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Abstract—A scenario of distributed sensing for networked
control systems is considered and a new approach to distributed
sensing and transmission is presented. The state process of a
scalar first order linear time invariant dynamical system is sensed
by a network of wireless sensors, which then instantaneously
transmit their measurements to a remotely situated control unit
over parallel Gaussian channels. The control unit aims to stabilize
the system in mean square sense. The proposed non-linear delay-
free sensing and transmission strategy is compared with the well-
known amplify-and-forward strategy, using the LQG control cost
as a figure of merit. It is demonstrated that the proposed non-
linear scheme outperforms the best linear scheme even when
there are only two sensors in the network. The proposed sensing
and transmission scheme can be implemented with a reasonable
complexity and it is shown to be robust to the uncertainties in the
knowledge of the sensors about the statistics of the measurement
noise and the channel noise.
Index Terms—Networked control systems, Wireless sensor

networks, Source–channel coding, Distributed sensing, Linear
Quadratic Gaussian Control, State estimation, Mean square
stabilization.

I. INTRODUCTION
We consider a scenario where a linear plant is monitored

by a wireless sensor network, for the purpose of closed-loop
control of the plant’s state. The state is observed in noise by
several sensors that convey their measurements over wireless
channels. The transmitted signals are received in Gaussian
noise by a central sink node. The sink computes an estimate of
the plant’s state, and this estimate is then used by a controller
for actuation at the input of the plant. The overall goal of the
system is to stabilize the plant and minimize the LQG cost.
Control over band-limited and noisy channels has become

an increasingly active field of research over the past decade.
A nice summary of the present status of the research in this
area is given in [1]. Early important contributions on control
under under communication constraints are given in [2]–[12]
(see also the references in [1]). Some of the important and
recent contributions on the problem of closed-loop control over
various types of Gaussian channels include [13]–[23]. Recent
work on joint design of source–channel coding and control is
presented in [24].
For the problem of closed-loop control of a scalar valued

system over a Gaussian channel in the presence of a single
sensor node, a linear sensing strategy has been shown to

This work was supported in part by the European Commission through the
FP7 project FeedNetBack (co-design for networked control systems).

x(t)

s1(t)

s2(t)

y1(t)

y2(t)

(r1(t), r2(t))

x̂(t)

u(t)

plant

sensor 1

sensor 2

noise

sink nodecontroller

γ[·] β[·]

α1[·]

α2[·]

Fig. 1. A closed-loop control system with state measurements transmitted
over wireless channels.

be optimal by Bansal and Başar in [2]. Further in [25],
Yüksel and Tatikonda showed via a counter-example that
linear schemes are not optimal in general for multi-sensor
setups. In [26] and [27], the authors have studied a network
of cascaded sensors and have shown via counter-examples
that linear policies are not optimal even when there exist two
sensors in cascade. These recent results on non-optimality of
linear sensing policies provide motivation to study non-linear
strategies for distributed sensing in control applications.
In this paper, we propose to use a class of non-linear sensor

mappings for the problem of control over parallel Gaussian
channels using multiple sensors. This paper is inspired by
our earlier work on distributed joint-source channel coding
[28]. The proposed scheme is instantaneous (i.e., delay-free)
and it can be implemented with a reasonable complexity.
Furthermore, the proposed scheme has been shown to be
insensitive to the uncertainty in the knowledge of the sensors
about the powers of the measurement and the channel noises,
which is generally a crucial aspect in designing practical
systems.

II. PROBLEM FORMULATION
Consider the system illustrated in Figure 1. The box labeled

“plant” is a scalar discrete-time linear system, modeled as

x(t + 1) = ax(t) + u(t) + v(t), (1)

where a > 0 is a real-valued parameter, x(t) is the state of
the system, u(t) is the control signal, and v(t) is the process



noise, all of them real valued and at discrete time t ≥ 0.
The initial state x(0) is an unknown random variable drawn
according to a zero-mean Gaussian distribution with variance
σ2
x. The process noise v(t) is assumed to be i.i.d. zero-mean
Gaussian distributed. The state x(t) is observed in noise by
the two sensors, resulting in the following sensor input signals

yi(t) = x(t) + ni(t), i = 1, 2,

where n1(t) and n2(t) are two i.i.d. mutually independent
measurement noise components, which have Gaussian dis-
tributions with zero means and variances σ2

n,1 and σ2
n,2,

respectively.
The sensor measurements are conveyed wirelessly to a sink

node. Independently of each-other, the two sensors transmit
the real-valued signals s1(t) and s2(t), via two memoryless
mappings αi : R× N #→ R for i = 1, 2, such that

si(t) = αi[yi(t), t], i = 1, 2,

subject to the following power constraints:

E[s2i (t)] ≤ Pi, i = 1, 2. (2)

