VISION SJÖSTAD
Flytande Bostäder

Jimmy Svensson
Albin Nilsson
David Odenmo

EXAMENSARBETE 2011
BYGGTEKNIK, INRIKTNING
BYGGNADSUTFORMNING MED ARKITEKTUR
VISION SJÖSTAD
Flytande Bostäder

VISION SJÖSTAD
Floating Community

Jimmy Svensson
Albin Nilsson
David Odenmo

Detta examensarbete är utfört vid Tekniska Högskolan i Jönköping inom ämnesområdet byggteknik med inriktning byggnadsutformning med arkitektur. Arbetet är ett led i den treåriga högskoleingenjörsutbildningen. Författarna svarar själva för framförda åsikter, slutsatser och resultat.

Examinator: Peter Johansson

Handledare: Kaj Granath

Omfattning: 15 hp (grundnivå)
Datum: 2011-08-24
Abstract

Floating housing is a concept gaining ground in Sweden. The dwellings are different in many ways from traditional homes, not only regarding flotation, but also several other technologies. The purpose of this thesis is to emphasize the qualities that exist in living on water.

The ambition was to present a proposal for a floating residential area located in Jönköping, containing homes of varying sizes, and to present their technologies.

In order to find inspiration and solutions studies have been made on existing floating homes in Stockholm and Kalmar, focusing on their technical and functional solutions. Residential areas in marine environments have been studied from an urban planning perspective. Furthermore, the history and current conditions of Munksjö lake has been investigated.

Vision Sjöstad is a proposal for a floating residential area situated in Munksjö lake, Jönköping. The block comprises a total of 24 dwellings consisting of two apartment buildings and four semi-detached houses with associated housing supplement. Emphasis has been made on ensuring residential privacy without foreclosing the public from the lake.

The individual dwellings are accounted for a more detailed design in terms of aesthetics, function and technology. The technical solutions that differ from a traditional building has been reported in more detail. This includes floating construction, heating systems, water and sewage connections and mooring.
Sammanfattning

Flytande bostäder är ett koncept på frammarsch i Sverige. Bostäderna skiljer sig på många sätt från traditionella bostäder, inte bara med avseende på just flytförmågan utan även flera andra tekniska lösningar. Syftet med detta arbete är att framhäva kvalitétorna som finns i att bo på vatten.

Målet har varit att arbeta fram ett förslag för ett flytande bostadskvarter beläget i Jönköpingsområdet, innehållande bostäder i varierande storlek samt att redovisa deras tekniska lösningar.

För att hitta inspiration och lösningar studerades befintliga flytande bostäder i Stockholm och Kalmar med fokus på deras teknik- och funktionslösningar. Vidare har Munksjöns historia och nuvarande förutsättningar utretts.

För de enskilda bostäderna redovisas en mer detaljerad utformning i avseende på estetik, funktion och teknik. De tekniska lösningar som skiljer sig från en traditionell byggnad har redovisats mer ingående. Detta innefattar flytkonstruktionen, uppvärmningssystemen, VA-anslutningar samt förankring.

Nyckelord

<table>
<thead>
<tr>
<th>Arkitektur</th>
<th>Byggteknik</th>
<th>Samhällsplanering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flytande bostäder</td>
<td>Jönköping</td>
<td>Munksjön</td>
</tr>
<tr>
<td>Simsholmen</td>
<td>Landgång</td>
<td>Förankring</td>
</tr>
</tbody>
</table>
INNEHÅLLSFÖRTECKNING

1 INLEDNING ... 5
 1.1 BAKGRUND OCH PROBLEMBesKRIVNING .. 5
 1.2 SYFTE OCH FRÅGETäLLNINGAR .. 6
 1.3 AVGRäNSNINGAR ... 6
 1.4 METOD .. 6
 1.5 DISPOSITION .. 7

2 GENOMFÖRANDE ... 8
 2.1 REFERENSOBJEKT .. 8
 2.1.1 Hammarby Sjöstad ... 8
 2.1.2 Sluseholmen, Köpenhamn .. 10
 2.1.3 Marinstaden, Nacka ... 12
 2.1.4 Modern marine homes – Villa Nääckros .. 14
 2.1.5 Aquavilla AB .. 21
 2.2 TEKNISKA LÖSNINGAR .. 25
 2.2.1 Flytkonstruktion ... 25
 2.2.2 Väggsystem .. 27
 2.2.3 Förankring .. 30
 2.2.4 Vatten och Avlopp ... 33
 2.2.5 Värmesystem ... 35
 2.2.6 Ventilation .. 40
 2.3 MUNKSJÖN ... 41
 2.3.1 En historisk tillbakablick .. 42
 2.3.2 Munksjön idag .. 44
 2.3.3 Val av tomt .. 47
 2.3.4 Simsholmen ... 50

3 RESULTAT ... 53
 3.1 HUR KAN ETT FLYTANDE BOSTADSKVARTER UFORMAS? 53
 3.1.1 Områdesutformning .. 54
 3.2 HUR KAN EN FLYTANDE BOSTAD UFORMAS? .. 61
 3.2.1 Pärlvillan ... 61
 3.2.2 Flerbostadshuset .. 66
 3.3 HUR KAN DE TEKNISKA LÖSNINGARNA FÖR EN FLYTANDE BOSTAD SE UT? 69
 3.3.1 Pontoner .. 69
 3.3.2 Vägkonstruktion .. 69
 3.3.3 Uppvärmning .. 70
 3.3.4 Ventilation .. 71
 3.3.5 Vatten & Avlopp .. 71
 3.3.6 Förslag på förankring .. 72

4 DISKUSSION .. 76
 4.1 RESULTATDISKUSSION ... 76
 4.1.1 Hur kan ett flytande bostadskvarter utformas? ... 76
 4.1.2 Hur kan en flytande bostad utformas? ... 76
 4.1.3 Hur kan de tekniska lösningarna för en flytande bostad se ut? 77
 4.2 METODDISKUSSION .. 78
 4.2.1 Hur kan ett flytande bostadskvarter utformas? ... 78
 4.2.2 Hur kan en flytande bostad utformas? ... 79
 4.2.3 Hur kan de tekniska lösningarna för en flytande bostad se ut? 80
5 REFERENSER .. 81
 5.1 LITTERATUR ... 81
 5.2 ELEKTRONISKA KÄLLOR .. 82
 5.3 MUNTIGA KÄLLOR ... 83
 5.4 BILDER ... 83

6 SÖKORD .. 84

7 BILAGOR .. 85
I INLEDNING

Detta arbete har utförts som en del i utbildningen Byggteknik med inriktning byggnadsutformning med arkitektur på Tekniska Högskolan i Jönköping. Arbetet har genomförts med handledning av Kaj Granath, arkitekt och universitetslektor byggnadsteknik, Jönköpings Tekniska Högskola.

1.1 Bakgrund och Problembeskrivning

Med det här examensarbetet och i form av denna rapport är det tänkt att visa prov på hur bebyggelse kan föras vidare ut på vattnet. Detta åstadkommes genom att redovisa utformningsföreslag av byggnader och samhällsplanering samt ge en inblick i de tekniska delar som således behöver lösas. För att få en förståelse för olika tillvägagångssätt kring utförandet av dessa områden granskas såväl färdiga som pågående projekt av flytande bostäder. Granskningarna sker i form av fallstudier på svenska projekt och potentiella områden för flytande bostäder. Ytterligare granskningar sker i form av litteraturstudier på såväl svenska som internationella projekt.

1.2 Syfte och Frågeställningar

Syfte & Mål
Syftet med examensarbetet är att visa möjligheten och kvalitéerna som finns i att exploatera för bostäder på vatten.

Målet är att arbeta fram ett förslag för flytande bostäder i varierande storlek belägna någonstans i Munksjön, Jönköping, samt att redovisa bostädernas tekniska lösningar.

Frågeställningar
Hur kan ett flytande bostadskvarter utformas?
Hur kan en flytande bostad utformas?
Hur kan de tekniska lösningarna för en flytande bostad utformas?

1.3 Avgränsningar

I arbetet har inga ekonomiska aspekter kring projektet tagits i beaktning. Inte heller de juridiska frågorna som uppkommer vid husbyggande på vatten har granskats närmare. Arbetet omfattar inte heller några beräkningar för energiåtgång och hållfasthet.

1.4 Metod

Hur kan ett flytande bostadskvarter utformas?

Förstudien till utformningen av bostadskvarteret består utav referensstudier av bostadsområden på och nära vatten. Marinstaden i Nacka, Hammarby Sjöstad och Sluseholmen i Köpenhamn har studerats. Munksjön studeras genom fallstudier och referensstudier. Det egna förslaget tas fram parallellt med förstudien genom skissarbete för hand och i ritprogrammen Google Sketchup och ArchiCAD.

Hur kan en flytande bostad utformas?

Fallstudier och referensstudier av relevanta marina bostäder ligger till grund för utformningen av det egna förslaget. Modern marine homes Villa Näckros besöktes och Aquavilla har studerats. Metoden för att ta fram det egna förslaget är genom skissarbete och framtagning digitalt i ArchiCAD.

Hur kan de tekniska lösningarna för en flytande bostad utformas?

De tekniska lösningarna tas fram genom fallstudier och referensstudier av befintliga marina bostäder, även i detta fall är det Villa Näckros och Aquavilla som har studerats närmare. Principiella lösningar har tagits fram genom skissarbete för hand och i Google Sketchup.

Inledning

1.5 Disposition

Referensobjekt
Referensobjekt som Moderns marine homes: Villa Näckros och Aquvillas: Futura Tre har här allmänt beskrivits och analyserats utifrån dess planering och utformning. I övrigt beskrivs bolagskonstellationerna bakom konstruktionerna kortfattat.

Tekniska lösningar
I denna del av rapporten genomförs detaljerade studier på hur tekniska lösningar och konstruktioner är utformade. Det är i huvudsak två flytande bostäder, Villa Näckros och Futura Tre, som har studerats.

