happens more frequently and aBom which the linearized second mome@san be calcu-
the copy numbers of molecules increases the switch behavidaited,

converges to the ODE model.

Although the statistical information of the system for spec
ified range of parameters can be obtained by Gillespie Al-
gorithm, an analytical solution to master equation corgtain
more information of the over-all noise characteristics. a4
not solve CME exactly for nonlinear feedback reactions, bu

AC +CAT+V =0, (4)
whereA is the Jacobian matrix and is the difusion ma-

frix. In our model with one species, the varianc&x is (see
Methods Section):
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Fig. 3a shows a comparison between the variance obtained
from Eg. (5), solid line, and the simulated CME, marks, for
different values obre. Therefore, in studying biochemical
switches where number of molecules is large LNA can give
valuable analytical expression of the second moments of fluc
tuations around steady states.

Once the biological problem e.g. the cell cycle modeled by
a bistable system, one may want to measure the time needed
to leave the ff state and enter the on state, which is called es-
cape time. This value obtained from Gillespie Algorithm can
be compared with its analytical value. This is done by calcu-
lating the spending time in the current stable steady state,

Xa, before jumping to the other stable steady siatdy pass-

FIG. 2 (a) A sample path of the change of molecules concentraing through the middle unstable state The estimated time
tion vs. time for external signatg = 0.135 simulated by Gillespie

Algorithm. (b) Probability distribution function for exteal signal
og = 0.135 for diferent volumes$) = 32,128 512
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obtained from Chemical Langevin Equation (CLE) is given by
(see Methods Section):

Tac = [U(Xb)_U(Xa)]
VU (xa)U" (Xp) 0

(6)



in which U(X) is the potential function whil®’(x) = —f(x,) = V. METHODS
is the governing law at fixed point(s) afid= 0-?/2 whereo is
the difusion term in CLE. A. Macroscopic Analysis
Fig. 3b shows the potentidll(x), by integrating-U’(X) =
oE + a%@ — x overx. The positions of the fixed points and
their energy levels can be seen in the figure. In Fig. 3c we
display the estimated scape time from the lower state the
upper statex. by passing the middle unstable fixed point given
by CLE , red line, and data obtained from simulating CME by
Gillespie Algorithm, blue marks.
The dfect of delay on the system can be seen from the prob-
ability distribution function of the system , Fig 4&X = 128 dy _ B4 X"

1. Ordinary Differential Equation

To see how the concentration of factérin reaction (1),
shown byy, changes with time the reaction rate is obtained by
applying a rate law, such as mass action or Michaelis-Menten
kinetics, in a form of ordinary diierential equation (ODE):

andog = 0.135) and its hysteresis plot, Fig 4b. By increasing dar Al Mn +X”) KX )
the feedback delay, the upper fixed point disappears and the N _ _ _ _
hysteresis fect, and hence the memory, vanishes. the positive feedback can appear in any function showing sig

moidal behavior, here we chose the Hill function. Before
analyzing the model it is essential [17] to express it in non-

IV. DISCUSSION dimensional form:
In this study we have examined the chemical reaction dy- dx 0
namics of switch-like behavior, i.e. all-or-none charadie G ooEt a(l -) - X. (8)
+ X

response to an external signal. We examined continuous and

deterministic model of the system to calculate the amount of Herex shows the scaled concentration of the speXigsis
external signal in response to which the system obtains lowhe scaled time, parametet presents the external signal,
concentration, f¥ state, or high concentration, on state. Thejs the strength parameter of the feedback loopraiscthe pa-
discrete and stochastic description of the system while theameter of Hill function known as Hill cdgcient. From now
change in the external signal leads to bistable mode, r®veapn we choos@ = 2 which makes the calculation straightfor-
that disregarding what the initial copy number of species isyard and also is more meaningful in biological context. Here
the system obtain both high and low states by jumping bewe refer tof(x) = o¢ + a(%) — X, as governing law of the
tween them. The time can be estimated from the dynamics &fystem.

the switch and furthermore the necessary copy number of the The study of the conditions under which stability and bista-
participating molecules can be calculated as a functioh@f t pjlity arise is well established in fierential equation model-
desired stability of the particular switch. ing by linear stability and bifurcation analysis.

