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Abstract—In this paper, we present a model for estimating  of agents. Although this framework is accompanied by agent
the performance of a team of agents, based on the capabilise models and group models, these models can easily be modified

of the agents and importance of these capabilities for the &. . o\ \hetityted by more accurate models with higher fidelity.
Performance of a team is assumed to be the sum of contributien - . .
The outline of the rest of this paper is as follows. In

of individual agents and contributions of subgroups built in the . ) ' '
team. We introduce a set of notations, which is required for ~ Section Il, we define the problem and provide a notation that

discussing the suggested models. We also propose a model tois used throughout this paper. In Section Ill, a model for the
estimate the benefit of an agent from interaction with other  performance of individual agents is presented. In Sectign |
agents in a subgroup. Based on this benefit model and differén a model for how interaction between agents affects their

(common) strategies, the agents devise plans in which they f . ted. In Section V. diff t ) t
formulate to what extent they are willing to cooperate with dher periormance IS suggested. In section V, ditrerent coopera

agents. A negotiation algorithm that resolves the conflictetween  Strategies of agents are discussed. Section VI introduces a
the desires of the agents is presented. The effect of this alithm negotiation algorithm, which is used to resolve the corslict

and different strategies are tested on a set of generated datThe between agents. In Section VII, results of a series of tests

test results show that the performance of a team when the agé ¢ gifferent agent strategies and the negotiation alporiare
choose a cooperation strategy that follows the principle ofeast d. section VIII lud h
effort (Zipf's law) is higher than teams with other cooperation ~ Presented. Section concludes the paper.

strategies. II. PROBLEM FORMULATION

We define aeamas a set o or more agent$as, ..., a,},
that work individually or in cooperation with other agents t
In an earlier work [1], we presented a model for estimatingperform a task and denote the team@®y, where the index4
the performance of agents in a business process model. Thisthe set of agent indexes. That.is= {1,...,m}, |A| >2
model was used in [2] for optimizing the performance of aand; € A < a; € G 4.
business process model by assigning tasks to agents. Howeve During a teamwork process different interactions between
in both these works it was assumed that each task is assignggents occur and different constellations of agents ark. bui
to only one agent and we did not consider the cases whemg/e call a constellation of2 or more agents aubgroup
multiple agents perform a task and the impact of agentsand denote it byGs, where the indexS is the set of the
interactions. The first step toward studying the perfornreancindexes of agents that participate in the subgroup, that is
of teams in a business process model is to provide a modg C A, |S| >2,i€ S < a; € Gs. For instance in a team of
for value added by agents that work cooperatively and intera 5 agents{ay, ..., as}, subgroupGy; » 43 consists of the three
with each other. This paper presents a method to model thggentsa, a; anday, or if Gs is a subgroup of three agents,
performance of agents that cooperate as a team. thenGsyya,} is @ subgroup that contains agentsdg anda;.
Teams are ubiquitous in organizations today and it is The set of all possible subgroups in a team is denoted by
commonly accepted that the performance of a team is highel: = {Gs, S C A, |S| > 2}. In set theory, thepower setof
than the sum of the performance of individual team membersa set.A, (denoted by24) is defined as the set of all subsets
The positive effect of teamwork on the performance of organiof A. For a set withm members, the cardinality of its power
zations is discussed e.g. in [3], [4], [5]. A substantial amiof  set is2™. Therefore, in a team af, agents the number of all
research has been devoted to the analysis of the perforroincepossible interacting subgroups|i| = 2™ —m — 1, (sets with
teams in different fields such as education, health carensei  only one member and the empty set are excluded).
military, performing arts and manufacturing [6], [7], [§B], If ¢. is the total time required to complete a task agds
[10], [11], [12]. the time that subgroug:s is active, we denote the quotient
In this work the aim has been to provide a general framets/t. asas. For example, if the subgrou@, , 4 is active
work to model and measure the performance of agents in 2 days in a task that last®) days, then; 5 43 = 0.2, or if
teamwork context. Since it is generally difficult to validat G345, is a team meeting consisting of all members and
agent models, the framework is decomposed to submodels fary; 5 5 45) = 0.1, it indicates that 0% of the time all5 agents
individual agents, group of agents and a model for intepacti are working together.