Munksjön

Resultat
Först i resultatdelen redogörs hur det flytande bostadskvarteret planerats. Vidare beskrivs två alternativa flytande bostadsmodeller som har arbetats fram. Förslag på byggnadstekniska lösningar har tagits fram och illustrerats i detta kapitel.

Diskussion
Varje frågeställning diskuteras och analyseras var för sig.
2 GENOMFÖRANDE

2.1 Referensobjekt

2.1.1 Hammarby Sjöstad

Förutsättningarna för stadsdelens framväxt har varit att de tidigare verksamheterna på området har avvecklats, koncentrerats eller kunnat få ny användning. Dessutom har man byggt bort trafikbarriärer genom en omfattande rekonstruktion av infrastrukturen.

2.1.1.1 Stadsbyggnad

Arkitekturen i området är varierande och kombinerar storskaligheten från innerstaden med parker, kajer och gångstråk längs med sjön där bebyggelsen trappas ner. Typiska drag hos byggnaderna är stora balkonger och fönsterytor, indragna takvåningar med flacka tak samt ljuslygga fasader mot vattnet.

Sicklakanalen som rinner genom Sjöstadens karaktäriseras av Sickla Kaj med sina båtplatser, restauranger och butiker på ena sidan och Sickla Udde med ett mer avskilt promenadstråk och mer nerskalade byggnader på andra sidan.

![Bild 3 - Kanalen vid Sjöstadparterren. (Stockholms Stad, 2007)](image-url)

![Bild 4 - Plan över Sjöstadparterren.](image-url)

2.1.1.2 Miljötänk

Trafik och servicefaciliteter ligger längs en tre kilometer lång esplanad som binder samman Sjöstaden. För att främja kollektiva transportmedel har man satsat på goda buss-, tåg- och färjeförbindelser i området med bland annat fyra hållplatser för tvärbanan mellan Alvik och Gullmarsplan. (Stockholms Stad, 2007)

Istället för att gömma undan miljötekniska byggnader i fönsterlösa bunkrar har man i Hammarby Sjöstad försökt göra dessa tillgängliga för medborgarna. GlashusEtt är en transparent glasbyggnad där allmänheten kan få komma och titta på bland annat avloppspumpar samt bli informerade om det senaste inom miljöteknik. Ett annat exempel på offentligt öppna miljösystem är Avglastornen, två 20 meter höga torn av stål och glas som har till uppgift att avleda avgaser från trafik i Södra länkens tunnelsystem. (Eklund & Juvander, 2006)
2.1.2 Sluseholmen, Köpenhamn

2.1.2.1 Stadsbyggnad

Sluseholmen består utav åtta konstgjorda öar som delades upp mellan intressenter så att varje kvarter utvecklades av olika arkitektfirmer. En grupp ansvariga arkitekter drog upp generella riktlinjer för byggnadernas proportioner, material och färger. Över 20 arkitektkontor har sedan varit med och formgivit husens fasader som på sina ställen löper hela vägen ner i vattnet. Detta ger en stor variation i husens utseende utåt sett. Lägenheternas planlösningar är däremot relativt enhetliga i sin utformning och varierar i storlek från 70-180 kvm. Många av lägenheterna på byggnadernas översta våning är även försedda med egen takterrass. Bostadsområdet rymmer totalt cirka 1000 lägenheter. (Copenhagen X, 2011)
Kvarterens skyddade innergårdar består av små privata trädgårdar och större flexibla publika ytor. Bostadshusen är mellan fem och sju våningar höga beroende på om de vetter mot hamnen eller kanalerna. Parkeringsfrågan har lösts genom att placera garage under kvarterens innegårdar.

Bild 7 - En av Sluseholmens kanaler. (Arkitektur DK, 2009)
2.1.3 Marinstaden, Nacka

Marinstaden är ett pågående projekt i form av ett flytande bostadskvarter beläget i Svindersviken, Nacka kommun, Stockholm. Planläggningen tog sju år där detaljplanen överklagades flertalet gånger innan den slutgiltiga detaljplanen vann laga kraft.

Bild 8 - Flytande bostad i Marinstaden. Foto K Granath
Något som är unikt för projektet är att de flytande bostäderna kan klassas som fast egendom eftersom de har lagfart även på vattnet under bostäderna till skillnad från fartyg med vattenarrende. Detta möjliggör i sin tur att man kan belåna bostaden och få liknande ekonomiska förutsättningar som vid belåning av bostad på land.

Två områden av riksintressen berör Svindersviken och dessa är riksintresset för kulturmiljövården samt riksintresset för kustområdet och skärgården.

2.1.4 Modern marine homes – Villa Näckros

2.1.4.1 Bakgrund

2.1.4.2 Fakta om Villa Näckros

2.1.4.3 Övriga tillbehör, garage, förråd, planering av området

Bild 12 - Satellitbilder över Villa Näckros. http://www.hitta.se

Bild 13 - Detaljplan Villa Näckros. (PLAN Nr 4 - 2006)
2.1.4.4 Bolagen bakom Modern marine homes

Bild 14 - Vardagsrum Villa Näckros. http://www.k-vbygg.se/projects.html

2.1.4.5 Planlösning Villa Näckros - MMH

Entréplan
1. Landgång
2. Entréyta (entrédäck)
3. Kök/matplats
4. Rum
5. Rum
6. WC
7. Vardagsrum (halvplan)
8. Altan (halvplan, utomhus)

Bottenplan
1. Sovrum
2. Tvättstuga, Dusch/WC
3. Bastu
4. Badrum
5. Förråd/Teknik (halvt vånplan, h sida)
2.1.4.6 Beskrivning av planlösning

Övre plan
Övrigt till Villa Näckros sker via en cirka sex meter lång landgång (1) över till den utvändiga entréytan (2).
Landgångens funktions är förutom att fungera som just landgång även en förbindelsepunkt för vatten-, avlopps- och elledningar (1). Väl inne i hallen är det första som möter en, en ljus öppen trappa i vilken kommunikation kan ske mellan de tre halvplan samt uteplatsen som återfinns på taket.
Avhängning av kläder sker i direkt anslutning till hallen. I detta utrymme återfinns även det övre planets WC (6).

Undre plan

Det är tydligt att båda i det övre och det undre planet har tekniska installationerna samlats längs med ena sidan av byggnaden med undantag för teknikutrymmet för tankar och reningsverk.

Bild 20 - Foto J Svensson
2.1.4.7 Tillgänglighetsanpassning

Bild 21 - Foto J Svensson
2.1.5 Aquavilla AB

2.1.5.1 Bakgrund

![Aquavilla villor](http://www.aquavilla.se/)

2.1.5.2 Fakta om Aquavillorna

Den tredje generationens betongskrov har yttermåtten 14,0x6,3x3x3 meter. Boytan på 97 kvadratmeter fördelat på två våningar med tre rum samt terrasser om cirka 90 totala kvadratmeter återfinns i Aquavillans minsta modell som heter Futura två. Största modellen som Aquavilla tillverkar heter Futura tre och har en boyta om cirka 145 kvadratmeter som är fördelade på tre våningar och fem rum. (Aquavilla AB, 2011)

2.1.5.3 Övriga tillbehör, garage, förråd, planering av området

Närhet till förråd och förvaring kan vara ett problem vid användandet av en längre bryggkonstruktion/pir för angöring av flytande bostäder. Detta har Aquavilla AB löst genom att göra en flytande förrådskonstruktion likt deras flytande bostäder, men utan hus ovanpå, här har istället gångbana och angöringsplatser för de flytande bostäderna placerats. Nere i flytkonstruktion finns förutom förråd även plats för tekniska installationer/apparater så som avloppspumpar, kopplingar för el, vatten och avlopp. Förrådskassunen har ett yttre mått på cirka 18,5x7,1x3,5 meter och är tänkt att kopplas i serie för att uppnå önskad längd (Lundberg, 2011).
Referensobjekt

2.1.5.4 **Transport av bostaden (Aqualift)**

För att kunna transportera de flytande bostäderna på ett rationellt och effektivt sätt har AquaVilla AB låtit tillverka en pråm som kan lasta upp till fem bostäder samtidigt. Aqualiften fungerar som en mobil torrdocka, pråmen sänks genom att skrovets vattenfylls tills dess att det hamnat i lagom nivå för att bogsera över de flytande bostäderna ovanför pråmen. När villorna har nått rätt position ovanför pråmen så startas stora kompressorer och vattnet som finns i tankarna trycks ut, vilket får Aqualiften att återigen lyftas till sin transportposition. Här efter görs transporten redo för avgång genom att lasten surras fast.

