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Abstract—We consider transmission over a binary erasure A code of rateR,; with block lengthn for the wiretap
wiretap channel using the code construction method introdued  channel is given by a message Sedf cardinality|S| = 2nftat
by Rathi et al. based on two edge type Low-Density Parity-Chek and a set of disjoint sub-codds§(s) C X"},cs. To encode

(LDPC) codes and the coset encoding scheme. th S Al h fth d ds i
By generalizing the method of computing conditional entroyy € message € o, Alicé chooses one Of the codewordas In

for standard LDPC ensembles introduced by Measson, Monta- C(s) uniformly at random and transmits it. Bob uses a decoder
nari, and Urbanke to two edge type LDPC ensembles, we show ¢ : Y™ — S to determine which message was sent.

how the equivocation for the wiretapper can be computed. We A rate-equivocation paiR., R.) is said to be achievable
find that relatively simple constructions give very good seecy if v, - (. there exists a sequence of codes of r&lg of
performance and are close to the secrecy capacity. lengthn and decoderg,, such that the following reliability

I. INTRODUCTION and secrecy criteria are satisfied:
Wyner introduced the notion of a wiretap channel in [1] Reliability: lim — P(¢n(Y) # 5) <, 1)
which is depicted in Figure 1. In general, the channel from 1
Alice to Bob and the channel from Alice to Eve can be SeCfeCyhnIgggng(ﬁIZ) > Re —e )

any two_discrete memoryless ch.annels. In this paper Wote that we use the weak notion of secrecy as opposed to the
will r(_astrlct ourselves to the setting where both channgésfrong notion [2]. With a slight abuse of terminology, when
are Binary Erasure Channels (BEC). We denote a BEC Wiff, say equivocation we mean the normalized equivocation
erasure probability by BEC(). In a wiretap channel, Alice as defined in the LHS of (2). As shown in [1], the set of

communicates a messagg which is chosen uniformly at achievable pair§Rus, R.) for BEC-WT(e,, ¢,,) is given by

random from the message st to Bob through the main
channel which is a BEG(,). Alice performs this task by Re<Rup<1—€m, 0<Re<ey—énm. 3)
encodingS as ann bit vector X and transmittingX across
BEC(e,,). Bob receives a noisy version df denoted byY'.
Eve observesX via the wiretapper’'s channel BE&() and
receives a noisy version of denoted byZ. We denote such

The points in the achievable region whekg, = R, corre-
spond toperfect secrecy.e. for these pointd(Z; S)/n — 0.
The highest achievable ratB,, at which we can achieve
perfect secrecy is called tlsecrecy capacitfl] and we denote

a wiretap channel by BEC-Wi,, €,). it by Cs. For the BEC-WTé,, €,,), We haveCs = €, — €.
In [3], [4] the authors have given code design methods
s Alice X BEC(eyn) Y Bob based on nested sparse graph codes and a coset encoding

scheme. It was shown in [3] that if the coarse code of the
nested code is capacity achieving over BEg(and the fine
BEC(e,) Z Eve code has threshold greater thap, then perfectly secure and
reliable communication is possible. In [5] we have given a
code construction based on coset encoding and nested two
edge type LDPC codes. This code construction was analyzed
using density evolution, and numerical methods were foond t
optimize the thresholds for the coarse and the fine code.
Reliability, which corresponds to the probability of deeod
ing error for the intended receiver, can be easily measured
This work was funded in part by the Swedish Research CoundINSF using density evolution recursion. However secrecy, which
grant CCF-0830666. is given by the equivocation of the message conditioned on

Fig. 1. Wiretap channel.

