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Abstract—In this paper, we present a model for estimating
the performance of a team of agents, based on the capabilities
of the agents and importance of these capabilities for the task.
Performance of a team is assumed to be the sum of contributions
of individual agents and contributions of subgroups built in the
team. We introduce a set of notations, which is required for
discussing the suggested models. We also propose a model to
estimate the benefit of an agent from interaction with other
agents in a subgroup. Based on this benefit model and different
(common) strategies, the agents devise plans in which they
formulate to what extent they are willing to cooperate with other
agents. A negotiation algorithm that resolves the conflictsbetween
the desires of the agents is presented. The effect of this algorithm
and different strategies are tested on a set of generated data. The
test results show that the performance of a team when the agents
choose a cooperation strategy that follows the principle ofleast
effort (Zipf’s law) is higher than teams with other cooperation
strategies.

I. I NTRODUCTION

In an earlier work [1], we presented a model for estimating
the performance of agents in a business process model. This
model was used in [2] for optimizing the performance of a
business process model by assigning tasks to agents. However,
in both these works it was assumed that each task is assigned
to only one agent and we did not consider the cases where
multiple agents perform a task and the impact of agents’
interactions. The first step toward studying the performance
of teams in a business process model is to provide a model
for value added by agents that work cooperatively and interact
with each other. This paper presents a method to model the
performance of agents that cooperate as a team.

Teams are ubiquitous in organizations today and it is
commonly accepted that the performance of a team is higher
than the sum of the performance of individual team members.
The positive effect of teamwork on the performance of organi-
zations is discussed e.g. in [3], [4], [5]. A substantial amount of
research has been devoted to the analysis of the performanceof
teams in different fields such as education, health care, science,
military, performing arts and manufacturing [6], [7], [8],[9],
[10], [11], [12].

In this work the aim has been to provide a general frame-
work to model and measure the performance of agents in a
teamwork context. Since it is generally difficult to validate
agent models, the framework is decomposed to submodels for
individual agents, group of agents and a model for interaction

of agents. Although this framework is accompanied by agent
models and group models, these models can easily be modified
or substituted by more accurate models with higher fidelity.

The outline of the rest of this paper is as follows. In
Section II, we define the problem and provide a notation that
is used throughout this paper. In Section III, a model for the
performance of individual agents is presented. In Section IV,
a model for how interaction between agents affects their
performance is suggested. In Section V, different cooperation
strategies of agents are discussed. Section VI introduces a
negotiation algorithm, which is used to resolve the conflicts
between agents. In Section VII, results of a series of tests
for different agent strategies and the negotiation algorithm are
presented. Section VIII concludes the paper.

II. PROBLEM FORMULATION

We define ateamas a set of2 or more agents{a1, . . . , am},
that work individually or in cooperation with other agents to
perform a task and denote the team byGA, where the indexA
is the set of agent indexes. That isA = {1, . . . , m}, |A| ≥ 2
and i ∈ A⇔ ai ∈ GA.

During a teamwork process different interactions between
agents occur and different constellations of agents are built.
We call a constellation of2 or more agents asubgroup
and denote it byGS , where the indexS is the set of the
indexes of agents that participate in the subgroup, that is
S ⊆ A, |S| ≥ 2, i ∈ S ⇔ ai ∈ GS . For instance in a team of
5 agents{a1, . . . , a5}, subgroupG{1,2,4} consists of the three
agentsa1, a2 anda4, or if GS is a subgroup of three agents,
thenGS∪{ai} is a subgroup that contains agents inGS andai.

The set of all possible subgroups in a team is denoted byG = {GS , S ⊆ A, |S| ≥ 2}. In set theory, thepower setof
a setA, (denoted by2A) is defined as the set of all subsets
of A. For a set withm members, the cardinality of its power
set is2m. Therefore, in a team ofm agents the number of all
possible interacting subgroups is|G| = 2m−m−1, (sets with
only one member and the empty set are excluded).

If tc is the total time required to complete a task andtS is
the time that subgroupGS is active, we denote the quotient
tS/tc as αS . For example, if the subgroupG{1,2,4} is active
2 days in a task that lasts10 days, thenα{1,2,4} = 0.2, or if
G{1,2,3,4,5} is a team meeting consisting of all members and
α{1,2,3,4,5} = 0.1, it indicates that10% of the time all5 agents
are working together.



