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Abstract—We consider transmission over a binary erasure
wiretap channel using the code construction method introduced
by Rathi et al. based on two edge type Low-Density Parity-Check
(LDPC) codes and the coset encoding scheme.

By generalizing the method of computing conditional entropy
for standard LDPC ensembles introduced by Ḿeasson, Monta-
nari, and Urbanke to two edge type LDPC ensembles, we show
how the equivocation for the wiretapper can be computed. We
find that relatively simple constructions give very good secrecy
performance and are close to the secrecy capacity.

I. I NTRODUCTION

Wyner introduced the notion of a wiretap channel in [1]
which is depicted in Figure 1. In general, the channel from
Alice to Bob and the channel from Alice to Eve can be
any two discrete memoryless channels. In this paper we
will restrict ourselves to the setting where both channels
are Binary Erasure Channels (BEC). We denote a BEC with
erasure probabilityǫ by BEC(ǫ). In a wiretap channel, Alice
communicates a messageS, which is chosen uniformly at
random from the message setS, to Bob through the main
channel which is a BEC(ǫm). Alice performs this task by
encodingS as ann bit vectorX and transmittingX across
BEC(ǫm). Bob receives a noisy version ofX denoted byY .
Eve observesX via the wiretapper’s channel BEC(ǫw) and
receives a noisy version ofX denoted byZ. We denote such
a wiretap channel by BEC-WT(ǫm, ǫw).
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S X Y

Z

BEC(ǫm)
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Fig. 1. Wiretap channel.

The encoding of a messageS by Alice should be such
that Bob is able to decodeS reliably andZ provides as little
information as possible to Eve aboutS.
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A code of rateRab with block lengthn for the wiretap
channel is given by a message setS of cardinality|S| = 2nRab

and a set of disjoint sub-codes{C(s) ⊂ Xn}s∈S . To encode
the messages ∈ S, Alice chooses one of the codewords in
C(s) uniformly at random and transmits it. Bob uses a decoder
φ : Yn → S to determine which message was sent.

A rate-equivocation pair(Rab, Re) is said to be achievable
if ∀ǫ > 0, there exists a sequence of codes of rateRab of
lengthn and decodersφn such that the following reliability
and secrecy criteria are satisfied:

Reliability: lim
n→∞

P (φn(Y ) 6= S) < ǫ, (1)

Secrecy:lim inf
n→∞

1

n
H(S|Z) > Re − ǫ. (2)

Note that we use the weak notion of secrecy as opposed to the
strong notion [2]. With a slight abuse of terminology, when
we say equivocation we mean the normalized equivocation
as defined in the LHS of (2). As shown in [1], the set of
achievable pairs(Rab, Re) for BEC-WT(ǫm, ǫw) is given by

Re ≤ Rab ≤ 1− ǫm, 0 ≤ Re ≤ ǫw − ǫm. (3)

The points in the achievable region whereRab = Re corre-
spond toperfect secrecyi.e. for these pointsI(Z;S)/n→ 0.
The highest achievable rateRab at which we can achieve
perfect secrecy is called thesecrecy capacity[1] and we denote
it by CS . For the BEC-WT(ǫw, ǫm), we haveCS = ǫw − ǫm.

In [3], [4] the authors have given code design methods
based on nested sparse graph codes and a coset encoding
scheme. It was shown in [3] that if the coarse code of the
nested code is capacity achieving over BEC(ǫw) and the fine
code has threshold greater thanǫm, then perfectly secure and
reliable communication is possible. In [5] we have given a
code construction based on coset encoding and nested two
edge type LDPC codes. This code construction was analyzed
using density evolution, and numerical methods were found to
optimize the thresholds for the coarse and the fine code.

Reliability, which corresponds to the probability of decod-
ing error for the intended receiver, can be easily measured
using density evolution recursion. However secrecy, which
is given by the equivocation of the message conditioned on



the wiretapper’s observation, can not be easily calculated.
Méasson, Montanari, and Urbanke have derived a method to
measure equivocation for a broad range of standard LDPC
ensembles for point-to-point transmission over the BEC [6].
In the following we denote this approach the MMU method1.
It was extended to non-binary LDPC codes for the BEC in [7].
By generalizing it to two edge type LDPC ensembles, we show
how the equivocation for the wiretapper can be computed. We
find that relatively simple constructions give very good secrecy
performance and are close to the secrecy capacity.