I. INTRODUCTION



In addition, we usey; ; to show the proportion of time that influence function depends not only on the agenand other

agenta, is working alone andy; o for the case when agent
is not involved in current activity. It is obvious that for da
agentsa; the sum of all its time proportion i$.0. That is,

agentsGs but also on thetask they are performing. If the
agents, the task, the time schedule and the influence functio
are known, then calculating the value produced by the team

Va, € {ai1,...,an}, we have
Q0 + Qi+ Z asufiy = 1.0 1)
SCA\{i}
[S]>1
For a team of m agents G4, we define the
time scheduleof the team as a set of real numbers

T = {Oéiyo,aiyi,()é‘gu{i} 11 € .A,S - A\ {Z}, |S| > 1}, where

all ajo,0;; and agygy fulfill the constraint expressed

by (1). Given a teanty 4 and its time schedul&, the overall

structure of the team is settled, i.e. it will be clear thatig

the teamwork process which subgroups are established and

how much time each agent is active in each subgroup.
Inspired by [13], [14] we assume that the value added by

agents consists of two contributions,

« Individual contributions,
o Subgroup contributions,

that is
u(total) = u(individual) + u(subgroups), 2

where all contributions are expressed as value added to the
process by agents in a time unit. For a given team and a
predetermined time schedule, the value produced by the team

would be straightforward, by using (6). However, there are t
major difficulties to be overcome in order to accomplish this
which this paper aims to discuss and present a solution to.

1) The nature of the influence function and how agents

influence each other in teamwork is one major difficulty
in estimating the value produced by a team. Depending
on the type of the task and the required capabilities a
wide range of interaction forms may merge resulting in
different functions.
In most situations teams exhibit some degree of self-
management and the team schedule is not completely
predetermined. Agents are more or less free to choose
other agents that they want to cooperate with. Different
factors may affect the choice of agents and the degree
of cooperation with other agents. However, we assume
that agents prefer cooperation that is most beneficial
to them, i.e. increases their performance. The benefits
of agents from the cooperation are directly affected by
the influence function. This assumption leads to the
following three related issues, which are the focus of
this paper:

a) different strategies that agents may choose for

in a time unit is calculated according to

u(total) = Zaiyiv(ai) + Z asv(Gs), 3
i=1 SCA
|S1>2

wherewv(a;) is the value produced by the individual agent

in a time unit, andy(Gs) is the value produced in a time unit
by subgroupGs, and values forv are defined as above. We

cooperation,
b) how the conflicting choices of agents are resolved,
c) the effect of the chosen strategy on the final out-
come of the value produced by the team.

IIl. A MODEL FOR MEASURING INDIVIDUAL
CONTRIBUTIONS

In [1], we presented a model for estimating the performance

make the assumption that, the value produced by a subgroyy human agents in a business process. In this model the value
may be expressed as the sum of values produced by ageri§ded by an agent to a task (per time unit) is described as a
while they are influenced by the rest of subgroup members, function of thecapabilitiesof the agent and the importance or

v(Gs) =Y v'(ai, Gs\(i})- 4

€S
Therefore, we call the functiot/(a, Gs), influence function
Substituting (4) in (3) yields

u = Zaiﬂiv(ai) + Z ZO&SU/(CLZ', GS\{i})a (5)
=1

SCA €S
|S|1>2
which is equivalent to
u= Z(aiyiv(ai) + Z agpust’(ai, Gs)).  (6)
i=1 SCA\{i}
|S1>1

weightsof these capabilities for the task. Capabilities of agents
and their importance for the task are assumed to be either
subjective assessments that are assigned by domain eapérts
decision makers to the agents and tasks, or measurable quan-
tities. For instance, in a software development processwar
programming skills may be examples of capabilities of agent
or in a military planning team, more subjective charactiess
such as cognitive ability, creativity and communicationyma
constitute the set of the required capabilities. Capadsliare
graded by a number ranged betwérand5, where0 is lack
of the capability and is the highest possible value.

The effect of these characteristics on the value added by
the agents depends on the nature of the work, e.g. creativity
may have a huge impact on a problem-solving task, while it is

Equation (6) sums all agents’ individual contribution andless important for work on a conveyor belt. Hence, the sum of
their contribution while they are influenced by other agentsagents’ capabilities weighted by their importance for taskt
in subgroups. All contributions are weighted by their cerre constitutes an indicator of the value added by agents to the

sponding time proportion factar. It is worth to note that the

task [1].