In addition, we useαi,i to show the proportion of time that
agentai is working alone andαi,0 for the case when agentai

is not involved in current activity. It is obvious that for each
agentsai the sum of all its time proportion is1.0. That is,
∀ai ∈ {a1, . . . , am}, we have

αi,0 + αi,i +
∑

S⊆A\{i}
|S|≥1

αS∪{i} = 1.0 (1)

For a team of m agents GA, we define the
time scheduleof the team as a set of real numbers
T = {αi,0, αi,i, αS∪{i} : i ∈ A,S ⊆ A \ {i}, |S| ≥ 1}, where
all αi,0, αi,i and αS∪{i} fulfill the constraint expressed
by (1). Given a teamGA and its time scheduleT , the overall
structure of the team is settled, i.e. it will be clear that during
the teamwork process which subgroups are established and
how much time each agent is active in each subgroup.

Inspired by [13], [14] we assume that the value added by
agents consists of two contributions,

• Individual contributions,
• Subgroup contributions,

that is

u(total) = u(individual) + u(subgroups), (2)

where all contributions are expressed as value added to the
process by agents in a time unit. For a given team and a
predetermined time schedule, the value produced by the team
in a time unit is calculated according to

u(total) =

m
∑

i=1

αi,iv(ai) +
∑

S⊆A
|S|≥2

αSv(GS), (3)

wherev(ai) is the value produced by the individual agentai

in a time unit, andv(GS) is the value produced in a time unit
by subgroupGS , and values forα are defined as above. We
make the assumption that, the value produced by a subgroup
may be expressed as the sum of values produced by agents
while they are influenced by the rest of subgroup members,

v(GS) =
∑

i∈S

v′(ai, GS\{i}). (4)

Therefore, we call the functionv′(a, GS), influence function.
Substituting (4) in (3) yields

u =

m
∑

i=1

αi,iv(ai) +
∑

S⊆A
|S|≥2

∑

i∈S

αSv′(ai, GS\{i}), (5)

which is equivalent to

u =

m
∑

i=1

(αi,iv(ai) +
∑

S⊆A\{i}
|S|≥1

α{i}∪Sv′(ai, GS)). (6)

Equation (6) sums all agents’ individual contribution and
their contribution while they are influenced by other agents
in subgroups. All contributions are weighted by their corre-
sponding time proportion factorα. It is worth to note that the

influence function depends not only on the agentai and other
agentsGS but also on thetask they are performing. If the
agents, the task, the time schedule and the influence function
are known, then calculating the value produced by the team
would be straightforward, by using (6). However, there are two
major difficulties to be overcome in order to accomplish this,
which this paper aims to discuss and present a solution to.

1) The nature of the influence function and how agents
influence each other in teamwork is one major difficulty
in estimating the value produced by a team. Depending
on the type of the task and the required capabilities a
wide range of interaction forms may merge resulting in
different functions.

2) In most situations teams exhibit some degree of self-
management and the team schedule is not completely
predetermined. Agents are more or less free to choose
other agents that they want to cooperate with. Different
factors may affect the choice of agents and the degree
of cooperation with other agents. However, we assume
that agents prefer cooperation that is most beneficial
to them, i.e. increases their performance. The benefits
of agents from the cooperation are directly affected by
the influence function. This assumption leads to the
following three related issues, which are the focus of
this paper:

a) different strategies that agents may choose for
cooperation,

b) how the conflicting choices of agents are resolved,
c) the effect of the chosen strategy on the final out-

come of the value produced by the team.

III. A MODEL FOR MEASURING INDIVIDUAL

CONTRIBUTIONS

In [1], we presented a model for estimating the performance
of human agents in a business process. In this model the value
added by an agent to a task (per time unit) is described as a
function of thecapabilitiesof the agent and the importance or
weightsof these capabilities for the task. Capabilities of agents
and their importance for the task are assumed to be either
subjective assessments that are assigned by domain expertsand
decision makers to the agents and tasks, or measurable quan-
tities. For instance, in a software development process various
programming skills may be examples of capabilities of agents,
or in a military planning team, more subjective characteristics
such as cognitive ability, creativity and communication may
constitute the set of the required capabilities. Capabilities are
graded by a number ranged between0 and5, where0 is lack
of the capability and5 is the highest possible value.