II. CODE CONSTRUCTION

We first describe the coset encoding and syndrome decoding
method. LetH be ann(1 − R) × n LDPC matrix. LetC be
the code whose parity-check matrix isH . Let H1 andH2 be
the sub-matrices ofH such that

H =

[

H1

H2

]

,

whereH1 is ann(1−R1)×n matrix. Clearly,R1 > R. Let C1
be the code with parity-check matrixH1. C is the coarse code
andC1 is the fine code in the nested code(C1, C). Also, C1 is
partitioned into2n(R1−R) disjoint subsets given by the cosets
of C. Alice uses thecoset encoding methodto communicate
her message to Bob which we now describe.
Coset Encoding Method:Assume that Alice wants to trans-
mit a message whose binary representation is given by an
n(R1 −R)-bit vectorS. To do this she transmitsX, which is
a randomly chosen solution of

[

H1

H2

]

X = [0 · · · 0 S]T .

Bob uses the followingsyndrome decodingapproach to
retrieve the message from Alice.
Syndrome Decoding: After observingY , Bob obtains an
estimateX̂ for X using the parity check equationsH1X = 0.
Then he computes an estimateŜ for S as Ŝ = H2X̂.

A natural candidate for coset encoding is a two edge type
LDPC code. A two edge type matrixH has the form

H =

[

H1

H2

]

.

The two types of edges are the edges connected to check nodes
in H1 and those connected to check nodes inH2. An example
of a two edge type LDPC code is shown in Figure 2.

We now define the degree distribution of a two edge type
LDPC ensemble. Letλ(j)l1l2

denote the fraction of typej (j = 1
or 2) edges connected to variable nodes withl1 outgoing type
one edges andl2 outgoing type two edges. The fractionλ(j)l1l2

is calculated with respect to the total number of typej edges.
Let Λl1l2 be the fraction of variable nodes withl1 outgoing
edges of type one andl2 outgoing edges of type two.Λl1l2

is the degree distribution from the node perspective, andλ
(j)
l1l2

is the degree distribution from the edge perspective. Similarly,

1We call it the MMU method in acknowledgment of the authors Méasson,
Montanari, and Urbanke.

Type one checks Type two checks

x
(l)
1 x

(l)
2

y
(l)
1

y
(l)
2

Fig. 2. Two edge type LDPC code.

let ρ(j)r andΓ(j)
r denote the degree distribution of typej edges

on the check node side from the edge and node perspective
respectively. Note that only one type of edges is connected to
a particular check node. An equivalent definition of the degree
distribution is given by the following polynomials:

Λ(x, y) =
∑

l1,l2

Λl1l2x
l1yl2 ,

λ(1)(x, y) =
∑

l1,l2

λ
(1)
l1l2

xl1−1yl2 ,

λ(2)(x, y) =
∑

l1,l2

λ
(1)
l1l2

xl1yl2−1,

Γ(j)(x) =
∑

r

Γ(j)
r xr, j = 1, 2,

ρ(j)(x) =
∑

r

ρ(j)r xr−1, j = 1, 2.

Like the standard LDPC ensemble of [8], the two edge type
LDPC ensemble with block lengthn and degree distribution
{Λ,Γ(1),Γ(2)} is the collection of all bipartite graphs sat-
isfying the degree distribution constraints, where we allow
multiple edges between two nodes.

Consider the two edge type LDPC ensemble{Λ,Γ(1),Γ(2)}.
If we consider the ensemble of the subgraph induced by one
particular type of edges then it is easy to see that the resulting
ensemble is the standard LDPC ensemble and we can easily
calculate its degree distribution. Let{Λ(j),Γ(j)} be the degree
distribution of the ensemble induced by typej edges,j = 1, 2.
ThenΛ(j), for j = 1, 2, is given by

Λ
(1)
l1

=
∑

l2

Λl1l2 , Λ
(2)
l2

=
∑

l1

Λl1l2 .