Consideringn agents each having attributes, acapability

matrix C = [¢;j]mxn IS defined, where;; is the attributej of 150 1"
agenti. In the same way, aveight vector W = [w,],x1 IS .
defined for the task, where; is the weight of attributg. The
weighted sum of attributes(a;) is the value added by agent 100 .
a; to the task (per time unit), which is estimated by e | A N ¢ =80
’ v AN
n RN AN max
050 ,_' ~\\ N ci =3.75
v(a;) = Z CijWj. (7) L ere g AN
Jj=1 025 oI \\
Thus, the sum of values added by individual agents (per tim 000 \ i

unit) is calculated by

(8) Fig. 1. The benefit function, i.e. the increase of capabifitef agenta,,
while cooperating with an agent with a higher capabi&i}”gr“f”, for 3 different
values ofc;ﬂ“f”.

oziyl-cijwj.
1

u(individual) = Zai,iv(ai) =
i=1 %

m n

1j

IV. A MODEL FOR MEASURING SUBGROUP

CONTRIBUTIONS 5) For each capability, the benefit function has its only
In Section Il we proposed, maximum for a value;; € (O,c}”‘”). For simplicity we
m assumer;; = c** /2, as illustrated in Fig. 1.
w(subarouns) — arost' (ag, Gs). 9 6) Itis always more beneficial for an agent to be the mem-
(subgroups) ; SC;{G tipusV'( s) ©) ber of a subgroup that has higher capabilities. For two
1sI>1 groupsGs andGs: with ¢j*** and ;""" respectively,

T > 7 = b(cij, ) > b(cij, ¢'§*") for all

That is, the total contribution of subgroups per time unit is
groups p values ofc;; € [0, 7"

the sum of contributions of agents (per time unit), whileythe h iteria impl jh ; | e
are influenced by other agents in subgroups multiplied by the 11€S€ criteria imply that for a constant value gf“*,

proportion of time that the agent is involved in the subgroupi® Penefit functionb(c;;, ¢***) is a concave function over

activity. cij € [0, ] with b(0,¢7"**) = 0 and b(c;mr,%;z) =0.
The assumption is that agents perform better since thefrUrthermore, for a cons:cint value of;, b(cij,¢j**) is an
capabilities are increased as a result of cooperation viitaro Increasing funct_lon or; < [0’5].' We suggest a simple
agents with a higher capability. For each agent G with n function that fulfills the above requirements,
capabilities{c;1, . .., cin }, €ach capability;; is increased by bcij, ') = ey (¢ — ciy) [ (11)
a value, which we calbenefit functionb(c;;, {ck; res ki)

Thus, the new capability, is calculated by This function is shown in Fig. 1 for three different values of

crar, e = 2.5,3.75 and5.0.
chj = cij + b(cij, {Crjtres ki) (10) A consequence of the definition of the benefit function is

_ ) ) that in a subgroup of two agents anda,, we have
In words, the benefit of an agent from cooperation (with respe

to each capability) is a function of its own and other agents’ b(erj, ;) = 0, c15> cay (12)
capability. I c1j(c2; — c15)/c2;  otherwise,

We consider some simple rules to deduce an equation f%hich means that for each capability the benefit of one of the

the benefit function. agents from the cooperation is alwaysHowever, each agent
1) Agents help each other. In a subgroup of two or morenay be better in different capabilities, which will make the
agents, agents that have a lower capability than th%ooperation mutually beneficial.
maximum capabilityn the subgroup will benefit from  \ve use (10) and (11) to obtain the modified capabilities of
the cooperation. The maximum capability is definedagenta; and calculate its contribution, while it is influenced
as 't = r?e%x{cij}. Hence, it is justified to rewrite py other agents in subgrou@s,

b(cij, {crjtres kzi), asb(cij, cf'e®). n
2) Agents do not disturb each other. The capability of an  v'(a;,Gs) = Z(Cij + ey (™ —ciz) /e wy. (13)
agent who has the maximum capability is not affected j=1
by the cooperation. Substituting the value obtained by (13) in (9) yields
3) Capabilities are enhanced, they are not created. The u(subgroups) =
benefit of an agent with capability is alwaysO0, with ” groups) = N
respect to that capability. ) - (.maz _ N\ mazy,
4) Equally good agents cannot help each other. The benefit ;SCAZ\{G Uipos ;(C” +eiulS cia) /¢ ;.
of agents with the same capability is alwa@s with 1s1>1

respect to that capability. (14)



In the following, we consider a special type of team inwhereb,;, = Z?Zlb(cij,ci,j)wj_ Thesem row vectors to-
which the schedule of team meetings and groups includingether build a matrix3 = [b;;];mxm, Where the elemert;;s
more than2 agents are predetermined. In other words, we asgives the benefit of cooperation with agéhfor agenti. This
sume that the value afs is predeterminedyS C A, [S| > 3.  matrix is shared information that can be accessed by alltagen
However, agents are free to divide the rest of their timeAgents use this information and by following a common
between working alone or cooperating with one other agenktrategy give an initial suggestion for their cooperatioithw
We assume that this kind of cooperation is not regulated byther agents. The initial suggestions of agents go through a
the organization and is something that emerges naturaliy fr negotiation algorithm so that desired consistency is redch
the interaction among agents. That is, each aggeig free to
decide all its own; ; anday; j3, Vij,j # i provided that this
does not violate its time constraints,

Here, we compard different strategies.