From the bistability analysis, the level of the externatsig  |inear Stability Analysis:. Suppose that, is the fixed
nal as well as the value of species concentration determingoint(s) of the system, which meafé,) = 0;
the phase of the system under study. Moreover, looking into
hysteresis plot reveals the intrinsic memory of the switsh a €%)

a function of both volume and also on feedback delays. For X =0E+ al X2 ©)
small copy numbers, modeled by the system Sizthe switch

has less well defined states, is frequently toggling betwleen And 6(t) = X(t) — . is a small perturbation from.. Using
two states and display a weak hysteresis. Also for long deTaylor's expansion we obtain:

lays, modeled by number of intermediate reactions, thélstab

ity of higher state is reduced and shows weaker hysterasis th dx )

can be understood by stability analysis of fixed point. There ot = foe+6(0) = F(x) +6F(x) + O ,

fore, in order to construct a biochemical switch, a significa

number of molecules and short feedback delay are needed tothe termO(s?) is negligible as we want to see the behavior
generate the associated properties of a switch, all-oenen  of the system linearly,

sponse and hysteresis.

The probability distribution function together with the-po d_X _ @ —sOF'(x) = &) =Cel, (1= f(x))
tential function of the system reveals that for specific gaiti dt dt ’ ' ’
external signal the on state is more attrac_tive, when trere i/l, the eigenvalue in terms of our model is:
large number of molecules and less toggling between states.

So, with enough copy number of molecules the desired state , 2aX,
of the switch can be controlled by the external signal. A=1f(x)= 1+x0)2 1

(10)

which should be less than zerd € 0) for each fixed point
to guarantee the stability of the system near each of them, on



3000

N
o
o
o

Variance

1000

Sim. low state

o Sim. high state
—— Ana. low state
Ana. high state

Potential

0

0.1 0.2 0.3

External Signal

0.01 6 * Escape time from simulation
55— Escape time from CLE
0 5 |
b w45
-0.01 Za ‘g?
~ 4 "
-0.02 35
Te 3 * |
b c
O N )] B G | ()
0 0.4 0.8 1.2 1.6 16 32 64 128
Concentration Volume

FIG. 3 (a) Comparison between variance obtained from sitinlgSim.) by Gillespie Algorithm and analytical (Ana.) I8N (b) Potential
functionU(x) = f—aE - afzxz + x as a function of concentration of molecules; = 0.135. (c) Comparison between estimated time from
theory, CLE and numerical methods vs. volume of the system.

the other hand observing the conditions of bistability isese
sible through stability diagram by plotting bifurcationrea
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in (@(x.), oe(X.)) plane with parametric forms:

1+
(I(X*) = 2—)(* N (11a)
rex) = x(1- 2HXy (11b)

For a fixedo’andog in bistable area, found from parametric
equations (11) one can find the valueiofor different fixed
pointsx,’s. By a simple calculation one obtaifRg(1;) < 0O,
Re(12) > andRe(13) < 0, respectively fox.; < X2 < X3,
which mean,; andx.; are stable while,, is unstable fixed
points.

2. Delay Differential Equation

The macroscopic dynamics of the delayed process can be
govern by a set of dierential equations described the chain of
reactions (2) by the following étierential equations:

d
% =Sg+ a(D(XN+1) —kix,
dXz
—< = kix1 =k
i 1X1 2X2 ,
dXn1
=k -b .
pn N XN XN+1

Where x;’s are the concentration of componerfss. By
knowing the rate of intermediate reactions, one can absorb
all medial reactions with one finite delayy. After non-
dimesionalizing the equations with) the life time of the last
component, the delay filerential equation of the last compo-
nentN + 1 is:

dXn+1
dr

= Sg + a®[Xns1(t = 7)] — XNt - (12)



The equation below is a delayed counterpart of Eq.(8) of if 7 = 0,1 = (2%

our model:

dx X2,
o 0'E+a(1+ XtZ,T)_Xt.

(13)

Linear Sability Analysis. First we find the stationary so-
lution to the Eq. ((13)). For less complexity in appeararte |

Xt = XandXe_, = X,

dx _ X o X
E_UE+Q(1+XE)_X_O:>X_UE+Q(1+X_%

)

as there is no time dependency in stationary points0, the
steady state(s}. meets the following statement:

Te(l+X0) + ax® = x.(1+ X?) (14)
Now assume a small perturbatiéfrom x.
X(t) = X, + 4(t)

¢ defines the perturbation from fixed point at titnends . the
perturbation from fixed point at timte- 7.

dx ds (X +6.)?