The effect of these characteristics on the value added by
the agents depends on the nature of the work, e.g. creativity
may have a huge impact on a problem-solving task, while it is
less important for work on a conveyor belt. Hence, the sum of
agents’ capabilities weighted by their importance for the task
constitutes an indicator of the value added by agents to the
task [1].



Consideringm agents each havingn attributes, acapability
matrix C = [cij ]m×n is defined, wherecij is the attributej of
agenti. In the same way, aweight vectorW = [wj ]n×1 is
defined for the task, wherewj is the weight of attributej. The
weighted sum of attributes,v(ai) is the value added by agent
ai to the task (per time unit), which is estimated by

v(ai) =

n
∑

j=1

cijwj . (7)

Thus, the sum of values added by individual agents (per time
unit) is calculated by

u(individual) =

m
∑

i=1

αi,iv(ai) =

m
∑

i=1

n
∑

j=1

αi,icijwj . (8)

IV. A MODEL FOR MEASURING SUBGROUP

CONTRIBUTIONS

In Section II we proposed,

u(subgroups) =

m
∑

i=1

∑

S⊆A\{i}
|S|≥1

α{i}∪Sv′(ai, GS). (9)

That is, the total contribution of subgroups per time unit is
the sum of contributions of agents (per time unit), while they
are influenced by other agents in subgroups multiplied by the
proportion of time that the agent is involved in the subgroup
activity.

The assumption is that agents perform better since their
capabilities are increased as a result of cooperation with other
agents with a higher capability. For each agentai ∈ GS with n
capabilities{ci1, . . . , cin}, each capabilitycij is increased by
a value, which we callbenefit functionb(cij , {ckj}k∈S,k 6=i).
Thus, the new capabilityc′ij is calculated by

c′ij = cij + b(cij , {ckj}k∈S,k 6=i). (10)

In words, the benefit of an agent from cooperation (with respect
to each capability) is a function of its own and other agents’
capability.

We consider some simple rules to deduce an equation for
the benefit function.

1) Agents help each other. In a subgroup of two or more
agents, agents that have a lower capability than the
maximum capabilityin the subgroup will benefit from
the cooperation. The maximum capability is defined
as cmax

j = max
i∈S
{cij}. Hence, it is justified to rewrite

b(cij , {ckj}k∈S,k 6=i), asb(cij , c
max
j ).

2) Agents do not disturb each other. The capability of an
agent who has the maximum capability is not affected
by the cooperation.

3) Capabilities are enhanced, they are not created. The
benefit of an agent with capability0 is always0, with
respect to that capability.

4) Equally good agents cannot help each other. The benefit
of agents with the same capability is always0, with
respect to that capability.

Fig. 1. The benefit function, i.e. the increase of capabilityj of agentai,
while cooperating with an agent with a higher capabilitycmax

j
, for 3 different

values ofcmax
j

.

5) For each capability, the benefit function has its only
maximum for a valuec∗ij ∈ (0, cmax

j ). For simplicity we
assumec∗ij = cmax

j /2, as illustrated in Fig. 1.
6) It is always more beneficial for an agent to be the mem-

ber of a subgroup that has higher capabilities. For two
groupsGS andGS′ with cmax

j andc′
max
j respectively,

cmax
j > c′

max
j ⇒ b(cij , c

max
j ) ≥ b(cij , c

′max
j ) for all

values ofcij ∈ [0, c′
max
j ].

These criteria imply that for a constant value ofcmax
j ,

the benefit functionb(cij , c
max
j ) is a concave function over

cij ∈ [0, cmax
j ] with b(0, cmax

j ) = 0 and b(cmax
j , cmax

j ) = 0.
Furthermore, for a constant value ofcij , b(cij , c

max
j ) is an

increasing function oncmax
j ∈ [0, 5]. We suggest a simple

function that fulfills the above requirements,

b(cij , c
max
j ) = cij(c

max
j − cij)/cmax

j . (11)

This function is shown in Fig. 1 for three different values of
cmax
j , i.e. = 2.5, 3.75 and5.0.