1) Equal, where each agent distributes its available time

- equally between all other agents, regardless of the benefit
o+ Za{i"j} =1.0—-ajo— Z _ afirus- (15) of the cooperation.
;2 5%5“?;3} 2) Random, where each agent distributes its available time

randomly (drawn from a uniform distribution) between
different agents.

3) Proportional, where each agent distributes its avadlabl
time in proportion to the benefits of cooperation with
other agents.

4) Zipf, where each agent distributes its available time
inversely proportional to the rank of the benefit of
cooperation with other agents.

According to our assumptions, the right-hand side of (15) is
the unscheduled time of aget, which we denote byy;.

For a team consisting of: agents, we lety; ; and ay; ;3,
define theinteraction matrixa = [@j]mxm- If © # j, element
a5 of this matrix is the proportion of time ageaf is working
with agenta; (i.e. ay; ;3), otherwise it is the time agent; is
working without interference of other agents; (). The sum
of each row is the unscheduled time of each agent, and is equal
to «;.

The commutativity requirement implies that the matixs Equal and random strategies are naive and will be used

a symmetric matrix. If there is no cooperation between agent &2 benchmark against which the two other strategies are
y ) P HEM o\ aluated. The three first strategies are obvious from their

matrix o would be equal td,,. L .
We assume that each agent desires to maximize its OWdeﬁnltlons, the fourth strategy may require some clarifcat

contribution in the team, by cooperating with agents thatha Elpfs law or pr|n_C|pIe of least effort{15], is an empirical
. - . _law that states given some large and structured set of texts
a higher capability. However, agents have to respect the tim.

constraints and are obliged to compromise with other agentén anatural languagethe frequency of any word is inversely

when they have different desires. That is, for the inteoacti proportional to its rank in the freq.uency tablg. Thus the mos
matrix it is required thati, S™  as; = a; andas; = a; frequent word will occur approximately twice as often as

P g=1 T ! * I the second most frequent word and three times as often as
V. AGENT INTERACTION MODEL the third most frequent word, etc. Zipf's law has shown to

Here, we presuppose that the agents’ understandings of ¢ applicable to many types of data studied in physical and
environment are accurate and consistent with each othat. Thsocial sciences. Applying this principle to agents in a team
is they know their own and other agents capabilities and th@ssume that each agent ranks the others according to thiétbene
weight of these capabilities for the task. Moreover, thegwkn Of cooperation and is willing to work with them inversely
the benefit function and know how cooperation with otherProportional to their ranks.

agents will affect their performance. We assume that each Algorithm 1 shows how these 4 different strategies are
agent tries to maximize its own contribution to the team byimplemented. The input of the algorithm is the benefit matrix
distributing its unscheduled time between other agentdewh 3 the unscheduled time of agenfs;], and the common

it respects its own time constraint and is willing to compisen  strategy of agents. The algorithm returns a matrix, which we

with other agents. o _ call preference matrixThis matrix is the desire of agents for
Considering the discussions in 1V, the best choice forcooperation.

each agent would be to only cooperate with agents having
the highest capabilities that are most important for thé.tas
However, this strategy is implausible, since it requireat th d
some agents are forced to cooperate with others against th
intentions. A more realistic strategy is that agents chase
compromise-oriented approach, which through negotiatam
lead to a more fair cooperation. In the following, we discus
four possible cooperation strategies and suggest a nédgotia
algorithm that resolves the conflicts among agents.