E —a —O'E+G,’(71+(X*+6T)2)—(X*+6)

S(1+X2) = oe(1+ X2 + 2X.6; + 62) + (32 + 2X,6; + 62)
— X (1 + X2 + 2X,5; + 62) — 6(1 + X2 + 2X.0, + 62)

in which, the termss, andé? are negligible. So,
51+ = oe(1+ %) + () - x.(1+ x3)
+ 62X (0 + @ — X.) — (1 + X?)
using the stationary solution ((14)),

() 2ax.
dt  (1+x?)2

St —1) - 8(t) .

Now we make the ansatz ;

o(t) = et
S(t—1) = el = §5(t)e '

then,

2aX, 2
A0(t) = ——=65()e" - 5(t
e L OLIL0
2aX, g,

Al 1) should be less than zero to guar-
antee the stability, hence:

2aX,

1<0 =»= ——«<1
(1+x2)?

; : _ 20,
if 7 # 0, definev = Al

/I:Ueilh—l<0

Setl=r+iw,

I +iw =ve'" coswr) — 1 - ive " sin(wr)

Separating real and imaginary part, we obtain:

r =ve '"cosr) - 1

w =—ve " sin(wr)
if r =0,

l=vcoswr (I)
w=-vsinwr (Il)

(D% + (1?2 = 1 + w? = v¥(coF(wr) + sinf(wT))

if 2 < 1 there is no oscillation. 2 > 1:

1
wT =arccos¢-)
v

*
T =

1

arccos{-)

v -1 v
whent = 7 the switch produce stable oscillation, for-
7* the oscillation grow and for < 7* the oscillation dies fb.

B. Stochastic Analysis

1. Chemical Langevin Equation

As mentioned earlier the deterministic approach to bio-
chemical reactions fails to take into account their stotbas
nature of such processes. Therefore an additive noise term t
the Eq.(8) might refine our model.

dx(t) = f(x)dt + g(x)dW(t). (16)
Eq. (16) is called Langevin Equation or more generally
Stochastic Diferential Equation (SDE). The solutions of
Langevin Eq. give dferent random trajectories of the pro-
cess. However, by applying Ito’s formula [18] to a SDE one



can instead of all dierent trajectories, calculate the probabil- cell with volumeQ. The state of such a homogenous system

ity density function as a solution to the following equation is defined by the number of molecules of each components
n = [ny,...,nN], in which n; shows the current number of
molecules of specids A state change takes place by any one

3p(X, txo, to) = —Ax[ F(X) p(x, t1Xo, to)] of R reactions. When reactiop occurs the chemical com-
1, 2 ponent number changes fromm; to n; + S;; molecules. The
* Eax[g(x) P(x. tixo. to)] - (17) integersS;;,i =1,2,...,N; j = 1,2,...,R are the elements

of theN x R stoichiometric matrixS of the reaction network.
The probability that the reactignoccurs in a small time inter-
Eq. (17) is called Fokker Planck Equation (FPE), in whichval 6t is given byQﬂ(n, Q)ét, whereﬂ(n,Q) is the transition
the deterministic function$(x) andg(x) are drift and difu-  rate for reactiorj.
sion terms, respectively. Although we are not taking this ap The probability that a system of chemical reactions is in
proach to study stochastic behavior of the system, we use #tateny, at timet + dt, P(nm, t + dt), will depend on the prob-
in estimating escape time. Escape time is the time the systeability that it was in stat@ny, at timet, P(ny, t), as well on the
needs to leave the current steady states and jump to the othprobability that the system will either reaak, from or leave
in our case the transition from middle unstable fixed pointn, to any other state in the system during the intedtal
could determines the jump happens. Consider three steady

states of the system asb andc, wherea < b < ¢ and cor- P(Nm, t + dt) ~ P(nm, t) + dt. Z W(nk, Nm)P(N, )
respond to the lower, middle and upper steady states, respec k#m
tively. Consider the SDE: _dt. Z W(Nm, N)P(Nm ) (19)

k#m

dx = —U’(x)dt + odW(t)

where—U’(x) is the vector field of ODE. (8),W'(X) = x —

e - a(%@)) and its corresponding FPE is - W(n, nm).dt is the probability of a transition from statg

to stateny, in any time interval of lengttdt. Accordingly,
the first sum in Eq. (19) is the total probability that the syst

AP(x.1) AU (NP 1)  92P(x 1) reaches the statg, and the second sum is the total probability
= +6 ; P .

ot X I that the system leavesg, in the time interval{; t+dt). Moving
P(nm, t) to the left hand side then dividing lgf and taking the
whered = %/2. Now the estimated time [12] is given by:  limit dt — O lead to the Chemical Master Equation (CME).