A consequence of the definition of the benefit function is
that in a subgroup of two agentsa1 anda2, we have

b(c1j , c2j) =

{

0, c1j > c2j

c1j(c2j − c1j)/c2j otherwise,
(12)

which means that for each capability the benefit of one of the
agents from the cooperation is always0. However, each agent
may be better in different capabilities, which will make the
cooperation mutually beneficial.

We use (10) and (11) to obtain the modified capabilities of
agentai and calculate its contribution, while it is influenced
by other agents in subgroupGS ,

v′(ai, GS) =

n
∑

j=1

(cij + cij(c
max
j − cij)/cmax

j )wj . (13)

Substituting the value obtained by (13) in (9) yields

u(subgroups) =
m

∑

i=1

∑

S⊆A\{i}
|S|≥1

α{i}∪S

n
∑

j=1

(cij + cij(c
max
j − cij)/cmax

j )wj .

(14)



In the following, we consider a special type of team in
which the schedule of team meetings and groups including
more than2 agents are predetermined. In other words, we as-
sume that the value ofαS is predetermined,∀S ⊆ A, |S| ≥ 3.
However, agents are free to divide the rest of their time
between working alone or cooperating with one other agent.
We assume that this kind of cooperation is not regulated by
the organization and is something that emerges naturally from
the interaction among agents. That is, each agentai is free to
decide all its ownαi,i andα{i,j}, ∀j, j 6= i provided that this
does not violate its time constraints,

αi,i +

m
∑

j=1

j 6=i

α{i,j} = 1.0− αi,0 −
∑

S⊆A\{i}
|S|≥2

α{i}∪S . (15)

According to our assumptions, the right-hand side of (15) is
the unscheduled time of agentai, which we denote byαi.

For a team consisting ofm agents, we letαi,i andα{i,j},
define theinteraction matrixα = [αij ]m×m. If i 6= j, element
αij of this matrix is the proportion of time agentai is working
with agentaj (i.e. α{i,j}), otherwise it is the time agentai is
working without interference of other agents (αi,i). The sum
of each row is the unscheduled time of each agent, and is equal
to αi.

The commutativity requirement implies that the matrixα is
a symmetric matrix. If there is no cooperation between agents,
matrix α would be equal toIm.

We assume that each agent desires to maximize its own
contribution in the team, by cooperating with agents that have
a higher capability. However, agents have to respect the time
constraints and are obliged to compromise with other agents,
when they have different desires. That is, for the interaction
matrix it is required that∀i,

∑m

j=1
αij = αi andαij = αji.

V. AGENT INTERACTION MODEL

Here, we presuppose that the agents’ understandings of the
environment are accurate and consistent with each other. That
is they know their own and other agents capabilities and the
weight of these capabilities for the task. Moreover, they know
the benefit function and know how cooperation with other
agents will affect their performance. We assume that each
agent tries to maximize its own contribution to the team by
distributing its unscheduled time between other agents, while
it respects its own time constraint and is willing to compromise
with other agents.

Considering the discussions in IV, the best choice for
each agent would be to only cooperate with agents having
the highest capabilities that are most important for the task.
However, this strategy is implausible, since it requires that
some agents are forced to cooperate with others against their
intentions. A more realistic strategy is that agents choosea
compromise-oriented approach, which through negotiationcan
lead to a more fair cooperation. In the following, we discuss
four possible cooperation strategies and suggest a negotiation
algorithm that resolves the conflicts among agents.

Each agentai uses the benefit function and the capabilities
of itself and other agents to produce a row vector[bii′ ]1×m,

where bii′ =
∑n

j=1
b(cij , ci′j)wj . Thesem row vectors to-

gether build a matrixB = [bii′ ]m×m, where the elementbii′

gives the benefit of cooperation with agenti′ for agenti. This
matrix is shared information that can be accessed by all agents.
Agents use this information and by following a common
strategy give an initial suggestion for their cooperation with
other agents. The initial suggestions of agents go through a
negotiation algorithm so that desired consistency is reached.