Each agent:; uses the benefit function and the capabilities To illustrate the results of Algorithm, assume we have
of itself and other agents to produce a row vedtor|i xm, a team of5 agents, withd capabilities, having the following

In the first inner for-loop of the algorithm (lines — 18),
epending on the given strategy, elememtsof the rowP|i]
re initialized. Line® and3 of the algorithm are required only
or the Zipf strategy (lineg1—17). In line 19 the sum of each
row of the matrixP is calculated and the unscheduled time of
Seach agendy; is divided in proportion to the;; between other
agents (line22). If all elements ofP[:] are zero, the time is
equally divided between all agents (lidg).



capability matrix,

1.5 325 25 20
3.0 3.0 40 0.7
Cc=|10 175 1.0 20
25 20 20 40
175 2.0 175 2.0

VI. NEGOTIATION OF AGENTS

Algorithm 1 ensures that the sums of the rows of the
calculatedP matrices are equal to the agents’ available time
«;. However, the sums of the columns are not equal to these
values. A value greater tham; for a column indicates that
other agents request cooperativeness from the corresmpndi

These agents are performing a task with the weight vectoRgdent more than it is capable to provide, that is the agent is

W = (0.25, 0.75, 1.0, 2.0) .

We use the given weight vector and the benefit functio
in (12) and calculate the benefit matr = [b;;]5x5. Each
elementb,;: in the matrix is equal tonZl b(cij, cirj)w;.

The complete matrixs is

0 112 0 215 0.05
111 0 094 122 094
B=|129 146 0 281 0.7
098 160 O 0 0
1.10 167 0 235 O

overstressed. A value less thapshows that the corresponding
rfgent is understressed. A necessary condition for agents to
be fairly stressed is that the sum of each column is equal to
a; as well. However, this condition is not sufficient and it is
required that all agents in all subgroups reach a consensus o
the time they are cooperating. Here, there are two agents in
each subgroup and it requires that = o;, Vi, j, i.e. P must
be asymmetric matrix

A special case of the problem is when = 1.0, for all i.
That is the matrix isstochastic A necessary (not sufficient)
requirement for a stochastic matrix to be symmetric is that t

We assume that all; = 1.0, which means agents have no matrix is doubly stochasticA doubly stochastic matrix (also

predetermined schedule. By using Algoritimthe preference
matrix for the proportional and Zipf strategies are caltaeda

called bistochastic), is defined to be a square matrix of non-
negative real numbers such that each row and each column

For the proportional strategy, it means only that the mafix sums to one [17].

is normalized such that the sum of the elements in each row is

Algorithm 1: Devising Preference Matrix

equals too; = 1.0. This operation yields the following matrix

0 034 0 064 0.02
027 0 022 029 0.22
Pp=1(021 023 0 045 0.11
038 062 O 0 0
021 033 0 046 O 1

By using Zipf’s law and ranking the elements of the matrix 2
B, one can assign the inverse of the rank of each element to 3

it and produce the matrix 4
0 05 0 1 033 S

05 0 033 1 025 6

033 05 0 1 025 7

05 1 0 0 0 8

033 05 0 1 0 9

The last part of Algorithm, (lines19 —26) normalizes this 12
matrix and yields 12
0 027 0 055 018 13

024 0 016 048 0.12 14

P.=(016 024 0 048 0.12]. 15

033 067 0 0 0 16

018 027 0 055 0 17

A comparison of the two matriceB, and P, shows that ele- 18
ments of these two matrices are both zero in the same pasition 19
and they follow the same trend. Even if the calculatiorfPof 20
is more complicated in Algorithr, this strategy appearsto be 21
more plausible since agents do not require to calculatetigxac 22
the benefits of cooperation with other agents. To produce 23
P., agents only need to have a rough estimation of other 24
agents and rank them according to their capabilities. Bednd 25
rational agents, which have limited computational resesirc 26
are considered to use simplified models and approximate27
solutions instead of seeking the optimal one [16]. 28

given benefit matrix:B = [bi;]mxm
strategy used by agents: strategy
agents unscheduled tim@y;],, «1

return preference matrix®P = [pi;lmxm

forie[1,...m]
tmp — Bl
descending_sort(tmp)
forjell,...m]
if strategy = equal
Dij < 1.0
else if strategy = random
Dij < rnd
else if strategy = proportional
Pij < bij
else if strategy = zipf
index «— 1
while tmplindex] > b;;
index +— index + 1
end while
pij < 1.0/index
end if
end for
sum < sum of elements in row|:
forje[l,...m)]
if sum # 0
pij < (Pij * i) /sum
else
pij < o /m
end if
end for
end for
return P