Aqualiften har en lyft- och lastkapacitet på 1200 ton och kan med full last förflyttas i hastigheter om 10-12 knop beroende på bogserbåtens kapacitet. Aquavillornas kvadratiska form är inte den bästa hydrodynamiska formen för att transporteras långa sträckor i vatten, inte heller transporter över öppna vatten är att föredra. Därför är denna sänkbara pråm ett bra alternativ för transporter av flytande bostäder vilka annars skulle kunna komma till skada vid direkt bogsering. (Aquavilla AB, 2011)

![Aqualift i nedsänkt läge, Last på väg upp, Aqualift klar för transport](http://www.aquavilla.se/?page_id=135)
2.1.5.5 Planlösning Futura tre - Aquavilla

Bild 26 - Planlösning av Futura tre från WAK Arkitekter AB. http://www.wakark.com/aquavilla.htm
2.2 Tekniska lösningar

2.2.1 Flytkonstruktion

2.2.1.1 Flytkonstruktion Villa Näckros

2.2.1.2 *Flytkonstruktion Aquavilla*

Betongskrovets tjocklek är 280 mm i botten samt 180 mm i väggarna. På insidan av betongkassunen placeras sedan ett inre skrov som är skilj från det yttre skrovet genom en ventilerad luftspalt. På detta sett kan den möjliga fukt som kommit på insidan ventileras bort. Den kalla yttre betongkonstruktionen medför dock vissa risker förutom kondensations och fuktproblem. Risken finns att is fastnar på det yttre obehandrade betongskrovet vid den kalla delen av året vilket kan leda till att villan inte ligger plant i sjön. Hela betongskrovet har byggts och konstruerats för att klara de påfrestningar som det innebär att ligga i vatten i minst 100 år utan behöva tas upp för underhåll. (Aquavilla AB, 2011)
2.2.2 Väggsystem

2.2.2.1 Väggsystem Villa Näckros

Bild 28 - Sammanfogning ytterhörn Villa Näckros. Illustration av J Svensson i Google Sketchup V.8
2.2.2.2 Väggsystem Aquavilla

Väggsystemet som Aquavilla använder sig av är ett patenterat stomsystem som framtagits under 90-talet av Gudni Johannesson som är professor i husbyggnadsteknik på KTH. Systemet heter Casabona och består av en Z-profilerad tunnplåt som har integrerats med styva isolerblock bestående av EPS (Expanderad Polystyren). Z-profilen som består av 1,5 mm varmgalvaniserad plåt har stansats/slitsats ut med avlånga hållheter i ett optimerat mönster. Slitsningen har gjorts i z-regelns liv för att minimera den oönskade termiska ledningsförmåga som stål annars kan ge upphov till i en väggkonstruktion. Den termiska ledningsförmågan har minskats till samma U-värde som en traditionell träregel. Profilerna hålas även i flänsarna med hjälp av en speciell rullformningsmaskin. Dessa små hål används sedan för att montera ihop de olika profilerna med hjälp av rostfria poppnitar likt ett stort mekano.

Bild 29 - Z-profilerad tunnplåt. (Lundberg, 2011)

![Bild 30 - Z- och U-profil liknande de i Casabona-systemet.](http://www.europrofil.se/)

![Bild 31 - Casabona-systemets uppbyggnad. Illustration av J Svensson i Google Sketchup V.8](http://www.europrofil.se/)

2.2.3 Förankring

2.2.3.1 Förankring Villa Näckros

Den vitlackerade UPE-profilerade aluminiumramen som löper runt hela byggnaden fungerar som avbärare, vilket innebär att den är tänkt att skydda mot eventuella stötter eller påkörningar från andra fartyg eller annan flytande tingest. En delfunktion som avbäraren fått är att bära de fasadmaterialen som återfinns runtom byggnaden i form av rödfärgad, vågkorru rader plåt.

Bild 32 - Förankring Villa Näckros. Illustration i Google Sketchup V.8 av J Svensson
2.2.3.2 Förankring Aquavilla

Kätting

Seaflex

Gravitationsankare

Fastsättning till botten kan ske med gravitationsankare som till exempel kan bestå av betongblock eller stenbumling som försetts med en fästpunkt av något slag. Betongblocken finns i många utförande allt från oljefat som försetts med fäst ögla till mer sofistikerade formgjutna modeller. Ett exempel på utformning av betongblock som funkar bra med sned sträckning till infästningspunkten är att blockets sida är vinklad från flytetygets infästningspunkt. På detta sätt så gräver sig blocket djupare ner i botten istället för att släpas längs med ytan av sjö-, havsbotten vilket annars skulle kunna ske med ett vanligt rektangulärt block som utsätts för högre belastning än man beräknat för.

Spiral/Skruvankare

Att använda sig av spiral/skruvankare är ett annat mycket effektivt sätt som man kan nytta när förankring ska ske till sjöbotten och man till exempel inte vill använda sig av tunga och utrymmeskrävande gravitationsankare. Fördelen med skruvankare är att den klarar mycket högre belastningar utan att rubbas från sin position eller brista. Olika dragtester har visat att skruvankare klara mellan fyra till fem gånger mer belastning än andra typer av vanliga ankarsystem.
Teknika Lösningar

2.2.4 Vatten och Avlopp

2.2.4.1 Tekniska anordningar Villa Näckros

Bild 37– VA-anslutning via landgång. Foto D Odenmo

Bild 38– Teknikrum. Foto J Svensson
Eftersom avloppsledningarna befinner sig under den kommunala spillvattenledningens förbindelsepunkt (spillvattenservis) så måste spillvattnet pumpas ut ur byggnaden. Spillvatten leds i byggnaden med hjälp av sedvanliga avloppsrör och självtillfall till den lägsta punkten i byggnaden där spillvatten samlas i en mindre tank. Härifrån pumpas spillvattnet med tryck i en mindre, mer trycktålig ledning upp och ut till förbindelsepunkten. (Pumps [uk] online LTD, 2011)

Bild 39 - Exempel på avloppspump.
http://www.pumpsukltd.com/items/PMP1793_11793_ABS%20PIRANHAMAT%200701-1002.pdf

2.2.4.2 Vatten och Avlopp Aquavillorna
Samtliga fyra modeller av Aquavillorna är konstruerade för kommunal anslutning av vatten och avlopp. Skulle villan vara lokalisert där det ej finns möjlighet till kommunalt VA så finns det ändå förberett med utrymme i botten mellan inner- och ytterskrovet för placering av tankar för färskvatten och spillvatten. Eftersom avloppsledningssystemet befinner sig under den kommunala överlämningspunkten så pumpas spillvatten upp likt det som beskrivits för Villa Näckros.
2.2.5 Värmesystem

2.2.5.1 Värmesystem Villa Näckros

Som uppvärmningssystem har man i Villa Näckros valt att utnyttja den värme som finns i det omgivande vattnet med hjälp av en värmepump. Värmen som finns i vattnet extraheras via kollektorslangar vidare till värmepumpen. Kollektorslangarna är fästa cirka en halvmeter under vattenytan på utsidan av skrovet och blir härmed både skyddade mot is samt får en hög verkningsgrad. Värmepumpen som finns placerade i det mindre teknikutrymmet är sammankopplat med golvvärmesystemet som i sin tur fördelar värmen via de vattenburna värmeslingorna ut i huset.
2.2.5.2 Värmesystem Aquavilla

![Bild 41 - Trapetsformade och sinusformade plåtar.](http://www.profilplat.se/site/priv_ovrig_takplat.asp?priv=1&priv_tak=3)

Kollektorslangarna fastsätts sedan på utsidan. Slangarnas ytterdiameter är den samma, alternativt mindre än de räfflor som gjutits med hjälp av den korrugerade plåtformen. På detta sätt blir slangarna skyddade när de befinner sig innanför ytterkonturen av betongskrovet och får härmed en delvis högre verkningsgrad än om de skulle gjutas in helt i betongskrovet med en yttre plan yta. Ett alternativt till den exponerade yttre appliceringen av slangarna är att dessa blir ingjutna i betongen på insidan av betongskrovet och skyddar dem mot yttre mekanisk åverkan på skrovet. Ett tunt täckande betongskikt skyddar slangarna och kan medför risker vid gjutningen. Om man har alltför tunt täckande betongskikt kan det sannolikt förekomma korrosionsangrepp på armeringen och en otät konstruktion som följd.

För att försäkra sig om att anslutningen mellan kollektorn och värmepumpen ska hållas tät och undvika onödiga risker med genomföringar under vattenytan, har slangarna dragits upp via betongskassunens väggar ovanför den tänkta vattenlinjen och sen anslutsits till värmepumpen.

2.2.6 Ventilation

2.2.6.1 Ventilation Villa Näckros
Ventilationssystemet består av ett från- och tilluftssystem för att få en bra ventilation i huset. För att försäkra sig om att inga fuktproblem ska uppstå, så har man även valt att ventilaera insidan av skrovet.

2.2.6.2 Ventilation Aquavilla

Bild 48 - Olika ventilationssystem.
http://www.svenskventilation.se/index.php3?use=publisher&id=1265
2.3 Munksjön

I denna del av rapporten beskrivs Munksjön, den plats där det flytande bostadskvarteret är tänkt att placeras. Sjön har studerats ur ett historiskt perspektiv och avsnittet behandlar även de problem och möjligheter som är aktuella idag.

Man har idag som mål att göra Munksjön till en stadssjö och många stora byggnadsprojekt växer fram i området.

Bild 49 - Flygfoto över Munksjön. (Jönköpings kommun, 2011)
2.3.1 En historisk tillbakablick

2.3.1.1 Norra stranden

Bild 50 - Vy över Munksjöns norra strand. (Karlsson, Lindgren, & Vestbô Franzén, 2008)

2.3.1.2 Industrialiseringen

Ungefär samtidigt som Pappersbruket växte fram etablerade sig även Jönköpings Mekaniska Werkstad vid sjöns nordvästra strand. JMW är idag nedlagd men vissa av fabrikens anläggningar har fått stå kvar och är idag integrerade med Högskolan i Jönköping. (Jönköpings Läns Museum, 2001)

Bild 51 - Munksjö Pappersbruk som det såg ut i slutet av 1870-talet.(Karlsson, Lindgren, & Vestbô Franzén, 2008)
2.3.1.3 Sjöfart

2.3.1.4 Aktiviteter

2.3.1.5 Vändningen

Konsekvenserna av industriernas utsläpp av avfall i sjön uppenbarade sig på allvar under 1930-talet. Under årtionden hade avfall i form av fiber och tungmetaller släppts ut i sjön av bland annat Munksjö Pappersbruk. Detta avfall lossnade nu från sjöbotten och flöt istället runt i sjön, spred doft av svavelväte och missfärgade fastigheter och metallobjekt i staden. (Jönköpings Läns Museum, 2001)

Från att ha varit en central del av staden där man bland annat badade, åkte båt och spelade bandy tappade Munksjön allt mer av sitt värde som social mötesplats under andra hälften av 1900-talet, mycket tack vare föroreningarna i sjön. Trafikleder byggdes längs sjöns norra del och skapade ett gap mellan staden och sjön.