Assume that transmission takes place over BEC(ǫ) and letx(l)j

denote the probability that a message from a variable node to
a check node on an edge of typej in iteration l is erased.
Then the density evolution recursion is

x
(l+1)
1 = ǫλ(1)(y

(l)
1 , y

(l)
2 ) (4)

x
(l+1)
2 = ǫλ(2)(y

(l)
1 , y

(l)
2 ), (5)

wherey(l)j = 1− ρ(j)(1− x
(l)
j ) for j = 1, 2.

In the next section we show how to compute the equivoca-
tion of Eve when using a given two edge type LDPC ensemble.

III. C OMPUTATION OF EQUIVOCATION

In order to compute the average equivocation of Eve over
the erasure pattern and ensemble of codes, we generalize



the MMU method of [6] to two edge type LDPC codes. In
[6], the equivocation of standard LDPC ensemble for point-
to-point communication over a BEC(ǫ) was computed. More
precisely, letX̃ be a randomly chosen codeword of a randomly
chosen codeG from the standard LDPC ensemble. LetX̃ be
transmitted over BEC(ǫ) and letZ̃ be the channel output. Then
the MMU method computes

lim
n→∞

E

(

HG(X̃ |Z̃)
)

n
,

whereHG(X̃ |Z̃) is the conditional entropy of the transmitted
codeword given the channel observation for the codeG and we
perform the averaging over the ensemble. The MMU method
is described below.

1) Consider decoding using the peeling decoder [9, pp. 115].
The peeling decoder gets stuck in the largest stopping set
contained in the set of erased variable nodes. The sub-
graph induced by this stopping set is again a code whose
codewords are compatible with the erasure set. We call
this subgraph theresidual graph. Thus the peeling decoder
associates to every graph and erasure set a residual graph.
If the erasure probability is above the BP threshold, then
almost surely the residual graph has a degree distribution
close to theaverage residual degree distribution[10]. The
average residual degree distribution can be computed by
the asymptotic analysis of the peeling decoder.

2) Conditioned on the residual degree distribution, the in-
duced probability distribution is uniform over all the graphs
with the given degree distribution. This implies that almost
surely a residual graph is an element of the standard LDPC
ensemble with degree distribution equal to the average
residual degree distribution.

3) One can easily compute the design rate of the average
residual degree distribution. However, the design rate is
only a lower bound on the rate. A criterion was derived
in [6], which, when satisfied, guarantees that the actual
rate is equal to the design rate. If the actual rate is
equal to the design rate, then the equivocation is given
by the design rate of the standard LDPC ensemble with
degree distribution equal to the average residual degree
distribution.

To use the MMU method to compute the equivocation
H(S|Z), we use the chain rule to writeH(S,X|Z) in two
different ways and obtain

H(X|Z) + H(S|X,Z) = H(S|Z) + H(X |S,Z).

By noting thatH(S|X,Z) = 0 we obtain

H(S|Z)

n
=
H(X |Z)

n
−
H(X|S,Z)

n
. (6)

Note thatX is a randomly chosen solution ofH1X = 0.
These solutions are codewords of codes from the standard
LDPC ensemble{Λ(1),Γ(1)}, and Z is the channel output
from BEC(ǫw). Thus we can computelimn→∞H(X|Z)/n
by using [6, Thm. 10]. For more details we refer to [11].

In the following subsection we generalize the MMU method
to two edge type LDPC ensembles in order to compute
limn→∞H(X |S,Z)/n.

A. Computing NormalizedH(X |S,Z)

The proof of Step 1 and 2 of the MMU method for two
edge type LDPC ensembles is the same as for standard LDPC
ensembles. We state the following lemma to compute the
average residual degree distribution which we will need later
and refer to [11] for more details.