The encoding of a message by Alice should be such
that Bob is able to decodg reliably andZ provides as little
information as possible to Eve abao$it



the wiretapper’'s observation, can not be easily calculated
Méasson, Montanari, and Urbanke have derived a method ta | v ) <
measure equivocation for a broad range of standard LDP% ‘ (’)‘ b
ensembles for point-to-point transmission over the BEC [6]1 " VS
In the following we denote this approach the MMU method ! ﬂ
It was extended to non-binary LDPC codes for the BEC in [7].
By generalizing it to two edge type LDPC ensembles, we show
how the equivocation for the wiretapper can be computed. We Fig. 2. Two edge type LDPC code.
find that relatively simple constructions give very goodrseg
performance and are close to the secrecy capacity.

Type one checks Type two checks

let o) andT'?) denote the degree distribution of typedges
Il. CODE CONSTRUCTION on the check node side from the edge and node perspective
We first describe the coset encoding and syndrome decodiegpectively. Note that only one type of edges is connected t
method. LetH be ann(1 — R) x n LDPC matrix. LetC be a particular check node. An equivalent definition of the degr
the code whose parity-check matrix 6. Let H; and H, be distribution is given by the following polynomials:

the sub-matrices off such that ZAM syt
= [Hl] 1Tz
Hs |’ Z )\l(ll) I1— 1 lg
whereH; is ann(1— R;) xn matrix. Clearly,R; > R. Let(, l,l2 o
be the code with parity-check matrix;. C is the coarse code Z A L yl2=1
ll 2T

and(; is the fine code in the nested co@®,C). Also, C; is

Il
partitioned into2"('1— 1) disjoint subsets given by the cosets .

of C. Alice uses thecoset encoding methad communicate F(J) ZF Pat =12,

her message to Bob which we now describe.

Coset Encoding Method: Assume that Alice wants to trans- pV) (z) = Zﬂsj)iﬂ , j=12.

mit a message whose binary representation is given by an T

n(R; — R)-bit vectorS. To do this she transmit&, which is Like the standard LDPC ensemble of [8], the two edge type

a randomly chosen solution of LDPC ensemble with block length and degree distribution
I {A, T, T®1} is the collection of all bipartite graphs sat-
[Hj X=10---09". isfying the degree distribution constraints, where we vallo

multiple edges between two nodes.

Bob uses the followingsyndrome decodingpproach to  Consider the two edge type LDPC ensemfple (1) (2},
retrieve the message from Alice. If we consider the ensemble of the subgraph induced by one
Syndrome Decoding: After observingY, Bob obtains an particular type of edges then it is easy to see that the iegult
estimateX for X using the parity check equatiod; X = 0. ensemble is the standard LDPC ensemble and we can easily

Then he computes an estimaiefor S asS = H,X. calculate its degree distribution. LeA() T} be the degree
A natural candidate for coset encoding is a two edge typkstribution of the ensemble induced by typedges; = 1, 2.
LDPC code. A two edge type matrid has the form ThenAW), for j = 1,2, is given by
=[] TS DINES v
2

The two types of edges are the edges connected to check Nogles me that transmission takes place over BEGGd Ietx(l
in H; and those connected to check nodesfin An example genote the probability that a message from a variable node to

of a two edge type LDPC code is shown in Figure 2. a check node on an edge of typein iteration/ is erased.
We now define the degree distribution of a two edge typghen the density evolution recursion is

LDPC ensemble. Letl ;, denote the fraction of typg(j = 1 (@+1) YRGING
or 2) edges connected to variable nodes vilittmutgom%ggoe zi =€y s ) (4)

one edges anth outgoing type two edges. The fracti Ig“) =A@ (y (l),yél)), (5)
is calculated with respect to the total number of typedges o _ o '
Let A;,;, be the fraction of variable nodes with outgoing Wherey =1-pP(1 - x;’) for j=1,2.
edges of type one ant§ outgoing edges of type twa\;,;, In the next sectlon we show how to compute the equivoca-
is the degree distribution from the node perspective, /Qﬁ)d tion of Eve when using a given two edge type LDPC ensemble.
is the degree distribution from the edge perspective. thyll [1I. COMPUTATION OF EQUIVOCATION