2.3.2 Munksjön idag

2.3.2.1 Föroreningar
Till följd av utsläppen som Munksjön har utsatts för genom åren är vattenkvaliteten inte den bästa. Munksjön har rankats som nummer ett i Länsstyrelsens register över de 30 mest angelägna förorenade områdena i länet.

Av de verksamheter som fortfarande är verksamma kring Munksjön så har Simsholmens Reningsverk och Munksjö Pappersbruk enligt Länsstyrelsens bedömning orsakat delar av de föroreningar som idag finns i sjön. Även dagens utsläpp påverkar Munksjön, men de utgör en ytterst liten del av de utsläpp som skadat sjön genom åren. (Länsstyrelsen Jönköping, 2009)

Syrehalten i sjöns bottenskikt är lägre än i andra sjöar i länet, på sina håll är den näst intill obefintlig. Pappersbrukets utsläpp har skapat en cellulosafiberbank i delar av sjöns bottensediment som innehåller höga halter av bland annat tungmetaller och olja. Till följd av detta är djurlivet i sjöns djupare delar väldigt begränsat. (Lindeström, Gustafsson, & Lindell, 2005)

2.3.2.2 Förslag till förbättring?

Flödet av vatten i Munksjön är idag högt. Dels på naturlig väg genom Tabergsåns utmynning i den sydvästra delen av sjön. Dessutom pumpas vatten in från Vättern via Rocksjön i försök att förbättra de låga syrevärdena i sjöns bottenskikt. Utöver detta släpps även renat avloppsvatten från pappersbruket och kommunens reningsverk vid Simsholmen ut i sjön. Utflödet till Vättern sker genom den gamla hamnon i norr. Genom att justera vattenflödena skulle syrehalten i sjöns bottenskikt förbättras enligt undersökningen. Åtgärderna skulle sänka temperaturprångskiktet i sjön vilket leder till att en mindre del av sjöns vatten blir syrefattigt under större delen av året. (Lindeström, Gustafsson, & Lindell, 2005)

2.3.2.3 Vem bär ansvaret?
Innan saneringsarbetet med sjön kan påbörjas måste det utredas vilka som bär ansvaret för föroreningssituationen i sjön och vem som ska bekosta saneringen. Länsstyrelsen kartlade under 2008 alla misstänkta förorenade områden i Munksjöns avrinningsområde och sammanställde en lista med objekt som misstänks bidra/ha bidragit till föroreningarna i sjön. Denna kartläggning ligger till grund för en framtida utredning gällande ansvar för sanering av sjön.

“1. En tillfredsställande sediment- och vattenkvalitet i Munksjön ska säkras så att förutsättningar för ekologiska livsmiljöer förbättras. Munksjön ska kunna nyttjas som en attraktiv och tillgänglig stadssjö där strandnära rekreation (i enlighet med Stadsbyggnadsvisionen 2.0, ej bad), båtliv och normal konsumtion av fisk och skaldjur ska kunna ske utan hälsorisk.

2. Tillskottet av föroreningar från vattenverksamheter och förorenade områden inom Munksjöns avrinningsområde ska begränsas för att främja ekologiskt hållbara och biologiskt variationsrika livsmiljöer i vatten och sediment i Vättern.”

2.3.2.4 Vattennivåer

Medelvattennivån i Munksjön är +88,70 meter. Högsta vattennivån är +89,20 meter och lägsta vattennivån är +88,12 meter. Vattennivån kan vid kraftig nordanvind (25 m/s eller mer) höjas ytterligare 30-50 centimeter. Detta kombinerat med höga flöden från Tabergsån ökar risken för översvämningar kring Munksjön markant. (Jönköpings Kommun, 2008)

I extrema fall med högt vattenstånd och kraftiga vindar kan vattennivån alltså skilja på över 1,5 meter mellan högsta och lägsta nivå. Från medelvattennivån skiljer det ett normalår cirka +/- 0,55 meter.

I översiktliga översvämningskartningar framtagna utav Räddningsverket och SMHI konstateras att Tabersåns 100-årsflöde (med andra ord ett maximalt flöde som återkommer en gång per 100 år) skulle översvämma delar av tomterna kring Munksjön. (SMHI, 2001)

Med tanke på framtida översvämningsrisiker på grund av klimatförändringar har man från kommunens sida bestämt att nya bostadsområden i närheten av Munksjön och Röcksjön ska planeras för en vattennivå på minst +90,3 meter. (Jönköpings Kommun, 2011)
2.3.3 Val av tomt

1. Västra Kajen

2. Kålgården

3. Simsholmen
Att placera bostäder i detta område skulle ge många goda kvalitéer, exempelvis kvällssol och utsikt över de gamla fabriksbyggnaderna i väst och stadens centrum i norr. Den lummiga naturen som präglar strandremsan i området är även den vård att ta tillvara på. Vindförhållandena i området lär dock bli ett problem då delar av tomten skulle vara belägen på en udde i sjön. För att skydda mot de kallaste vindarna från norr kan man undvika att rikta uteplatser och terasser i samma väderstreck. De nuvarande verksamheterna i området som till exempel reningsverket och oljedepåerna skulle behöva anpassas innan området skulle kunna bebyggas.

4. Södra Munksjön

5. Södra Fabrikstomten
2.3.4 Simsholmen

Det slutliga valet av tomt föll på Simsholmen. Här får man bra solförråd och det finns en del bevarad natur vilket ger goda förutsättningar för att skapa ett trivsamt bostadsområde. Man har från kommunens sida i sin Stadsbyggnadsvision planer på att förflytta eller anpassa de befintliga verksamheterna på området för att i framtiden kunna exploatera området för bostäder.

2.3.4.1 Simsholmens Reningsverk

Sedimenteringsbassängerna som hanterar processvattnet ligger idag öppet på anläggningen. Lukter kan lätt spridas vid blåst och vålla obehag för sin omgivning. I takt med att Jönköpings stadskärna expanderar söderut längs Munksjön ska Simsholmens Reningsverk anpassas så att exploatering av bostäder i dess närhet blir möjlig. Första etappen av denna anpassning ska vara genomförd 2015 och den avser anpassning av verksamheter som idag bedrivs på området och därmed ingen förflyttning av verksamheterna. (Jönköpings Kommun, 2011)

Förslag på sådana anpassningar består bland annat av överbyggnader av två stora behandlingsbassänger vid reningsverkets entré. Man ska även bygga en sluten fordonshall för in- och utlastning av externslam. Även en särskild anläggning för uppsamling av all ventilationsluft med luftbehandling föreslås. (Jönköpings Kommun, 2007)

Bild 59 - Vy över Silmsholmens reningsverk. (Slutrapport Simsholmens avloppssreningsverk 2007)
2.3.4.2 **Oljedepåområdet**

Vid uppförande av flytande bostäder skulle fastigheterna Örnklon 9, Örten 4 och eventuellt även Örnklon 10 utnyttjas för att anlägga parkeringar, förråd och andra tillbehör till bostäderna.

2.3.4.3 **Befintlig bebyggelse**

Möjligheterna att bevara och rusta upp den gamla oljebryggan invid tomten Örnklon 9 kan även vara värda att se över.
2.3.4.4 **Markförhållanden**

Terrängen i området är föga kuperad. Strandlinjen är långa sträckor i höjd med vattennivån och måste därmed höjas genom utfyllnad för att kommunens krav om bebyggelse vid Munksjön ska uppnås (se Vattennivåer).

2.3.4.5 **Vegetation**

Området är till stor del exploaterat av industrier och vegetationen är därför begränsad. Skogspartier finns dock, främst kring reningsverket i söder men även norr om den gamla oljebryggan. Dessa områden ska i så stor mån som möjligt bevaras som parkområden. Strandlinjen kantas långa sträckor av vasspartier i varierande täthet.
3 RESULTAT

3.1 Hur kan ett flytande bostadskvarter utformas?

Problematiskt vid denna typ av bostadsprojekt kan vara att få en god integrering, skapa ett område som inte är överexplorerat samt att inte inkräkta för mycket på miljön eftersom det ofta måste schaktas och muddras för att möjliggöra för placeringen av bostäderna. Även väderlekar påverkar i hög grad denna typ av kvarter eftersom bostäderna ligger öppet exponerade på vattnet.

Dessa möjliga problem har legat till grund för utformningen och planeringen som krävts för att besvara frågeställningen. För att sedan hämta in information och skapa en uppfattning om hur ett flytande bostadskvarter kan utformas har Marinstaden granskats genom fallstudier med avseende på såväl exploatering som bostadskomplement och tekniska utföranden.

3.1.1 Områdesutformning

Bild 62 - Översiktsbild. Utförd i ArchiCAD 13 av A Nilsson
Bild 63 - Lokalisering av området. www.maps.google.com
Bild 64 - Situationsplan. Utförd i ArchiCAD 13 av A Nilsson
Resultat

När det kommer till att utforma en hållbar samhällsplanering är det vissa saker som ska tas i beaktning såsom parkeringsmöjligheter, förråd, gemensamhetslokaler, möjlighet till återvinning av avfall, insyn, väderstrecksorientering för bostäderna, med mera.

För att lyckas angöra de flytande bostäderna på ett passande sätt är tanken att kajer likt mindre hamnanläggningar byggs upp längs sjökanten. Kajen där parvillorna anläggs kommer utformas med snedställda utstick för att byggnaderna ska ges en vinkling och därigenom uppnå önskade väderstreck för uteplatserna. Kajerna kommer också förstärkas för att klara vikten av fordon som exempelvis räddningstjänst i form av brandbilar och ambulanser. Vid nödsituation ska räddningstjänsten enkelt kunna ta sig fram till bostäderna, vilket har varit ett starkt riktmärke vid utformningen av området.