U(b) - U(a)
Tac = exp[ ] . (18) P
VO@U) 6 POD S Wik )P )~ 3 W, 1P ).
6 can be inserted by calculatimgfrom Chemical Langevin ke ke (20)

Equation (CLE) of the system : The chemical reaction system discussed here is character-

) 5 ized by the transition rate@ﬂ(n,Q), which can be used to
dx = Z S;fi(x) + 1 Z S; J?dej ) forr_nul_ate its_ corres_ponding ma_tste_r eqL_Jation with the hlfalp 0
i VO =t stoichiometric matriXS. To do this, identify for each reaction
j the rateQf;(n, Q) for the system’s transition from state

sinceW;’s are independent we have to staten + Sj with W(n,n + S ) in Eq. (20) and the rate
) Qfj(n - S, Q) for the system’s transition from state- S
dx = -U’(xX)dt + odW(t) , to staten with W(n — S j, n). This gives the time evolution of
the probability for any state as
where
o= =3 s, Py R
Q4 = QZ(E’Si - Dfin.QPM.t).  (21)
=1

and W is a Wiener processgW ~ N(0,dt). Soo =

E~Si is a step operator defined fra@Sig(n) = g(n — S ),
whereg is an arbitrary function of the state.

The delineated process is a special case of Markov process
known as birth-death process with multi variables. Our nhode
is a single variable of this type defined by two biochemical
reactions with one chemical componefitin a well-stirred

dﬂistributed system with volum@. The state of the system is

2. Chemical Master Equation [19]

Consider a set of biochemical reactions withdifferent
chemical components homogeneously distributed in a livin
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defined by the number of molecules of spectegN} which Insertion of Eq. (25) in the Master Eq. (21) followed by
shows the current number of molecules in the system. Th&uncation after the second order term leads to the Fokker-
creation and annihilation of componeXttake place by the Planck (FP) approximation of the Master Equation:

following reactions, respectively:

dP(n, t) R af (n, Q)P(n, 1)
. -Q e
05 x, x%9 (22) JZ( an,
where k; andk; are rate constants. When the left reaction 21 Z 52ﬂ(n, Q)P(n,'f)) (26)
takes place the number of moleculshanges fronN to N + 2 " oniong '

1 molecules and when the right reaction happens, it changes
from N to N — 1. The integers 1 and -1 are the elements of For complicated reaction schemes, the FP-equation is al-
stoichiometry vectolS = [1,-1]. The probability that the mostas complicated to work with as the original master equa-
first or second reaction happens in a small time inteftvé  tion.
given byp; = Qfi(n, Q)st, i = 1, 2. Wherefi(n, Q) is the rate The Fokker-Planck approximation is very exact when the
transition for each reaction or, equivalently, the probbi jumps in state space are infinitely small, but sizes of jumps
of reaction per unit time and unit volume. The mesoscopidn the state space of chemical reactions are fixed in size.
transition rate is approximated by its macroscopic coynatér A solution to this problem is fered by theQ expansion
fi(x) = lima_e fi(X = QX Q), wherex andX are respectively method [12], whereQ is the volume of the system. The
the average concentration and number of molecules of specienethod is known as Linear Noise Approximation (LNA).
X. So from Eq.(8),f(x) the governing law can be split into LNA is a Taylor expansion of CME in powers 6§/? around
two backward and forward rate equatiofis= og + a(%) the steady states of the macroscopic rate equation. Tloe rati
governing the rate of creation arfg = x governing the rate nale behind this approach is thatis the parameter in system
of annihilation. Therefore, the corresponding transitiates  that governs the size of fluctuations and therefore the dize o
are: jumps. In the size expansion, a new stochastic varigbie
defined from the relatiom; = Qx; + QY2&, wheren; is the
5 copy number of componeit x; is a deterministic function
=) (23a) of time. In LNA the kinetics of the system is described in
- 1+X2 the limit of an infinitely large, well stirred volume. By this
fa = X. (23b) assumption, the stochastic fluctuation in the state vetier
negligible, so the state can be approximated by macroscopic
average concentration = [xg,..., Xy] and eachﬂ-(n,Q) by
The Master equation for the problem can be written as:  its macroscopic rate law counterpdftx). The determinis-
tic rate equatiorx = Sf(x) governs the time evolution of the
5 macroscopic concentration vectowhereS is the stoichio-
- QZ(E—Sj _ 1)]?1_()(, Q)P(X,1). (24) m_etr_ic matrix and (x) = [f1(x), ..., frR(X)]. The probability
i distributionP(n, t) for n = (ny, ..., ny) = Qx is related to the
probability distributionI(¢,t) for & = (£1, ..., &n) through