The two transmitted signals si(t), i = 1, 2, are received at the
sink node as

ri(t) = si(t) + wi(t), i = 1, 2, (3)

where wi(t), i = 1, 2, are independent and i.i.d. zero-mean
Gaussian with (equal) power N0/2. Note that we assume or-
thogonal channels from the sensors to the sink node, therefore
there is no interference between the two received signals (i.e.,
we have two parallel Gaussian channels from the sensors to
the sink node). In general, the current and all the previously
received values for the received vector r(t) = (r1(t), r2(t))
can be used by the sink node to compute the state-estimate
x̂(t), as

x̂(t) = β[rt0],

where rt0 = (r(0), . . . , r(t)). As can be noted, the triple
(α1,α2,β) forms a “distributed source–channel code” for
transmission of noisy measurements over Gaussian channels
(c.f., [28] and references therein). When the decoder (sink
node) has computed x̂(t), the estimate is fed to the controller
which then forms

u(t) = γ[x̂(t)],

as in [24] (see also, e.g., [1], [29]).
The goal of the system is to minimize the following finite

horizon quadratic cost function:

LT = E

{

T
∑

t=1

x2(t) + ρu2(t− 1)

}

, (4)

where the expectation is taken over the initial state x(0),
the process noise v(t), the measurement noise ni(t), and the
transmission noise wi(t). The minimization is done subject
to the power constraint, E[s2i (t)] ≤ Pi. The purpose of the
system is hence to minimize the state-evolution, departing
from the initial state x(0), in the sense of minimizing LT .
The real parameter ρ ≥ 0 penalizes large values of u(t).

The Controller
In the cases where x(t) can be observed directly (no

measurement noise), or when the sensor mappings αi[·] are
linear, it is optimal to use a linear controller

u(t) = −&tx̂(t), (5)

where &t can be computed given the system model (1),
observation equation (3) and objective function (4) [29]. For
simplicity, and also to make it easier to isolate the gains
achievable by the new class of sensors/transmitters, we choose
to use the linear controller also in our proposed system. Note
that in general, splitting the receiver–controller into separate
estimation (computing x̂(t)) and linear control is not without
loss [1], [24].

III. SENSING AND TRANSMISSION
In this section we propose a non-linear sensing and trans-

mission scheme and heuristically motivate the potential gains
that this scheme can deliver. For the sake of comparison we
use the following linear scheme as a reference.

A. Baseline scheme
The reference scheme is the well-known amplify-and-

forward strategy, in which the sensor nodes amplify the
received signals subject to average power constraints and then
transmit them to the sink node. The transmitted signals from
the two sensors are given by

s1(y1(t)) = η1,ty1(t), (6)
s2(y2(t)) = η2,ty2(t), (7)

where ηt is chosen such that the power constraint (2) is
fulfilled. The optimal decoder for this encoding scheme is a
Kalman filter [29].

B. Potential Gains from Non-linear Sensing
We now heuristically motivate the use of the non-linear

scheme that we will present in the sequel. Keeping the linear
controller we should be able to get better performance by
replacing the linear encoders αi[·] with encoders that try
to minimize the distortion between x(t) and x̂(t). In order
to do so we need to design the encoders α1 and α2, as
well as the decoder β, taking into account that the sensor
measurements y1(t) and y2(t) are dependent since they both
contain the common variable x(t). Source and channel coding
for correlated variables over orthogonal channels has been
widely studied, see e.g. [28], [30]–[33]. The main result
of these papers is that due to the dependency between the
variables y1(t) and y2(t), the encoders α1 and α2 need to
be designed jointly in order to achieve optimal performance.
Furthermore, using linear encoders according to (6) and (7)
will in general be suboptimal.
In the problem setting we are considering, improving the

estimation of x(t) in the MSE sense, i.e. lowering E[(x(t)−
x̂(t))2], will allow a better and more efficient actuation by the
control value u(t) which in turn should lead to decreasing
E[x2(t + 1)]. Furthermore, due to the power decrease in



x(t + 1) we will be able to transmit with stronger output
gain ηt which then gives a better estimate of x(t+1). Hence,
allowing optimal (in the sense of minimizingE[(x(t)−x̂(t))2])
encoding and decoding functions at any time t will lower (4),
at least for ρ = 0. Hence, we can draw a conclusion that there
is a potential gain in considering nonlinear encoding functions
α1 and α2.

