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ABSTRACT 
 
Carbon dioxide transcritical cycles have become more and more investigated during the last decade. For all systems 
operating with such a cycle, there will be at least one heat exchanger to either heat or cool the supercritical carbon 
dioxide. Unlike in the sub-critical region, the supercritical carbon dioxide’s thermophysical properties will have 
sharp variations in the region close to its critical point. This variation has a significant influence on the shape of the 
heat exchanger’s temperature profile and the heat transfer performance of the heat exchanger. Therefore, the 
performance of the heat exchanger used for supercritical carbon dioxide cooling or heating process should be 
evaluated by taking this effect into account. This paper discusses the heat exchangers used for supercritical carbon 
dioxide refrigeration process including a suction gas heat exchanger in the cycle. Engineering Equation Solver 
(EES)1 and Refprop 7.02 are used for cycle calculations and for properties calculations.  
 

1. INTRODUCTION 
 
Carbon dioxide is an environmental benign natural working fluid. With the increasing concern for environmental 
problems caused by the use of synthetic working fluids in different heating and cooling systems, the research on 
carbon dioxide transcritcal cycles has aroused increasing interest since the last decade. Compared to the systems that 
operate with other working fluids, systems operating with carbon dioxide have many advantages:  Carbon dioxide is 
inexpensive and abundant in the nature. Compared with other natural working fluids, it is more chemically stable 
and reliable (i.e. non-explosive, non-corrosive). Further, due to its relatively high working pressure, the carbon 
dioxide system is more compact than the system operating with other working fluids. Therefore, carbon dioxide has 
been investigated for use as working fluid in many applications: refrigerators, heat pumps (Kim et al. 2004) but also 
for power production (Feher 1967, Dostal et al. 2004, Chen et al. 2005) for instance. Unless being used as a 
secondary working fluid in indirect system for refrigeration applications in supermarkets, the corresponding cycles 
for carbon dioxide systems in all these applications will be transcritical cycles (for refrigeration/heat pump and 
power production applications) or entirely supercritical cycles (for power production applications). The main 
difference between these two types of cycles is weather the cycle is partly located in the supercritical region or 
totally located in the supercritical region. 
  
Unlike in the sub-critical region, the thermophysical properties of a supercritical working fluid will have sharp 
variations in the region close to its critical point. This characteristic will greatly influence the heat transfer 
characteristics and the temperature profile of the heat exchanger if it operates near the critical point. Consequently, 
this characteristic will have a significant influence on the heat exchanger size in different applications of the carbon 
dioxide transcritical cycles. Therefore, the performance of the heat exchanger used for supercritical carbon dioxide 
cooling or heating process should be evaluated by taking this effect into account. The specific heat (Cp), which is 

 
1 Engineering Equation Solver: http://www.fchart.com/ees/ees.shtml
2 Refprop 7.0: http://www.nist.gov/srd/nist23.htm
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the main factor that influences the working fluid temperature profile in the heat exchanger, is plotted as a function of 
temperature for different pressures in Figure 1. 
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Figure 1. Supercritical carbon dioxide’s specific heat vs. temperature at different pressures (calculation results from 

Refprop 7.0) 
 
It can be noticed in Figure 1 that the specific heat of the supercritical carbon dioxide is changing with the 
temperature with a higher peak when the pressure get close to the critical pressure. Further, it may also be noticed 
that the temperature corresponding to the peak in specific heat is increasing with the increasing of pressure. 
 
For the transcritical refrigeration cycle, this sharp variation can take place either in the Internal Heat Exchanger 
(IHX3),when transferring the heat to the low pressure side carbon dioxide or in the Gas Cooler (GC) ,while rejecting 
heat to the heat sink. However, compared to the specific heat variation of supercritical carbon dioxide, the specific 
heat of heat sink (e.g. cooling air for gas cooler) and low pressure side carbon dioxide are not varying much.   
 
The specific heat variation of the heat sink (air) for the GC and the low pressure side carbon dioxide in the IHX are 
plotted as a function of temperature in figure 2. Note the differences in scale compared to figure 1.  
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Figure 2. Specific heat of gas cooler’s cooling air at atmospheric pressure and of evaporator’s outlet carbon dioxide 
at different pressures (calculation results from EES and Refprop 7.0) 

                                                           
3 Sometimes referred to as suction gas heat exchanger 
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It can be observed from the above figures that the specific heat of supercritical carbon dioxide is changing over a 
much bigger range when compared to the heat sink (air) or the CO2 at the evaporator’s outlet. The difference in 
specific heats will thus influence the heat transfer performance of the heat exchanger and the shape of the heat 
exchanger’s temperature profile (in both GC & IHX). Consequently, so called “pinching”, which may limit the 
performance of the heat exchangers, may also occur in the heat exchanger. Therefore, the specific heat of different 
heat exchanger working fluids should be carefully examined when evaluating the heat exchangers that operate with 
supercritical carbon dioxide. 
 