1We call it the MMU method in acknowledgment of the authorsalskéon, In order to compute the average eqUivocation of Eve over

Montanari, and Urbanke. the erasure pattern and ensemble of codes, we generalize



the MMU method of [6] to two edge type LDPC codes. In In the following subsection we generalize the MMU method
[6], the equivocation of standard LDPC ensemble for pointe two edge type LDPC ensembles in order to compute
to-point communication over a BEg(was computed. More lim,,_, . H(X|S, Z)/n.

precisely, letX be a randomly chosen codeword of a randomly

chosen codé&: from the standard LDPC ensemble. L&tbe A. Computing Normalized! (X|S, Z)

transmitted over BEG] and letZ be the channel output. Then The proof of Step 1 and 2 of the MMU method for two
the MMU method computes edge type LDPC ensembles is the same as for standard LDPC
E(H (X|Z)) ensembles. We state the following lemma to compute the
lim GAAI& average residual degree distribution which we will needrlat
n—o00 n ’ and refer to [11] for more details.

whereH¢(X|Z) is the conditional entropy of the transmitted emma 111.1. Consider transmission over BEG() using the
codeword given the channel observation for the aGdend we o type LDPC ensemblgh, T(D T2} which is decoded by
perform the averaging over the ensemble. The MMU meth@ge peeling decoder. Leftr1, z2) be the fixed points of4)
is described below. and (5) when initialized with channel erasure probability;.
1) Consider decoding using the peeling decoder [9, pp. 11Bpt y; = 1 — p() (1 — x;), j = 1,2, wherep) is the degree
The peeling decoder gets stuck in the largest stopping sistribution of check nodes of tygdrom the edge perspective.
contained in the set of erased variable nodes. The suthen the average residual degree distributipi, (1), (2}
graph induced by this stopping set is again a code whasegiven by
codewords are compatible with the erasure set. We call
this subgraph theesidual graph Thus the peeling decoder Q(z1, 22) = eA(z1y1, 2212),
associates to every graph and erasure set a residual graph. &) (2) = T (1 — z; 4+ z;2) — ;2" (1 — z5)
If the erasure probability is above the BP threshold, then ST —), j=1,2
almost surely the residual graph has a degree distribution 1 T
close to theaverage residual degree distributigh0]. The where ') (z) is the derivative ofl ) (z). Note that the
average residual degree distribution can be computed ¢¥gree distributions are normalized with respect to the pem

the asymptotic analysis of the peeling decoder. of variable (check) nodes in the original graph.

2) Conditioned on the residual degree distribution, the in- _
duced probability distribution is uniform over all the grep Proof: The proof follows from the analysis for the stan-
with the given degree distribution. This implies that almoglard LDPC case [12]. u

surely a residual graph is an element of the standard LDPCI e key technical task when generalizing Step 3 of the
ensemble with degree distribution equal to the averalyMU method to two edge type LDPC ensembles is to derive
residual degree distribution. a criterion, which, when satisfied, guarantees that almastye

3) One can easily compute the design rate of the averaﬁj?éje in the resiplual ensemble has its rgte equal t[O the design
residual degree distribution. However, the design rate @t€. The rate is equal to the normalized logarithm of the
only a lower bound on the rate. A criterion was derivefPt@l number of codewords. However, as the average of the
in [6], which, when satisfied, guarantees that the actg@arithm of the total number of codewords is hard to compute
rate is equal to the design rate. If the actual rate Y€ instead compute the normalized logarithm of the average
equal to the design rate, then the equivocation is giv@rfn the total number of codewords. By Jenser_fs inequality thl_
by the design rate of the standard LDPC ensemble withan upper bound on the average rate. If this upper bound is

degree distribution equal to the average residual deg@@@l to the design rate, then by similar arguments as in [6,
distribution. Lem. 7] we can show that almost every code in the ensemble

as its rate equal to the design rate. To compute this upper
ound we derive the average of the total number of codewords
of a two edge type LDPC ensemble in the following lemma.