Here, we compare4 different strategies.

1) Equal, where each agent distributes its available time
equally between all other agents, regardless of the benefit
of the cooperation.

2) Random, where each agent distributes its available time
randomly (drawn from a uniform distribution) between
different agents.

3) Proportional, where each agent distributes its available
time in proportion to the benefits of cooperation with
other agents.

4) Zipf, where each agent distributes its available time
inversely proportional to the rank of the benefit of
cooperation with other agents.

Equal and random strategies are naive and will be used
as a benchmark against which the two other strategies are
evaluated. The three first strategies are obvious from their
definitions, the fourth strategy may require some clarification.
Zipf’s law or principle of least effort[15], is an empirical
law that states given some large and structured set of texts
in a natural language, the frequency of any word is inversely
proportional to its rank in the frequency table. Thus the most
frequent word will occur approximately twice as often as
the second most frequent word and three times as often as
the third most frequent word, etc. Zipf’s law has shown to
be applicable to many types of data studied in physical and
social sciences. Applying this principle to agents in a team, we
assume that each agent ranks the others according to the benefit
of cooperation and is willing to work with them inversely
proportional to their ranks.

Algorithm 1 shows how these 4 different strategies are
implemented. The input of the algorithm is the benefit matrix
B, the unscheduled time of agents[αi], and the common
strategy of agents. The algorithm returns a matrix, which we
call preference matrix. This matrix is the desire of agents for
cooperation.

In the first inner for-loop of the algorithm (lines4 − 18),
depending on the given strategy, elementspij of the rowP [i]
are initialized. Lines2 and3 of the algorithm are required only
for the Zipf strategy (lines11−17). In line 19 the sum of each
row of the matrixP is calculated and the unscheduled time of
each agentαi is divided in proportion to thepij between other
agents (line22). If all elements ofP [i] are zero, the time is
equally divided between all agents (line24).

To illustrate the results of Algorithm1, assume we have
a team of5 agents, with4 capabilities, having the following



capability matrix,

C =













1.5 3.25 2.5 2.0
3.0 3.0 4.0 0.75
1.0 1.75 1.0 2.0
2.5 2.0 2.0 4.0
1.75 2.0 1.75 2.0













.

These agents are performing a task with the weight vector
W =

(

0.25, 0.75, 1.0, 2.0
)−1

.
We use the given weight vector and the benefit function

in (12) and calculate the benefit matrixB = [bii′ ]5×5. Each
elementbii′ in the matrix is equal to

∑

4

j=1
b(cij , ci′j)wj .

The complete matrixB is

B =













0 1.12 0 2.15 0.05
1.11 0 0.94 1.22 0.94
1.29 1.46 0 2.81 0.7
0.98 1.60 0 0 0
1.10 1.67 0 2.35 0













.

We assume that allαi = 1.0, which means agents have no
predetermined schedule. By using Algorithm1, the preference
matrix for the proportional and Zipf strategies are calculated.
For the proportional strategy, it means only that the matrixB
is normalized such that the sum of the elements in each row is
equals toαi = 1.0. This operation yields the following matrix

Pp =













0 0.34 0 0.64 0.02
0.27 0 0.22 0.29 0.22
0.21 0.23 0 0.45 0.11
0.38 0.62 0 0 0
0.21 0.33 0 0.46 0













.

By using Zipf’s law and ranking the elements of the matrix
B, one can assign the inverse of the rank of each element to
it and produce the matrix













0 0.5 0 1 0.33
0.5 0 0.33 1 0.25
0.33 0.5 0 1 0.25
0.5 1 0 0 0
0.33 0.5 0 1 0













.

The last part of Algorithm1, (lines19−26) normalizes this
matrix and yields

Pz =













0 0.27 0 0.55 0.18
0.24 0 0.16 0.48 0.12
0.16 0.24 0 0.48 0.12
0.33 0.67 0 0 0
0.18 0.27 0 0.55 0













.