C. The Proposed Scheme
In [28] a nonlinear scheme for low delay source–channel

coding of correlated variables over orthogonal channels was
proposed. The scheme was shown to have a better performance
than the linear encoding scheme. Influenced by this scheme
we propose the following source–channel code for the problem
we are considering:

s1(y1(t)) = η1,ty1(t), (8)

s2(y2(t)) = η2,t

(

y2(t)−∆t

⌊

y2(t)

∆t

⌉)

, (9)

where "·# denotes rounding to the nearest integer, ηt controls
the power usage and ∆t controls the length of each period
in the periodic sawtooth function s2(y2(t)). The procedure of
choosing ∆t will be presented shortly.
Let us now analyze the resulting power consumption. Note

that the power used by the nonlinear encoding function in
(9) will be less than the power used by the linear encoding
function in (7). Hence, using the nonlinear encoding functions
will save power. We define the normalized average power
consumption at time t as

P (∆t
0, t) =

1

2η2t
(E[s1(t)

2] + E[s2(t)
2]). (10)

By performing timesharing the sensors could use the linear
encoding function for half of time and then use the nonlinear
encoding functions the rest of the time. Hence, P (∆t

0, t) can
be seen as the average power used by each sensor at time t if
ηt = 1.

D. Computing the State-Estimate
In order to compute the state estimate x̂(t) at the sink node

based on the measurements rt0, we take the following steps as
depicted in Figure 2.
1) Compute estimates x̃(0|t), . . . , x̃(t|t) of x(0), . . . , x(t)
based on the previous estimate x̂(t− 1) and r1(t) using
a Kalman filter (Kalman Filter 1 in the figure).

2) Assume that |(x̃(s|t) − y2(s)− w2(s))/ηs| ≤ ∆s/2 ∀s
and compute the Maximum Likelihood estimates ŷ2(s)
as (cf. ML decoder in Fig. 2):

ŷ2(s) = argminy(s)∈Y(s2(y(s))− r2(s))
2), (11)

where Y = {y(s) : |x̃(s|t)− y(s)| ≤ ηs∆s/2}.
3) Finally assume that the estimates ŷ2(s) had
been linearly encoded (multiplied by ηt0) and
find the estimate x̂(t) from a Kalman filter
using {(r1(0), η0ŷ2(0)), . . . , (r1(t), ηtŷ2(t))} and

ut
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Fig. 2. Decoder for nonlinear encoding functions.

{u(0), . . . , u(t − 1)} as input (Kalman Filter 2 in the
figure).

The above procedure will in general not produce the optimal
minimum mean squared-error (MMSE) estimate E[x(t)|rt0],
but can be implemented with a reasonable complexity. We
note that the optimal MMSE estimator does not appear to be
practical in our scenario.
E. Choosing ∆t.
We propose the following procedure to choose the parame-

ters {∆t} in the sawtooth sensor mapping:
• For time step t = 0, we choose ∆0 as to minimize

E[(x̂(0) − x(0))2]. This is done using methods similar
to the ones in [28].

• For time step t = 1, we fix ∆0 to the value found in step
1, and simulate the system up to t = 1 for different values
of ∆1. We then choose the value of ∆1 that minimizes
E[(x̂(1)− x(1))2].

• Similarly for any time t = s, we fix ∆0, . . . ,∆s−1 to
the values found in the previous steps and simulate the
system up to t = s for different ∆s. We then choose the
∆s that minimizes E[(x̂(s)− x(s))2].

IV. PERFORMANCE ANALYSIS
Let z(t) denote the estimation error in x̂(t), i.e.

x̂(t) = x(t) + z(t). (12)

Using this with (1) and (5) we get

x(t) = ax(t− 1) + u(t− 1) + v(t− 1)

= (a− $t−1)x(t − 1)− $t−1z(t− 1) + v(t− 1). (13)

Studying the cost function (4) for the case ρ = 0 we get the
optimal choice $t = a. We can then write LT as

LT = E

[

T
∑

t=1

x(t)2
]

= E

[

T
∑

t=1

(−az(t− 1) + v(t− 1))2
]

=

E

[

T
∑

t=1

(

a2z(t− 1)2 + v(t− 1)2
)

]

=
T
∑

t=1

(

a2σ2
z(t−1) + σ2

v

)

.

(14)



From this we note that the performance of the system will
depend on the two terms a2σ2

z(t−1) and σ2
v . The second term

σ2
v arises from the process noise which we will not be able to
affect. The first term a2σ2

z(t−1) arises from the estimation error
z(t). Hence, improving the estimation of x(t), i.e. lowering
σ2
z(t), will lower the value of the cost function as previously
stated. However, one might also suspect that the induced
distribution of z(t−1) affects the cost LT since it changes the
distribution of x(t). This is only implicitly true, the created
MSE E[(x(t)−x̂(t))2] of the proposed scheme in (8)–(9) will,
approximately, not depend on the distribution of x(t) given a
fixed system s1 and s2, see [28]. However, the distribution of
x(t) will affect P (∆t

0, t) which in turn will affect the scaling
parameter of the output and this parameter naturally affects
the MSE.
The impact of the process noise vt on our system is interest-

ing. A high process noise variance σ2
v will directly make the

objective function larger as seen above, but it will also make
the correlation between the two sensor measurements larger. If
we have no process noise then x(t) = −az(t−1) which, given
good encoders and decoders, will be small. Thus the impact of
measurement noise will be higher, taking away the correlation
between y1(t) and y2(t) and most of the benefits of joint
source–channel coding. For low process noise we would thus
expect that using non-linear encoders at time t = 0 and linear
encoders for the other time steps (corresponding to ∆t = ∞
for t > 0) will be optimal.
The impact of the channel noise variances on the perfor-

mance was studied in [28]. There it was shown that either low
or high σ2

w will lead to a linear system working as well as the
nonlinear.
In order to verify our claims, we perform numerical simu-

lations for different values of the system parameters.