Lemma III.1. Consider transmission over BEC(ǫw) using the
two type LDPC ensemble{Λ,Γ(1),Γ(2)} which is decoded by
the peeling decoder. Let(x1, x2) be the fixed points of(4)
and (5) when initialized with channel erasure probabilityǫw.
Let yj = 1− ρ(j)(1− xj), j = 1, 2, whereρ(j) is the degree
distribution of check nodes of typej from the edge perspective.
Then the average residual degree distribution{Ω,Φ(1),Φ(2)}
is given by

Ω(z1, z2) = ǫΛ(z1y1, z2y2),

Φ(j)(z) = Γ(j)(1− xj + xjz)− xjzΓ
′(j)(1 − xj)

− Γ(j)(1 − xj), j = 1, 2,

where Γ′(j)(x) is the derivative ofΓ(j)(x). Note that the
degree distributions are normalized with respect to the number
of variable (check) nodes in the original graph.

Proof: The proof follows from the analysis for the stan-
dard LDPC case [12].

The key technical task when generalizing Step 3 of the
MMU method to two edge type LDPC ensembles is to derive
a criterion, which, when satisfied, guarantees that almost every
code in the residual ensemble has its rate equal to the design
rate. The rate is equal to the normalized logarithm of the
total number of codewords. However, as the average of the
logarithm of the total number of codewords is hard to compute,
we instead compute the normalized logarithm of the average
of the total number of codewords. By Jensen’s inequality this
is an upper bound on the average rate. If this upper bound is
equal to the design rate, then by similar arguments as in [6,
Lem. 7] we can show that almost every code in the ensemble
has its rate equal to the design rate. To compute this upper
bound we derive the average of the total number of codewords
of a two edge type LDPC ensemble in the following lemma.

Lemma III.2. Let N be the total number of codewords of a
randomly chosen code from the two edge type LDPC ensemble
(Λ,Γ(1),Γ(2)). Then the average ofN over the ensemble is
given by

E(N) = E





nΛ′

1(1,1),nΛ
′

2(1,1)
∑

E1=0,E2=0

N(E1, E2)





=

nΛ′

1(1,1),nΛ
′

2(1,1)
∑

E1=0,E2=0

coef







∏

l1,l2

(1 + ul11 u
l2
2 )

nΛl1,l2 , uE1
1 uE2

2







×



coef

{

∏

r1,r2
qr1(v1)

nΛ′

1(1,1)

Γ′(1)(1)
Γ(1)
r1 qr2(v2)

nΛ′

2(1,1)

Γ′(2)(1)
Γ(2)
r2 , vE1

1 vE2
2

}

(

nΛ′

1(1,1)
E1

)(

nΛ′

2(1,1)
E2

)
,

whereΛ′
j(1, 1) =

∑

l1,l2
ljΛl1,l2 , Γ′(j)(1) =

∑

rj
rjΓ

(j)
rj , j ∈

{1, 2}. The polynomialqr(v) is defined as

qr(v) =
(1 + v)r + (1− v)r

2

andcoef
{
∑

i FiD
i, Dj

}

is the coefficient ofDj in
∑

i FiD
i.

Proof: The proof can be found in [11].
Before stating our next result we need the following def-

inition. For a two edge type LDPC ensemble{Λ,Γ(1),Γ(2)}
with design rateRdes we define the functionθ(e1, e2) for
(e1, e2) ∈ E as

θ(e1, e2) ,
∑

l1,l2

Λl1,l2 log2(1 + ul21 u
l2
2 )

− Λ′
1(1, 1)e1 log2 u1 − Λ′

2(1, 1)e2 log2 u2

+
Λ′
1(1, 1)

Γ′(1)(1)

∑

r1

Γ(1)
r1

log2 qr1(v1)− Λ′
1(1, 1)e1 log2 v1

+
Λ′
2(1, 1)

Γ′(2)(1)

∑

r2

Γ(2)
r2

log2 qr2(v2)− Λ′
2(1, 1)e2 log2 v2

− Λ′
1(1, 1)h(e1)− Λ′

2(1, 1)h(e2)−Rdes, (7)

whereu1, u2, v1, andv2 are positive solutions to the following
equations

v1
Γ(1)′(1)