A comparison of the two matricesPp andPz shows that ele-
ments of these two matrices are both zero in the same positions
and they follow the same trend. Even if the calculation ofPz

is more complicated in Algorithm1, this strategy appears to be
more plausible since agents do not require to calculate exactly
the benefits of cooperation with other agents. To produce
Pz, agents only need to have a rough estimation of other
agents and rank them according to their capabilities. Bounded
rational agents, which have limited computational resources,
are considered to use simplified models and approximate
solutions instead of seeking the optimal one [16].

VI. N EGOTIATION OF AGENTS

Algorithm 1 ensures that the sums of the rows of the
calculatedP matrices are equal to the agents’ available time
αi. However, the sums of the columns are not equal to these
values. A value greater thanαi for a column indicates that
other agents request cooperativeness from the corresponding
agent more than it is capable to provide, that is the agent is
overstressed. A value less thanαi shows that the corresponding
agent is understressed. A necessary condition for agents to
be fairly stressed is that the sum of each column is equal to
αi as well. However, this condition is not sufficient and it is
required that all agents in all subgroups reach a consensus on
the time they are cooperating. Here, there are two agents in
each subgroup and it requires thatαij = αji, ∀i, j, i.e.P must
be asymmetric matrix.

A special case of the problem is whenαi = 1.0, for all i.
That is the matrix isstochastic. A necessary (not sufficient)
requirement for a stochastic matrix to be symmetric is that the
matrix is doubly stochastic. A doubly stochastic matrix (also
called bistochastic), is defined to be a square matrix of non-
negative real numbers such that each row and each column
sums to one [17].

Algorithm 1: Devising Preference Matrix
given benefit matrix:B = [bij ]m×m

strategy used by agents: strategy
agents unscheduled time:[αi]m×1

return preference matrix:P = [pij ]m×m

1 for i ∈ [1, . . .m]
2 tmp← B[i]
3 descending sort(tmp)
4 for j ∈ [1, . . .m]
5 if strategy = equal
6 pij ← 1.0
7 else if strategy = random
8 pij ← rnd
9 else if strategy = proportional

10 pij ← bij

11 else if strategy = zipf
12 index← 1
13 while tmp[index] > bij

14 index← index + 1
15 end while
16 pij ← 1.0/index
17 end if
18 end for
19 sum← sum of elements in rowP [i]
20 for j ∈ [1, . . .m]
21 if sum 6= 0
22 pij ← (pij ∗ αi)/sum
23 else
24 pij ← αi/m
25 end if
26 end for
27 end for
28 returnP



We propose a negotiation model in which agents follow two
rules: 1) if there is a conflict between two agents about the
amount of time they wish to cooperate, they compromise by
accepting the average of the suggested values; 2) if an agent’s
total time in different subgroups is not equal to its available
time, the times are normalized to fulfill the constraint. The
procedure is repeated until the matrix converges successively
to a value. The resulted matrix is a successive manipulationof
the initial original matrix, toward a schedule matrix in which
agents have compromised with other agents on their different
desires, while trying to hold the schedule consistent with their
time constraints.

A procedure that follows these principles and provides a
final symmetric matrix is outlined in Algorithm 2. The input
of the algorithm is the agents’ preference matrix (P) obtained
from Algorithm 1 and its output is a symmetric matrixP .

The algorithm first calculates the unscheduled time of each
agent, i.e. vectorα (lines 1− 3). Each iteration of the while-
loop (lines4−20), contains two for-loops. In the first for-loop
(lines5−11), the matrixP is replaced by(P+Pt)/2, i.e. each
pair of symmetrically located elements of the matrix are sub-
stituted by the average of these two elements. Two agents that
have different preferences about their cooperation compromise
by choosing the average of the two proposed time amounts. We
call this operation (lines5 − 11) symmetrization. The second
for-loop (lines12− 19) restores the main characteristic of the
matrix P , so that for each rowi, the sum of the elements
pij ∈ P [i] remains equal toαi. We call this operation (lines
12− 19) normalization.