Bild 65 - Kart- och satellitbild över området. www.maps.google.se

Muddring kommer vara nödvändig för att skapa ett godtagbart djup och det leder till att Munksjöns förörenade sediment måste saneras för att möjliggöra detta. Tanken är att behålla det befintliga gångstråket nära vattnet men på vissa ställen blir det nödvändigt att lägga om slingan och även utöka den. Ett riktmärke har också varit att försöka undvika att korsa gångstråket med tyngre trafik.
3.1.1.1 **Parkeringsar**

På land och i nära anslutning till parvillorna är det planerat för två stycken garagebyggnader om fyra garage per garagebyggnad. Garagen är till storleken relativt tilltagna med plats för en bil och med möjlighet till viss förvaring. Utanför varje garagebyggnad ges möjlighet till ytterligare en parkeringsplats per lägenhet, det vill säga fyra stycken parkeringsplatser som är tänkta att utgöra gästparkeringar.

Totalt blir det således sexton stycken parkeringar inklusive garagen. Kajen är tänkt att klara av tyngdlasten från fordon och detta gör det möjligt att komma närmare sin bostad vid exempelvis på- och avlastning.

Totalt blir det trettiotvå stycken parkeringsplatser inklusive parkeringshuset och av dessa kommer hälften fördelas ut till lägenheterna, delvis en parkeringsplats per lägenhet. Resterande parkeringsplatser kommer utgöra gästparkeringar till flerbostadshusen. Alternativet finns att vid behov använda parkeringshuset som ett mindre båtmagasin och minska antalet gästparkeringar från sexton till åtta stycken platser. Lika som för parvillorna kommer kajerna konstrueras för att klara laster från fordon vilket möjliggör för de boende att komma närmare sin lägenhet med bilen vid på- och avlastning.
3.1.1.2 **Förråd**

Lägenheterna i parvillorna får tillgång till ett externt förråd om tio-tolv kvadratmeter per lägenhet. Förråden byggs i par och förrådsbyggnaderna placeras på kajen i nära anslutning till bostäderna, inom tio-tolv meter.

I nära anslutning till varje flerbostadshus planeras två byggnader innehållande fyra stycken, åtta kvadratmeter stora förråd per byggnad samt en tjugo kvadratmeter stor tvättstuga med tvättmaskiner och torkmöjligheter.

En av anledningarna till att placera förråden på land är att hålla nere vikten på de flytande bostäderna samt underlättar förvaringsmöjligheterna för de boende genom att dem på detta sätt slipper bära tyngre föremål ned för bryggorna till bostaden.

![Bild 68 - Förråd parvilla](image1)

![Bild 69 - Förråd flerbostadshus](image2)
3.1.1.3 **Miljö**

Gångstråket kring Munksjön ska i stort bevaras men på vissa delar utökas och flyttas till viss del. Viktigt är att bevara det i nära anslutning till vattnet och bevara utsikten över Munksjön i så stor utsträckning som möjligt. Planen är att anlägga två parkområden där lek och rekreation kan äga rum. Mellan parvillorna och flerbostadshusen anläggs ett stort parkområde som ligger i direkt anslutning till Munksjön och vid sjökanten byggs en gångbrygga med två utstickande bryggor som går ut i Munksjön. I anslutning till parvillorna i liv med kajens mittpunkt anläggs ett något mindre parkområde med grillplats, lek- och rekreationsmöjligheter.

Befintlig vegetation är tänkt att bevaras i så stor utsträckning som möjligt men utöver den kommer även träd och buskar planteras för att skapa ett ekologiskt område som ska ge en fridfull och trevlig miljö med en naturnära känsla.

Tanken är att landmassorna som schaktas vid sjökanten omplaceras där utfyllnad blir nödvändig. På så sätt uppnås en bättre massbalans. Detta förutsatt att markmaterian är i gott skick och användbar.

![Diagram](Bild_70_-_Park-och_lekytor_i_området)
3.1.1.4 **Återvinning**

I anslutning till såväl parvillorna som flerbostadshusen planeras mindre byggnader för materialåtervinning och omhändertagande av hushållsavfall.

Bild 71 - Återvinningsstationer i området

3.1.1.5 **Sjötrafik**

Bild 72 - Sjötrafik
3.1.1.6 **Trafik på land**
Tanken är att hålla nere det tyngre trafikflödet i området för att minska buller, förorening och olyckor. De större vägarna anläggs med avstånd från vattnet och tanken är att dessa vägsträckor ska förses med begränsade hastigheter och då företrädesvis trettio kilometer per timme.

3.1.1.7 ** Publika lokaler**
Två gemensamhetslokaler planeras till området. En i närhet till parvillorna och en i närhet till flerbostadshusen. Dessa lokaler är till för att dem boende i de flytande bostäderna ska kunna hålla sammanträden och anordna större tillställningar.

Bild 73 - Gemensamhetslokaler i området

En restaurang eller likvärdig verksamhet planeras i närhet till det större parkområdet mellan parvillorna och flerbostadshusen. Denna ska vara öppen för såväl dem som bor i de flytande bostäderna som för allmänheten.

Bild 74 - Lokal för eventuell restaurangverksamhet
3.2 Hur kan en flytande bostad utformas?

För att uppnå en stabil flytkonstruktion krävs att vikten distribueras jämnt vilket medförde att planlösningarna fick anpassas efter detta. Andra utmaningar som legat till grund för utformningen av de flytande bostäderna har bland annat varit att skapa yteffektiva lägenheter, tillgängligheten, insyn, estetisk utformning samt att välja fasadmaterial som kan klara hårdare väderleksförhållanden. Tanken var att det tydligt skulle framgå att det inte är en husbåt utan en modern, permanent bostad på vatten. För att finna inspiration och skapa en förståelse för olika typer av utformning så granskades Villa Näckros i Kalmar och Aquavilla i Stockholm.

3.2.1 Parvillan

Fakta
Grundutförande: 4 rum och kök fördelat på två plan
Bruksarea (BRA)/ lägenhet: 139 kvm
Byggnadsarea (BYA)/ parvilla: 268 kvm
Storlek uteplats entréplan/ lägenhet: 23 kvm
Storlek uteplats övre plan/ lägenhet: 23 kvm
Fribordshöjd: 0,5 meter

Bild 75 - Skiss av parvillan. Utförd i ArchiCAD 13 av A Nilsson
3.2.1.1 **Planbeskrivning**

Entréplan

Entrén består av ett avskilt utrymme med möjlighet till förvaring och avhängning av ytterkläder. Detta utrymme skiljs från halldelen med en skjutdörr i glas och ligger i direkt anslutning till teknikrummet där det finns plats till diverse apparatur för bland annat ventilation, uppvärmning och avlopp. Vidare kommer hallen som ger möjlighet till ytterligare förvaring och härifrån nås även sovrum/kontor samt utrymme för personhygien med toalett, dusch, tvättmaskin och torktumlare.

Längre in i bostaden ligger köket med direkt anslutning till matplatsen i form av en öppen planlösning. I direkt anslutning till matplatsen ligger vardagsrumsdelen med plats för möbelgrupp och television.

Fönstret vid vardagsrummet är utskjutet ur fasaden och bildar en utstickande box som skapar en extra yta där det går att sitta. Från matsalsdelen/vardagsrumsdelen finns tillgång till en stor uteplats som nås genom ett vikdörrparti i glas.
Övre Plan
Övre våningen består av ett centralt utrymme som möts från trappan och matar mot en stor uteplats, ett stort- och ett lite mindre sovrum samt ett utrymme för personhygien med tillgång till toalett, dusch och möjlighet till förvaring.

Det större sovrummet har plats för bland annat dubbelsäng och förvaring. Detta rum ligger direkt ovanför vardagsrummet på entréplanet och även här är ett fönster utskjutet och skapar en box ur fasaden där det går att sitta. Det andra sovrummet ligger vägg i vägg med det större sovrummet och har bland annat plats för säng, arbetsplats och förvaring.

Uteplatsen nås från det centrala utrymmet genom ett vikdörrparti i glas, likt det på entréplanet. På uteplatsen är det förberett med en stålram som gör det möjligt att fästa in ett skärmtak.
3.2.1.2 **Utformningsbeskrivning av planlösningen**

Planlösningarna har utformats så lägenheternas installationsutrymmen blir samlade i anslutning till varandra för att bland annat underlätta dragning av vattenledningar och avlopp till hygienutrymmen, kök och teknikutrymmen. Utrymmet för personhygien på den övre våningen är placerat direkt ovanför köket på entréplanet. Alla installationsutrymmen ligger i anslutning till den lägenhetsskiljande väggen vilket medför att båda lägenheterna får sina installationsutrymmen i anslutning till varandra.

Bild 78 - Installationer samlade längs den lägenhetsskiljande väggen

Det mindre rummet på entréplanet kan användas för önskat ändamål, till exempel som sovrum alternativt arbetsrum.

Lägenheterna är utformade med två stora uteplatser vardera som gör att alla väderstreck utnyttjas. Detta gör det möjligt att placera parvillan på flertalet sätt och ändå få uteplatser med en god väderstreckorientering.
3.2.1.3 **Fasadmaterial**
Det yttersta, och utvändigt synliga fasadmaterialet består av mineritskivor konstruerade speciellt för fasadbruk. Skivorna är fuktbeständiga, brandsäkra och frostbeständiga samt står emot mögel- och rötangrepp. Skivorna platsmålas i önskad kulör efter monteringen och ger således en god estetisk inverkan.
(Cembrit Tepro AB, 2011)

3.2.2 Flerbostadshuset

Fakta

Grundutförande: 8 lägenheter, 2 rum o kök
Våningar: 2
Bruksarea/lgh: 44 m²
Byggnadsarea: 330 m²
Fribordshöjd: 0,5m

Bild 80 - Översikt av flerbostadshuset. Utförd i ArchiCAD 13 av D Odenmo
3.2.2.1 Utformning

De mest karaktäristiska dragen för flerbostadshuset är den förskjutna huskroppen och de exponerade, halvt inglasade balkongerna. Tanken med den förskjutna huskroppen var att bryta av och ge variation i den avlånga fasaden. En annan tanke var att den skulle påminna om den tidiga bebyggelsen vid norra Munksjöns strand där tomterna och husen bildade ett oregelbundet mönster utmed strandlinjen.