∑

r1

r1Γ
(1)
r1

(1 + v1)
r1−1 − (1− v1)

r1−1

(1 + v1)r1 + (1− v1)r1
= e1, (8)

v2
Γ(2)′(1)

∑

r2

r2Γ
(2)
r2

(1 + v2)
r2−1 − (1− v2)

r2−1

(1 + v2)r2 + (1− v2)r2
= e2, (9)

1

Λ′
1(1, 1)

∑

l1,l2

Λl1,l2 l1
ul11 u

l2
2

1 + ul11 u
l2
2

= e1, (10)

1

Λ′
2(1, 1)

∑

l1,l2

Λl1,l2 l2
ul11 u

l2
2

1 + ul11 u
l2
2

= e2, (11)

andh(x) is the binary entropy function. The setE is the set
of (e1, e2) such that

coef







∏

l1,l2

(1 + ul11 u
l2
2 )

nΛl1,l2 , u
e1nΛ

′

1(1,1)
1 u

e2nΛ
′

2(1,1)
2







6= 0.

(12)

In the following theorem, we present a criterion for two edge
type LDPC ensembles, which, when satisfied, guarantees that
the actual rate is equal to the design rate.

Theorem III.3. Consider the two edge type LDPC ensemble
(Λ,Γ(1),Γ(2)) with design rateRdes. Let N be the total
number of codewords of a randomly chosen codeG from this
ensemble and letRG be the actual rate of the codeG. Then

lim
n→∞

log2(E[N ])

n
= sup

(e1,e2)∈E

θ(e1, e2) +Rdes,

where θ(e1, e2) and E are defined in (7) and (12). Also, if
sup(e1,e2)∈E θ(e1, e2) = 0, then for anyδ > 0

lim
n→∞

P (RG ≥ Rdes+ δ) = 0.

Proof: By Lemma III.2 and since the number of different
E1, E2 grows only linearly withn, we have

lim
n→∞

log2(E[N ])

n
=

sup
(e1,e2)∈E

lim
n→∞

log2(E[N(e1nΛ
′
1(1, 1), e2nΛ

′
2(1, 1))])

n
,

where e1 = E1/(nΛ
′
1(1, 1)), e2 = E2/(nΛ

′
2(1, 1)). Using

Stirling’s approximation for the binomial coefficients and[9,
Appendix D] for the coefficient growths in Lemma III.2 we
know that

lim
n→∞

log2(E[N(e1nΛ
′
1(1, 1), e2nΛ

′
2(1, 1))])

n
=

inf
u1,u2,v1,v2>0

ψ(e1, e2, u1, u2, v1, v2)

whereψ(e1, e2, u1, u2, v1, v2) is given by
∑

l1,l2

Λl1,l2 log2(1 + ul21 u
l2
2 )− Λ′

1(1, 1)e1 log2 u1

−Λ′
2(1, 1)e2 log2 u2 +

Λ′
1(1, 1)

Γ′(1)(1)

∑

r1

Γ(1)
r1

log2 qr1(v1)

−Λ′
1(1, 1)e1 log2 v1 +

Λ′
2(1, 1)

Γ′(2)(1)

∑

r2

Γ(2)
r2

log2 qr2(v2)

−Λ′
2(1, 1)e2 log2 v2 − Λ′

1(1, 1)h(e1)− Λ′
2(1, 1)h(e2).

Further, the infimum ofψ with respect tou1, u2, v1, and v2
is given by solving the following saddle point equations

∂ψ

∂u1
=

∂ψ

∂u2
=
∂ψ

∂v1
=
∂ψ

∂v2
= 0,

which are equivalent to (8) - (11). The second claim of the
theorem follows from [6, Lem. 7].

In the following theorem we state how we can compute the
quantityH(X|S,Z) appearing in (6).

Theorem III.4. Consider transmission over BEC-WT(ǫm, ǫw)
using a random codeG from the two edge type LDPC
ensemble{Λ,Γ(1),Γ(2)} and the coset encoding method.