f1=(0'E+a

dP(X, 1)
dt

E~Si is a step operator which remov8&s molecules from

componenX. P(n,t) = P(Q¢ + QY% 1) = TI(£, 1) (27)
For the probability density functioH(¢, t), the fluctuations
3. Analytical solution to CME [13] are characterized by the linear Fokker-Planck equatioifs: D

ferentiating Eq. (27) with respect to time at constant maliec
Taylor Expansion of Master Equation: When the step op- numbers gives:
eratorE~Si in the master Eq. (21) operates on a function like
gj(n) = ﬂ-(n,Q)P(n,t), the function is evaluated in a shifted

state fromn to n — S ;. Now if the displacement is small and oP(n.t) _ I, Y N \ %51—1(& t)

the function varies smoothly, the displaced function may be ot ot ot 0

approximated by a Taylor expansion around the stateor a N

general functiorg(n) such a Taylor expansion looks like: 8H(§ b _ Z 6i r;(g )
I

Taylor expansion of the transition ratégn) around the
(25)  macroscopic valué;(¢) gives:

o 1 02 ot — 0imoli ot — _OL24,,
S ~ 11— LYz g Y oni/ot = 0 implies thatd&i/at = —QY<dy; /ot.
E>ig(n) [1 Ei S”ani +5 iEk SijSkj o +...[g(n). 9



c o - fi(9) Cy= L 32
00 = fio+Q™%) = fi(9)+a? ) =g +0@7Y. X= A (32)
o 0%
I (28) For the switch the Jacobian andfidision matrix are:
Taylor expansion of the step operator around the steady
states gives the approximation: ,
A=)S U P S (33a)
- 2 4 6x* ox. (1+58)2
ESi~x1-0%2 ) s SiiSkj s+
2. ”65. 7 2SSz * 2 X
29) Zs Sifj(x) = (-1P(x) + (a5 + o)
Inserting Egs. (27), (28) and (29) into CME yields: = ) (33b)
. t) ol2 N Ogi AN 1) _ _
ot Lot os wherex, is the steady state of Eq.(8),
i=1
R
Q Q12 ) 2
Z( ZS” f(x)=0 = X =0g+a a )
j=1 1+ X%
SijSkj e )X therefore the variance of is:
2 Z Zk: ! 'ag.ag
_ “1/2 1(¢) )
(@ +e i g+ e . oo SX> )
[ (1+X2)2]
o 0.
Identifying terms of ordef2™ Define a new variable = —a(®’) to simplify variance
yields:
3H(§-‘ H_ oEdn) |
30
Z P og "2 Z 56.66 (30) c X (35)
X =< > .
1
in which, e
For smallx whenx is e.g. in the lower state, ~ o
R R
of; _ <X> = Qoe
A = ;Sija_xk’ Vik = ]Z; Sij Sk fj(x) - Cx = M-ax]  1-2a0e’

For the variance to be definegl > —1. Consequently, one

The matrixA is the Jacobian and is the difusion matrix can calculate the Fano factor,

evaluated in the statgt) as determined by tferential equa-

tion x = Sf(x).
Eqg. (30) is the Fokker-Plank equation for the probability Fo Cx _ 1 (36)
density functionlI(¢,t). Its stationary solution is known, a T <X> 1+¢°

Gaussian with zero average and the covari@gogthe fluctu-

ations around the average that is given by the Lyapunov equa-
tion: 4. Delayed Chemical Master Equation [15]

In a general form a system witR non-delayed reactions,
AC +CAT +V =0. (31) andD delayed reactions has the following time evolution of
its states:
The covariance& are large if the fluctuationg are large
and the eigenvalues of the Jacobrare small. Large fluc-

. . . R
tuation means that many random events occur per time unit  9p(n,t) _

R
n- n-v,t)— > f(n)p(n,t
and small eigenvalues & means that the forces that bring ot L fi(n = v)p(n —ve. ) ; r(Mp(n. g
the system back to steady state are weak. In our case with one D
variable, ZZ Ga(F)P(n — va. ;. t ~ 7a)
d=1
D