Bild 81 - Balkongerna bryter mönstret längs fasaden. Utfört i ArchiCAD 13 av D Odenmo

Taket är belagt med svart falsad plåt, vilken är tänkt att fortsätta löpa utmed den ena husfasaden. Övriga fasader är klädda i vitmålad mineritskivor, speciellt konstruerade för fasadbruk. Fönsterkarmar och fönsterdetaljer är utförda i svartmålad aluminium.

Loftgången och trappuppgången är utförd i stål och trä. De bärande elementen som balkar och pelare samt räcken är utförda i stål. På denna ram vilar ett trädäck.

Bild 82 - Loftgången matas från en central trappuppgång. Utförd i ArchiCAD 13 av D Odenmo
3.2.2.2 Planering
Flerbostadshuset består utav åtta lägenheter å 44 m². Bostäderna är indelade i två rum och kök. Tanken med lägenheterna var att göra dem så yteffektiva som möjligt utan att de skulle kännas trångbodda.

Värmedistribution i bostäderna sker med vattenburen golvvärme. Genom att använda vattenburen golvvärme i lägenheterna får man friare och större möbleringsmöjligheter då man slipper ta hänsyn till radiatorer.

Entrélösningen till lägenheterna består av ett loftgångssystem som sammanlänkas av en centralt placerad, öppen trappuppgång. Med loftgången blir huskroppen djupare vilket bidrar till en stabilare flytkonstruktion.

Alla kök och badrum är placerade utmed samma fasad av byggnaden. Detta underlättar dragning av vatten och avloppsledningar. Alla tunga installationer i kök och badrum är centralt placerade i förhållande till flytpontonerna vilket gör att byggnaden ligger stabilt i sjön.

Förrådsutrymmen till de boende finns dels i plan två jämte trappuppgången, och dels på land i anslutning till bostadshuset. Förråden i plan två är avsedda för de boende i samma plan. Lägenheterna i plan ett har sina förråd på land.

I bottenvåningen jämte trappuppgången är byggnadens gemensamma teknikutrymme beläget. Här ryms nödvändig apparatur för el, värme och vatten bl.a. värmepump och avloppspump. Teknikrummet är beläget något lägre än entréplan, detta för att få tillräckligt självfall på avloppsledningar i entréplanet.
3.3 Hur kan de tekniska lösningarna för en flytande bostad se ut?

Många tekniska lösningar skiljer sig från de vid uppförande av bostäder på land. Det är främst dessa som är intressanta att studera närmare. Detta innefattar bland annat grundkonstruktionen, anslutning av vatten- & avloppsledningar och förankring av bostaden. Även de tekniska lösningarna som nödvändigtvis inte skiljer sig från en traditionell bostad har granskats. Genom fallstudier av Villa Nääkros i Kalmar och Aquavilla i Stockholm har information kring olika lösningar inhämtats.

Utförandet för de tekniska lösningarna är i stort sett desamma för både parvillorna och flerbostadshusen. Nedan kommer en närmare presentation av dessa.

3.3.1 Pontoner

Pontonerna utförs i armerad betong som fylls med en kärna av cellplast vilket ska ge en isolerande effekt samt förbättra pontonens flytförmåga. Storleken på pontonerna för parvillorna blir ungefär 17x16 meter och för flerbostadshusen 39x9 meter. De är tänkta att ha en fribordshöjd på 500 millimeter och en total tjocklek på dryga en och en halv meter.

Påkörningsskydd av betongpontonerna kommer utgöras av en horisontell träpanel som fästs runtom hela pontonen ovan vattenytan. Panelerna är tänkta att skydda betongen från mekanisk åverkan samtidigt som de utgör en estetisk funktion.

3.3.2 Väggkonstruktion

Väggkonstruktionen är utförd i ett så kallat Casabona-system. De största fördelarna med ett sådant system är att det är lättare än ett konventionellt stålregelsystem samtidigt som väggelementets u-värde blir jämlikt med en vägg utförd med träregelstomme. De färdiga elementen medför även kortare monteringsstider vilket i sin tur resulterar i lägre produktionskostnader.
3.3.3 Uppvärmning

För en flytande bostad som parvillan är det en mindre bra lösning att förlägga slangen på bottnen med tanke på bland annat flexibiliteten vid förflyttning av bostaden, eftersom detta blir ett stationärt utförande. Därför är tanken att kollektorslangen fästs på undersidan av skrovet som går ned en bit under vattenytan vilket ger skydd mot is och ändå ger en hög verkningsgrad. Tanken är att slangångan läggs i raka parallella spår på skrovets undersida och därmed blir exponerad mot vattnet i dessa punkter för att utvinna maximal effekt, samtidigt som slangen är helt ingjuten vid vändpunkterna.

För att skapa spåren i skrovet placeras vid gjutningen profilerade plastelement i formens undersida där slangen förläggs. Plastprofilerna kommer efter gjutningen att sitta kvar och slangen fästs med klamrar i dessa. Genom denna typ av utförande skyddas slangen bättre mot mekanisk åverkan än om den hade fästs direkt på skrovets undersida.

Värmen från sjövärmepumpen fördelas sedan ut i byggnaderna genom vattenburen golvvärme.
3.3.4 Ventilation

Ventilationen i byggnaderna ska utgöras av från- och tilluftssystem med fläktar som driver både till- och frånluften. Luften som tas in utifrån kyls ned alternativt värms upp och filtreras för att rena den. Frånluftsdon varigenom den förorenade, varma luften sugs ut placeras i kök och i utrymmen för personhygien.

3.3.5 Vatten & Avlopp

Spillvattnet är tänkt att pumpas ut och upp till den kommunala spillvattenledningens förbindelsepunkt genom avloppsledningar som går genom betongpontonen ovan vattenytan och fästs in under de anslutande bryggorna. I byggnaden transporterar avloppsvattnet i avloppsrör med självfall till byggnadens lägsta punkt som ligger i byggnadens teknikutrymme där det samlas upp i en tank varifrån det tryckpumpas ut till förbindelsepunkten. Tappvattnet är också tänkt att anslutas mot det kommunala VA-nätet via en servisledning som leds i ett samlat utförande med avloppsledningarna till och från byggnaden.
3.3.6 Förslag på förankring

På bilderna ovan illustreras infästning från fackverket in till armeringen i betongen. Fackverksbalken på bilden tillhör flerbostadshuset ändpunkter och är något bredare. Två fackverksbalkar placeras parallellt med varandra och kopplas samman till en prefabricerad skivkonstruktion med hjälp av bygglar som skruvas fast i skivkonstruktion med jämna mellanrum. Den prefabricerade skivkonstruktionen består av armerad betong och på den övre delen (gångsidan) har ett kilformat nersänkt mönster som intensifieras ju närmare personen kommer flytkonstruktionen. Tanken bakom det nedsänkta mönstret och dess intensifiering åt ena riktningen har sin bakgrund i handikappanpassningen. Om exempelvis en rullstolsburen person med dålig syn skulle förflytta sig över bron så skulle den känna intensifieringen av mönstret och då förstå att den snart är över på andra sidan bron.

Längden på landgången/förankringen har att göra med tillgänglighetskraven. När vattennivån varierar så kan höjdskillnaden tas upp med längden av landgången till skillnad mot en flytkonstruktion som ligger direkt an mot en kaj.

Ledningsdragning av el, vatten, avlopp och annan teknisk försörjning tillbostaden sker under förankring/brokonstruktionen. För att försäkra sig om att ledningarna ska kunna ta upp den långdutvidgningsdifferens som sker när temperaturväxlingar inträffar under de olika årstiderna samt de små rörelser som förekommer vertikalt i konstruktionen, S-ass ledningarna i horisontalled istället för vertikalled som de gjort på Villa Nääkros - moder marine homes. S-dragningen i horisontalled har både en estetisk funktion och en praktisk funktion. Med S-ade ledningar i vertikalled minskar risken för att ledningarna fryser fast och, eller pressas sönder av de is-tryck som kan uppstå mot kajen samtidigt blir ledningarna i princip osynliggjorda vilket bidrar till ett mer stilren konstruktion.
Parvillan

Flerbostadshuset

För flerbostadshuset består förankringen av en brygga (konstruerad på samma sätt som parvillornas) som är centralt förtöjd på pontonen samt två stabiliserande stag i pontonens främre hörn. Bryggbredden är satt till 2,5 meter.
4 DISKUSSION

4.1 Resultatdiskussion

I denna del diskuteras rapporten främst utifrån syfte och frågeställningar. Styrkor och svagheter kring resultatet och metodvalet behandlas var för sig.

4.1.1 Hur kan ett flytande bostadskvarter utformas?

Resultatet av det flytande bostadskvarteret med två flerbostadshus och fyra parvillor, totalt 24 bostäder, var mer småskaligt än vad som från början var tänkt. Anledningen till detta berodde till stor del på svårigheten att hitta ett tillräckligt stort område kring Munksjön med rätt förutsättningar. De faktorer vi prioriterade främst var goda solförhållanden, närhet till centrum och bevarandet av Munksjöns omgivande topografi.

Eftersom projektet hela tiden varit planerat som en vision har det varit svårt att föreställa sig framtidiga möjligheter. De realistiska och nuvarande förutsättningarna tog ofta överhanden och skapade på så vis hinder för visionen som helhet. Tanken var dock hela tiden att sammankoppla verklighet med vision och vi anser att vi lyckades med detta.