Also consider point-to-point communication over a BEC(ǫw)
using the two edge type LDPC ensemble{Λ,Γ(1),Γ(2)}. As-
sume that the erasure probabilityǫw is above the BP threshold
of the ensemble. Let{Ω,Φ(1),Φ(2)} be the residual ensemble
from the peeling decoder and letRr

des be its design rate. If
{Ω,Φ(1),Φ(2)} satisfies the condition of Theorem III.3, i.e. if
the design rate is equal to the rate then

lim
n→∞

E(HG(X |S,Z))

n
= ǫwΛ(y1, y2)R

r
des, (13)

wherex1, x2, y1, and y2 are the fixed points of the density
evolution equations(4) and (5) obtained when initializing
them withx(1)1 = x

(2)
2 = ǫw.



Proof: It is easy to show that the conditional entropy
in the point-to-point set-up is identical toH(X |S,Z). The
conditional entropy in the point-to-point case is equal to the
RHS of (13). This follows from the same arguments as in [6,
Thm. 10]. The quantityǫwΛ(y1, y2) on the RHS of (13) is the
ratio of the number of variable nodes in the residual ensemble
to that in the initial ensemble.

This gives us the following method to calculate the equivo-
cation of Eve when using two edge type LDPC ensembles for
the BEC-WT(ǫm, ǫw) based on the coset encoding method.

1) If the threshold of the two edge type LDPC ensemble is
lower thanǫw, calculate the residual degree distribution
for the two edge type LDPC ensemble for transmission
over the BEC(ǫw). Check that the rate of this residual
ensemble is equal to the design rate using Theorem III.3
and calculateH(X|S,Z) using Theorem III.4. If the
threshold is higher thanǫw, H(X|S,Z) is trivially zero.

2) If the threshold of the standard LDPC ensemble induced
by type one edges is higher thanǫw, calculate the resid-
ual degree distribution of this ensemble for transmission
over the BEC(ǫw). Check that its rate is equal to the
design rate using [6, Lemma 7] and calculateH(X|Z)
using [6, Theorem 10]. If the threshold is higher than
ǫw, H(X |Z) is trivially zero.

3) Finally calculateH(S|Z) using (6).

IV. EXAMPLE

Consider the two edge type ensemble

Λ(x, y) =0.5572098x2y3 + 0.1651436x3y3+

0.07567923x4y3 + 0.0571348x5y3+

0.043603x7y3 + 0.02679802x8y3+

0.013885518x13y3 + 0.0294308x14y3+

0.02225301x31y3 + 0.00886105x100y3,

Γ(1)(x) = 0.25x9 + 0.75x10,

Γ(2)(x) = x12

for transmission over the BEC-WT(0.5, 0.751164). The graph
induced by type one edges is optimized for the BEC(0.5) using
methods from [9], and the graph induced by type two edges
is (3, 12) regular. The rate from Alice to Bob isRab = 0.25.

We calculate the residual ensemble{Ω(1),Φ(1)} induced
by type one edges and the residual two edge type ensemble
{Ω,Φ(1),Φ(2)} when transmitting over BEC(ǫw). We check
using [6, Lemma 7] that the rate is equal to the design rate
for {Ω(1),Φ(1)}.

In Figure 3 we plotθ(e1, e2) for (Ω,Φ(1),Φ(2)). Since the
maximum ofθ(e1, e2) over E is zero, we obtain by Theorem
III.3 that the rate is equal to the design rate. In this case wecan
calculate the equivocation of Eve and find it to be0.24999999,
which is very close to the rate from Alice to Bob. Thus this en-
semble achieves the point(Rab, Re) = (0.25, 0.24999999) in
the rate equivocation region. The secrecy capacity is0.251164,
so this code has rate close to the secrecy capacity, and it is
very close to achieving perfect secrecy.
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Fig. 3. Plot ofθ(e1, e2) for the residual ensemble(Ω,Φ(1),Φ(2)).

This example demonstrates that there are simple ensembles
with very good secrecy performance.

V. CONCLUSIONS

We generalize the method of [6] to two edge type LDPC
codes in order to measure the security performance when using
two edge type LDPC codes for the binary erasure wiretap
channel. We find that relatively simple ensembles have very
good secrecy performance.
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