2. BASIC CYCLE ANALYSIS 
 
A typical carbon dioxide transcritical refrigeration cycle can be analyzed as follows to show the influence of 
supercritical carbon dioxide specific heat’s variation on the heat exchanger. The basic carbon dioxide transcritical 
refrigeration system is composed of five parts, namely: evaporator, compressor, GC, expansion valve and IHX. The 
schematic system layout is showed in figure 3. 
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Figure 3. Schematic layout of carbon dioxide transcritical refrigeration system 

 
The cycle operating conditions are selected according the most commonly used working condition suggested by 
other researchers and in CO2 automobile A/C prototype testing (Kim et al., 2004). The evaporation temperature is 
selected to 5°C and the corresponding pressure will be 3.97 Mpa. The compressor’s isentropic efficiency is assumed 
to 75% according to the research done by Rozhentsev and Wang (2001). The gas cooler is assumed to be cooled by 
air with 20 ºC inlet temperature and 0.5kg/s available mass flow rate. For the heat rejection pressure, Liao et al. 
(2000) proposed a correlation to predict the optimum heat rejection pressure in terms of evaporation temperature and 
the GC’s outlet temperature, which is expressed as equation (1). 
 

)34.9381.0()0157.0778.2( −+−= eceopt tttp                                           (1) 
 
Based on equation (1), the optimum heat rejection pressure for the proposed working condition will be 8.7 Mpa 
Moreover, a 5 ºC superheat after the evaporator is assumed as a fixed value to ensure that there is no moisture at the 
compressor inlet. The cycle operating conditions are given in table 1 and the corresponding cycle T-S chart and 
logP-H chart are also plotted in figure 4.  
 

Table 1. Basic combined cycle working condition 
 

Items Value Unit 
Evaporator pressure 3.97  Mpa 
Evaporation temperature 5 ºC 
Cooling capacity 10 KW 
Superheat after Evaporator 5 (fixed value) K 
Gas cooler pressure 8.705 Mpa 
Gas cooler outlet temperature 35 ºC 
Compression efficiency 75% - 
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Figure 4. (a)T-S chart of carbon dioxide transcritical refrigeration cycle (b) logP-H chart of carbon dioxide 

transcritical refrigeration cycle (from EES) 
 
The model implanted in EES shows that under the pre-described working condition, the air temperature after passing 
the condenser will be 46.3 °C and the supercritical carbon dioxide’s temperature at the IHX’s inlet will be 36.21 °C. 
Based on the calculations, a Cp-∆h chart is developed for the integrated total heat exchanger length, which includes 
both IHX and the GC4, to show the specific heat variations of all the working fluids (i.e. supercritical CO2, 
evaporator’s outlet CO2 and the GC’s cooling air) along the two heat exchangers (figure 5). In figure 5, the left part 
of the curves shows the CP variation along the IHX (d-e for supercritical CO2, a-b for evaporator’s outlet CO2) and 
the right part shows the CP variation along the GC (c-d for supercritical CO2, g-h for gas cooler’s cooling air). The 
arrows show the direction of the fluid flow. It can be noticed from figure 5 that after being compressed to the 
supercritical region, the supercritical CO2 enters the GC with a moderate Cp value (c). Inside the GC, the Cp value 
of supercritical CO2 increases slightly at the beginning and then increases sharply until it reaches its peak value. 
After this point, the Cp value starts to decrease until the supercritical CO2 reaches the outlet of GC (d). After 
entering the IHX, the CP value of supercritical CO2 keeps decreasing until it reaches the IHX’s outlet (e). On the 
other side, the Cp value of evaporator’s outlet CO2 shows a slightly decreasing along the IHX (a-b), while the Cp 
value of GC’s cooling air shows an almost “constant” value along the GC (g-h).  
 
As mentioned before, the difference in the trend of Cp variations for different fluids will influence the shape of the 
temperature profile in both IHX and GC, which is showed in figure 6. As showed in figure 6, the supercritical CO2’s 
temperature has a more obvious drop near the inlet of GC (c) due to its relatively moderate Cp increment. After that, 
the temperature profile becomes relatively flat and then slightly drops again before the supercritical CO2 exits the 
GC due to its Cp variation. On the other side, the temperature of GC’s cooling air is increasing steadily due to its 
almost constant Cp value. In the IHX, the temperature of supercritical CO2 decreases while the temperature of 
evaporator’s outlet carbon dioxide increases respectively. It can be also seen from figure 6 that the supercritical 
CO2’s Cp variation has its main influence on the shape of temperature profile in the GC, which causes the 
temperature profile to show a concave shape. Due to this shape, the temperature differences at the heat exchanger 
ends are much bigger than inside the heat exchanger, thus the so-called “pinching” may occur inside the GC. 
Meanwhile, the temperature difference, which is the “driving force” for heat transfer to take place, is much smaller 
inside the GC than at its ends. Therefore, the required heat transfer area for the GC to remove a certain amount of 
heat will be much larger than the one without such a shape of temperature profile. Further, the logarithmic mean 
temperature difference, which is calculated by the measured temperature difference at both heat exchanger ends 
(equation 2), will over predict the real temperature difference of the heat exchanger (GC). Consequently, the UA 
value of the heat exchanger, which calculated by equation 3, will be under-estimated.   
 