To use the MMU method to compute the equivocatioE
H(S|Z), we use the chain rule to writé/ (S, X|Z) in two
different ways and obtain

Lemma Ill.2. Let N be the total number of codewords of a

H(X|zZ) + H(S|X,Z) = H(S|Z) + H(X]|S, Z). randomly chosen code from the two edge type LDPC ensemble
1 2 i
By noting thatH(S|X, Z) — 0 we obtain (/_\,F( ;,F( )). Then the average aV over the ensemble is
given by

H(S|Z) _H(X|Z) HX|S.Z) ©)
n n n ’ (m\;u,l),n/\;u,l)

Note thatX is a randomly chosen solution df; X = 0. E(N)=E
These solutions are codewords of codes from the standard E1=0,E2=0
LDPC ensemble{A™") T}, and Z is the channel output A} (1,1),nA5(1,1)
from BEC,). Thus we can computéim, .. H(X|Z)/n = > coefq T (1 +uftul) b uf uf p x
by using [6, Thm. 10]. For more details we refer to [11]. E1=0,E2=0 1,1z

N(Eq, EQ))



71/\’1(1,1) (1) nA2(1 1) (2)
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£
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where A (1,1) = 3, ) LAy, 1, IO (1) = X, mTW), j e
{1,2}. The polynomlabT( ) is defined as
1+v)"+(1—-2v)"
oy = A £ 0=0)

andcoef{>", F;D’, D’} is the coefficient oD’ in 3, F; D"

Proof: The proof can be found in [11].

Before stating our next result we need the foIIowmg def-

inition. For a two edge type LDPC ensembla, ') T(2)}
with design rateRqes We define the functiorf(ey,es) for
(e1,e2) € £ as

) £ Z Aty i, logy (1 + ul12ul22)
l1,l2

— Aj(1,1)e; logy uq

A1(1,1)

'(1)( )
2(L, 1) F )1 AL(1,1)es 1

/(2)(1) Z 082 Gr, UQ) 2(17 )62 08 V2

= A(L,1)h ( 1)

9(61,62

— A5(1,1)ezlogs usg

Z (1)1og2qu(v1) A1(1,1)e; logy vy

- Alz(la 1) ( 2) - Rdes (7)

whereus, us, v1, andwv, are positive solutions to the following

equations
WZ R ey
r<2 Z et Hffvj)r;ﬁ:g:jl—e% ©
A’l(i, 5 %Ah,bll - ullulljéulz e, (10)
m%&mlhb% = eo, (11)

andh(x) is the binary entropy function. The sétis the set
of (e1, e2) such that

A(1,1 AS(1,1
coef I_I(I—i-ul1 Ly g, 01 1 )uizn 2(11) # 0.
l1,l2

(12)

In the following theorem, we present a criterion for two edg

type LDPC ensembles, which, when satisfied, guarantees
the actual rate is equal to the design rate.

where 6(e1,e2) and £ are defined in (7) and (12). Also, if
SUD(¢, eq)ee (€1, €2) = 0, then for anys > 0
lim P (Rg > Rges+9) = 0.

n—oo
Proof: By Lemma 111.2 and since the number of different
E1, E5 grows only linearly withn, we have

1o og(BIN)

log, (E[N (e1nA)(1,1), eanAbL(1,1))])

)

sup lim
(e1,e2)€€ n—00
wheree; = E;/(nAj(1,1)), e = E5/(nA4(1,1)). Using
Stirling’s approximation for the binomial coefficients aff)

Appendix D] for the coefficient growths in Lemma 111.2 we
know that

n

log, (E[N (exnAf (1,
n
w(ela €2, U1, U2,V1, UQ)

1), eanA5(1,1))])

lim =
n— o0

inf
ul,uU2,v1,v2 >0

where (e, ea, u1, us, v1,v2) is given by

Z Ay, Jogy (1 + ulzul?) — A4 (1,1)e; logy uy

l1,l2

1)
_AIQ(L 1)82 1Og2 U2 + I (1) 1) ZF 1Og2 qrq 1)1)

1
1)

~A(1 )exTog o + T 3T ok (02
—A5(1,1)eglogy va — A (1, 1)h(er) — A5(1,1)h(e2).