If none of the two agentsai andaj are initially interested in
cooperation, that isaij = 0 andaji = 0, repetition of the sym-
metrization and normalization operations cannot change this
value. If at least one of the agents is interested in cooperation,
the algorithm can either force the other agent to cooperate
or suppress the agent’s initial interest for cooperation. An
example of the latter case is the following,

P1 =





1.0 0 0
0.5 0 0.5
0 1.0 0





793
−→





1.0 0 0
0 0 1.0
0 1.0 0



 ,

where the left hand side matrix after793 iterations of the
while-loop converges to the symmetric matrix at the right hand
side of the arrow.

However, the sequence of the symmetrization and normal-
ization does not manipulate all matrices to a symmetric matrix.
For instance, consider the matrix

P2 =





0 0.5 0.5
1.0 0 0
1.0 0 0





1
−→





0 0.5 0.5
1.0 0 0
1.0 0 0



 ,

where each sequence of symmetrization and normalization
operations results in the same matrix. The algorithm does not
provide a symmetric solution for matrixP2 or any matrix that
converges toP2, e.g.

P3 =





1.0 0 0
1.0 0 0
1.0 0 0





43
−→ P2 =





0 0.5 0.5
1.0 0 0
1.0 0 0



 .

These matrices cannot be manipulated to a symmetric solution,
regardless of the negotiation protocol. The problem is thatboth
agentsa2 and a3 want to cooperate full-time with agenta1,
which leads to alocked state.

Although during our tests with simulated teams of different
sizes, only few cases resulted in locked states, the negotiation
algorithm is extended by a detection and recovery part (lines
21 − 26). To recover from locked states, different strategies
may be chosen. We use a simple method by adding a random
noise to the diagonal of the original matrix (lines22 − 24)
and restarting the negotiation once more (line25). Generally,
adding a little number to elementpij of the matrix means to
force agentai to reconsider cooperation with agentaj . For
example, by adding a small number,ǫ = 0.001 to the diagonal
of the matrixP2, all agents are encouraged to reconsider their
initial wishes of not working alone. ForP2+ǫI, the negotiation
algorithm provides a symmetric matrix after40 iterations,

P2 + ǫI =





0.001 0.5 0.5
1.0 0.001 0
1.0 0 0.001





40
−→





0 0.5 0.5
0.5 0.5 0
0.5 0 0.5



 .

This result means that agentsa2 anda3 are forced to work
alone one-half of their time, while the desire of agenta1 is
completely accepted.

Algorithm 2: Negotiations of Agents
given preference matrix:P = [pij ]m×m

return symmetric matrix:P = [pij ]m×m

1 for each rowi in matrix P
2 α[i]← sum(P [i])
3 end for
4 while matrixP is changing
5 for each row i in matrixP
6 for each column j in matrixP with i > j
7 average← (pij + pji)/2
8 pij ← average
9 pji ← average

10 end for
11 end for
12 for each row i in matrixP
13 s← sum(P [i])
15 if s 6= 0
14 for eachpij ∈ P [i]
16 pij = (pij ∗ αi)/s
18 end for
17 end if
19 end for
20 end while
21 if P not symmetric
22 for eachi ∈ [1, . . . , m]
23 pii ← pii + random ǫ
24 end for
25 run Algorithm 2
26 end if
27 returnP



Fig. 2. Convergence of the preference matrix toward a symmetric matrix for
different team sizes.

VII. T EST OF THE ALGORITHMS

To investigate how fast Algorithm 2 converges to a symmet-
ric matrix, we let the algorithm manipulates random matrices
with different sizes between 2 and 40. For each size 10000
random matrices are produced and the number of iterations
in Algorithm 2 before each matrix converges to a symmetric
matrix is measured. A matrix is considered to be symmetric
if the differences between all pair of symmetrically located
elements of the matrix are less than a given value. That
is, |αij − αji| < ǫ, ∀ i, j, where ǫ is one of the four values
10−2, 10−3, 10−4 or 10−5.

The results depicted in Fig. 2 show that for all matrix
sizes the algorithm converges rapidly to a symmetric matrix.
However, the convergence rate is much higher for larger
matrices.

The results for the number of times Algorithm 2 reaches a
locked state is given in TABLE I for the same set of data, i.e.
10000 different teams for each size (from2 to 8). As seen from
the results, the number of locked states decreases, for larger
team sizes. For team size8, this number is0. It is notable
that the results in Fig. 2 include number of iterations that was
required after locked state detection and recovery.