 
4 All the heat exchangers analyzed in this paper are referring to counter flow heat exchangers. 
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CO2 transcritical refrigeration cycle integrated heat 
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Figure 5. Integrated heat exchanger’s CP-∆H chart: (a) Carbon dioxide transcritical refrigeration cycle (10 kW 

cooling capacity, gas cooler’s cooling air flow=0.5 kg/s) 
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Figure 6. Integrated heat exchanger’s T-∆H chart: (a) Carbon dioxide transcritical refrigeration cycle (10 kW 

cooling capacity, gas cooler’s cooling air flow=0.5 kg/s) 
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5. DISCUSSION 

 
The optimum GC pressure for carbon dioxide transcritical refrigeration cycle obtained by equation 1 is related to 
both evaporation temperature and the GC’s outlet temperature. The calculated optimum GC pressure is plotted 
against different GC’s outlet temperatures for different evaporation temperatures as well as against different 
evaporation temperatures for different GC outlet temperatures in figure 7 respectively. 
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Figure 7. Carbon dioxide transcritical refrigeration cycle (a) optimum GC pressure against different GC outlet 
temperature at different evaporation temperatures (b) optimum GC pressure against different evaporation 

temperatures at different GC outlet temperatures 
 
It can be noticed in figure 7 that for a certain evaporation temperature, the higher the GC’s outlet temperature is, the 
higher the optimum GC pressure will be. While for a certain GC’s outlet temperature, the higher the evaporation 
temperature is, the lower the optimum GC pressure will be. Further, the GC’s outlet temperature has much more 
influence on the cycle’s optimum GC pressure than the evaporation temperature has.  
 
Maintaining the evaporation temperature as 5 °C, the temperature profile of supercritical carbon dioxide in the GC 
and the IHX is plotted in a ∆T-∆H chart (figure 8) for different GC’s outlet temperatures. For every GC outlet 
temperature, the pressure is kept at optimum GC pressure that calculated by equation 1.   
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(@ Q_cooling=10 kw,T_evap.=5 °C, m_GC's cooling air=0.5 kg/s)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

∆H (KJ/kg•K)

∆T
(°

C
)

At 35°C GC outlet temp. P_opt.=8.7 Mpa

At 40°C GC outlet temp. P_opt.=10.05 Mpa

At 45°C GC outlet temp. P_opt.=11.4 Mpa

 
Figure 8. Supercritical carbon dioxide’s ∆T--∆H chart for the integrate heat exchanger length (includes GC and 

IHX) at different gas cooler outlet temperatures 
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The results clearly show that the lower the GC outlet temperature is (i.e. the lower gas cooler pressure), the more 
obvious will the concave shape of the temperature profile be. As mentioned above, the concave shaped temperature 
profile will influence the heat exchanger size (Area). Therefore, the lower GC outlet temperature is, the bigger the 
required heat exchanger size will be to transfer a certain amount of heat.  
 
However, when selecting the GC’s outlet temperature, one also needs to consider its influence on the system COP. 
As showed in figure 9, the lower the GC’s outlet temperature is, the higher the system COP will be, due to the 
reduction of throttling losses in the expansion valve by reducing the GC’s outlet temperature.  
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Figure 9. Carbon dioxide transcritical refrigeration cycle’s COP vs. GC outlet temperature at different evaporation 
temperature 

 
6. CONCLUSIONS 

 
In this paper, a basic carbon dioxide transcritical refrigeration cycle has been analyzed to show the influence of 
supercritical carbon dioxide specific heat’s sharp variation on the heat exchanger performance. The results 
calculated in EES and Refprop 7 show that due to the sharp variation of supercritical carbon dioxide’s specific heat, 
the temperature profile in the gas cooler will show a concave shape. Due to the shape of the temperature profile, the 
temperature difference, which is the “driving force” for heat transfer to take place, will be much smaller inside the 
gas cooler than at its ends. Therefore,  
 

• To remove a certain amount of heat from the gas cooler, the required heat exchanger surface will be much 
bigger than the one without such a shape of temperature profile.   

• The logarithmic mean temperature difference, which is calculated by the measured temperature difference 
at the heat exchanger ends, will over predict the real temperature difference for the heat exchanger (gas 
cooler). 

• The UA value, which is calculated by the measured logarithmic mean temperature difference, will be under 
estimated. 

 
It is also found that the gas cooler’s outlet temperature has a crucial influence on the value of optimum gas cooler 
pressure and consequently the temperature profile’s shape in the gas cooler. The higher the gas cooler outlet 
temperature is, the less concave shape the temperature profile inside the gas cooler will be, which is an advantage 
from the heat exchanger design viewpoint. However, higher gas cooler outlet temperature will also leads to a lower 
COP for the system. 
 

NOMENCLATURE 
 
IHX Internal Heat Exchanger (-) Subscripts 
GC Gas Cooler (-) a-f           cycle route point 
Cp specific heat (kJ/kg•k) g-h           points for air properties 
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