We propose a negotiation model in which agents follow twoThese matrices cannot be manipulated to a symmetric sojutio
rules: 1) if there is a conflict between two agents about theegardless of the negotiation protocol. The problem is ot
amount of time they wish to cooperate, they compromise byagentsa, and a3 want to cooperate full-time with agent,
accepting the average of the suggested values; 2) if an’agenwhich leads to docked state

total time in different subgroups is not equal to its avdiab

Although during our tests with simulated teams of different

time, the times are normalized to fulfill the constraint. Thesizes, only few cases resulted in locked states, the né¢igotia
procedure is repeated until the matrix converges sucadgsiv algorithm is extended by a detection and recovery partgline
to a value. The resulted matrix is a successive manipulaion 21 — 26). To recover from locked states, different strategies

the initial original matrix, toward a schedule matrix in whi

may be chosen. We use a simple method by adding a random

agents have compromised with other agents on their differemoise to the diagonal of the original matrix (lin@8 — 24)

desires, while trying to hold the schedule consistent witirt
time constraints.

and restarting the negotiation once more (I#3%8. Generally,
adding a little number to elemept; of the matrix means to

A procedure that follows these principles and provides &orce agenta; to reconsider cooperation with agemt. For
final symmetric matrix is outlined in Algorithm 2. The input example, by adding a small number= 0.001 to the diagonal

of the algorithm is the agents’ preference matfi¥ ©Ebtained
from Algorithm 1 and its output is a symmetric matfix

of the matrixP., all agents are encouraged to reconsider their
initial wishes of not working alone. F@P;+¢Z, the negotiation

The algorithm first calculates the unscheduled time of eacllgorithm provides a symmetric matrix aftéd iterations,

agent, i.e. vectow (lines1 — 3). Each iteration of the while-
loop (lines4 — 20), contains two for-loops. In the first for-loop

(lines5—11), the matrixP is replaced byP+P?)/2,i.e.each Po+el =

pair of symmetrically located elements of the matrix are-sub
stituted by the average of these two elements. Two agents tha
have different preferences about their cooperation comjz®

0.001 05 0.5 0 05 05
1.0 0001 o0 |2 1{0o5 05 0
1.0 0  0.001 05 0 05

This result means that agents andas are forced to work

by choosing the average of the two proposed time amounts. Walone one-half of their time, while the desire of agentis

call this operation (line$ — 11) symmetrizationThe second

completely accepted.

for-loop (lines12 — 19) restores the main characteristic of the “Ajgorithm 2: Negotiations of Agents

matrix P, so that for each row, the sum of the elements
pi; € P[i] remains equal tey;. We call this operation (lines
12 — 19) normalization

If none of the two agents; anda; are initially interested in

given preference matrix® = [p;;]mxm
return symmetric matrix’P = [pi;lmxm

- : 1 1 for each row: in matrix P
cooperation, that is;; = 0 ar}daji = 0, repetition of the sym- 2 ali] — sum(P[i])
metrization and normalization operations cannot change th 3 onq for
value. If qt least one_of the agents is interested in coojoerat 4 while matrix is changing
the algorithm can either f_orge t_he other agent to cqoperate 5 for each row i in matrixP
or suppress the agent’s |r_1|t|al mteres.t for cooperation. A ¢ for each column j in matri® with i > j
example of the latter case is the following, 7 average — (pi; + pji)/2

1.0 0 0 1.0 0 0 8 Dij < average
Pr=(05 0 0520 o 10}, 9 pji — average
0 10 O 0 1.0 O 10 end for
where the left hand side matrix aft§93 iterations of the 11 end for . :
while-loop converges to the symmetric matrix at the rightdha 12 for each row i n matrixp
side of the arrow. 13 s  sum(Pli])
However, the sequence of the symmetrization and normal-1° if s #0 _
ization does not manipulate all matrices to a symmetric imatr 14 for eachp;; € Pli]
For instance, consider the matrix pij = (pij * i)/
18 end for
0 05 05 0 05 05 17 end if
P=110 0 O |—|[10 O O], 19 end for
1.0 0 0 10 0 0 20 end while
where each sequence of symmetrization and normalization21 if P not symmetric
operations results in the same matrix. The algorithm doés no 22 for eachi € [1,...,m]
provide a symmetric solution for matriR, or any matrix that 23 Dii — Pii + random €
converges tdP,, e.g. 24 end for
10 0 0 0 05 05 25 run Algorithm 2
Pe=(10 0 0] ZP=(10 0 0 26 endif
1.0 0 0 10 0 0 27 _retun?p