ZZ Ga(f)p(n. t; At = 7a) . (37)
=
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The system’s stata is a time dependent vector of length Delayed Reaction
equal to components’ total number and thle component,
denotgs the number of moleculesith species. The func- X
tions f; are the transition probability function of tHe non- /\/\ ......... /S \ "« .
. . time
delayed reactions with state change veetoir = 1,...,R). ta

The functionsgg are the transition probability functions of
the D delayed reactions with state change veaigr (d =
1,...,D). The stoichiometry matri$ here is the matrix with
columns ofy's anduv’s.
The joint probabilityp(n, t; A1, t - 74) can be defined: The direct method is based on sampling two random numbers,
the first one determines the next timet ), at which the next
a ~ ~ reaction takes place and the second one determines the prob-
p(n, t; A, t = 7q) = p(n, tfi, t — 7) p(Ai, t — 7q) able reaction j. That is, for a system in statat timet, the
= p(Ai, t = 7aln, )p(n, t) . (38)  probability that the next reaction event occursp(r, j|n, i) in
the time interval{(+ 7,t + 7 + 67) and is of typej is given by

FIG. 5 lllustration to modified Gillespie Algorithm of delegl reac-
tions

Inserting equality (38) into statement (37), yields:
P(x. jIn.t) = a(n)e” " Ofj(n, Q)/a(n)
\-—\,_—-/%/_,

ap(n,t) 5 - S F
- :;f,(n—vr)p(n—vr,t)—;fr(n)p(n»t) = Qfj(n, Qe (39)

r

o wherea(n) = Q 3%, fj(n, Q). The factorl is the probabil-

Ga(R)P(A. t — 7¢ln = va, HP(N — v, 1) ity density for the time + 7 of any next reaction given that the
system was in stateat timet. The factorl | is the probability

~ that the reaction is of typg

Ga(M)P(A, t = 7aln, p(n. 1) In our model there are two reactiori®,= 2, and the state
of the system is defined by one varibale,

the inner summation can be summarized into one function

+

MU %MU

1;
)

N
A

n

summed ovefi ashy: p(r. jIX. 1) = a(X)e 2 Qfj(X, Q)/a(X) = Qfj(X, Q)e ¥
wherea(X) = Q 32, (X, Q), which is the sum of propensity
ap(n,t) functions.

R R
= D = vop(n - v - 3 fmp(n.y
r=1 r=1

D D 2. Numerical solution to delayed CME
+ D Na(fi = vz P - va. 1) ~ > ha(f.Hp(n. ).
d=1 d=1 The Delay Stochastic Simulation Algorithm (DSSA) is dif-
And the associated Master Equation for the delayed proceggrent from its non-delay al_gorlthm counterpart SSA in the
in our model is: sense that the chosen reaction maybe one of the delayed reac-
tions. Consider a system with components reacting through
R+ D reactions among whicR reactions are non-delayed and
dP(X,t) -~ - D reactions are delayed. When the next time step is deter-
a [R(X = DPX =19 - L(X)PX 0] mined to bet* and the chosen reaction is delayed, so non-
+[h(X+ LP(X + 1,t) — hy(X, )P(X, 1)] . Markovian, the reaction will be completed as time advances
to t* + 7, but if the selected reaction is non-delayed one the
time of the next reactioti is compared with the time of pre-

C. Numerical Methods viously scheduled delayed reactions. If none of those are to
) ) occur beforet* the time advances tto and the number of
1. Numerical solution to the non-delayed CME molecules changes according to the chosen non-delayed reac

) , ) tion. If there is a delayed reaction scheduled to occur aesom
A simple and very useful way to estimate the properties of ;.o ¢ < t* then the selected time stépis ignored and time
master equation is to simulate realizations of the cornedpo advances tdy and the scheduled delayed reaction completed

ing Markov process using Monte Carlo (MC) methods, known i, state change according to the scheduled reaction.5Fig.
as the Stochastic Simulation Algorithm (SSA). The firstwell ig o schema of the algorithm [21].

established SSA was done by Gillespie [20], he suggested a
method to simulate trajectories of chemical reactions mod-
eled by a discrete Markov process in continuous time. Al-
though the algorithm is fully equivalent to the master equa-
tion, it should not be considered the numerical solutiort.to i
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