4.1.2 Hur kan en flytande bostad utformas?

Man kan säga att bostäderna utformades inifrån och ut, där en fungerande planlösning prioriterades. En tanke var att samla tunga tekniska installationer någorlunda ceneterat i konstruktionen för att få en stabil flytförmåga och underlättade tekniska anslutningar mot land.

Beträffande de exteriört visuella delarna för bostäderna valdes slitstarka men ändå estetiskt tilltalande material som klarar av hårda klimatförhållanden.
4.1.3 Hur kan de tekniska lösningarna för en flytande bostad se ut?

Frågeställningen kring de tekniska lösningarna kom att bli den frågeställning som krävde mest bakgrundsundersökning och tog således mest tid att besvara.

På grund av rådande miljöförhållanden i Munksjön kunde vi inte använda oss av en traditionell förankring som t.ex. gravitationsankare eller pålning. Resultatet blev en landgång som förankrar flytkonstruktionen mot land med underliggande försörjningssystem för VA- och elledningar.

Pontoner valdes framför betongkassuner som flytande grund till husen. Vi ansåg att en ponton fylld med cellplast var ett säkrare val än en betongkassun vars konstruktion löper större risk att ta in vatten vid mekanisk åverkan.

En annan teknisk anordning som skapade frågetecken var uppvärmningen av bostäderna. Här valdes i ett tidigt skede sjövärmepump men problemet var hur kollektorslangarna skulle angöras för att uppnå maximal upptagningsförmåga och samtidigt hållas skyddade mot skadlig åverkan. Alternativet att lägga kollektorslangar direkt på sjöbottnen gick bort på grund av att bostädernas mobilitet därmed skulle försvinna samt med anledning av risken för skadlig åverkan. Genom att istället lägga kollektorslangarna delvis exponerade på skrovets undersida uppnådes både god upptagningsförmåga och skydd.

En lätt stomme var viktigt för att få jämvikt i flytkonstruktionen samt hålla nere totalvikten på huskroppen. Ett regelsystem bestående av slitsade stålprofiler minskade vikten samtidigt som risken för fuktuptagning försvann. En ytterligare anledning till att vi valde denna typ av stomme var att slitsade stålprofiler håller ett bra värdet med avseende på värmegenomgångsmotståndet.
4.2 Metoddiskussion

4.2.1 Hur kan ett flytande bostadskvarter utformas?

Vi studerade referensobjekt med liknande karaktär och placeringsförhållanden. Projekt som studerades var Marinstaden i Nacka, Hammarby Sjöstad och Sluseholmen i Köpenhamn. Anledningen till valet av dessa har sin grund i att vi ville samla information och kunskap om projekt som utförts i nordiska klimat och som hade en liknande karaktär med bebyggelse kring och på vattnet.

Efter en del referensstudier skapades tanken att förlägga visionen mot Munksjöns västra del, närmare bestämt södra delen av Munksjökajen. Arbetet med att studera och ta fram förslag på hur detta kunde lösas pågick under en längre period under vilken nya idéer och tankegångar uppkom. Vi insåg efter vidare undersökningar att denna placering inte var fördelaktig, snarare tvärtom med insikten om föroreningar och den valda placeringens utformningsmöjligheter med avseende på såväl topografin som möjligheten att förlägga bostäderna och uppnå de önskade förutsättningarna. Då fick projektet mer eller mindre en nystart där planen för projektets forskridande lades om och de handlingar och idéer som framtagits lades ner.

Vi fick sedermera upp ögonen för Munksjöns östra områden och efter såväl fallstudier som referensstudier föll det nya placeringasvalet på Simsholmen med norrgående omnejd.

Skisser och ritningsförslag togs fram digitalt med hjälp av Google Sketchup och ArchiCAD samt grovskisser för hand. En intern fråga som uppkom inom gruppen var huruvida det flytande bostadskomplexet skulle disponeras i förhållande till landytan. Skulle bostäderna samlas ihop och förankras längsmed utstickande bryggpontoner för att komma ut en bit i sjön? Var det ett alternativ att förankra bostäderna mer separat längsmed sjökanten och därigenom ta upp en större del av landytan? Var det möjligt att inkräkta på sjöbottnen genom att påla fast de eventuella bryggpontonerna och bostäderna?

Många av dessa frågor uppstod på grund av osäkerheten kring visionens realistiska förankring och den bildade vetskapen om Munksjöns förreningar i bottensedimenten.
Beslutet föll senare på att förankra alla flytande bostäder separerade längsmed sjökanten och hålla nere antalet av våra då framtagna bostadsmodeller. En anledning som låg till grund för det beslutet var att möjliggöra för en hållbar samhällsplanering med avseende på närheten mellan bostäderna och deras bostadskomplement. Även om projektet är en framtidsvision så ville vi ändå hålla utformningen av kvarteret inom realistiska gränser med avseende på utförande och hållbar samhällsplanering.

4.2.2 Hur kan en flytande bostad utformas?

Huvudidén kring utformningen av den enskilda flytande bostaden var att utforma ett permanent, hållbart och modernt boende som fungerade likt en bostad på land. Byggnadsmodellerna skulle inte utformas som klassiska båthus utan istället som moderna fastighetstillbehör som förläggs på någon typ av förankrade betongpontoner. Med detta i åtanke påbörjade vi våra referensstudier genom att söka reda på projekt som överensstämde med vår ambition. Studierna genomfördes med hjälp av fallstudier och referensstudier och detta blev det första steget på vägen mot vårt slutgiltiga mål.

4.2.3 Hur kan de tekniska lösningarna för en flytande bostad se ut?

Denna del kom att bli en av de mest omfattande och tillika mest problematiska i genomförandet av projektet och det förstod vi redan innan starten. Genom referensstudier och fallstudier har information skaffats om huruvida tekniska lösningar kan utföras för flytande bostäder. Här inkluderas pontoner/flytkonstruktioner, förankringar, väggkonstruktioner, uppvärmningssystem, ventilation, vatten och avlopp samt el.

De största frågetecknen uppkom runt flytkonstruktionerna och förankringen av dessa. Det var svårt att finna några klara besked om hur det fungerar på lång sikt eftersom det finns ytterst få äldre projekt av denna typ där man kan utvinna information om hållbarhet. I vårt projekt har flytkonstruktionerna förutsatts hålla under en längre period och i visionen har inga konstruktionsberäkningar gjorts för hållfasthet och liknande problemställningar. Valet vi gjorde var att använda cellplastfyllda betongpontoner som förutsätts hålla flytförmågan och hållfastheten med våra utformade byggnader ovanpå. Vi har dock tänkt på att hålla dimensionerna på såväl byggnaderna som pontonererna inom realistiska gränser, samt hela tiden haft flytvikts dimensioner på såväl byggnaderna och bland annat försökt välja lättvikt material. Vi har även tagit hänsyn till klimatförändringar såsom isbildning, vattenstånd och väderförhållanden samt hur dessa kan tänkas påverka diverse konstruktioner.

Förankringen av pontonerna var en fråga som bearbetades under större delen av projektet. Tanken var hela tiden att dessa inte skulle kunna flyttas i horisontell led utan enbart vertikalt, efter att de förankrats. Tankevägen gick mellan att påla, förankra med kätting till betongkassuner på bottnen eller alternativt enbart förankra med någon form av flexibla, stationära brygger och tag. Resonemang fördes runt dessa alternativ och även kring kombinationen av dessa men till slut föll valet på bryggförankringen där vi själva gjorde valet att konstruera en hållbar brygga som kunde klara påfrestningar i form av krafter och moment.

Skisser på konstruktioner och tekniska lösningar har utförts med hjälp av Google sketchup för att illustrera tankarna med funktionen samt ge en förståelse för hur utförandet skulle kunna se ut.
5 REFERENSER

5.1 Litteratur

Referenser

5.2 Elektroniska källor

Arkitega Architects. (den 31 Maj 2011). *People in Architecture*. Hämtat från Arkitega Architects:

Cembrit Tepro AB. (den 16 Aug 2011). *Cembrit - Produkter*. Hämtat från Cembrit:

Copenhagen X. (den 31 Maj 2011). Hämtat från Copenhagen X:

DN Bostad. (den 24 aug 2007). *Fakta- pressmaterial*. Hämtat från Marinstaden:

Flooré Produktion AB. (den 11 Maj 2011). *Flooré Golvvärme*. Hämtat från Flooré Värmegolv:

Jönköpings Kommun. (den 8 December 2010). Hämtat från
http://www.jonkoping.se/toppmeny/Byggaochbo/aktuella/aktuella/Byggaochbo/2011/12/08/munksjob ron.4.4550fa7f12ca218dcdb80001996.html den 21 April 2011

5.3 Muntliga källor
Bergström, R. (den 5 Maj 2011). Styrelseledamot, Aquavilla AB.

Lundberg, J. (den 6 Maj 2011). Säljare, Aquavilla AB.