TABLE Il

160 TOTAL BENEFIT OF AGENTS IN AVERAGE FOR DIFFERENT TEAM SIZES
ol eps =001 Size | Proportional | Zipf | Equal | Random
e o000 2 1706 | 1.706 | 0.853 | 0.901
- eps = 0.00001 3 2.551 2563 | 1.707 | 1.743
2 4 3.500 3.661 | 2.564 | 2.590
g 5 4.426 4630 | 3.415 | 3.437
: 6 5.351 5707 | 4271 | 4.289
2 7 6.275 6.730 | 5.127 | 5.142
€ wl 8 7.188 7.799 | 5974 | 5.988
2 9 8.104 8.846 | 6.824 | 6.837
40+
20+
9 T T
o

L L L L L L L ! Near-optimal
1 5 10 15 20 25 30 3k 40
Team Size

— Zipf B
= Proportional

Random

Fig. 2. Convergence of the preference matrix toward a symenetatrix for 6 II
different team sizes. ‘

VII. TEST OF THE ALGORITHMS 4

To investigate how fast Algorithm 2 converges to a symmet- 3
ric matrix, we let the algorithm manipulates random masice , |
with different sizes between 2 and 40. For each size 1000
random matrices are produced and the number of iteratior
in Algorithm 2 before each matrix converges to a symmetric ° ; p 10 15 20 2 30 35 a0
matrix is measured. A matrix is considered to be symmetric
if the differences between all pair of symmetrically lochte Fig.3. Comparison of the increase in the value added foemifft cooperation
elements of the matrix are less than a given value. Thafrategies in ateam of 4 agents.
iS, |asj — aji| <€, Vi, j, wheree is one of the four values

1072,107%,10" or 107>, _ As the results in TABLE Il show, the average benefit of
The results depicted in Fig. 2 show that for all matrix {hne team is higher for the proportional and Zipf strategies

sizes the algorithm converges rapidly to a symmetric matrixcompared with the equal and random strategies. Common for

However, the convergence rate is much higher for largeproportional and Zipf is that in both strategies agents eek

matrices. . _ cooperation with other agents with higher capabilities.
The results for the number of times Algorithm 2 reaches a  apother interesting observation is the comparison of the

locked state is given in TABLE | for the same set of data, i.e proportional and Zipf strategies. In the first case each gen
10000 different teams for each size (frobto 8). As seen from a5 1o distribute its time exactly in proportion to the kéin
the results, the number of locked states decreases, farlargyt cooperation with other agents, but in the second case the
team sizes. For team sizg this number is0. It is notable  ggent needs only to have a rough estimate of other agents’
that the results in Fig. 2 include number of iterations thasw capabilities and tries to cooperate with them accordindéirt

required after locked state detection and recovery. ranks. The simulation results show that in most cases thetres
TABLE | of the Zipf strategy is slightly higher than distributingettime
NUMBER OF LOCKED STATES REACHED INLOO0O TEAMS. precisely in proportion to the benefits.
Team size| # Locked states| % Locked states] In another test40 random tasks and0 random teams of
2 0 0.0 4,6 and8 agents using different strategies were studied. The
i 2‘212 gzgg performances of teams for the#trials are shown in Fig. 3, 4
5 57 007 and 5. These results clearly confirm that the tendency shown
6 7 0.07 by the average values are valid almost in every single trial.
; 8 8-86 Furthermore, these results are compared with a near-dptima

solution. The near-optimal values are computed using a cen-
tralized approach and forcing agents to cooperate only with
To test how algorithms 1 and 2 and the benefit model worlone other agent in a way that maximizes the benefit of the
together100000 random tasks antll0000 random teams with team. In most cases this method produces the optimal value;
different sizes from2 to 9 agents were created. The four however there are cases where it is most beneficial that an
different cooperation strategies were tested and an aweraggent cooperates with more than one agent, hence the name
of the total benefit of the agents for each team size andear-optimal. The results show that the strategy based en th
each strategy were calculated, the results are summarizetpf's law (principle of the least effort) is not very far fino
in TABLE I1. the near-optimal value.
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Fig. 4. Comparison of the increase in the value added foerdifft cooperation

among the agents about how much they are willing to cooper-
ate with each other. A negotiation algorithm that resolVes t
conflicts between agents is presented (Algorithm 2). A serie
of simulation experiments is run to compare the performance
of teams with different cooperation strategies. The resoit
these simulations show that a team in which the members
cooperate according to the Zipf's law (principle of leasod]j

has the highest performance.
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strategies in a team of 6 agents

(1]
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[6]
Fig. 5. Comparison of the increase in the value added foermdifft cooperation
strategies in a team of 8 agents
[7]
The good results of Zipf's strategy may be partially ex-
plained by the fact that agents who benefit from each other in[8]
almost the same extent, will rank each other in the same man-
ner when following this strategy. Thus, the preference xatr

is closer to “symmetric” and agents require less negofiatio  [9]