TABLE I
NUMBER OF LOCKED STATES REACHED IN10000 TEAMS.

Team size # Locked states % Locked states
2 0 0.0
3 94 0.94
4 422 4.22
5 27 0.27
6 7 0.07
7 6 0.06
8 0 0.0

To test how algorithms 1 and 2 and the benefit model work
together100000 random tasks and100000 random teams with
different sizes from2 to 9 agents were created. The four
different cooperation strategies were tested and an average
of the total benefit of the agents for each team size and
each strategy were calculated, the results are summarized
in TABLE II.

TABLE II
TOTAL BENEFIT OF AGENTS IN AVERAGE FOR DIFFERENT TEAM SIZES

Size Proportional Zipf Equal Random
2 1.706 1.706 0.853 0.901
3 2.551 2.563 1.707 1.743
4 3.500 3.661 2.564 2.590
5 4.426 4.630 3.415 3.437
6 5.351 5.707 4.271 4.289
7 6.275 6.730 5.127 5.142
8 7.188 7.799 5.974 5.988
9 8.104 8.846 6.824 6.837

Fig. 3. Comparison of the increase in the value added for different cooperation
strategies in a team of 4 agents.

As the results in TABLE II show, the average benefit of
the team is higher for the proportional and Zipf strategies
compared with the equal and random strategies. Common for
proportional and Zipf is that in both strategies agents seekfor
cooperation with other agents with higher capabilities.

Another interesting observation is the comparison of the
proportional and Zipf strategies. In the first case each agent
tries to distribute its time exactly in proportion to the benefit
of cooperation with other agents, but in the second case the
agent needs only to have a rough estimate of other agents’
capabilities and tries to cooperate with them according to their
ranks. The simulation results show that in most cases the result
of the Zipf strategy is slightly higher than distributing the time
precisely in proportion to the benefits.

In another test,40 random tasks and40 random teams of
4, 6 and8 agents using4 different strategies were studied. The
performances of teams for these40 trials are shown in Fig. 3, 4
and 5. These results clearly confirm that the tendency shown
by the average values are valid almost in every single trial.

Furthermore, these results are compared with a near-optimal
solution. The near-optimal values are computed using a cen-
tralized approach and forcing agents to cooperate only with
one other agent in a way that maximizes the benefit of the
team. In most cases this method produces the optimal value;
however there are cases where it is most beneficial that an
agent cooperates with more than one agent, hence the name
near-optimal. The results show that the strategy based on the
Zipf’s law (principle of the least effort) is not very far from
the near-optimal value.



Fig. 4. Comparison of the increase in the value added for different cooperation
strategies in a team of 6 agents

Fig. 5. Comparison of the increase in the value added for different cooperation
strategies in a team of 8 agents

The good results of Zipf’s strategy may be partially ex-
plained by the fact that agents who benefit from each other in
almost the same extent, will rank each other in the same man-
ner when following this strategy. Thus, the preference matrix
is closer to “symmetric” and agents require less negotiation.

VIII. C ONCLUSIONS

In this paper, we proposed a general framework for estimat-
ing the performance of a team of agents. A team is defined as a
set of agents with different capabilities that may cooperate and
interact with each other. Teams are partly self-organized and
the working time of the agents is not completely scheduled.
It means that during a task, different subgroups in which
agents cooperate are built. The performance of the team is
considered to be the sum of agent’s individual contributions
and subgroup contributions. In a subgroup, the capabilities
of agents are increased under the influence of agents having
the highest capabilities. We proposed a model to calculate
the benefit of agents from the cooperation. Based on this
model and according to a common strategy, agents define a
preference matrix, which is a presentation of agents’ desires for
cooperation with other agents (Algorithm 1). In general, this
matrix is not symmetric, which means there is no consensus

among the agents about how much they are willing to cooper-
ate with each other. A negotiation algorithm that resolves the
conflicts between agents is presented (Algorithm 2). A series
of simulation experiments is run to compare the performance
of teams with different cooperation strategies. The results of
these simulations show that a team in which the members
cooperate according to the Zipf’s law (principle of least effort)
has the highest performance.
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