Numerical Simulations:
In Figures 3–5 we present results from three simulations.

For all simulations, we choose the system parameter a = 1.2,
the initial state variance σ2

x = 5, the time-horizon T = 3 and in
the objective function (4) we have set ρ = 0. Further we only
consider the cases with equal power constraints at the sensors
and equal measurement noise variances, i.e., σ2

n,1 = σ2
n,2 and

P1 = P2. All optimized values for ∆T−1
0 can be found in

Table I.
The results from the first simulation are shown in Figure 3.

Here we vary the channel noise variance N0/2 while keeping
the other parameters fixed. For the optimized nonlinear and
the linear curves we have optimized the encoders and decoder
for the actual SNR used in the simulation. For the mismatched
nonlinear curve we used the encoder optimized for SNR = 9
dB, but the decoder used the true SNR of the channel. This
was done in order to see how robust the encoders are to SNR
mismatch. We see that the nonlinear system gives a power
gain over the linear system with up to 2 dB, and also that the
system is very robust to SNR mismatch.
In the second simulation we use the same parameters as

in the first simulation, but here the process noise variance

TABLE I
OPTIMIZED VALUES OF∆T

0
FOR DIFFERENT CHOICES OF SYSTEM AND

CHANNEL PARAMETERS.

SNR (dB) σ
2
n σ

2
v ∆0 ∆1 ∆2

6 0.001 1 10.6 6.2 4.2
9 0.001 1 5.6 2.4 2.4
12 0.001 1 4 1.8 1.8
15 0.001 1 3 1.4 1.4
18 0.001 1 2.2 1 1
21 0.001 1 1.6 1 1
6 0.001 3 10.5 7.5 6.75
9 0.001 3 5.5 4.5 4.5
12 0.001 3 4 3 3
15 0.001 3 3 2.5 2.5
18 0.001 3 2.25 1.75 1.75
21 0.001 3 1.75 1.25 1.25
10 0.01 0 5 ∞ ∞
10 0.06 0 5.6 ∞ ∞
10 0.11 0 6.2 ∞ ∞
10 0.16 0 6.8 ∞ ∞
10 0.21 0 7.2 ∞ ∞
10 0.26 0 7.8 ∞ ∞
10 0.31 0 8.4 ∞ ∞
10 0.36 0 8.8 ∞ ∞
10 0.41 0 9.2 ∞ ∞
10 0.46 0 9.8 ∞ ∞
10 0.51 0 10.2 ∞ ∞
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Fig. 3. Systems with σ
2
n = 0.001 and σ

2
v = 1

is σ2
v = 3. The mismatched system is again optimized for

SNR = 9 dB. For this simulation we also see a 2 dB gain,
and again the system is robust to SNR mismatch.
The results from the third simulation are shown in Figure

5. Here we keep the channel noise variance N0/2 fixed, while
instead varying the measurement noise variance σ2

n. As in the
first two simulations we show results for both optimized and
mismatched ∆T−1

0 . The mismatched ∆T
0 were optimized for

σ2
n = 0.16.

V. CONCLUSIONS

We have suggested a distributed source-channel code to
be used in a closed-loop control system with two sensors
measuring the plant’s state. The proposed sensing and trans-
mission scheme is delay-free, robust to the knowledge of
noise statistics at the sensors, and can be implemented with
reasonable complexity. The non-linear sensing has been shown
to outperform the best linear strategy. Intuitively, this scheme
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can be easily extended to an arbitrary number of sensors
by employing a linear mapping at the first sensor node
and sawtooth mappings at the remaining sensor nodes with
successively decreasing time periods ∆t. How the number of
sensor nodes will affect the system performance compared to
the best linear scheme is yet to be studied.
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[25] S. Yüksel and S. Tatikonda, “A counterexample in distributed optimal
sensing and control,” IEEE Trans. Automat. Control, vol. 54, no. 4, 2009.

[26] G. M. Lipsa and N. C. Martins, “Optimal memoryless control
in Gaussian noise: A simple counterexample,” Automatica, 2011,
doi:10.1016/j.automatica.2010.12.001.
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