5.4 Bilder
Bildmaterial som saknar källhänvisning är tagna eller ritade av författarna.
6 SÖKORD

A
Aquavilla ... 21, 24, 25, 28, 29, 31, 36, 40, 76, 78

C
Casabona ... 28, 29, 68

F
förankring ... 31, 32, 71, 72, 73, 75, 76
föröreningar ... 45, 46, 75, 76
förråd ... 15, 19, 22, 51, 54, 56, 67, 76

G
golvvärme ... 19, 36, 39, 67, 69

H
Hammarby Sjöstad ... 10, 11, 75, 80

K
kollektorslangar ... 35, 36, 37

M
Marinstaden .. 8, 9, 75, 78, 79
Modern marine homes .. 14, 16, 25, 27, 79, 80
Munksjön .. 41, 45, 48, 54, 55, 57, 71, 75, 79

P
pontoner .. 68

S
samhällsplanering ... 54, 76
Seaflex .. 31, 32, 71, 80
Simsholmen ... 49, 50, 75
skruvankare ... 32

T
tillgänglighet ... 20, 63
transporter ... 23

V,W
vatten och avlopp .. 21, 22, 25, 33, 34, 77
ventilation .. 40, 61, 77
Villa Näckros ... 14, 17, 25, 27, 30, 33, 35, 40, 71, 73, 76
väggsystem ... 27, 28
värmesystem ... 35, 36
7 BILAGOR

<table>
<thead>
<tr>
<th>Bilaga</th>
<th>-</th>
<th>Översiktsplan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bilaga 1</td>
<td>-</td>
<td>Planlösningar Parvila</td>
</tr>
<tr>
<td>Bilaga 2</td>
<td>-</td>
<td>Sektioner Parvila</td>
</tr>
<tr>
<td>Bilaga 3</td>
<td>-</td>
<td>Fasader Parvila</td>
</tr>
<tr>
<td>Bilaga 5</td>
<td>-</td>
<td>Planlösningar Flerbostadshus</td>
</tr>
<tr>
<td>Bilaga 6</td>
<td>-</td>
<td>Sektioner Flerbostadshus</td>
</tr>
<tr>
<td>Bilaga 7</td>
<td>-</td>
<td>Fasader Flerbostadshus</td>
</tr>
<tr>
<td>Bilaga 8</td>
<td>-</td>
<td>Produktblad Avloppspump</td>
</tr>
<tr>
<td>Bilaga 9</td>
<td>-</td>
<td>Handskisser</td>
</tr>
</tbody>
</table>
ÖVERSIKT
1:1000

SITUATION
FLYTANDE BOSTÄDER

BILAGA 1
PARVILLAN

PLAN 1
1:100

VISION SJÖSTAD
Jimmy S
David O
Albin N

BILAGA 2
FLERBOSTADSHUSET

VISION SJÖSTAD
Jimmy S
David O
Albin N

BILAGA 5
ABS LIFTING STATION
PIRANHAMAT
701 AND 1002

Flood-proof sewage station for automatic sewage pumping from areas below the backwash level in accordance with DIN/EN 12056. The PIRANHAMAT 701 and 1002 is used for reliable and economical discharge of wastewater under pressure using small diameter lines.

Flood-proof sewage lifting units for installation in new buildings or for the renovation of old buildings for the effective dewatering of areas below the sewer backwash level.

Application areas
Dewatering of sewage containing faecal matter in accordance with DIN/EN 12056 for building and areas dewatering below the backwash level. The PIRANHA pump fitted allows the economical discharge of effluent under pressure using small discharge lines. Most suitable for applications with min. head of 8 m.

- PIRANHAMAT 701 with one pump for single family houses.
- PIRANHAMAT 1002 with two pumps for buildings containing a number of dwellings and for small industry.

Design
Tank
Gas and odour-tight to DIN/EN 12050-1, in compact shape for erection either at floor level (slope of incoming sewage line must be considered) or in sunken form, with non-return valve.
Option of inlet ports at different heights and with different diameters.
PIRANHAMAT 701: DN 40/70/100
PIRANHAMAT 1002: DN 50/100/150
Supplied complete with connection facility (DN 40) for hand membrane pump.

Motor
Three phase 400 V3~ and single-phase 220 – 240 V~, 50 Hz, 2-poles (2900 min-1); Insulation Class F, Protection Type IP 68, water-pressure-tight fully flood-proof.

Bearings
Bearings of the motor shaft are lubricated-for-life ball-bearings.

Shaft sealing
Shaft sealing between motor and hydraulic section by means of a mechanical seal of silicon carbide, independent of direction of rotation, resistant to temperature shock and to dry running.
Motorside: Lip seal, oil lubricated

Discharge Outlet
Discharge outlet cast iron threaded flange G1¼”.

Shredding System
Shredding System consisting of spiral bottom plate with stationary cutter ring with cutting edges and a shredding rotor located below the impeller for optimum blockage-free running.

Control Unit
Control Unit of corrosion resistant housing, Protection Type IP 54, for mounting on a wall away from the lifting station in a flood proof area.

Maximum Medium Temperature
40 °C continuous use, 60°C intermittent use (max. 5 min).

Materials
Tank____________________________________ Polyethylene (PE)
Motor housing ___________________________ Cast Iron GG-25
Motor shaft__________________Stainless Steel 1.4201 (AISI 420)
Volute, impeller & bottom plate ______________ Cast Iron GG-25
Fasteners ___________________Stainless Steel 1.4571 (AISI 316)
Attention to the backwash level is of vital importance for effective dewatering.

- Vent pipe [DN ≥ 70] brought above roof level
- Control unit with level control
- Power supply
- Motor cable
- Control line for level switching must have a continuous rise
- ABS submersible pump
- PIRANHAMAT collection tank
- Backwash loop with base above the backwash level
 Backwash level* is determined locally
- Discharge line 1¼”
- Pump sump for the dewatering pump with built-in non-return valve ROBUSTA/TS or CORONADA/KS

A correct layout of the pipes system and installation of the lifting station itself in accordance with the relevant DIN/EN 12056 regulations are a precondition for reliable pumping of sewage. Locations for sewage lifting stations must be large enough that a working area of at least 60 cm width or height is available around all parts which have to be operated or maintained. A pump sump should be provided for dewatering of the room itself.
Dimensions PIRANHAMAT 701

Connections

1. Inflow* DN 100
2. Inflow DN 100
3. Inflow DN 40
4. Drain DN 40
5. Inflow DN 100
6. Inflow DN 40
7. Inflow* DN 100
8. Drain DN 40

* the inflow ports [185 mm] are not suitable for the usage under DIN/EN 12056

Connections

1. Inflow horizontal DN 100
2. Inflow DN 100
3. Inflow DN 100
4. Inflow DN 100
5. Inflow DN 100
6. Inflow DN 100
7. Inflow DN 40
8. Inflow/Hand membrane pump DN 40
9. Vent/Inflow DN 70
10. Vent/Inflow DN 70
11. Level control DN 40
12. Discharge line DN 40

Inflow* DN 100
Inflow DN 100
Inflow DN 40
Drain DN 40
Inflow* DN 100
Vent/Inflow DN 70
Inflow/Hand membrane pump DN 40
Level control DN 40
Discharge line DN 40

Pipeline to be supplied by customer

Dimensions PIRANHAMAT 1002

Connections

1. Inflow horizontal DN 100
2. Inflow DN 100
3. Inflow DN 100
4. Inflow DN 100
5. Inflow DN 100
6. Inflow DN 100
7. Inflow DN 150
8. Inflow DN 100
9. Inflow DN 50
10. Inflow DN 150
11. Inflow DN 40

1) Can be used as a vent rising to above roof level.
2) Can be used as a connection for the hand membrane pump.

Pipeline to be supplied by customer
Technical Data

<table>
<thead>
<tr>
<th></th>
<th>Motor power*</th>
<th>Speed at 50 Hz</th>
<th>Rated voltage</th>
<th>Rated current</th>
<th>Cable length***</th>
<th>Weight**</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIRANHAMAT 701 D</td>
<td>2.3 kW</td>
<td>2900 min⁻¹</td>
<td>400 V ±3</td>
<td>4.0 A</td>
<td>4 m</td>
<td>58 kg</td>
</tr>
<tr>
<td>PIRANHAMAT 701 W</td>
<td>2.3 kW</td>
<td>2900 min⁻¹</td>
<td>220–240 V</td>
<td>7.0 A</td>
<td>4 m</td>
<td>58 kg</td>
</tr>
<tr>
<td>PIRANHAMAT 1002 D</td>
<td>2.3 kW</td>
<td>2900 min⁻¹</td>
<td>400 V ±3</td>
<td>4.0 A</td>
<td>4 m</td>
<td>98 kg</td>
</tr>
</tbody>
</table>

*P₁ = Power taken from mains; P₂ = Power at motor shaft.

**additional weight of the hand membrane pump = 13 kg

***Standard execution: Cable length: Control unit fitted with 1.5 m cable and plug [see SANIMAT1001, 1002].
Tank with pump(s), automatic control system with alarm.
Non-return valve system with junction piece.

Performance Curves 50 Hz

![Graph showing head (H) vs. discharge (Q) for PIRANHAMAT 701D/1002D and PIRANHAMAT 701W.](image)

- **Total head (H)**: Total head values for the different models are shown on the graph.
- **Discharge volume (Q)**: Discharge volume values are indicated for different points on the graph.

Accessories

<table>
<thead>
<tr>
<th>Description (Materials)</th>
<th>Size</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hand membrane pump G 1½” with built-in non return valve for separate wall fixing</td>
<td>Size</td>
<td>14990028</td>
</tr>
<tr>
<td>Wall fixing kit for hand membrane pump.</td>
<td></td>
<td>62660036</td>
</tr>
<tr>
<td>Non-return valve [GG-20] Ball type</td>
<td>G 1¼”</td>
<td>61400525</td>
</tr>
<tr>
<td>Gate valve (brass) with internal thread</td>
<td>G 1¼”</td>
<td>14040005</td>
</tr>
<tr>
<td>Blanking-off plate to cover opening if pump is removed for servicing</td>
<td></td>
<td>32485012</td>
</tr>
</tbody>
</table>

Electrical Accessories

<table>
<thead>
<tr>
<th>Description</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plug in alarm for EURO-socket 230 V with audible signal, alarm signalling diode light and cancel button, potential-free fault signal output, mains operated however with charging unit for mains independent operating.</td>
<td>16020201</td>
</tr>
<tr>
<td>NC-batteries 9 V TR7-8, for mains independent operating.</td>
<td>12820018</td>
</tr>
</tbody>
</table>

Control unit

- **Basic unit for internal erection with alarm unit, potential-free fault indicator.**
- **Option of float switch or electropneumatic level control system.**
- **Control units for external erection also available.**

Contact ABS for further information.