VIIl. CONCLUSIONS [10]

In this paper, we proposed a general framework for estimat-
ing the performance of a team of agents. A team is defined as a
set of agents with different capabilities that may coopeeatd  [11]
interact with each other. Teams are partly self-organizedl a
the working time of the agents is not completely scheduled[.12
It means that during a task, different subgroups in which
agents cooperate are built. The performance of the team is
considered to be the sum of agent’s individual contribigion
and subgroup contributions. In a subgroup, the capalsilitie[14]
of agents are increased under the influence of agents having
the highest capabilities. We proposed a model to calculatﬁg,]
the benefit of agents from the cooperation. Based on this
model and according to a common strategy, agents define [&]
preference matrix, which is a presentation of agents’ degor [17]
cooperation with other agents (Algorithm 1). In generais th
matrix is not symmetric, which means there is no consensus

REFERENCES

F. Kamrani, R. Ayani, F. Moradi, and G. Holm, “Estimatipgrformance
of a business process model,” Froc. Winter Simulation Conference
(WSC'09) M. D. Rossetti, R. R. Hill, B. Johansson, A. Dunkin, and
R. G. Ingalls, Eds., Austin, TX, December 2009.

F. Kamrani, R. Ayani, and A. Karimson, “Optimizing a bosss process
model by using simulation,” ifProceedings of the 2010 Workshop on
Principles of Advanced and Distributed Simulatiohtlanta, GA, May
2010, pp. 40-47.

J. R. Katzenbach and D. K. Smitilhe wisdom of teams : creating
the high-performance organization Harvard Business School Press,
Boston, Mass., 1993.

C. R. Paris, E. Salas, and J. A. Cannon-Bowers, “Teamvioriulti-
person systems: a review and analysisigonomics vol. 43, no. 8, pp.
1052-1075, 2000.

E. Salas, C. S. Burke, and J. A. Cannon-Bowers, “Teamwemkerging
principles,” International Journal of Management Reviewp. 339-356,
December 2000.

F. Kirschner, F. Paas, and P. A. Kirschner, “Individuadagroup-based
learning from complex cognitive tasks: Effects on retemtémd transfer
efficiency,” Computers in Human Behaviovol. 25, no. 2, pp. 306-314,
2009.

E. Kilner and L. A. Sheppard, “The role of teamwork and eoomica-
tion in the emergency department: A systematic revidmternational
Emergency Nursingpp. 127-137, July 2010.

D. Siassakos, T. Draycott, J. Crofts, L. Hunt, C. Wintand R. Fox,
“More to teamwork than knowledge, skill and attitudeBJOG: An
International Journal of Obstetrics & Gynaecolagpp. 1262-1269,
September 2010.

D. deB. Beaver, “Collaboration and teamwork in physic&zechoslovak
Journal of Physicspp. 14-18, 1986.

G. H. Walker, N. A. Stantona, P. Salmona, and D. Jenkiristow
can we support the commander’s involvement in the planninggss?
an exploratory study into remote and co-located commandnpig,”
International Journal of Industrial Ergonomicsol. 39, pp. 456-464,
March 2009.

W. B. Rouse and R. Rouse, “Teamwork in the performing,afro-
ceedings of the IEEE: Special Issue on Engineering & Musit. 92,
no. 4, pp. 606-615, April 2004.

] A. Bikfalvi, “Teamwork in production: Implementationits determi-

nants, and estimates for German manufacturitfiman Factors and
Ergonomics in Manufacturing & Service Industrjesol. 21, 2011.

] B. PrasadConcurrent Engineering Fundamentals, Volume [: Integiate

Product and Process Organization New Jersey: Prentice-Hall, 1996.
——, “Decentralized cooperation: a distributed appio#o team design
in a concurrent engineering organizatioigam Performance Manage-
ment vol. 4, pp. 138-165, 1998.

G. K. Zipf, Human Behavior and the Principle of Least Effokddison-
Wesley, Ed., 1949.

H. A. Simon, “A behavioral model of rational choice&juarterly Journal
of Economicsvol. 69, no. 1, pp. 99-118, 1955.

E. W. Weisstein, “Doubly stochastic matrix,” Avail&bl via
http://mathworld.wolfram.com/DoublyStochasticMathiml [accessed
June 14, 2010], From MathWorld—-A Wolfram Web Resource, 2010