Further, the infimum ofy with respect tou;, us, v1, and v,
is given by solving the following saddle point equations

O _W _%_o_

duy  Buy  dvy vy

8u1 a 8u2 a
which are equivalent to (8) - (11). The second claim of the
theorem follows from [6, Lem. 7]. [ ]
In the following theorem we state how we can compute the

quantity H(X|S, Z) appearing in (6).

Theorem 111.4. Consider transmission over BEC-WJ; €,,)
using a random codez from the two edge type LDPC
ensemblg{A, T T} and the coset encoding method.
Also consider point-to-point communication over a BEG(
using the two edge type LDPC ensemple '), T(?)}, As-
sume that the erasure probabilityj is above the BP threshold
f the ensemble. Lgt, M), (2} be the residual ensemble
Bh the peeling decoder and I€t. be its design rate. If
{Q, M), )} satisfies the condition of Theorem I11.3, i.e. if

Theorem I11.3. Consider the two edge type LDPC ensemblfie design rate is equal to the rate then

(A, T T@) with design rate Rges Let N be the total
number of codewords of a randomly chosen c6dffom this
ensemble and leRq be the actual rate of the cod&. Then
log, (E[N]) _

n

lim

n—r oo

sup 6(e1,e2) + Raes
(e1,e2)€E

 E(Ho(X|S,2)

n

= ewA(yh y2)R(Ties (13)

n—00

where x1, z2,y1, and y» are the fixed points of the density
evolution equationg4) and (5) obtained when initializing
them withz{" = 2

=Ty = €y



Proof: It is easy to show that the conditional entropy
in the point-to-point set-up is identical t&(X|S, Z). The
conditional entropy in the point-to-point case is equalte t 0_00'
RHS of (13). This follows from the same arguments as in [6,
Thm. 10]. The quantity,,A(y1,y2) on the RHS of (13) is the
ratio of the number of variable nodes in the residual ensembl
to that in the initial ensemble. .,

This gives us the following method to calculate the equivo- |

cation of Eve when using two edge type LDPC ensembles foro.o
the BEC-WTE¢,,, €,,) based on the coset encoding method.

1) If the threshold of the two edge type LDPC ensemble is
lower thane,,, calculate the residual degree distribution 1.0
for the two edge type LDPC ensemble for transmission
over the BEC{,,). Check that the rate of this residual
ensemble is equal to the design rate using Theorem 111.3
and calculateH (X|S, Z) using Theorem lIL.4. If the This example demonstrates that there are simple ensembles

threshold is higher thae,, H(X|S, Z) is trivially zero. | d f
2) If the threshold of the standard LDPC ensemble inducg\é Very good secrecy pertormance.

by type one edges is higher thag, calculate the resid- V. CONCLUSIONS

ual degree distribution of this ensemble for transmission e generalize the method of [6] to two edge type LDPC
over the BEC(.). Check that its rate is equal to thecodes in order to measure the security performance wheg usin
design rate using [6, Lemma 7] and calculd@¢X|Z) two edge type LDPC codes for the binary erasure wiretap
using [6, Theorem 10]. If the threshold is higher thaghannel. We find that relatively simple ensembles have very

ew, H(X|Z) is trivially zero. good secrecy performance.
3) Finally calculateH (S|Z) using (6).

Rt 7
{7
054

Fig. 3. Plot off(e1,ez) for the residual ensemblg2, (1), &(2)),
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